CN103296034A - Array substrate, production method thereof and display device - Google Patents
Array substrate, production method thereof and display device Download PDFInfo
- Publication number
- CN103296034A CN103296034A CN2013102039124A CN201310203912A CN103296034A CN 103296034 A CN103296034 A CN 103296034A CN 2013102039124 A CN2013102039124 A CN 2013102039124A CN 201310203912 A CN201310203912 A CN 201310203912A CN 103296034 A CN103296034 A CN 103296034A
- Authority
- CN
- China
- Prior art keywords
- insulating layer
- gate insulating
- electrode
- plate
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/481—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs integrated with passive devices, e.g. auxiliary capacitors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
Landscapes
- Thin Film Transistor (AREA)
Abstract
本发明属于显示技术领域,涉及一种阵列基板、制备方法以及显示装置。一种阵列基板,包括基板以及形成在所述基板上的薄膜晶体管和存储电容,所述薄膜晶体管包括栅极、源极、漏极以及设置于所述源极、所述漏极与所述栅极之间的栅绝缘层,所述存储电容包括第一极板、第二极板以及所述第一极板与所述第二极板之间的电介质层,其中,所述栅绝缘层紧邻所述源极、所述漏极部分的栅绝缘层的介电常数小于等于所述电介质层的介电常数。本发明的有益效果是:该阵列基板中的存储电容的电介质层的厚度虽然较小,但存储电容的容量较高,显著减小了存储电容尺寸,减小了包括存储电容的像素结构的尺寸,为高分辨率显示面板的制备提供了保证。
The invention belongs to the field of display technology, and relates to an array substrate, a preparation method and a display device. An array substrate, including a substrate, a thin film transistor and a storage capacitor formed on the substrate, the thin film transistor includes a gate, a source, a drain, and The gate insulating layer between the poles, the storage capacitor includes a first pole plate, a second pole plate, and a dielectric layer between the first pole plate and the second pole plate, wherein the gate insulation layer is adjacent to The dielectric constant of the gate insulating layer of the source and the drain part is less than or equal to the dielectric constant of the dielectric layer. The beneficial effects of the present invention are: although the thickness of the dielectric layer of the storage capacitor in the array substrate is small, the capacity of the storage capacitor is high, which significantly reduces the size of the storage capacitor and reduces the size of the pixel structure including the storage capacitor , providing a guarantee for the preparation of high-resolution display panels.
Description
技术领域technical field
本发明属于显示技术领域,涉及一种阵列基板、制备方法以及显示装置。The invention belongs to the field of display technology, and relates to an array substrate, a preparation method and a display device.
背景技术Background technique
随着显示技术的发展,人们对显示画质的需求日益增长,高画质、高分辨率的平板显示装置的需求越来越普遍,也越来越得到显示面板厂家的重视。With the development of display technology, people's demand for display quality is increasing day by day, and the demand for high-quality, high-resolution flat panel display devices is becoming more and more common, and more and more attention has been paid by display panel manufacturers.
薄膜晶体管(Thin Film Transistor,简称TFT)是目前平板显示面板的主要驱动器件,直接关系到高性能平板显示装置的发展方向。薄膜晶体管具有多种结构,制备相应结构的薄膜晶体管的材料也具有多种,其中,低温多晶硅由于其迁移率可达非晶硅的几十甚至几百倍,因此,采用低温多晶硅材料形成尺寸较小的薄膜晶体管,可以获得相对采用非晶硅材料形成的薄膜晶体管较大的驱动能力,低温多晶硅薄膜晶体管也因此得到了研究机构及显示面板厂家的关注。能够提供高画质、高分辨率的低温多晶硅薄膜晶体管开始逐渐在市场上出现并不断发展,为液晶显示装置(Liquid Crystal Display:简称LCD)或有机电致发光显示装置(Organic Light-Emitting Diode:简称OLED)提供了更好的显示画质。Thin Film Transistor (TFT for short) is the main driving device of flat panel display panels at present, and is directly related to the development direction of high-performance flat panel display devices. Thin film transistors have a variety of structures, and there are also many materials for preparing thin film transistors with corresponding structures. Among them, low-temperature polysilicon has a mobility of tens or even hundreds of times that of amorphous silicon. Small thin-film transistors can obtain greater driving capability than thin-film transistors formed of amorphous silicon materials, and low-temperature polysilicon thin-film transistors have therefore attracted the attention of research institutions and display panel manufacturers. Low-temperature polysilicon thin-film transistors that can provide high-quality, high-resolution images gradually appear in the market and continue to develop. OLED for short) provides a better display quality.
虽然低温多晶硅薄膜晶体管具有上述优点,但是,在低温多晶硅薄膜晶体管阵列基板中为了实现持续的驱动能力,还需要同时设置存储电容(Storing Capacity:简称Cs),尤其是高分辨率显示面板中,通常需要为低温多晶硅薄膜晶体管配备较大容量的存储电容,才能满足驱动需要。目前常采用的制备存储电容的工艺方法是,在制备薄膜晶体管的同时,直接采用形成栅极和源极/漏极的导电金属材料分别形成存储电容的两个极板,然后直接采用一层层间绝缘层或者一层栅绝缘层作为存储电容的电介质层,从而形成存储电容。然而,考虑到薄膜晶体管的电学特性,无论是层间绝缘层还是栅绝缘层都无法做得尽可能薄;同时,层间绝缘层要起到钝化、保护作用,而栅绝缘层为了与多晶硅层形成良好的接触界面,因此,通常层间绝缘层或者栅绝缘层都会采用介电常数较小的氧化硅材料形成。Although low-temperature polysilicon thin film transistors have the above advantages, in order to achieve continuous driving capability in low-temperature polysilicon thin film transistor array substrates, it is also necessary to set storage capacitors (Storing Capacity: Cs for short), especially in high-resolution display panels, usually It is necessary to equip the low-temperature polysilicon thin film transistor with a large-capacity storage capacitor to meet the driving requirements. At present, the commonly used process for preparing storage capacitors is to directly use the conductive metal materials that form the gate and source/drain to form the two plates of the storage capacitor while preparing the thin film transistor, and then directly use layer by layer An interlayer insulating layer or a layer of gate insulating layer is used as the dielectric layer of the storage capacitor, thereby forming the storage capacitor. However, considering the electrical characteristics of thin film transistors, neither the interlayer insulating layer nor the gate insulating layer can be made as thin as possible; at the same time, the interlayer insulating layer must play a role of passivation and protection, and the gate insulating layer must be in contact with polysilicon. Layers form a good contact interface. Therefore, usually, the interlayer insulating layer or the gate insulating layer is formed by silicon oxide material with a small dielectric constant.
存储电容的容量由如下的公式(1)计算得出:The capacity of the storage capacitor is calculated by the following formula (1):
Cs=εS/4πkd………………(1)Cs=εS/4πkd………………(1)
在公式(1)中,ε为介电常数,S为电容极板的正对面积,k为静电力常数,d为电容极板间的距离(或厚度)。In formula (1), ε is the dielectric constant, S is the facing area of the capacitor plates, k is the electrostatic force constant, and d is the distance (or thickness) between the capacitor plates.
可见,上述层间绝缘层或者栅绝缘层较大的厚度与较小的介电常数均限制了存储电容的容量,而存储电容的容量直接制约着高分辨率阵列基板的性能,进而限制了高分辨率显示装置的进一步发展。It can be seen that the large thickness and small dielectric constant of the above-mentioned interlayer insulating layer or gate insulating layer limit the capacity of the storage capacitor, and the capacity of the storage capacitor directly restricts the performance of the high-resolution array substrate, thereby limiting the capacity of the high-resolution array substrate. Further development of resolution display devices.
因此,如何提高阵列基板中存储电容的容量,同时获得具有稳定的驱动能力的薄膜晶体管,减小存储电容的尺寸以及包括存储电容的像素结构的尺寸,提高平板显示装置的显示质量是目前亟待解决的问题。Therefore, how to increase the capacity of the storage capacitor in the array substrate, obtain a thin film transistor with stable driving capability, reduce the size of the storage capacitor and the size of the pixel structure including the storage capacitor, and improve the display quality of the flat panel display device is an urgent problem to be solved at present. The problem.
发明内容Contents of the invention
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种阵列基板、制备方法以及显示装置,该阵列基板中的存储电容的电介质层的厚度虽然较小,但存储电容的容量较高,显著减小了存储电容尺寸。The technical problem to be solved by the present invention is to provide an array substrate, a preparation method, and a display device for the above-mentioned deficiencies in the prior art. Although the thickness of the dielectric layer of the storage capacitor in the array substrate is small, the thickness of the storage capacitor The higher capacity significantly reduces the size of the storage capacitor.
解决本发明技术问题所采用的技术方案是该一种阵列基板,包括基板以及形成在所述基板上的薄膜晶体管和存储电容,所述薄膜晶体管包括栅极、源极、漏极以及设置于所述源极、所述漏极与所述栅极之间的栅绝缘层,所述存储电容包括第一极板、第二极板以及所述第一极板与所述第二极板之间的电介质层,其中所述栅绝缘层紧邻所述源极、所述漏极部分的栅绝缘层的介电常数小于等于所述电介质层的介电常数。The technical solution adopted to solve the technical problem of the present invention is the array substrate, which includes a substrate, a thin film transistor and a storage capacitor formed on the substrate, and the thin film transistor includes a gate, a source, a drain, and a The gate insulating layer between the source, the drain and the gate, the storage capacitor includes a first plate, a second plate, and between the first plate and the second plate A dielectric layer, wherein the dielectric constant of the gate insulating layer adjacent to the source and the drain is less than or equal to the dielectric constant of the dielectric layer.
优选的是,所述栅绝缘层包括第一栅绝缘层和第二栅绝缘层,所述第一栅绝缘层的介电常数小于所述第二栅绝缘层的介电常数,所述第一栅绝缘层紧邻所述源极、所述漏极,所述第一极板与所述第二极板分设在所述第二栅绝缘层的上下两侧,所述电介质层为所述第二栅绝缘层对应着所述第一极板与所述第二极板的部分。Preferably, the gate insulating layer includes a first gate insulating layer and a second gate insulating layer, the dielectric constant of the first gate insulating layer is smaller than that of the second gate insulating layer, and the first gate insulating layer has a dielectric constant smaller than that of the second gate insulating layer. The gate insulating layer is adjacent to the source and the drain, the first plate and the second plate are respectively arranged on the upper and lower sides of the second gate insulating layer, and the dielectric layer is the second The gate insulation layer corresponds to the first plate and the second plate.
一种优选方案是,所述源极、所述漏极与所述第一极板同层设置,所述第一栅绝缘层完全覆盖所述源极与所述漏极、且未覆盖所述第一极板;所述第二栅绝缘层完全覆盖所述第一栅绝缘层与所述第一极板;所述栅极设置于所述第二栅绝缘层对应着所述源极和所述漏极之间的区域的上方、且同时与所述源极与所述漏极在正投影方向上部分重叠,所述第二极板设置于所述第二栅绝缘层上方、且与所述第一极板在正投影方向上至少部分重叠;A preferred solution is that the source, the drain and the first plate are arranged on the same layer, and the first gate insulating layer completely covers the source and the drain, and does not cover the The first electrode plate; the second gate insulating layer completely covers the first gate insulating layer and the first electrode plate; the gate is arranged on the second gate insulating layer corresponding to the source and the above the region between the drains, and at the same time partially overlap the source and the drain in the direction of the orthographic projection, the second plate is disposed above the second gate insulating layer, and The first polar plate overlaps at least partially in the orthographic projection direction;
或者,所述源极、所述漏极与所述第一极板同层设置,所述第一栅绝缘层完全覆盖所述源极与所述漏极、且未覆盖所述第一极板;所述第二栅绝缘层完全覆盖所述第一极板、且未覆盖所述源极与所述漏极对应着的区域;所述栅极设置于所述第一栅绝缘层对应着所述源极和所述漏极之间的区域的上方、且同时与所述源极与所述漏极在正投影方向上部分重叠,所述第二极板设置于所述第二栅绝缘层上方、且与所述第一极板在正投影方向上至少部分重叠。Alternatively, the source electrode, the drain electrode and the first electrode plate are arranged on the same layer, and the first gate insulating layer completely covers the source electrode and the drain electrode, and does not cover the first electrode plate ; the second gate insulating layer completely covers the first electrode plate, and does not cover the region corresponding to the source and the drain; the gate is arranged on the first gate insulating layer corresponding to the Above the region between the source and the drain, and at the same time partially overlap the source and the drain in the direction of the orthographic projection, the second plate is arranged on the second gate insulating layer above, and at least partially overlap with the first pole plate in the orthographic projection direction.
一种优选方案是,所述栅极与所述第二极板同层设置,所述第一栅绝缘层完全覆盖所述栅极、且未覆盖所述第二极板;所述第二栅绝缘层完全覆盖所述第一栅绝缘层以及所述第二极板;所述源极与所述漏极设置于所述第二栅绝缘层对应着所述栅极的两端的上方、且分别与所述栅极在正投影方向上部分重叠,所述第一极板设置于所述第二栅绝缘层对应着所述第二极板的上方;A preferred scheme is that the grid is arranged on the same layer as the second electrode plate, and the first gate insulating layer completely covers the grid and does not cover the second electrode plate; The insulating layer completely covers the first gate insulating layer and the second electrode plate; the source and the drain are arranged above the two ends of the second gate insulating layer corresponding to the gate, and respectively Partially overlapping with the gate in the direction of the orthographic projection, the first plate is disposed above the second gate insulating layer corresponding to the second plate;
或者,所述栅极与所述第二极板同层设置,所述第一栅绝缘层完全覆盖所述栅极、且未覆盖所述第二极板;所述第二栅绝缘层完全覆盖所述第二极板、且未覆盖所述栅极对应着的区域;所述源极与所述漏极设置于所述第一栅绝缘层对应着所述栅极的两端的上方、且分别与所述栅极在正投影方向上部分重叠,所述第一极板设置于所述第二栅绝缘层对应着所述第二极板的上方。Alternatively, the gate and the second electrode plate are arranged on the same layer, the first gate insulating layer completely covers the gate and does not cover the second electrode plate; the second gate insulating layer completely covers The second electrode plate does not cover the area corresponding to the gate; the source and the drain are arranged above the two ends of the first gate insulating layer corresponding to the gate, and are respectively Partially overlapping with the gate in the orthographic projection direction, the first pole plate is disposed above the second gate insulating layer corresponding to the second pole plate.
优选的是,所述第一栅绝缘层采用氧化硅材料形成,所述第一栅绝缘层为单层结构;所述第二栅绝缘层采用氧化硅材料、氮化硅材料中的至少一种形成,所述第二栅绝缘层为单层结构或多个子层的叠层结构。Preferably, the first gate insulating layer is formed of silicon oxide material, and the first gate insulating layer has a single-layer structure; the second gate insulating layer is formed of at least one of silicon oxide material and silicon nitride material Formed, the second gate insulating layer is a single-layer structure or a stacked structure of multiple sub-layers.
优选的是,所述第一栅绝缘层的厚度范围为所述第二栅绝缘层的厚度范围为 Preferably, the thickness range of the first gate insulating layer is The thickness range of the second gate insulating layer is
优选的是,所述源极、所述漏极与所述第一极板采用低温多晶硅材料形成,所述源极、所述漏极与所述第一极板的厚度范围为所述栅极与所述第二极板采用钼、钼铌合金、铝、铝钕合金、钛和铜中的至少一种材料形成,所述栅极与所述第二极板的厚度范围为 Preferably, the source, the drain and the first plate are formed of low-temperature polysilicon material, and the thickness of the source, the drain and the first plate is in the range of The grid and the second pole plate are formed of at least one material selected from molybdenum, molybdenum-niobium alloy, aluminum, aluminum neodymium alloy, titanium and copper, and the thickness range of the grid and the second pole plate is
优选的是,还包括缓冲层,所述缓冲层为单层结构或多个子层的叠层结构,所述缓冲层采用氧化硅材料、氮化硅材料中的至少一种形成,所述缓冲层设置在所述基板与所述源极、所述漏极、所述第一极板之间;或者,所述缓冲层设置在所述基板与所述栅极、所述第二极板之间。Preferably, a buffer layer is also included, the buffer layer is a single-layer structure or a laminated structure of multiple sub-layers, the buffer layer is formed by at least one of silicon oxide material and silicon nitride material, and the buffer layer arranged between the substrate and the source, the drain, and the first plate; or, the buffer layer is arranged between the substrate, the gate, and the second plate .
优选的是,所述阵列基板中还包括层间绝缘层和引出电极,所述引出电极包括第一电极和第二电极,所述层间绝缘层设置在所述薄膜晶体管与所述存储电容的上方,所述层间绝缘层对应着所述源极和所述漏极的区域分别开设有第一过孔和第二过孔,所述源极通过所述第一过孔与所述第一电极电连接,所述漏极通过第二过孔与所述第二电极电连接。Preferably, the array substrate further includes an interlayer insulating layer and an extraction electrode, the extraction electrode includes a first electrode and a second electrode, and the interlayer insulation layer is arranged between the thin film transistor and the storage capacitor. Above, the region of the interlayer insulating layer corresponding to the source and the drain is respectively provided with a first via hole and a second via hole, and the source is connected to the first via hole through the first via hole. The electrodes are electrically connected, and the drain is electrically connected to the second electrode through the second via hole.
一种显示装置,包括上述的阵列基板。A display device includes the above-mentioned array substrate.
一种阵列基板的制备方法,包括在基板上形成薄膜晶体管和存储电容的步骤,形成所述薄膜晶体管的步骤包括形成栅极、源极、漏极的步骤以及在所述源极、所述漏极与所述栅极之间形成栅绝缘层的步骤,形成所述存储电容的步骤包括形成第一极板、第二极板以及在所述第一极板与所述第二极板之间形成电介质层的步骤,其中,形成紧邻所述源极、所述漏极部分的所述栅绝缘层的介电常数,小于等于形成所述电介质层的介电常数。A method for preparing an array substrate, comprising the step of forming a thin film transistor and a storage capacitor on the substrate, the step of forming the thin film transistor includes the steps of forming a gate, a source, and a drain, and The step of forming a gate insulating layer between the electrode and the gate, the step of forming the storage capacitor includes forming a first electrode plate, a second electrode plate and between the first electrode plate and the second electrode plate The step of forming a dielectric layer, wherein the dielectric constant of the gate insulating layer adjacent to the source and the drain is less than or equal to the dielectric constant of the dielectric layer.
优选的是,形成所述栅绝缘层的步骤包括形成第一栅绝缘层和第二栅绝缘层的步骤,所述第一栅绝缘层的介电常数小于所述第二栅绝缘层的介电常数,所述第一栅绝缘层紧邻所述源极、所述漏极,所述第一极板与所述第二极板形成在所述第二栅绝缘层的上下两侧,所述电介质层为所述第二栅绝缘层对应着所述第一极板与所述第二极板的部分。Preferably, the step of forming the gate insulating layer includes the step of forming a first gate insulating layer and a second gate insulating layer, and the dielectric constant of the first gate insulating layer is smaller than that of the second gate insulating layer. constant, the first gate insulating layer is adjacent to the source and the drain, the first plate and the second plate are formed on the upper and lower sides of the second gate insulating layer, and the dielectric layer is the part of the second gate insulating layer corresponding to the first pole plate and the second pole plate.
一种优选方案是,该制备方法具体包括如下步骤:A preferred version is that the preparation method specifically includes the following steps:
步骤S1):在所述基板上形成缓冲层;Step S1): forming a buffer layer on the substrate;
步骤S2):在所述缓冲层上形成非晶硅层,对所述非晶硅层进行晶化以形成多晶硅层,并对所述多晶硅层进行构图工艺,形成包括有源层硅岛以及极板硅岛的图形;Step S2): forming an amorphous silicon layer on the buffer layer, crystallizing the amorphous silicon layer to form a polysilicon layer, and performing a patterning process on the polysilicon layer to form a silicon island including an active layer and an electrode Graphics of silicon islands on the board;
步骤S3):在完成步骤S2)的所述基板上形成包括第一栅绝缘层的图形,所述第一栅绝缘层完全覆盖所述源极与所述漏极、且未覆盖所述第一极板,并通过离子注入方式在所述极板硅岛中形成所述第一极板;Step S3): forming a pattern including a first gate insulating layer on the substrate after step S2), the first gate insulating layer completely covers the source and the drain, and does not cover the first a polar plate, and forming the first polar plate in the silicon island of the polar plate by ion implantation;
步骤S4):在完成步骤S3)的所述基板上形成包括第二栅绝缘层的图形,所述第二栅绝缘层完全覆盖所述第一栅绝缘层与所述第一极板;Step S4): forming a pattern including a second gate insulating layer on the substrate after step S3), the second gate insulating layer completely covering the first gate insulating layer and the first electrode plate;
或者,步骤S4):在完成步骤S3)的所述基板上形成包括第二栅绝缘层的图形,所述第二栅绝缘层完全覆盖所述第一极板、且未覆盖所述源极与所述漏极对应着的区域;Alternatively, step S4): forming a pattern including a second gate insulating layer on the substrate after step S3), the second gate insulating layer completely covers the first electrode plate, and does not cover the source electrode and the the region corresponding to the drain;
步骤S5):在完成步骤S4)的所述基板上,在所述第二栅绝缘层上方形成包括栅极以及第二极板的图形,所述栅极形成在对应着所述源极和所述漏极之间的区域、且同时与所述源极与所述漏极在正投影方向上部分重叠,所述第二极板与所述第一极板在正投影方向上至少部分重叠;Step S5): On the substrate after step S4), a pattern including a gate and a second electrode plate is formed on the second gate insulating layer, and the gate is formed corresponding to the source and the The region between the drains and at the same time partially overlaps the source and the drain in the orthographic projection direction, and the second electrode plate and the first electrode plate at least partially overlap in the orthographic projection direction;
或者,步骤S5):在完成步骤S4)的所述基板上,在所述第一栅绝缘层上方形成包括栅极的图形,所述栅极形成在对应着所述源极和所述漏极之间的区域、且同时与所述源极与所述漏极在正投影方向上部分重叠;在所述第二栅绝缘层上方形成包括第二极板的图形,所述第二极板与所述第一极板在正投影方向上至少部分重叠;Alternatively, step S5): on the substrate after step S4), a pattern including a gate is formed on the first gate insulating layer, and the gate is formed corresponding to the source and the drain and at the same time partially overlap with the source and the drain in the direction of the orthographic projection; a pattern including a second plate is formed above the second gate insulating layer, and the second plate and The first polar plate at least partially overlaps in the orthographic projection direction;
步骤S6):在完成步骤S5)的所述基板上,通过离子注入方式在所述有源层硅岛的两侧形成所述源极和所述漏极。Step S6): on the substrate after step S5), the source and the drain are formed on both sides of the silicon island of the active layer by means of ion implantation.
一种优选方案是,该制备方法具体包括如下步骤:A preferred version is that the preparation method specifically includes the following steps:
步骤S1):在所述基板上形成缓冲层;Step S1): forming a buffer layer on the substrate;
步骤S2):在所述缓冲层上形成包括栅极以及第二极板的图形;Step S2): forming a pattern including a gate and a second plate on the buffer layer;
步骤S3):在完成步骤S2)的所述基板上形成包括第一栅绝缘层的图形,所述第一栅绝缘层完全覆盖所述栅极、且未覆盖所述第二极板的图形;Step S3): forming a pattern including a first gate insulating layer on the substrate after step S2), the first gate insulating layer completely covering the gate and not covering the pattern of the second electrode plate;
步骤S4):在完成步骤S3)的所述基板上形成包括第二栅绝缘层的图形,所述第二栅绝缘层完全覆盖所述第一栅绝缘层以及所述第二极板;Step S4): forming a pattern including a second gate insulating layer on the substrate after step S3), the second gate insulating layer completely covering the first gate insulating layer and the second electrode plate;
或者,步骤S4):在完成步骤S3)的所述基板上形成包括第二栅绝缘层的图形,所述第二栅绝缘层完全覆盖所述第二极板、且未覆盖所述栅极对应着的区域;Alternatively, step S4): forming a pattern including a second gate insulating layer on the substrate after step S3), the second gate insulating layer completely covers the second electrode plate and does not cover the corresponding gate electrode. the area where
步骤S5):在完成步骤S4)的所述基板上形成非晶硅层,对所述非晶硅层进行晶化以形成多晶硅层,并对所述多晶硅层进行构图工艺,形成包括有源层硅岛以及极板硅岛的图形;Step S5): forming an amorphous silicon layer on the substrate after step S4), crystallizing the amorphous silicon layer to form a polysilicon layer, and performing a patterning process on the polysilicon layer to form an active layer Graphics of silicon islands and plate silicon islands;
步骤S6):通过离子注入方式在所述有源层硅岛的两侧形成所述源极和所述漏极,所述源极和所述漏极在正投影方向上与所述栅极至少部分重叠;通过离子注入方式在所述极板硅岛中形成第一极板,所述第一极板与所述第二极板在正投影方向上重叠。Step S6): forming the source and the drain on both sides of the silicon island in the active layer by ion implantation, the source and the drain are at least at least the same as the gate in the direction of the orthographic projection Partially overlapping: a first pole plate is formed in the pole plate silicon island by means of ion implantation, and the first pole plate overlaps with the second pole plate in the orthographic projection direction.
进一步优选的是,还进一步包括步骤S7):在所述薄膜晶体管与所述存储电容的上方形成包括层间绝缘层以及引出电极的图形,所述引出电极包括第一电极以及第二电极,在所述层间绝缘层上方对应着所述源极和所述漏极的区域分别形成第一过孔和第二过孔,所述源极与所述第一电极通过所述第一过孔电连接,所述漏极与所述第二电极通过所述第二过孔电连接。Further preferably, it further includes step S7): forming a pattern including an interlayer insulating layer and a lead-out electrode above the thin film transistor and the storage capacitor, and the lead-out electrode includes a first electrode and a second electrode. A first via hole and a second via hole are respectively formed in regions above the interlayer insulating layer corresponding to the source electrode and the drain electrode, and the source electrode and the first electrode are electrically connected through the first via hole. connected, the drain is electrically connected to the second electrode through the second via hole.
优选的是,在所述基板上形成所述缓冲层包括采用等离子体增强化学气相沉积方式、低压化学气相沉积方式、大气压化学气相沉积方式或电子回旋谐振化学气相沉积方式或溅射方式,所述缓冲层的厚度范围为沉积温度小于等于600℃。Preferably, forming the buffer layer on the substrate includes plasma-enhanced chemical vapor deposition, low-pressure chemical vapor deposition, atmospheric pressure chemical vapor deposition, electron cyclotron resonance chemical vapor deposition, or sputtering. The thickness of the buffer layer ranges from The deposition temperature is less than or equal to 600°C.
优选的是,形成所述第一栅绝缘层以及第二栅绝缘层包括采用等离子体增强化学气相沉积方式、低压化学气相沉积方式、大气压化学气相沉积方式或电子回旋谐振化学气相沉积方式或溅射方式形成相应的第一栅绝缘层膜以及第二栅绝缘层膜,所述第一栅绝缘层的厚度范围为所述第二栅绝缘层的厚度范围为 Preferably, forming the first gate insulating layer and the second gate insulating layer includes plasma enhanced chemical vapor deposition, low pressure chemical vapor deposition, atmospheric pressure chemical vapor deposition or electron cyclotron resonance chemical vapor deposition or sputtering form the corresponding first gate insulating layer film and the second gate insulating layer film, the thickness range of the first gate insulating layer is The thickness range of the second gate insulating layer is
优选的是,形成所述栅极包括采用溅射方式、热蒸发方式、等离子体增强化学气相沉积方式、低压化学气相沉积方式、大气压化学气相沉积方式或电子回旋谐振化学气相沉积方式形成栅极膜,通过一次构图工艺形成包括栅极以及所述第二极板的图形,所述栅极与所述第二极板的厚度范围为 Preferably, forming the gate includes forming the gate film by sputtering, thermal evaporation, plasma enhanced chemical vapor deposition, low pressure chemical vapor deposition, atmospheric pressure chemical vapor deposition or electron cyclotron resonance chemical vapor deposition. , through a patterning process to form a pattern including the gate and the second plate, the thickness of the gate and the second plate is in the range of
优选的是,形成所述非晶硅层包括等离子体增强化学气相沉积方式或低压化学气相沉积方式,沉积温度小于等于600℃,所述多晶硅层的厚度范围为对所述非晶硅层进行晶化包括采用准分子激光晶化方式、金属诱导晶化方式或固相晶化方式,或者还进一步包括:在晶化过程中增加热处理脱氢工艺、沉积诱导金属工艺、热处理晶化工艺或准分子激光照射晶化工艺、杂质掺杂及掺杂杂质的激活工艺。Preferably, forming the amorphous silicon layer includes plasma-enhanced chemical vapor deposition or low-pressure chemical vapor deposition, the deposition temperature is less than or equal to 600°C, and the thickness of the polysilicon layer is in the range of Crystallizing the amorphous silicon layer includes excimer laser crystallization, metal-induced crystallization, or solid-phase crystallization, or further includes: adding a heat treatment dehydrogenation process during the crystallization process, depositing an induced metal process, heat treatment crystallization process or excimer laser irradiation crystallization process, impurity doping and impurity activation process.
优选的是,所述离子注入方式包括具有质量分析仪的离子注入方式、不具有质量分析仪的离子云式注入方式、等离子注入方式或固态扩散式注入方式,其中,注入介质为含硼元素和/或含磷元素气体,注入能量范围为10-200keV,注入剂量范围为1x1011-1x1020atoms/cm3。Preferably, the ion implantation method includes an ion implantation method with a mass analyzer, an ion cloud implantation method without a mass analyzer, a plasma implantation method or a solid-state diffusion implantation method, wherein the implantation medium is a boron-containing element and /or phosphorus-containing gas, the implantation energy is in the range of 10-200keV, and the implantation dose is in the range of 1x10 11 -1x10 20 atoms/cm 3 .
优选的是,离子注入之后通过快速加热退火方式、准分子激光退火方式或炉退火方式对薄膜晶体管进行激活,退火温度范围为300℃-600℃,退火时间范围为0.5-4小时。Preferably, after the ion implantation, the TFT is activated by rapid heating annealing, excimer laser annealing or furnace annealing, the annealing temperature ranges from 300°C to 600°C, and the annealing time ranges from 0.5 to 4 hours.
本发明的有益效果是:所述阵列基板中,通过改变形成薄膜晶体管的源极、漏极与栅极之间的栅绝缘层、存储电容的极板以及电介质层的材料,并采用相应的阵列基板的制备方法,采用现有的形成存储电容的掩模板并搭配较大介电常数的绝缘材料,既减小了存储电容中电介质层的厚度,又有效提高了存储电容的容量,显著减小了存储电容尺寸,减小了包括存储电容的像素结构的尺寸,从而解决了低温多晶硅薄膜晶体管阵列基板制备中存储电容尺寸较大而限制分辨率提升的问题,为高分辨率显示面板的制备提供了保证,也即为制备高分辨率液晶显示装置和有机电致发光显示装置提供了保证。The beneficial effects of the present invention are: in the array substrate, by changing the materials of the source electrode, the gate insulation layer between the drain electrode and the gate electrode, the electrode plate of the storage capacitor and the dielectric layer forming the thin film transistor, and adopting the corresponding array The preparation method of the substrate adopts the existing mask plate for forming the storage capacitor and is matched with an insulating material with a large dielectric constant, which not only reduces the thickness of the dielectric layer in the storage capacitor, but also effectively improves the capacity of the storage capacitor, significantly reducing The size of the storage capacitor is reduced, and the size of the pixel structure including the storage capacitor is reduced, thereby solving the problem that the size of the storage capacitor is large in the preparation of the low-temperature polysilicon thin film transistor array substrate and limiting the improvement of the resolution, and provides a high-resolution display panel. Guaranteed, that is, to provide a guarantee for the preparation of high-resolution liquid crystal display devices and organic electroluminescent display devices.
附图说明Description of drawings
图1为现有技术中阵列基板的剖视图;1 is a cross-sectional view of an array substrate in the prior art;
图2为本发明实施例1中阵列基板的剖视图;2 is a cross-sectional view of the array substrate in
图3为图2中阵列基板的制备方法流程图;Fig. 3 is a flow chart of the method for preparing the array substrate in Fig. 2;
图4为图2中阵列基板制备过程中的各步骤的剖视图;4 is a cross-sectional view of each step in the preparation process of the array substrate in FIG. 2;
其中:in:
图4A为形成缓冲层的剖视图;4A is a cross-sectional view of forming a buffer layer;
图4B(4B-1,4B-2)为形成多晶硅层的剖视图;4B (4B-1, 4B-2) is a cross-sectional view of forming a polysilicon layer;
图4C为形成第一栅绝缘层以及掩模层的剖视图;4C is a cross-sectional view of forming a first gate insulating layer and a mask layer;
图4D为形成第二栅绝缘层的剖视图;4D is a cross-sectional view of forming a second gate insulating layer;
图4E(4E-1,4E-2)为形成包括栅极、第二极板的图形的剖视图;Figure 4E (4E-1, 4E-2) is a cross-sectional view of forming a pattern including a gate and a second plate;
图4F为形成源极和漏极的剖视图;Figure 4F is a cross-sectional view of forming a source and a drain;
图4G为形成包括层间绝缘层以及包括引出电极的图形的剖视图;4G is a cross-sectional view of forming a pattern including an interlayer insulating layer and including an extraction electrode;
图5为本发明实施例2中阵列基板的剖视图;5 is a cross-sectional view of the array substrate in
图6为本发明实施例3中阵列基板的剖视图;6 is a cross-sectional view of the array substrate in Embodiment 3 of the present invention;
图7为本发明实施例4中阵列基板的剖视图;7 is a cross-sectional view of an array substrate in
图中:1-基板;2-缓冲层;31-源极;32-漏极;33-多晶硅层;33a-有源层硅岛;33b-极板硅岛;33c-待注入区域;34-栅极;340-第一金属层;4-栅绝缘层;41-第一栅绝缘层;41a-掩模层;41b-待刻蚀区域;42-第二栅绝缘层;61-第一极板;62-第二极板;7-层间绝缘层;81-第一电极;82-第二电极。In the figure: 1-substrate; 2-buffer layer; 31-source; 32-drain; 33-polysilicon layer; 33a-active layer silicon island; 33b-plate silicon island; 33c-area to be implanted; 34- Gate; 340-first metal layer; 4-gate insulating layer; 41-first gate insulating layer; 41a-mask layer; 41b-area to be etched; 42-second gate insulating layer; 61-first electrode plate; 62-second pole plate; 7-interlayer insulating layer; 81-first electrode; 82-second electrode.
具体实施方式Detailed ways
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明阵列基板、制备方法以及显示装置作进一步详细描述。In order to enable those skilled in the art to better understand the technical solution of the present invention, the array substrate, manufacturing method and display device of the present invention will be further described in detail below with reference to the drawings and specific embodiments.
一种阵列基板,包括基板以及形成在所述基板上的薄膜晶体管和存储电容,所述薄膜晶体管包括栅极、源极、漏极以及设置于所述源极、所述漏极与所述栅极之间的栅绝缘层,所述存储电容包括第一极板、第二极板以及所述第一极板与所述第二极板之间的电介质层,其中,所述栅绝缘层紧邻所述源极、所述漏极部分的栅绝缘层的介电常数小于等于所述电介质层的介电常数。An array substrate, including a substrate, a thin film transistor and a storage capacitor formed on the substrate, the thin film transistor includes a gate, a source, a drain, and The gate insulating layer between the poles, the storage capacitor includes a first pole plate, a second pole plate, and a dielectric layer between the first pole plate and the second pole plate, wherein the gate insulation layer is adjacent to The dielectric constant of the gate insulating layer of the source and the drain part is less than or equal to the dielectric constant of the dielectric layer.
一种显示装置,包括上述的阵列基板。A display device includes the above-mentioned array substrate.
一种阵列基板的制备方法,包括在基板上形成薄膜晶体管和存储电容的步骤,形成所述薄膜晶体管的步骤包括形成栅极、源极、漏极的步骤以及在所述源极、所述漏极与所述栅极之间形成栅绝缘层的步骤,形成所述存储电容的步骤包括形成第一极板、第二极板以及在所述第一极板与所述第二极板之间形成电介质层的步骤,其中,形成紧邻所述源极、所述漏极部分的所述栅绝缘层的介电常数,小于等于形成所述电介质层的介电常数。A method for preparing an array substrate, comprising the step of forming a thin film transistor and a storage capacitor on the substrate, the step of forming the thin film transistor includes the steps of forming a gate, a source, and a drain, and The step of forming a gate insulating layer between the electrode and the gate, the step of forming the storage capacitor includes forming a first electrode plate, a second electrode plate and between the first electrode plate and the second electrode plate The step of forming a dielectric layer, wherein the dielectric constant of the gate insulating layer adjacent to the source and the drain is less than or equal to the dielectric constant of the dielectric layer.
实施例1:Example 1:
如图2所示,一种阵列基板,包括基板1、形成在所述基板1上缓冲层2,以及形成在所述缓冲层2上方的薄膜晶体管和存储电容,所述薄膜晶体管包括栅极34、源极31、漏极32以及设置于所述源极31、所述漏极32与所述栅极34之间的栅绝缘层4,所述存储电容包括第一极板61、第二极板62以及所述第一极板与所述第二极板之间的电介质层,所述栅绝缘层4包括第一栅绝缘层41和第二栅绝缘层42,所述第一栅绝缘层41的介电常数小于所述第二栅绝缘层42的介电常数,所述第一栅绝缘层41紧邻所述源极31、所述漏极32,所述第一极板61与所述第二极板62分设在所述第二栅绝缘层42的上下两侧,所述电介质层为所述第二栅绝缘层42对应着所述第一极板61与所述第二极板62的部分。As shown in FIG. 2, an array substrate includes a
为对薄膜晶体管和存储电容进行绝缘保护和信号引出,所述阵列基板中还包括层间绝缘层7和引出电极,所述引出电极包括第一电极81和第二电极82,所述层间绝缘层7设置在所述薄膜晶体管与所述存储电容的上方,所述层间绝缘层7对应着所述源极31和所述漏极32的区域分别开设有第一过孔和第二过孔,所述源极31通过所述第一过孔与所述第一电极81电连接,所述漏极32通过第二过孔与所述第二电极82电连接。In order to perform insulation protection and signal extraction for thin film transistors and storage capacitors, the array substrate also includes an interlayer insulating
其中,所述源极31、所述漏极32与所述第一极板61同层设置,所述第一栅绝缘层41完全覆盖所述源极31与所述漏极32、且未覆盖所述第一极板61;所述第二栅绝缘层42完全覆盖所述第一栅绝缘层31与所述第一极板61;所述栅极34设置于所述第二栅绝缘层42对应着所述源极31和所述漏极32之间的区域的上方、且同时与所述源极31与所述漏极32在正投影方向上部分重叠,所述第二极板62设置于所述第二栅绝缘层42上方、且与所述第一极板61在正投影方向上至少部分重叠。Wherein, the
在本实施例中,所述第一栅绝缘层41采用氧化硅材料形成,所述第一栅绝缘层41为单层结构;所述第二栅绝缘层42采用氧化硅材料、氮化硅材料中的至少一种形成,所述第二栅绝缘层42为单层结构或多个子层的叠层结构。所述第一栅绝缘层41的厚度范围为所述第二栅绝缘层42的厚度范围为 In this embodiment, the first
在本实施例中,所述源极31、所述漏极32与所述第一极板61采用低温多晶硅材料形成,所述源极31、所述漏极32与所述第一极板61的厚度范围为所述栅极34与所述第二极板62采用钼、钼铌合金、铝、铝钕合金、钛和铜中的至少一种材料形成,所述栅极34与所述第二极板62的厚度范围为 In this embodiment, the
在本实施例中,所述缓冲层2为单层结构或多个子层的叠层结构,所述缓冲层2采用氧化硅材料、氮化硅材料中的至少一种形成。本实施例中,薄膜晶体管为顶栅型结构,所述缓冲层2设置在所述基板1与所述源极31、所述漏极32、所述第一极板61之间。In this embodiment, the
相应的,一种阵列基板的制备方法,包括在基板上形成薄膜晶体管和存储电容的步骤,形成所述薄膜晶体管的步骤包括形成栅极、源极、漏极的步骤以及在所述源极、所述漏极与所述栅极之间形成栅绝缘层的步骤,形成所述存储电容的步骤包括形成第一极板以及第二极板的步骤,其中,形成所述栅绝缘层的步骤包括形成第一栅绝缘层和第二栅绝缘层的步骤,所述第一栅绝缘层的介电常数小于所述第二栅绝缘层的介电常数,所述第一栅绝缘层紧邻所述源极、所述漏极,所述第一极板与所述第二极板形成在所述第二栅绝缘层的上下两侧,所述电介质层为所述第二栅绝缘层对应着所述第一极板与所述第二极板的部分。Correspondingly, a method for preparing an array substrate includes the step of forming a thin film transistor and a storage capacitor on the substrate, and the step of forming the thin film transistor includes the steps of forming a gate, a source, and a drain, and forming a gate, a source, and a drain on the source, The step of forming a gate insulating layer between the drain and the gate, the step of forming the storage capacitor includes the step of forming a first plate and a second plate, wherein the step of forming the gate insulating layer includes a step of forming a first gate insulating layer and a second gate insulating layer, the dielectric constant of the first gate insulating layer is smaller than that of the second gate insulating layer, the first gate insulating layer is adjacent to the source pole, the drain, the first pole plate and the second pole plate are formed on the upper and lower sides of the second gate insulating layer, and the dielectric layer is the second gate insulating layer corresponding to the Parts of the first pole plate and the second pole plate.
优选的是,如图3所示,该制备方法具体包括如下步骤:Preferably, as shown in Figure 3, the preparation method specifically includes the following steps:
步骤S1):在所述基板上形成缓冲层。Step S1): forming a buffer layer on the substrate.
如图4A所示,在该步骤中,在所述基板1上,采用等离子体增强化学气相沉积(Plasma Enhanced:简称PECVD)方式、低压化学气相沉积方式(Low Pressure Chemical Vapor Deposition:简称LPCVD)、大气压化学气相沉积(Atmospheric PressureChemical Vapor Deposition:简称APCVD)方式或电子回旋谐振化学气相沉积(Electron Cyclotron Resonance Chemical VaporDeposition:简称ECR-CVD)方式或溅射方式形成缓冲层2。所述缓冲层2可以为单层的氧化硅、氮化硅或者二者的叠层,其厚度范围为优选厚度范围为沉积温度小于等于600℃。As shown in FIG. 4A, in this step, on the
其中,所述基板1采用玻璃等透明材料制成、且经过预先清洗。所述缓冲层2用于阻挡基板1中所含的杂质扩散进入薄膜晶体管(TFT)的有源层中,防止对TFT的阈值电压和漏电流等特性产生影响。除引入缓冲层2外,因传统碱玻璃中铝、钡和钠等金属杂质含量较高,容易在高温处理工艺中发生金属杂质的扩散,因此优选基板1采用无碱玻璃制成。Wherein, the
步骤S2):在所述缓冲层上形成非晶硅层,并对所述非晶硅层进行晶化以形成多晶硅层,对所述多晶硅层进行构图工艺,形成包括有源层硅岛以及极板硅岛的图形。Step S2): forming an amorphous silicon layer on the buffer layer, crystallizing the amorphous silicon layer to form a polysilicon layer, and performing a patterning process on the polysilicon layer to form an active layer silicon island and an electrode Graphics of the board silicon island.
如图4B所示,在该步骤中,通过沉积方式在所述缓冲层2上形成所述非晶硅层,沉积方式包括等离子体增强化学气相沉积方式、低压化学气相沉积方式,沉积温度小于等于600℃,所述非晶硅层的厚度范围为优选厚度范围为对所述非晶硅层进行晶化包括采用准分子激光晶化方式、金属诱导晶化方式或固相晶化方式,将非晶硅层转变为多晶硅层33(图4B-1),需要说明的是,采用不同的晶化方式,其具体的工艺过程及薄膜晶体管的结构会有所不同。或者,根据具体生产工艺,还进一步包括:在晶化过程中增加热处理脱氢工艺、沉积诱导金属工艺、热处理晶化工艺、准分子激光照射晶化工艺、杂质掺杂及掺杂杂质的激活工艺,其中杂质掺杂主要是源漏极区域的掺杂(P型掺杂或者N型掺杂)。As shown in Figure 4B, in this step, the amorphous silicon layer is formed on the
晶化工艺完成后,采用构图工艺在多晶硅层33中形成包括有源层硅岛33a以及极板硅岛33b的图形(图4B-2)。其中,构图工艺,可只包括光刻工艺,或,包括光刻工艺以及刻蚀步骤,同时还可以包括打印、喷墨等其他用于形成预定图形的工艺;光刻工艺,是指包括成膜、曝光、显影等工艺过程的利用光刻胶、掩模板、曝光机等形成图形的工艺。可根据本发明中所形成的结构选择相应的构图工艺。After the crystallization process is completed, a pattern including the active
在本实施例中,在多晶硅层33上形成一层光刻胶,对光刻胶进行曝光和显影,然后对多晶硅层33进行干法刻蚀,以形成包括有源层硅岛33a以及极板硅岛33b的图形,所述有源层硅岛33a区域用于形成TFT的有源层,所述极板硅岛33b区域用于形成存储电容的第一极板61。In this embodiment, a layer of photoresist is formed on the
步骤S3):在完成步骤S2)的所述基板上形成包括第一栅绝缘层的图形,所述第一栅绝缘层完全覆盖所述源极与所述漏极、且未覆盖所述第一极板,并通过离子注入方式在所述极板硅岛中形成所述第一极板。Step S3): forming a pattern including a first gate insulating layer on the substrate after step S2), the first gate insulating layer completely covers the source and the drain, and does not cover the first plate, and forming the first plate in the silicon island of the plate by ion implantation.
在该步骤中,采用等离子体增强化学气相沉积方式、低压化学气相沉积方式、大气压化学气相沉积方式或电子回旋谐振化学气相沉积方式或溅射方式在有源层硅岛33a以及极板硅岛33b的上方形成第一栅绝缘层膜,沉积温度小于等于600℃。In this step, plasma-enhanced chemical vapor deposition, low-pressure chemical vapor deposition, atmospheric pressure chemical vapor deposition, electron cyclotron resonance chemical vapor deposition, or sputtering are applied to the active
然后,如图4C所示,在所述第一栅绝缘层膜的上方形成一层光刻胶,对光刻胶进行曝光和显影,形成掩模层41a,该掩模层41a在对应着所述极板硅岛33b除边缘区域以外的光刻胶被除去,从而裸露出对应着将形成第一极板的区域的第一栅绝缘层膜区域,该裸露区域相应的第一栅绝缘层膜部分即待刻蚀区域41b(即定义出第一栅绝缘层膜中的待刻蚀区),该裸露区域相应的极板硅岛33b区域即待注入区域33c(即定义出多晶硅层33中形成第一极板61的离子注入区)。该光刻工艺中的掩模板可直接采用通常工艺中的存储电容掩模板而不必另外设计,从而不需要增加额外的掩模板设计及制作成本。Then, as shown in FIG. 4C, a layer of photoresist is formed on the first gate insulating layer film, and the photoresist is exposed and developed to form a mask layer 41a, and the mask layer 41a corresponds to the The photoresist of the
其中,所述第一栅绝缘层41可采用单层的氧化硅材料形成,氧化硅材料可以与处于其下方的有源层(有源层硅岛33a)能形成良好的界面接触,提高薄膜晶体管的电学性能。所述第一栅绝缘层41的厚度为或根据具体工艺需要选择合适的厚度。Wherein, the first
接着,对极板硅岛33b的待注入区域33c进行离子注入,以形成第一极板61(待注入区域33c经离子注入即形成第一极板61)。所述离子注入方式包括具有质量分析仪的离子注入方式、不具有质量分析仪的离子云式注入方式、等离子注入方式或固态扩散式注入方式。在本实施例中,优选采用主流的离子云式注入方式,对待注入区域33c进行重剂量注入以形成存储电容的第一极板。根据设计需要,注入介质为含硼元素和/或含磷元素的气体,一种优选方式为采用含硼元素,例如B2H6/H2(比例在5%-15%之间)的混合气体作为注入介质;注入能量范围为10-200keV,更优选的能量范围为40-100keV;注入剂量范围为1x1011-1x1020atoms/cm3,更优选的注入剂量范围为1x1013-8x1015atoms/cm3;或者,也可以采用含磷元素,例如PH3/H2的混合气体作为注入介质,其注入能量与注入剂量与上述B2H6/H2的方式类似,这里不再详述。Next, ion implantation is performed on the to-be-implanted region 33c of the polar
进而,对第一栅绝缘层膜的待刻蚀区域41b进行干法刻蚀或湿法刻蚀,以形成第一栅绝缘层41。干法刻蚀时,可采用含氟元素的气体,如SF6、CF4、CHF3等气体或者前述气体与O2的混合气体作为刻蚀介质,在反应离子刻蚀机、等离子体刻蚀机或反应耦合等离子体刻蚀机等中进行刻蚀。湿法刻蚀时,可采用氢氟酸或添加缓蚀剂的氢氟酸溶液等作为刻蚀介质,在常温或高温下刻蚀除去待刻蚀区域41b部分的第一栅绝缘层膜。上述两种刻蚀方式在本实施例中均可获得较好的刻蚀效果,刻蚀完成之后即可采用通常的剥离工艺将剩余的光刻胶剥离去除。Furthermore, dry etching or wet etching is performed on the to-be-etched region 41 b of the first gate insulating layer film to form the first
这里应该理解的是,在该步骤中通过离子注入形成第一极板以及通过刻蚀形成第一栅绝缘层的工艺顺序可以调换,在实际生产过程中,可根据需要对工艺顺序进行灵活调整。It should be understood here that, in this step, the process sequence of forming the first electrode plate by ion implantation and forming the first gate insulating layer by etching can be changed, and the process sequence can be flexibly adjusted as required in the actual production process.
步骤S4):在完成步骤S3)的所述基板上形成包括第二栅绝缘层的图形,所述第二栅绝缘层完全覆盖所述第一栅绝缘层与所述第一极板。Step S4): forming a pattern including a second gate insulating layer on the substrate after step S3), and the second gate insulating layer completely covers the first gate insulating layer and the first electrode plate.
如图4D所示,在该步骤中,采用等离子体增强化学气相沉积方式、低压化学气相沉积方式、大气压化学气相沉积方式或电子回旋谐振化学气相沉积方式或溅射方式形成第二栅绝缘层42,沉积温度小于等于600℃。As shown in FIG. 4D, in this step, the second
所述第二栅绝缘层42可采用单层的氧化硅材料、氮化硅材料或者二者中的至少一种材料形成多个子层的叠层,为使存储电容的容量增大,所述第二栅绝缘层42的厚度可以尽可能的薄,并优选采用介电常数较大的氮化硅材料形成。所述第二栅绝缘层42的厚度范围为或根据具体工艺需要选择合适的厚度。The second
步骤S5):在完成步骤S4)的所述基板上,在所述第二栅绝缘层上方形成包括栅极以及第二极板的图形,所述栅极形成在对应着所述源极和所述漏极之间的区域、且同时与所述源极与所述漏极在正投影方向上部分重叠,所述第二极板与所述第一极板在正投影方向上至少部分重叠。Step S5): On the substrate after step S4), a pattern including a gate and a second plate is formed on the second gate insulating layer, and the gate is formed corresponding to the source and the The region between the drains and at the same time partially overlaps with the source and the drain in the orthographic projection direction, and the second electrode plate and the first electrode plate at least partially overlap in the orthographic projection direction.
如图4E所示,在该步骤中,在所述第二栅绝缘层42上方采用溅射方式、热蒸发方式、等离子体增强化学气相沉积方式、低压化学气相沉积方式、大气压化学气相沉积方式或电子回旋谐振化学气相沉积方式形成第一金属层340(图4E-1),通过一次构图工艺(成膜、曝光、显影、湿法刻蚀或干法刻蚀),同时形成包括栅极34以及所述第二极板62的图形(图4E-2)。所述第一金属层340采用金属、金属合金,如:钼、钼合金等导电材料形成,所述栅极34与所述第二极板62的厚度范围为优选厚度范围为 As shown in FIG. 4E, in this step, sputtering, thermal evaporation, plasma enhanced chemical vapor deposition, low pressure chemical vapor deposition, atmospheric pressure chemical vapor deposition or Electron cyclotron resonance chemical vapor deposition forms the first metal layer 340 (FIG. 4E-1), and through one patterning process (film formation, exposure, development, wet etching or dry etching), simultaneously forms the
至此,存储电容就形成了,其中:所述第一极板61与所述第二极板62分别形成存储电容的两个极板,所述第一极板61与所述第二极板62之间的第二栅绝缘层42形成电介质层。在本实施例中,由于第二栅绝缘层42可以做到尽可能的薄、且介电常数较大,根据公式(1),使得存储电容在较小尺寸下即可获得较大的电容容量(相比现有技术至少可提高2倍以上),而且,还有效地减小了存储电容在阵列基板上占用的尺寸,使阵列基板内的像素区域的密度可以进一步提高,为制备高分辨率显示面板提供了保证。So far, the storage capacitor is formed, wherein: the
步骤S6):在完成步骤S5)的所述基板上,通过离子注入方式在所述有源层硅岛的两侧形成所述源极和所述漏极。Step S6): on the substrate after step S5), the source and the drain are formed on both sides of the silicon island of the active layer by means of ion implantation.
如图4F所示,在该步骤中,在所述有源层硅33a岛的两侧形成所述源极31和所述漏极32。所述离子注入方式包括具有质量分析仪的离子注入方式、不具有质量分析仪的离子云式注入方式、等离子注入方式或固态扩散式注入方式。根据设计需要,注入介质为含硼元素和/或含磷元素的气体,优选采用含硼元素,例如B2H6/H2(比例在5%-15%之间)的混合气体作为注入介质;注入能量范围为10-200keV,更优选的能量范围为40-100keV;注入剂量范围为1x1011-1x1020atoms/cm3,更优选的注入剂量范围为1x1013-8x1015atoms/cm3。As shown in FIG. 4F , in this step, the
离子注入工艺之后可通过快速加热退火方式(Rapid ThermalAnnealer:简称RTA)、准分子激光退火方式(Excimer LaserAnnealer:简称ELA)或炉退火方式对薄膜晶体管进行激活。本实施例中,优选炉退火方式对薄膜晶体管进行激活热处理,炉退火方式具有经济、简单、且均匀性较佳的优点,退火温度范围为300℃-600℃,退火时间范围为0.5-4小时,进一步优选时间范围为1-3小时。After the ion implantation process, the thin film transistor can be activated by rapid thermal annealing (Rapid Thermal Annealer: RTA), excimer laser annealing (Excimer Laser Annealer: ELA) or furnace annealing. In this embodiment, the furnace annealing method is preferred for activation and heat treatment of the thin film transistor. The furnace annealing method has the advantages of economy, simplicity, and better uniformity. The annealing temperature range is 300°C-600°C, and the annealing time range is 0.5-4 hours , a further preferred time range is 1-3 hours.
这里应该理解的是,步骤S4)、步骤S5)与步骤S6)中的工艺顺序可以调换,即,在本实施例中,也可以通过离子注入方式形成源极和漏极,然后再通过构图工艺先形成第二栅绝缘层,接着形成包括栅极和第一极板的图形,在实际生产过程中,可根据需要对工艺顺序进行灵活调整。It should be understood here that the process sequence in step S4), step S5) and step S6) can be reversed, that is, in this embodiment, the source and drain can also be formed by ion implantation, and then the patterning process The second gate insulating layer is formed first, and then the pattern including the gate and the first plate is formed. In the actual production process, the process sequence can be flexibly adjusted according to needs.
为对薄膜晶体管和存储电容进行绝缘保护,所述该制备方法还进一步包括步骤S7):在所述薄膜晶体管与所述存储电容的上方形成层间绝缘层;为对薄膜晶体管进行信号引出,所述该制备方法还进一步包括:在所述层间绝缘层对应着所述源极和所述漏极的区域分别形成包括第一过孔、第二过孔以及引出电极的图形,所述引出电极包括第一电极以及第二电极,所述源极与所述第一电极通过所述第一过孔电连接,所述漏极与所述第二电极通过所述第二过孔电连接。In order to insulate and protect the thin film transistor and the storage capacitor, the preparation method further includes step S7): forming an interlayer insulating layer above the thin film transistor and the storage capacitor; in order to extract signals from the thin film transistor, the The preparation method further includes: respectively forming a pattern including a first via hole, a second via hole, and a lead-out electrode in the region of the interlayer insulating layer corresponding to the source electrode and the drain electrode, and the lead-out electrode It includes a first electrode and a second electrode, the source is electrically connected to the first electrode through the first via hole, and the drain is electrically connected to the second electrode through the second via hole.
如图4G所示,在所述薄膜晶体管与所述存储电容的上方沉积层间绝缘层7,所述层间绝缘层7的厚度范围为优选厚度范围为与沉积第一栅绝缘层以及第二栅绝缘层的方式相同,可采用等离子体增强化学气相沉积方式、低压化学气相沉积方式、大气压化学气相沉积方式或电子回旋谐振化学气相沉积方式沉积形成层间绝缘层7,沉积温度小于等于600℃。所述层间绝缘层7可采用单层的氧化硅材料或者氧化硅材料、氮化硅材料形成多个子层的叠层。As shown in FIG. 4G, an
接着,在所述层间绝缘层7的上方采用光刻工艺形成掩模层,并采用干法刻蚀形成第一过孔以及第二过孔。干法刻蚀可采用等离子刻蚀、反应离子刻蚀、电感耦合等离子体刻蚀等多种方式,刻蚀气体可采用含氟、氯的气体,如CF4、CHF3、SF6、CCl2F2等气体或者上述气体与O2形成的混合气体。Next, a mask layer is formed on the
然后,在层间绝缘层7的上方采用溅射方式、热蒸发方式或等离子体增强化学气相沉积方式、低压化学气相沉积方式、大气压化学气相沉积方式或电子回旋谐振化学气相沉积方式沉积第二金属层。在第二金属层的上方采用光刻工艺形成掩模层,并采用湿法刻蚀或干法刻蚀形成包括第一电极81和第二电极82的图形,所述第一电极81贯穿第一过孔并与所述源极31电连接,所述第二电极82贯穿第二过孔并与所述漏极32电连接。进一步的,第一电极81与阵列基板中的数据线电连接,第二电极82与阵列基板中的像素电极电连接。第二金属层采用金属、金属合金,如:钼、钼合金、铝、铝合金、钛等导电材料形成,厚度范围为优选厚度范围为 Then, the second metal is deposited on the
在本实施例中,存储电容的两个极板中,其中一个极板采用与薄膜晶体管的源极和漏极相同的低温非晶硅材料(需要进行掺杂)形成,另一个极板采用与形成薄膜晶体管的栅极相同的导电金属材料形成;而薄膜晶体管的栅绝缘层采用分步沉积方式形成,第一栅绝缘层采用与源极和漏极具有良好界面接触、且介电常数较小的材料(例如氧化硅)形成,第二栅绝缘层采用介电常数较大的材料(例如氮化硅)形成,存储电容两个极板之间的第二栅绝缘层即为电介质层。这样,在相同的电容量条件下,相比现有的存储电容,电介质层厚度更薄,存储电容的尺寸更小,使得采用小尺寸存储电容即可达到设计需求的电容量,减小了包括存储电容的像素结构的尺寸,为高分辨显示面板的制备提供了保证。In this embodiment, among the two plates of the storage capacitor, one plate is made of the same low-temperature amorphous silicon material (needs to be doped) as the source and drain of the thin film transistor, and the other plate is made of the same Form the same conductive metal material as the gate of the thin film transistor; while the gate insulating layer of the thin film transistor is formed by stepwise deposition, the first gate insulating layer has good interface contact with the source and drain, and has a small dielectric constant The second gate insulating layer is formed of a material with a relatively high dielectric constant (such as silicon nitride), and the second gate insulating layer between the two plates of the storage capacitor is the dielectric layer. In this way, under the same capacitance condition, compared with the existing storage capacitor, the thickness of the dielectric layer is thinner, and the size of the storage capacitor is smaller, so that the capacitance required by the design can be achieved by using a small-sized storage capacitor, which reduces the The size of the pixel structure of the storage capacitor provides a guarantee for the preparation of a high-resolution display panel.
实施例2:Example 2:
本实施例与实施例1的阵列基板中的薄膜晶体管同为顶栅型。区别在于,本实施例阵列基板中第一栅绝缘层的结构与实施例1不同。The thin film transistors in this embodiment and the array substrate in
如图5所示,在本实施例中,所述源极31、所述漏极32与所述第一极板61同层设置,所述第一栅绝缘层41完全覆盖所述源极31与所述漏极32、且未覆盖所述第一极板61;所述第二栅绝缘层42完全覆盖所述第一极板61、且未覆盖所述源极31与所述漏极32对应着的区域;所述栅极34设置于所述第一栅绝缘层41对应着所述源极31和所述漏极32之间的区域的上方、且同时与所述源极31与所述漏极32在正投影方向上部分重叠,所述第二极板62设置于所述第二栅绝缘层42上方、且与所述第一极板61在正投影方向上至少部分重叠。As shown in FIG. 5 , in this embodiment, the
相应的,本实施例的阵列基板的制备方法具体包括如下步骤:Correspondingly, the method for preparing the array substrate of this embodiment specifically includes the following steps:
步骤S1):在所述基板上形成缓冲层;Step S1): forming a buffer layer on the substrate;
步骤S2):在所述缓冲层上形成非晶硅层,对所述非晶硅层进行晶化以形成多晶硅层,并对所述多晶硅层进行构图工艺,形成包括有源层硅岛以及极板硅岛的图形;Step S2): forming an amorphous silicon layer on the buffer layer, crystallizing the amorphous silicon layer to form a polysilicon layer, and performing a patterning process on the polysilicon layer to form a silicon island including an active layer and an electrode Graphics of silicon islands on the board;
步骤S3):在完成步骤S2)的所述基板上形成包括第一栅绝缘层的图形,所述第一栅绝缘层完全覆盖所述源极与所述漏极、且未覆盖所述第一极板,并通过离子注入方式在所述极板硅岛中形成所述第一极板;Step S3): forming a pattern including a first gate insulating layer on the substrate after step S2), the first gate insulating layer completely covers the source and the drain, and does not cover the first a polar plate, and forming the first polar plate in the silicon island of the polar plate by ion implantation;
步骤S4):在完成步骤S3)的所述基板上形成包括第二栅绝缘层的图形,所述第二栅绝缘层完全覆盖所述第一极板、且未覆盖所述源极与所述漏极对应着的区域;Step S4): forming a pattern including a second gate insulating layer on the substrate after step S3), the second gate insulating layer completely covers the first plate, and does not cover the source and the The area corresponding to the drain;
步骤S5):在完成步骤S4)的所述基板上,在所述第一栅绝缘层上方形成包括栅极的图形,所述栅极形成在对应着所述源极和所述漏极之间的区域、且同时与所述源极与所述漏极在正投影方向上部分重叠;在所述第二栅绝缘层上方形成包括第二极板的图形,所述第二极板与所述第一极板在正投影方向上至少部分重叠;Step S5): On the substrate after step S4), a pattern including a gate is formed on the first gate insulating layer, and the gate is formed between the corresponding source and the drain area, and at the same time partially overlap with the source and the drain in the direction of the orthographic projection; a pattern including a second plate is formed on the second gate insulating layer, and the second plate and the The first polar plate overlaps at least partially in the direction of the orthographic projection;
步骤S6):在完成步骤S5)的所述基板上,通过离子注入方式在所述有源层硅岛的两侧形成所述源极和所述漏极。Step S6): on the substrate after step S5), the source and the drain are formed on both sides of the silicon island of the active layer by means of ion implantation.
本实施例中阵列基板的其他结构与实施例1相同,其制备过程中的具体工艺或工艺参数可参考实施例1的制备方法,这里不再赘述。The other structures of the array substrate in this embodiment are the same as those in
实施例3:Example 3:
本实施例与实施例1、2的区别在于,本实施例阵列基板中的薄膜晶体管为底栅型。The difference between this embodiment and Embodiments 1 and 2 is that the thin film transistors in the array substrate of this embodiment are bottom gate type.
如图6所示,在本实施例中,一种阵列基板,包括基板1、形成在所述基板1上缓冲层2,以及形成在所述缓冲层2上方的薄膜晶体管和存储电容,所述薄膜晶体管包括栅极34、源极31、漏极32以及设置于所述源极31、所述漏极32与所述栅极34之间的栅绝缘层4,所述存储电容包括第一极板61以及第二极板62,所述栅绝缘层4包括第一栅绝缘层41和第二栅绝缘层42,所述第一栅绝缘层41的介电常数小于所述第二栅绝缘层42的介电常数,所述第一极板61与所述第二极板62分设在所述第二栅绝缘层42的两侧。As shown in FIG. 6, in this embodiment, an array substrate includes a
本实施例中,由于薄膜晶体管为底栅型结构,所述缓冲层2设置在所述基板2与所述栅极34、所述第二极板62之间。所述栅极34与所述第二极板62同层设置,所述第一栅绝缘层41完全覆盖所述栅极34、且未覆盖所述第二极板62;所述第二栅绝缘层42完全覆盖所述第一栅绝缘层41以及所述第二极板62;所述源极31与所述漏极32设置于所述第二栅绝缘层42对应着所述栅极34的两端的上方、且分别与所述栅极34在正投影方向上部分重叠,所述第一极板61设置于所述第二栅绝缘层42对应着所述第二极板62的上方。In this embodiment, since the thin film transistor has a bottom-gate structure, the
相应的,本实施例中阵列基板的制备方法具体包括如下步骤:Correspondingly, the method for preparing the array substrate in this embodiment specifically includes the following steps:
步骤S1):在所述基板上形成缓冲层;Step S1): forming a buffer layer on the substrate;
步骤S2):在所述缓冲层上形成包括栅极以及第二极板的图形;Step S2): forming a pattern including a gate and a second plate on the buffer layer;
步骤S3):在完成步骤S2)的所述基板上形成包括第一栅绝缘层的图形,所述第一栅绝缘层完全覆盖所述栅极、且未覆盖所述第二极板;Step S3): forming a pattern including a first gate insulating layer on the substrate after step S2), and the first gate insulating layer completely covers the gate and does not cover the second electrode plate;
步骤S4):在完成步骤S3)的所述基板上形成包括第二栅绝缘层的图形,所述第二栅绝缘层完全覆盖所述第一栅绝缘层以及所述第二极板;Step S4): forming a pattern including a second gate insulating layer on the substrate after step S3), the second gate insulating layer completely covering the first gate insulating layer and the second electrode plate;
步骤S5):在完成步骤S4)的所述基板上形成非晶硅层,对所述非晶硅层进行晶化以形成多晶硅层,并对所述多晶硅层进行构图工艺,形成包括有源层硅岛以及极板硅岛的图形;Step S5): forming an amorphous silicon layer on the substrate after step S4), crystallizing the amorphous silicon layer to form a polysilicon layer, and performing a patterning process on the polysilicon layer to form an active layer Graphics of silicon islands and plate silicon islands;
步骤S6):通过离子注入方式在所述有源层硅岛的两侧形成所述源极和所述漏极,所述源极和所述漏极在正投影方向上与所述栅极至少部分重叠;通过离子注入方式在所述极板硅岛中形成第一极板,所述第一极板与所述第二极板在正投影方向上重叠。Step S6): forming the source and the drain on both sides of the silicon island in the active layer by ion implantation, the source and the drain are at least at least the same as the gate in the direction of the orthographic projection Partially overlapping: a first pole plate is formed in the pole plate silicon island by means of ion implantation, and the first pole plate overlaps with the second pole plate in the orthographic projection direction.
本实施例中阵列基板的其他结构与实施例1相同,其制备过程中的具体工艺或工艺参数可参考实施例1的制备方法,这里不再赘述。The other structures of the array substrate in this embodiment are the same as those in
实施例4:Example 4:
本实施例与实施例3的阵列基板中的薄膜晶体管同为底栅型。区别在于,本实施例阵列基板中第二栅绝缘层的结构与实施例3不同。The thin film transistors in the array substrate of this embodiment and the third embodiment are both bottom gate type. The difference lies in that the structure of the second gate insulating layer in the array substrate of this embodiment is different from that of Embodiment 3.
如图7所示,在本实施例中,所述栅极34与所述第二极板62同层设置,所述第一栅绝缘层41完全覆盖所述栅极34、且未覆盖所述第二极板62;所述第二栅绝缘层42完全覆盖所述第二极板62、且未覆盖所述栅极34对应着的区域;所述源极31与所述漏极32设置于所述第一栅绝缘层41对应着所述栅极34的两端的上方、且分别与所述栅极34在正投影方向上部分重叠,所述第一极板62设置于所述第二栅绝缘层42对应着所述第二极板62的上方。As shown in FIG. 7 , in this embodiment, the
相应的,本实施例的阵列基板的制备方法具体包括如下步骤:Correspondingly, the method for preparing the array substrate of this embodiment specifically includes the following steps:
步骤S1):在所述基板上形成缓冲层;Step S1): forming a buffer layer on the substrate;
步骤S2):在所述缓冲层上形成包括栅极以及第二极板的图形;Step S2): forming a pattern including a gate and a second plate on the buffer layer;
步骤S3):在完成步骤S2)的所述基板上形成包括第一栅绝缘层的图形,所述第一栅绝缘层完全覆盖所述栅极、且未覆盖所述第二极板;Step S3): forming a pattern including a first gate insulating layer on the substrate after step S2), and the first gate insulating layer completely covers the gate and does not cover the second electrode plate;
步骤S4):在完成步骤S3)的所述基板上形成包括第二栅绝缘层的图形,所述第二栅绝缘层完全覆盖所述第二极板、且未覆盖所述栅极对应着的区域;Step S4): Forming a pattern including a second gate insulating layer on the substrate after step S3), the second gate insulating layer completely covers the second electrode plate and does not cover the gate corresponding to area;
步骤S5):在完成步骤S4)的所述基板上形成非晶硅层,对所述非晶硅层进行晶化以形成多晶硅层,并对所述多晶硅层进行构图工艺,形成包括有源层硅岛以及极板硅岛的图形;Step S5): forming an amorphous silicon layer on the substrate after step S4), crystallizing the amorphous silicon layer to form a polysilicon layer, and performing a patterning process on the polysilicon layer to form an active layer Graphics of silicon islands and plate silicon islands;
步骤S6):通过离子注入方式在所述有源层硅岛的两侧形成所述源极和所述漏极,所述源极和所述漏极在正投影方向上与所述栅极至少部分重叠;通过离子注入方式在所述极板硅岛中形成第一极板,所述第一极板与所述第二极板在正投影方向上重叠。Step S6): forming the source and the drain on both sides of the silicon island in the active layer by ion implantation, the source and the drain are at least at least the same as the gate in the direction of the orthographic projection Partially overlapping: a first pole plate is formed in the pole plate silicon island by means of ion implantation, and the first pole plate overlaps with the second pole plate in the orthographic projection direction.
本实施例中阵列基板的其他结构与实施例3相同,其制备过程中的具体工艺或工艺参数可参考实施例1的制备方法,这里不再赘述。Other structures of the array substrate in this embodiment are the same as those in Embodiment 3, and the specific process or process parameters in the preparation process can refer to the preparation method in
本发明还提供一种显示装置,包括实施例1-4中任一的阵列基板。所述显示装置可以为液晶显示装置或者电致发光显示装置,例如液晶面板、液晶电视、手机、液晶显示器等,其包括彩膜基板、以及上述实施例中的阵列基板;除了液晶显示装置,所述显示装置还可以是其他类型的显示装置,比如电子阅读器等,其不包括彩膜基板,但是包括上述实施例中的阵列基板。The present invention also provides a display device, including the array substrate in any one of the embodiments 1-4. The display device may be a liquid crystal display device or an electroluminescence display device, such as a liquid crystal panel, a liquid crystal TV, a mobile phone, a liquid crystal display, etc., which include a color filter substrate and the array substrate in the above-mentioned embodiments; except for the liquid crystal display device, all The above-mentioned display device may also be other types of display devices, such as electronic readers, which do not include the color filter substrate, but include the array substrate in the above-mentioned embodiments.
本发明的阵列基板中,通过改变形成薄膜晶体管的源极、漏极与栅极之间的栅绝缘层、存储电容的极板以及电介质层的材料,并采用相应的阵列基板的制备方法,采用现有的形成存储电容的掩模板并搭配较大介电常数的绝缘材料,既减小了存储电容中电介质层的厚度,又有效提高了存储电容的容量,显著减小了存储电容尺寸,减小了包括存储电容的像素结构的尺寸,从而解决了低温多晶硅薄膜晶体管阵列基板制备中存储电容尺寸较大而限制分辨率提升的问题,为高分辨率显示面板的制备提供了保证,也即为制备高分辨率液晶显示装置和有机电致发光显示装置提供了保证。In the array substrate of the present invention, by changing the materials forming the gate insulating layer between the source, drain and gate of the thin film transistor, the electrode plate of the storage capacitor and the dielectric layer, and adopting the corresponding preparation method of the array substrate, adopting The existing mask for forming the storage capacitor is matched with an insulating material with a large dielectric constant, which not only reduces the thickness of the dielectric layer in the storage capacitor, but also effectively improves the capacity of the storage capacitor, significantly reduces the size of the storage capacitor, and reduces the The size of the pixel structure including the storage capacitor is reduced, thereby solving the problem that the size of the storage capacitor is large in the preparation of the low-temperature polysilicon thin film transistor array substrate and limiting the improvement of resolution, and providing a guarantee for the preparation of high-resolution display panels, that is, for The preparation of high-resolution liquid crystal display devices and organic electroluminescent display devices provides assurance.
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。It can be understood that, the above embodiments are only exemplary embodiments adopted for illustrating the principle of the present invention, but the present invention is not limited thereto. For those skilled in the art, various modifications and improvements can be made without departing from the spirit and essence of the present invention, and these modifications and improvements are also regarded as the protection scope of the present invention.
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102039124A CN103296034A (en) | 2013-05-28 | 2013-05-28 | Array substrate, production method thereof and display device |
PCT/CN2013/086497 WO2014190669A1 (en) | 2013-05-28 | 2013-11-04 | Array substrate, manufacturing method, and display apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102039124A CN103296034A (en) | 2013-05-28 | 2013-05-28 | Array substrate, production method thereof and display device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103296034A true CN103296034A (en) | 2013-09-11 |
Family
ID=49096653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013102039124A Pending CN103296034A (en) | 2013-05-28 | 2013-05-28 | Array substrate, production method thereof and display device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103296034A (en) |
WO (1) | WO2014190669A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104103584A (en) * | 2014-06-25 | 2014-10-15 | 京东方科技集团股份有限公司 | Array substrate fabrication method |
WO2014190669A1 (en) * | 2013-05-28 | 2014-12-04 | 京东方科技集团股份有限公司 | Array substrate, manufacturing method, and display apparatus |
CN104752345A (en) * | 2015-04-27 | 2015-07-01 | 深圳市华星光电技术有限公司 | Thin film transistor array substrate and manufacturing method thereof |
WO2016045270A1 (en) * | 2014-09-25 | 2016-03-31 | 京东方科技集团股份有限公司 | Array substrate and manufacturing method therefor, and display device |
CN105514116A (en) * | 2015-12-03 | 2016-04-20 | 深圳市华星光电技术有限公司 | Tft backboard structure and manufacturing method thereof |
CN104009043B (en) * | 2014-03-27 | 2017-05-10 | 友达光电股份有限公司 | Pixel structure and manufacturing method thereof |
CN109817724A (en) * | 2019-02-01 | 2019-05-28 | 武汉华星光电半导体显示技术有限公司 | Array substrate and manufacturing method of array substrate |
CN110164878A (en) * | 2019-06-10 | 2019-08-23 | 惠科股份有限公司 | Array substrate and preparation method thereof |
WO2019210619A1 (en) * | 2018-05-03 | 2019-11-07 | 武汉华星光电半导体显示技术有限公司 | Array substrate and manufacturing method |
CN110797338A (en) * | 2019-12-09 | 2020-02-14 | 苏州华太电子技术有限公司 | Radio frequency power chip tube core structure with matching and radio frequency power amplifier |
WO2020098143A1 (en) * | 2018-11-13 | 2020-05-22 | 武汉华星光电半导体显示技术有限公司 | Oled display panel and method for manufacture thereof |
CN111785759A (en) * | 2020-07-17 | 2020-10-16 | 武汉华星光电半导体显示技术有限公司 | Display panel and display device |
CN112397562A (en) * | 2020-11-13 | 2021-02-23 | 合肥鑫晟光电科技有限公司 | Display substrate, preparation method thereof and display device |
CN114556566A (en) * | 2020-09-18 | 2022-05-27 | 京东方科技集团股份有限公司 | Display substrate, display panel and display device |
US12156432B2 (en) | 2020-07-17 | 2024-11-26 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Display panel and display device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1928683A (en) * | 2005-09-09 | 2007-03-14 | 群康科技(深圳)有限公司 | Thin-film transistor array substrate and its making method |
CN101064322A (en) * | 2006-04-26 | 2007-10-31 | 爱普生映像元器件有限公司 | Electro-optical device and electronic apparatus |
CN101071242A (en) * | 2006-05-10 | 2007-11-14 | 三星电子株式会社 | Display substrate, method for manufacturing the same and display apparatus having the same |
CN103081079A (en) * | 2010-08-30 | 2013-05-01 | 夏普株式会社 | Semiconductor device and process for production thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69942442D1 (en) * | 1999-01-11 | 2010-07-15 | Semiconductor Energy Lab | Semiconductor arrangement with driver TFT and pixel TFT on a substrate |
KR101243809B1 (en) * | 2006-06-30 | 2013-03-18 | 엘지디스플레이 주식회사 | Method For Fabricating Thin Film Transistor And Method For Fabricating Thin Film Transistor Array Substrate By Applying Said Method |
KR101747341B1 (en) * | 2010-11-02 | 2017-06-15 | 엘지디스플레이 주식회사 | Array substrate for organic electro luminescent device and method of fabricating the same |
CN103296034A (en) * | 2013-05-28 | 2013-09-11 | 京东方科技集团股份有限公司 | Array substrate, production method thereof and display device |
-
2013
- 2013-05-28 CN CN2013102039124A patent/CN103296034A/en active Pending
- 2013-11-04 WO PCT/CN2013/086497 patent/WO2014190669A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1928683A (en) * | 2005-09-09 | 2007-03-14 | 群康科技(深圳)有限公司 | Thin-film transistor array substrate and its making method |
CN101064322A (en) * | 2006-04-26 | 2007-10-31 | 爱普生映像元器件有限公司 | Electro-optical device and electronic apparatus |
CN101071242A (en) * | 2006-05-10 | 2007-11-14 | 三星电子株式会社 | Display substrate, method for manufacturing the same and display apparatus having the same |
CN103081079A (en) * | 2010-08-30 | 2013-05-01 | 夏普株式会社 | Semiconductor device and process for production thereof |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014190669A1 (en) * | 2013-05-28 | 2014-12-04 | 京东方科技集团股份有限公司 | Array substrate, manufacturing method, and display apparatus |
CN104009043B (en) * | 2014-03-27 | 2017-05-10 | 友达光电股份有限公司 | Pixel structure and manufacturing method thereof |
CN104103584A (en) * | 2014-06-25 | 2014-10-15 | 京东方科技集团股份有限公司 | Array substrate fabrication method |
WO2016045270A1 (en) * | 2014-09-25 | 2016-03-31 | 京东方科技集团股份有限公司 | Array substrate and manufacturing method therefor, and display device |
US9627461B2 (en) | 2014-09-25 | 2017-04-18 | Boe Technology Group Co., Ltd. | Array substrate, its manufacturing method and display device |
CN104752345A (en) * | 2015-04-27 | 2015-07-01 | 深圳市华星光电技术有限公司 | Thin film transistor array substrate and manufacturing method thereof |
WO2016173012A1 (en) * | 2015-04-27 | 2016-11-03 | 深圳市华星光电技术有限公司 | Film transistor array substrate and method for fabricating same |
CN105514116B (en) * | 2015-12-03 | 2018-08-14 | 深圳市华星光电技术有限公司 | TFT backplate structure and preparation method thereof |
US9997634B2 (en) | 2015-12-03 | 2018-06-12 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | TFT backplane and manufacturing method thereof |
CN105514116A (en) * | 2015-12-03 | 2016-04-20 | 深圳市华星光电技术有限公司 | Tft backboard structure and manufacturing method thereof |
WO2017092173A1 (en) * | 2015-12-03 | 2017-06-08 | 深圳市华星光电技术有限公司 | Tft backplane structure and manufacturing method therefor |
WO2019210619A1 (en) * | 2018-05-03 | 2019-11-07 | 武汉华星光电半导体显示技术有限公司 | Array substrate and manufacturing method |
WO2020098143A1 (en) * | 2018-11-13 | 2020-05-22 | 武汉华星光电半导体显示技术有限公司 | Oled display panel and method for manufacture thereof |
CN109817724A (en) * | 2019-02-01 | 2019-05-28 | 武汉华星光电半导体显示技术有限公司 | Array substrate and manufacturing method of array substrate |
CN110164878A (en) * | 2019-06-10 | 2019-08-23 | 惠科股份有限公司 | Array substrate and preparation method thereof |
CN110797338A (en) * | 2019-12-09 | 2020-02-14 | 苏州华太电子技术有限公司 | Radio frequency power chip tube core structure with matching and radio frequency power amplifier |
CN111785759A (en) * | 2020-07-17 | 2020-10-16 | 武汉华星光电半导体显示技术有限公司 | Display panel and display device |
US12156432B2 (en) | 2020-07-17 | 2024-11-26 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Display panel and display device |
CN114556566A (en) * | 2020-09-18 | 2022-05-27 | 京东方科技集团股份有限公司 | Display substrate, display panel and display device |
CN114556566B (en) * | 2020-09-18 | 2023-12-12 | 京东方科技集团股份有限公司 | A display substrate, display panel and display device |
CN112397562A (en) * | 2020-11-13 | 2021-02-23 | 合肥鑫晟光电科技有限公司 | Display substrate, preparation method thereof and display device |
CN112397562B (en) * | 2020-11-13 | 2023-09-22 | 合肥鑫晟光电科技有限公司 | Display substrate, preparation method thereof and display device |
Also Published As
Publication number | Publication date |
---|---|
WO2014190669A1 (en) | 2014-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103296034A (en) | Array substrate, production method thereof and display device | |
CN105514116B (en) | TFT backplate structure and preparation method thereof | |
CN103681659B (en) | A kind of array base palte, preparation method and display unit | |
CN103390592B (en) | Array base palte preparation method, array base palte and display unit | |
CN104022076B (en) | Array substrate, preparing method thereof and display device | |
CN104253159B (en) | Thin film transistor (TFT) and preparation method, array base palte and preparation method and display device | |
CN103730508B (en) | Vertical thin film transistor structure of display panel and manufacturing method thereof | |
CN104022077B (en) | Array substrate, preparing method thereof and display device | |
CN104078424B (en) | Low-temperature poly-silicon TFT array substrate, manufacturing method thereof and display device | |
CN104218041B (en) | Array base palte and preparation method and display device | |
CN111785759A (en) | Display panel and display device | |
CN103456740B (en) | Pixel cell and manufacture method, array base palte and display unit | |
CN104916584A (en) | Manufacturing method, array substrate and display device | |
WO2019000493A1 (en) | Thin film transistor array substrate and manufacturing method thereof, and oled display device | |
CN104362125A (en) | Array substrate, production method thereof and display device | |
CN213150776U (en) | Display panel and display device | |
JP2006013432A (en) | Thin film transistor and manufacturing method thereof | |
CN103839825A (en) | Low-temperature polycrystalline silicon thin film transistor, array substrate and manufacturing method of array substrate | |
KR20110134687A (en) | Display device and manufacturing method thereof | |
CN103094205B (en) | A kind of thin-film transistor, thin-film transistor drive the preparation method of backboard and thin-film transistor to drive backboard | |
CN107316874B (en) | Array substrate, manufacturing method thereof and display device | |
CN112736092B (en) | Array substrate, preparation method thereof and display panel | |
CN105428313A (en) | Array substrate and preparation method thereof, and display apparatus | |
CN102881657A (en) | CMOS (complementary metal oxide semiconductor) transistor and manufacturing method thereof | |
CN103296058B (en) | Display panel and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130911 |
|
RJ01 | Rejection of invention patent application after publication |