CN103985804A - LED chip and manufacturing method thereof - Google Patents
LED chip and manufacturing method thereof Download PDFInfo
- Publication number
- CN103985804A CN103985804A CN201310068439.3A CN201310068439A CN103985804A CN 103985804 A CN103985804 A CN 103985804A CN 201310068439 A CN201310068439 A CN 201310068439A CN 103985804 A CN103985804 A CN 103985804A
- Authority
- CN
- China
- Prior art keywords
- electrode
- layer
- type semiconductor
- semiconductor layer
- holes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000004065 semiconductor Substances 0.000 claims abstract description 79
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 238000002955 isolation Methods 0.000 claims abstract description 18
- 239000010410 layer Substances 0.000 claims description 186
- 239000007772 electrode material Substances 0.000 claims description 39
- 239000011810 insulating material Substances 0.000 claims description 21
- 239000011241 protective layer Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 238000002310 reflectometry Methods 0.000 claims description 10
- 239000004020 conductor Substances 0.000 claims description 8
- 238000002834 transmittance Methods 0.000 claims description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- 229910004541 SiN Inorganic materials 0.000 claims description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000011651 chromium Substances 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 239000004038 photonic crystal Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 4
- 239000003575 carbonaceous material Substances 0.000 claims description 4
- 229920001940 conductive polymer Polymers 0.000 claims description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 4
- 229910021392 nanocarbon Inorganic materials 0.000 claims description 4
- 239000002861 polymer material Substances 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 229910002601 GaN Inorganic materials 0.000 description 9
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 229910005540 GaP Inorganic materials 0.000 description 4
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 description 4
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- -1 ITO Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
- H10H20/8316—Multi-layer electrodes comprising at least one discontinuous layer
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及发光元件技术领域,具体涉及一种LED芯片及其制造方法。The invention relates to the technical field of light emitting elements, in particular to an LED chip and a manufacturing method thereof.
背景技术Background technique
随着LED(Light Emitting Diode,发光二极管)照明技术的日益发展,LED在人们日常生活中的应用也越来越广泛。With the development of LED (Light Emitting Diode, light-emitting diode) lighting technology, the application of LED in people's daily life is becoming more and more extensive.
LED的发光是利用正极的电流到达负极所完成,电流会以最小的电阻路线由正极到达负极,一般电阻值决定于电流路线的远近,正极到负极越近则电阻值越小、正极到负极越远则电阻就越大。然而,现有LED中的电极通常为金属线状,这使得单点的一个电流从正极进入负极,并以正极到负极给电流最近的距离最亮,其它位置将由于距离金属线较远而电阻较大、相对较暗,从而存在电流密度不均匀、导致发光不均匀的问题。The light emission of the LED is completed by using the current from the positive pole to the negative pole. The current will travel from the positive pole to the negative pole with the smallest resistance route. Generally, the resistance value is determined by the distance of the current route. The closer the positive pole to the negative pole, the smaller the resistance value, and the closer the positive pole to the negative pole. The farther away the greater the resistance. However, the electrodes in existing LEDs are usually in the form of metal wires, which makes a single point of current flow from the positive pole to the negative pole, and the shortest distance from the positive pole to the negative pole is the brightest, and other positions will be far away from the metal wire. Larger and relatively dark, there is a problem of uneven current density and uneven luminescence.
发明内容Contents of the invention
有鉴于此,本发明要解决的技术问题是,如何使得LED的发光尽量均匀。In view of this, the technical problem to be solved by the present invention is how to make the light emission of the LED as uniform as possible.
为了解决上述问题,根据本发明一实施例,提供了一种LED芯片,其包括:衬底;第一导电型半导体层,位于所述衬底的正面;发光层,位于所述第一导电型半导体层的正面;第二导电型半导体层,位于所述发光层的正面;反射层,位于所述第二导电型半导体层的正面;至少一个第一电极孔,各自延伸穿过所述反射层、所述第二导电型半导体层和所述发光层;多个第二电极孔,各自延伸穿过所述反射层;第一电极,至少部分位于所述反射层的正面,经由所述第一电极孔与所述第一导电型半导体层电性接触;第二电极,至少部分位于所述反射层的正面,经由所述第二电极孔与所述第二导电型半导体层电性接触;以及隔离层,位于所述反射层的正面,用以将所述第一电极与所述第二电极绝缘隔离。其中,至少围绕一个所述第一电极孔的所述第二电极孔呈对称图形分布。In order to solve the above problems, according to an embodiment of the present invention, an LED chip is provided, which includes: a substrate; a first conductivity type semiconductor layer located on the front surface of the substrate; a light emitting layer located on the first conductivity type The front side of the semiconductor layer; the second conductive type semiconductor layer is located on the front side of the light emitting layer; the reflective layer is located on the front side of the second conductive type semiconductor layer; at least one first electrode hole extends through the reflective layer respectively , the second conductive type semiconductor layer and the light-emitting layer; a plurality of second electrode holes, each extending through the reflective layer; a first electrode, at least partially located on the front side of the reflective layer, via the first An electrode hole is in electrical contact with the first conductivity type semiconductor layer; a second electrode, at least partially located on the front surface of the reflective layer, is in electrical contact with the second conductivity type semiconductor layer through the second electrode hole; and The isolation layer is located on the front of the reflective layer and is used to insulate and isolate the first electrode from the second electrode. Wherein, at least the second electrode holes surrounding one of the first electrode holes are distributed in a symmetrical pattern.
对于上述LED芯片,在一种可能的实现方式中,所述第一电极孔在所述第一导电型半导体层的正面上均匀分布。For the above LED chip, in a possible implementation manner, the first electrode holes are evenly distributed on the front surface of the first conductivity type semiconductor layer.
对于上述LED芯片,在一种可能的实现方式中,所述对称图形为对称多边形、弧形或者圆形。For the LED chip above, in a possible implementation manner, the symmetrical figure is a symmetrical polygon, an arc or a circle.
对于上述LED芯片,在一种可能的实现方式中,还包括导电层,所述导电层由高透射率的导电材料形成,所述导电层位于所述第二导电型半导体层和所述反射层之间,并且所述第一电极孔延伸穿过所述导电层。其中,所述高透射率的导电材料可为例如ITO、ZnO、导电性高分子材料、PEDOT或纳米碳材的导电玻璃。For the above-mentioned LED chip, in a possible implementation manner, it also includes a conductive layer, the conductive layer is formed of a conductive material with high transmittance, and the conductive layer is located between the second conductive type semiconductor layer and the reflective layer. between, and the first electrode hole extends through the conductive layer. Wherein, the conductive material with high transmittance can be, for example, ITO, ZnO, conductive polymer material, PEDOT or conductive glass made of nano-carbon material.
对于上述LED芯片,在一种可能的实现方式中,在所述导电层、所述第一电极和所述第二电极至少之一上形成有保护层,所述保护层可由钛、镍、铬和金中的一种或几种制成。For the above LED chip, in a possible implementation manner, a protective layer is formed on at least one of the conductive layer, the first electrode and the second electrode, and the protective layer can be made of titanium, nickel, chromium Made of one or more of gold.
对于上述LED芯片,在一种可能的实现方式中,所述第一电极包括:填充各所述第一电极孔的电极材料,以及将填充位于第二电极区内的第一电极孔中的电极材料连接至位于第一电极区内的第一电极孔中的电极材料的引线,其中,所述第一电极区是指所述第一电极在所述反射层的正面的存在区域,所述第二电极区是指所述第二电极在所述反射层的正面的存在区域。另一方面,所述第二电极包括:填充各所述第二电极孔的电极材料,以及使填充各所述第二电极孔的电极材料避开各所述第一电极孔和所述引线而相互连接的部分。For the above-mentioned LED chip, in a possible implementation manner, the first electrode includes: an electrode material that fills each of the first electrode holes, and an electrode that will fill the first electrode holes in the second electrode region The material is connected to the lead wire of the electrode material in the first electrode hole in the first electrode area, wherein the first electrode area refers to the existing area of the first electrode on the front surface of the reflective layer, and the first electrode area The two-electrode region refers to the region where the second electrode exists on the front surface of the reflective layer. On the other hand, the second electrode includes: an electrode material filling each of the second electrode holes, and making the electrode material filling each of the second electrode holes avoid each of the first electrode holes and the lead wire interconnected parts.
对于上述LED芯片,在一种可能的实现方式中,所述反射层由单层或者多层高反射率的绝缘材料制成,所述高反射率的绝缘材料可为SiO2、DBR或光子晶体结构,所述DBR可由SiO2、TiO2、SiNx、Ta2O5、MgF2、ZnS中的一种或几种制成。For the above-mentioned LED chip, in a possible implementation manner, the reflective layer is made of a single layer or multiple layers of high-reflectivity insulating material, and the high-reflectivity insulating material can be SiO 2 , DBR or photonic crystal structure, the DBR can be made of one or more of SiO 2 , TiO 2 , SiN x , Ta 2 O 5 , MgF 2 , and ZnS.
对于上述LED芯片,在一种可能的实现方式中,所述隔离层由绝缘材料制成,所述绝缘材料可为SiO2、DBR或光子晶体结构,所述DBR可由SiO2、TiO2、SiNx、Ta2O5、MgF2、ZnS中的一种或几种制成。For the LED chip above, in a possible implementation, the isolation layer is made of insulating material, the insulating material can be SiO 2 , DBR or photonic crystal structure, and the DBR can be made of SiO 2 , TiO 2 , SiN x , Ta 2 O 5 , MgF 2 , ZnS or more.
对于上述LED芯片,在一种可能的实现方式中,还包括绝缘保护膜,所述绝缘保护膜优选由例如二氧化硅的高硬度绝缘材料制成,覆盖该LED芯片的所有侧面、而仅暴露所述第一电极和所述第二电极。For the above-mentioned LED chip, in a possible implementation manner, it also includes an insulating protective film. The insulating protective film is preferably made of a high-hardness insulating material such as silicon dioxide, covering all sides of the LED chip, and only exposing the first electrode and the second electrode.
为了解决上述问题,根据本发明的另一实施例,提供了一种LED芯片的制造方法,其包括:对于在衬底上依次层叠有第一导电型半导体层、发光层及第二导电型半导体层的LED外延片,利用第一掩模刻蚀所述第二导电型半导体层及所述发光层,以形成暴露所述第一导电型半导体层的至少一个第一电极孔;在所述第二导电型半导体层的正面覆盖高反射率的绝缘材料,以形成被所述第一电极孔延伸穿过的反射层;利用第二掩模刻蚀所述反射层,以形成暴露所述第二导电型半导体层的多个第二电极孔,其中至少围绕一个所述第一电极孔的所述第二电极孔呈对称图形分布;形成经由所述第一电极孔连接至所述第一导电型半导体层的第一电极以及经由所述第二电极孔连接至所述第二导电型半导体层的第二电极。In order to solve the above problems, according to another embodiment of the present invention, a method for manufacturing an LED chip is provided, which includes: for a substrate sequentially stacked with a first conductivity type semiconductor layer, a light emitting layer and a second conductivity type semiconductor layer Layered LED epitaxial wafers, using a first mask to etch the second conductivity type semiconductor layer and the light emitting layer to form at least one first electrode hole exposing the first conductivity type semiconductor layer; The front surface of the second conductivity type semiconductor layer is covered with a high-reflectivity insulating material to form a reflective layer extending through the first electrode hole; the reflective layer is etched using a second mask to form a second electrode exposed A plurality of second electrode holes in the conductive type semiconductor layer, wherein at least one of the second electrode holes surrounding one of the first electrode holes is distributed in a symmetrical pattern; forming a hole connected to the first conductive type through the first electrode hole The first electrode of the semiconductor layer and the second electrode connected to the second conductivity type semiconductor layer through the second electrode hole.
对于上述LED芯片的制造方法,在一种可能的实现方式中,所述第一电极孔均匀分布在所述第一导电型半导体层的正面上。Regarding the above method for manufacturing an LED chip, in a possible implementation manner, the first electrode holes are evenly distributed on the front surface of the first conductivity type semiconductor layer.
对于上述LED芯片的制造方法,在一种可能的实现方式中,所述对称图形为对称多边形、弧形或者圆形。Regarding the manufacturing method of the above LED chip, in a possible implementation manner, the symmetrical figure is a symmetrical polygon, an arc or a circle.
对于上述LED芯片的制造方法,在一种可能的实现方式中,还包括:在形成所述反射层之前,在所述第二导电型半导体层的正面覆盖高透射率的导电材料,以形成被所述第一电极孔延伸穿过的导电层;并且,通过在所述导电层的正面覆盖所述高反射率的绝缘材料,以形成被所述第一电极孔延伸穿过的所述反射层。Regarding the manufacturing method of the above-mentioned LED chip, in a possible implementation manner, it also includes: before forming the reflective layer, covering the front surface of the second conductive type semiconductor layer with a conductive material with high transmittance, so as to form a The conductive layer through which the first electrode hole extends; and, by covering the front surface of the conductive layer with the insulating material with high reflectivity, to form the reflective layer through which the first electrode hole extends .
对于上述LED芯片的制造方法,在一种可能的实现方式中,在所述导电层、所述第一电极和所述第二电极至少之一上形成有保护层,所述保护层可由钛、镍、铬和金中的一种或几种制成。Regarding the manufacturing method of the above-mentioned LED chip, in a possible implementation manner, a protective layer is formed on at least one of the conductive layer, the first electrode, and the second electrode, and the protective layer can be made of titanium, One or more of nickel, chromium and gold.
对于上述LED芯片的制造方法,在一种可能的实现方式中,形成所述第一电极和所述第二电极的步骤包括:利用电极材料填充各所述第一电极孔和各所述第二电极孔;使位于预定的第二电极区内的各第一电极孔中的电极材料经由引线连接至位于预定的第一电极区内的第一电极孔中的电极材料;使填充各所述第二电极孔的电极材料避开各所述第一电极孔以及所述引线相互连接;至少在所述反射层的正面上覆盖绝缘材料,以形成隔离层;利用第三掩模对所述隔离层进行刻蚀,以在所述第一电极区暴露填充各所述第一电极孔的电极材料、并在所述第二电极区至少暴露填充各所述第二电极孔的电极材料及其连接部分;至少在所述第一电极区的正面覆盖电极材料,形成所述第一电极;以及至少在所述第二电极区的正面覆盖电极材料,形成所述第二电极。Regarding the manufacturing method of the above-mentioned LED chip, in a possible implementation manner, the step of forming the first electrode and the second electrode includes: filling each of the first electrode holes and each of the second electrodes with an electrode material. Electrode holes; connecting the electrode material in the first electrode holes located in the predetermined second electrode area to the electrode material in the first electrode holes located in the predetermined first electrode area via lead wires; filling each of the first electrode holes The electrode material of the two electrode holes avoids each of the first electrode holes and the lead wires are connected to each other; at least the front surface of the reflective layer is covered with an insulating material to form an isolation layer; the isolation layer is formed using a third mask. Etching is performed to expose the electrode material filling each of the first electrode holes in the first electrode area, and at least expose the electrode material filling each of the second electrode holes and its connection part in the second electrode area ; at least covering the front surface of the first electrode region with electrode material to form the first electrode; and covering at least the front surface of the second electrode region with electrode material to form the second electrode.
通过使至少部分第一电极孔被多个第二电极孔呈对称图形状围绕,其中,第一电极孔用以使第一电极与第一导电型半导体层电性连接,第二电极孔用以使第二电极与第二导电型半导体层电性连接,根据本发明实施例的LED芯片及其制造方法能够使得LED中至少部分正电极到负电极的距离一致、至少部分正电极到负电极电流的电阻一致,从而与现有技术相比,能够提高电流密度的均匀性、发光的均匀性。By making at least part of the first electrode holes surrounded by a plurality of second electrode holes in a symmetrical shape, wherein the first electrode holes are used to electrically connect the first electrode with the first conductivity type semiconductor layer, and the second electrode holes are used to The second electrode is electrically connected to the second conductive type semiconductor layer, and the LED chip and the manufacturing method thereof according to the embodiment of the present invention can make the distance from at least part of the positive electrode to the negative electrode consistent in the LED, and the current flow from at least part of the positive electrode to the negative electrode The resistance is consistent, so that compared with the prior art, the uniformity of current density and the uniformity of light emission can be improved.
附图说明Description of drawings
包含在说明书中并且构成说明书的一部分的说明书附图与说明书一起示出了本发明的示例性实施例、特征和方面,并且用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate exemplary embodiments, features, and aspects of the invention and together with the description, serve to explain the principles of the invention.
图1为本发明实施例的LED芯片制造方法的流程图;Fig. 1 is the flow chart of the LED chip manufacturing method of the embodiment of the present invention;
图2(a)-图2(d)分别为本发明实施例的LED芯片制造方法中所形成结构的剖面图;Figure 2(a)-Figure 2(d) are cross-sectional views of structures formed in the LED chip manufacturing method of the embodiment of the present invention;
图3(a)-图3(e)分别为本发明实施例的LED芯片制造方法中所形成结构的俯视图;Fig. 3(a)-Fig. 3(e) are top views of structures formed in the LED chip manufacturing method according to the embodiment of the present invention;
图4(a)-图4(c)为本发明实施例的LED芯片的剖面图。FIG. 4( a )- FIG. 4( c ) are cross-sectional views of LED chips according to embodiments of the present invention.
图5(a)-图5(b)为利用本发明实施例的LED芯片形成HV-LED结构的俯视图和剖面图。FIG. 5( a )- FIG. 5( b ) are a top view and a cross-sectional view of an HV-LED structure formed by using an LED chip according to an embodiment of the present invention.
附图标记说明Explanation of reference signs
10:衬底;20:第一导电型半导体层;30:发光层;40:第二导电型半导体层;50:第一电极孔;60:导电层;70:反射层;80:第二电极孔;90:绝缘保护层;500:第一电极;510:第一电极接点;800:第二电极;810:第二电极接点;900:导电金属;1000:基板。10: substrate; 20: first conductivity type semiconductor layer; 30: light emitting layer; 40: second conductivity type semiconductor layer; 50: first electrode hole; 60: conductive layer; 70: reflective layer; 80: second electrode Hole; 90: insulating protective layer; 500: first electrode; 510: first electrode contact; 800: second electrode; 810: second electrode contact; 900: conductive metal; 1000: substrate.
具体实施方式Detailed ways
以下将参考附图详细说明本发明的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。Various exemplary embodiments, features, and aspects of the invention will be described in detail below with reference to the accompanying drawings. The same reference numbers in the figures indicate functionally identical or similar elements. While various aspects of the embodiments are shown in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。The word "exemplary" is used exclusively herein to mean "serving as an example, embodiment, or illustration." Any embodiment described herein as "exemplary" is not necessarily to be construed as superior or better than other embodiments.
另外,为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有这些具体细节,本发明同样可以实施。在另外一些实例中,对于大家熟知的方法、手段、元件和电路未作详细描述,以便于凸显本发明的主旨。In addition, in order to better illustrate the present invention, numerous specific details are given in the specific embodiments below. It will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, means, components and circuits are not described in detail so as to highlight the gist of the present invention.
图1为根据本发明实施例的LED芯片制造方法的流程图,结合图2(a)-图2(d)、图3(a)-图3(e)所示详细说明如下。该方法包括:Fig. 1 is a flow chart of a method for manufacturing an LED chip according to an embodiment of the present invention, which is described in detail in conjunction with Fig. 2(a)-Fig. 2(d) and Fig. 3(a)-Fig. 3(e). The method includes:
步骤S1,对于在衬底10上依次层叠有第一导电型半导体层20、发光层30和第二导电型半导体层40的LED外延片,通过例如干式或者湿式的蚀刻方式,利用第一掩模刻蚀第二导电型半导体层40及发光层30以暴露第一导电型半导体层20,形成如图2(a)所示第二导电型半导体层40和发光层30中包含有至少一个第一电极孔50的结构。其中,第一电极孔50将用于使下述的第一电极与第一导电型半导体层20接触,并优选如图3(a)所示尽可能分布均匀。Step S1, for the LED epitaxial wafer on which the first conductivity type semiconductor layer 20, the light emitting layer 30, and the second conductivity type semiconductor layer 40 are laminated in sequence on the substrate 10, for example, dry or wet etching, using the first mask Etching the second conductive type semiconductor layer 40 and the light emitting layer 30 to expose the first conductive type semiconductor layer 20, forming at least one second conductive type semiconductor layer 40 and the light emitting layer 30 as shown in FIG. 2(a). The structure of an electrode hole 50. Among them, the first electrode holes 50 are used to make the first electrodes described below contact the first conductivity type semiconductor layer 20 , and are preferably distributed as evenly as possible as shown in FIG. 3( a ).
在一种可能的实现方式中,衬底10可具体为各种具有不同晶向的衬底,例如蓝宝石、硅或者碳化硅衬底。In a possible implementation manner, the substrate 10 may specifically be various substrates with different crystal orientations, such as sapphire, silicon or silicon carbide substrates.
此外,第一导电型半导体层20的材料可以为n型氮化镓,也可以为n型磷化铝铟镓(AlGaInP)。第二导电型半导体层40的材料可以为p型氮化镓,也可以为p型磷化铝铟镓。在一种可能的实现方式中,第一导电型半导体层20和第二导电型半导体层40分别采用n型氮化镓和p型氮化镓制成。In addition, the material of the first conductive type semiconductor layer 20 may be n-type gallium nitride or n-type aluminum indium gallium phosphide (AlGaInP). The material of the second conductive type semiconductor layer 40 may be p-type gallium nitride, or p-type aluminum indium gallium phosphide. In a possible implementation manner, the first conductive type semiconductor layer 20 and the second conductive type semiconductor layer 40 are respectively made of n-type gallium nitride and p-type gallium nitride.
步骤S2,在刻蚀了第一电极孔50的第二导电型半导体层40上镀例如ITO、ZnO、导电性高分子材料、PEDOT或纳米碳材的高透射率导电材料作为导电层60,其中导电层60必须暴露第一电极孔50的底部,从而形成如图2(b)所示第一电极孔50延伸穿过导电层60的结构。Step S2, plate a high-transmittance conductive material such as ITO, ZnO, conductive polymer material, PEDOT or nano-carbon material on the second conductive type semiconductor layer 40 etched with the first electrode hole 50 as the conductive layer 60, wherein The conductive layer 60 must expose the bottom of the first electrode hole 50 , thereby forming a structure in which the first electrode hole 50 extends through the conductive layer 60 as shown in FIG. 2( b ).
步骤S3,在第一电极孔50的侧壁和导电层60上覆盖由单层或者多层例如二氧化硅(SiO2)、DBR(可由SiO2、TiO2、SiNx、Ta2O5、MgF2、ZnS中的一种或几种制成)或光子晶体结构等高反射率的绝缘材料作为反射层70,其中反射层70必须暴露位于第一电极孔50底部的第一导电型半导体层20,从而形成如图2(c)所示第一电极孔50延伸穿过反射层70的结构。其中,反射层70本身不导电,因此,除了反射光以外,反射层70还起到绝缘隔离的作用。Step S3, covering the side wall of the first electrode hole 50 and the conductive layer 60 with a single layer or multiple layers such as silicon dioxide (SiO 2 ), DBR (which can be made of SiO 2 , TiO 2 , SiN x , Ta 2 O 5 , MgF 2 , made of one or more of ZnS) or photonic crystal structure and other high-reflectivity insulating materials as the reflective layer 70, wherein the reflective layer 70 must expose the first conductive type semiconductor layer at the bottom of the first electrode hole 50 20, thereby forming a structure in which the first electrode hole 50 extends through the reflective layer 70 as shown in FIG. 2(c). Wherein, the reflective layer 70 itself is not conductive, therefore, in addition to reflecting light, the reflective layer 70 also plays the role of insulation.
步骤S4,在反射层70上,通过例如干式或者湿式的蚀刻方式,利用第二掩模进行刻蚀以暴露第二导电型半导体层40或导电层60,形成如图2(d)所示反射层70中还包含有多个第二电极孔80的结构。其中,第二电极孔80将用于使下述的第二电极与第二导电型半导体层40接触,并且至少围绕一个第一电极孔50的多个第二电极孔80呈对称图形分布。这样,由于至少部分第二电极孔80到一个第一电极孔50的距离一致,使得在最终制成的LED芯片中经由这些电极孔形成的正负电极之间的距离一致、并且流过这部分正负电极的电流所经历的电阻一致,从而与现有技术相比,能够有效提高电流密度和发光的均匀性。Step S4, on the reflective layer 70, etch using a second mask to expose the second conductivity type semiconductor layer 40 or the conductive layer 60 by, for example, dry or wet etching, forming The reflective layer 70 also includes a plurality of second electrode holes 80 . Wherein, the second electrode hole 80 is used to make the second electrode described below contact the second conductivity type semiconductor layer 40 , and the plurality of second electrode holes 80 surrounding at least one first electrode hole 50 are distributed in a symmetrical pattern. In this way, since at least part of the distance from the second electrode hole 80 to a first electrode hole 50 is consistent, the distance between the positive and negative electrodes formed through these electrode holes in the final LED chip is consistent, and the flow through this part The resistance experienced by the current of the positive and negative electrodes is consistent, so that compared with the prior art, the current density and the uniformity of light emission can be effectively improved.
在一种可能的实现方式中,优选如图3(b)所示,围绕各第一电极孔50的第二电极孔80都呈对称图形分布。与部分第一电极孔被第二电极孔呈对称图形包围的实现方式相比,这种实现方式可进一步提高电流密度和发光的均匀性。In a possible implementation manner, preferably as shown in FIG. 3( b ), the second electrode holes 80 surrounding each first electrode hole 50 are distributed in a symmetrical pattern. Compared with the implementation in which part of the first electrode hole is surrounded by the second electrode hole in a symmetrical pattern, this implementation can further improve the current density and the uniformity of light emission.
在一种可能的实现方式中,由围绕各第一电极孔50的多个第二电极孔80构成的对称图形可为三角形、方形(如图4(b)所示)、菱形(如图4(c)所示)或六边形(如图4(a)所示等任意多边形,也可为弧形或者圆形。In a possible implementation manner, the symmetrical figure formed by a plurality of second electrode holes 80 surrounding each first electrode hole 50 may be triangular, square (as shown in FIG. 4(b) ), rhombus (as shown in FIG. 4 (c)) or hexagon (as shown in Figure 4 (a) and other arbitrary polygons, it can also be arc or circle.
步骤S5,形成经由第一电极孔50连接至第一导电型半导体层20的第一电极以及经由第二电极孔80连接至第二导电型半导体层40的第二电极。Step S5 , forming a first electrode connected to the first conductivity type semiconductor layer 20 through the first electrode hole 50 and a second electrode connected to the second conductivity type semiconductor layer 40 through the second electrode hole 80 .
在一种可能的实现方式中,上述步骤S5中用以形成第一电极和第二电极的操作可包括底层电极制作步骤、隔离步骤以及表面电极制作步骤,其中:In a possible implementation manner, the operation for forming the first electrode and the second electrode in the above step S5 may include a bottom electrode fabrication step, an isolation step, and a surface electrode fabrication step, wherein:
在底层电极制作步骤中,利用电极材料填充各第一电极孔50和各第二电极孔80,使位于预定的第二电极区内的各第一电极孔50中的电极材料经由引线连接至位于预定的第一电极区内的第一电极孔50中的电极材料,并使填充各第二电极孔80的电极材料避开各第一电极孔50以及引线相互连接,从而形成俯视结构如图3(c)所示的底层电极。In the bottom electrode manufacturing step, each first electrode hole 50 and each second electrode hole 80 are filled with electrode material, so that the electrode material in each first electrode hole 50 in the predetermined second electrode area is connected to the electrode material located in the second electrode area via a lead wire. The electrode material in the first electrode hole 50 in the predetermined first electrode area, and the electrode material filling each second electrode hole 80 avoids each first electrode hole 50 and the leads are connected to each other, thereby forming a top view structure as shown in Figure 3 (c) Bottom electrode shown.
在一种可能的实现方式中,如图3(c)所示,所述引线可沿该LED芯片的侧边从第二电极区进入第一电极区,以尽量降低与第二电极的接触可能性。In a possible implementation, as shown in Figure 3(c), the lead wires can enter the first electrode area from the second electrode area along the side of the LED chip, so as to minimize the possibility of contact with the second electrode sex.
在隔离步骤中,至少在反射层70的正面上覆盖绝缘材料以形成隔离层,并利用第三掩模对该隔离层进行刻蚀,以在第一电极区暴露填充各第一电极孔50的电极材料、在第二电极区至少暴露填充各第二电极孔80的电极材料及其连接部分,从而形成如图3(d)所示的俯视结构。In the isolation step, at least the front surface of the reflective layer 70 is covered with an insulating material to form an isolation layer, and the isolation layer is etched using a third mask to expose and fill each first electrode hole 50 in the first electrode region. The electrode material, and at least the electrode material filling each second electrode hole 80 and its connection part are exposed in the second electrode region, thereby forming a top view structure as shown in FIG. 3( d ).
其中,如图3(d)所示,第一电极区可位于LED芯片正面的左端,第二电极区可位于LED芯片正面的右端,两者之间存在由隔离层构成的隔离区,以确保两者电性不接触。Among them, as shown in Figure 3(d), the first electrode area can be located at the left end of the front of the LED chip, and the second electrode area can be located at the right end of the front of the LED chip, and there is an isolation area composed of an isolation layer between the two to ensure The two are not in electrical contact.
在表面电极制作步骤中,至少在第一电极区的正面覆盖电极材料以完成第一电极,并至少在第二电极区的正面覆盖电极材料以完成第二电极,从而形成如图3(e)所示的俯视结构。In the surface electrode manufacturing step, at least the front surface of the first electrode region is covered with electrode material to complete the first electrode, and at least the front surface of the second electrode region is covered with electrode material to complete the second electrode, thus forming the electrode shown in Figure 3 (e) The top view structure shown.
这样,由于第一电极和第二电极隔着隔离区分设于该LED芯片正面的中轴线的两侧,两个电极的正面面积不至于相差太多,安装时、尤其是以覆晶方式安装时,导电金属不会恰好点至两个电极上且大小适中,从而防止了出现导电金属溢出的现象,进一步提高了产品的良率。In this way, since the first electrode and the second electrode are arranged on both sides of the central axis of the front surface of the LED chip through the isolation area, the front areas of the two electrodes will not differ too much, and when installing, especially when installing by flip-chip , the conductive metal will not just point to the two electrodes and the size is moderate, thereby preventing the overflow of the conductive metal and further improving the yield of the product.
需要说明的是,在上述方法中,尽管通过步骤S2使第二导电型半导体层40与反射层70之间形成有导电层60,以使得电流更均匀。然而,本领域技术人员应能明白,即使不形成导电层60,只要用以使第二电极与第二导电型半导体层40电性接触的部分第二电极孔80围绕用以使第一电极与第一导电型半导体层20电性接触的第一电极孔50呈对称图形分布,以使得至少部分正电极到负电极的电流所经历的电阻一致,就能够有效提高发光的均匀性。It should be noted that, in the above method, the conductive layer 60 is formed between the second conductive type semiconductor layer 40 and the reflective layer 70 through step S2, so as to make the current more uniform. However, those skilled in the art should be able to understand that even if the conductive layer 60 is not formed, as long as the part of the second electrode hole 80 used to make the second electrode electrically contact with the second conductive type semiconductor layer 40 surrounds the part of the second electrode hole 80 used to make the first electrode contact with the second conductive type semiconductor layer 40 The first electrode holes 50 in electrical contact with the first conductivity type semiconductor layer 20 are distributed in a symmetrical pattern, so that at least part of the current from the positive electrode to the negative electrode experiences the same resistance, which can effectively improve the uniformity of light emission.
此外,在一种可能的实现方式中,还可在导电层60、第一电极和第二电极至少之一上形成保护层。所述保护层可由钛、镍、铬和金等金属材料中的一种或几种制成,其厚度为 时可被锡膏或银胶焊接使用。In addition, in a possible implementation manner, a protective layer may also be formed on at least one of the conductive layer 60 , the first electrode and the second electrode. The protective layer can be made of one or several metal materials such as titanium, nickel, chromium and gold, and its thickness is It can be soldered by solder paste or silver glue when used.
在一种可能的实现方式中,在表面电极形成步骤中,还使例如二氧化硅(SiO2)等的高绝缘材料作为绝缘保护层90包覆整个LED芯片,仅暴露第一电极区500和第二电极区800,从而可形成如图3(e)所示的俯视结构和如图5(b)所示的局部剖面结构,以在该LED芯片的安装过程中、尤其是覆晶安装中因导电而IR。由于二氧化硅是一种硬度比较坚硬的材料,极有可能因在分离裂片过程中使用钨钢刀进行劈裂时产生的内应力,使得被劈的LED芯片的二氧化硅保护层出现膜裂,进而使得用以粘接发光元件和基板的材料渗入元件内。在这种情况下,在裂片过程中使用钨钢刀进行劈裂时,在被劈的LED芯片表面涂上一层软性材料,可以有效抵消钨钢刀在劈裂时造成的内应力,从而可以防止二氧化硅保护层膜裂。In a possible implementation, in the step of forming the surface electrodes, a highly insulating material such as silicon dioxide (SiO 2 ) is also used as an insulating protective layer 90 to cover the entire LED chip, and only the first electrode region 500 and the first electrode region 500 are exposed. The second electrode region 800 can form a top view structure as shown in FIG. 3(e) and a partial cross-sectional structure as shown in FIG. IR due to conductivity. Since silicon dioxide is a relatively hard material, it is very likely that the silicon dioxide protective layer of the split LED chip will crack due to the internal stress generated during the splitting process using a tungsten steel knife. , so that the material used to bond the light-emitting element and the substrate penetrates into the element. In this case, when splitting with a tungsten steel knife during splitting, a layer of soft material is coated on the surface of the split LED chip, which can effectively offset the internal stress caused by the tungsten steel knife during splitting, thereby It can prevent the silicon dioxide protective layer from cracking.
根据本发明的另一实施例,还提供了一种LED芯片,继续参照图2(a)-图2(d)、图3(a)-图3(e)所示详细说明如下。According to another embodiment of the present invention, an LED chip is also provided, which will be described in detail as follows with reference to FIGS. 2( a )- 2 ( d ) and FIGS. 3( a )- 3 ( e ).
根据本发明实施例提供的LED芯片可包括:依次层叠的衬底10、第一导电型半导体层20、发光层30、第二导电型半导体层40和由单层或者多层具有高反射率的绝缘材料(例如SiO2、DBR(可由SiO2、TiO2、SiNx、Ta2O5、MgF2、ZnS中的一种或几种制成)或光子晶体结构等)制成的反射层70;至少一个第一电极孔50,其各自延伸穿过反射层70、第二导电型半导体层40和发光层30;多个第二电极孔80,各自延伸穿过反射层70;第一电极,至少部分位于所述反射层的正面,经由所述第一电极孔与所述第一导电型半导体层电性接触;第二电极,至少部分位于所述反射层的正面,经由所述第二电极孔与所述第二导电型半导体层电性接触;以及隔离层,位于所述反射层的正面,用以将所述第一电极与所述第二电极绝缘隔离。The LED chip provided according to the embodiment of the present invention may include: a sequentially stacked substrate 10, a first conductive type semiconductor layer 20, a light emitting layer 30, a second conductive type semiconductor layer 40, and a single layer or multiple layers with high reflectivity. Reflective layer 70 made of insulating material (such as SiO 2 , DBR (can be made of one or more of SiO 2 , TiO 2 , SiN x , Ta 2 O 5 , MgF 2 , ZnS) or photonic crystal structure, etc.) ; At least one first electrode hole 50, each extending through the reflective layer 70, the second conductivity type semiconductor layer 40, and the light emitting layer 30; a plurality of second electrode holes 80, each extending through the reflective layer 70; the first electrode, at least partially located on the front of the reflective layer, electrically contacting the first conductive type semiconductor layer through the first electrode hole; the second electrode, at least partially located on the front of the reflective layer, via the second electrode The hole is in electrical contact with the semiconductor layer of the second conductivity type; and the isolation layer is located on the front of the reflective layer and is used to insulate and isolate the first electrode from the second electrode.
其中,从反射层70的正面看,至少围绕一个第一电极孔50的多个第二电极孔80呈对称图形分布。这样,由于至少部分第二电极孔80到第一电极孔50的距离一致,使得由这些电极孔形成的正负电极之间的距离一致、并且流过这部分正负电极的电流所经历的电阻一致,从而与现有技术相比,能够有效提高电流密度和发光的均匀性。Wherein, viewed from the front of the reflective layer 70, at least a plurality of second electrode holes 80 surrounding one first electrode hole 50 are distributed in a symmetrical pattern. In this way, since at least part of the distance from the second electrode hole 80 to the first electrode hole 50 is consistent, the distance between the positive and negative electrodes formed by these electrode holes is consistent, and the resistance experienced by the current flowing through this part of the positive and negative electrodes Therefore, compared with the prior art, the current density and the uniformity of light emission can be effectively improved.
在一种可能的实现方式中,如图3(b)所示,在反射层70的正面上,围绕各第一电极孔50的第二电极孔80都呈对称图形分布。与部分第一电极孔被第二电极孔呈对称图形包围的实现方式相比,这种实现方式显然可进一步提高电流密度和发光的均匀性。In a possible implementation manner, as shown in FIG. 3( b ), on the front surface of the reflective layer 70 , the second electrode holes 80 surrounding the first electrode holes 50 are distributed in a symmetrical pattern. Compared with the implementation in which part of the first electrode hole is surrounded by the second electrode hole in a symmetrical pattern, this implementation can obviously further improve the current density and the uniformity of light emission.
在一种可能的实现方式中,衬底10可具体为各种具有不同晶向的衬底,例如蓝宝石、硅或者碳化硅衬底。In a possible implementation manner, the substrate 10 may specifically be various substrates with different crystal orientations, such as sapphire, silicon or silicon carbide substrates.
此外,第一导电型半导体层20的材料可以为n型氮化镓,也可以为n型磷化铝铟镓(AlGaInP)。第二导电型半导体层40的材料可以为p型氮化镓,也可以为p型磷化铝铟镓。在一种可能的实现方式中,第一导电型半导体层20和第二导电型半导体层40分别采用n型氮化镓和p型氮化镓制成。相应地,第一电极和第二电极分别为负电极和正电极。In addition, the material of the first conductive type semiconductor layer 20 may be n-type gallium nitride or n-type aluminum indium gallium phosphide (AlGaInP). The material of the second conductive type semiconductor layer 40 may be p-type gallium nitride, or p-type aluminum indium gallium phosphide. In a possible implementation manner, the first conductive type semiconductor layer 20 and the second conductive type semiconductor layer 40 are respectively made of n-type gallium nitride and p-type gallium nitride. Correspondingly, the first electrode and the second electrode are respectively a negative electrode and a positive electrode.
在一种可能的实现方式中,第一电极孔50在第一导电型半导体层20的正面上均匀分布,例如,如图3(a)、图3(b)所示。In a possible implementation manner, the first electrode holes 50 are evenly distributed on the front surface of the first conductivity type semiconductor layer 20 , for example, as shown in FIG. 3( a ) and FIG. 3( b ).
在一种可能的实现方式中,由围绕各第一电极孔50的多个第二电极孔80构成的对称图形可为三角形、方形、菱形或六边形等任意多边形,也可为弧形或圆形。In a possible implementation, the symmetrical figure formed by a plurality of second electrode holes 80 surrounding each first electrode hole 50 may be any polygon such as triangle, square, rhombus or hexagon, or may be arc or round.
在一种可能的实现方式中,反射层70与第二导电型半导体层40之间还可形成有导电层60,并且导电层60优选由例如ITO、ZnO、导电性高分子材料、PEDOT或纳米碳材等具有高透射率的导电材料形成,以进一步获得电流密度更均匀、反射效果更好的效果。In a possible implementation, a conductive layer 60 may also be formed between the reflective layer 70 and the second conductive type semiconductor layer 40, and the conductive layer 60 is preferably made of, for example, ITO, ZnO, conductive polymer materials, PEDOT or nano Carbon materials and other conductive materials with high transmittance are formed to further obtain the effect of more uniform current density and better reflection effect.
在一种可能的实现方式中,如图3(c)所示,第一电极可包括:填充各第一电极孔50的电极材料;以及,将填充位于第二电极区内的第一电极孔50中的电极材料连接至位于第一电极区内的第一电极孔50中的电极材料的引线。其中,第一电极区是指第一电极在反射层70的正面的存在区域,图3(c)中示出为剖视图的左端;以及,第二电极区是指第二电极在反射层70的正面的存在区域,图3(c)中示出为剖视图的右端。In a possible implementation, as shown in FIG. 3(c), the first electrode may include: an electrode material that fills each first electrode hole 50; and, will fill the first electrode hole located in the second electrode region The electrode material in 50 is connected to the leads of the electrode material in the first electrode hole 50 located in the first electrode region. Wherein, the first electrode area refers to the area where the first electrode exists on the front surface of the reflective layer 70, which is shown as the left end of the cross-sectional view in FIG. The presence area of the front is shown as the right end of the cross-sectional view in Fig. 3(c).
相应地,如图3(c)所示,第二电极可包括:填充各第二电极孔80的电极材料;以及,使填充各第二电极孔80的电极材料避开各第一电极孔50和上述引线而相互连接的部分。Correspondingly, as shown in FIG. 3( c ), the second electrode may include: electrode material filling each second electrode hole 80 ; and making the electrode material filling each second electrode hole 80 avoid each first electrode hole 50 The part connected to each other with the above-mentioned leads.
此外,如上参考图3(d)、图3(e)所介绍,为了更好地隔离第一电极和第二电极,还可通过在图3(c)所示的结构上继续进行上述隔离步骤和表面电极制作步骤,以进一步提高该LED芯片的品质。In addition, as described above with reference to Figure 3(d) and Figure 3(e), in order to better isolate the first electrode and the second electrode, the above isolation step can also be carried out on the structure shown in Figure 3(c) and surface electrode fabrication steps to further improve the quality of the LED chip.
在一种可能的实现方式中,在导电层60、第一电极和第二电极至少之一上还可形成有保护层。所述保护层可由钛、镍、铬和金等金属材料中的一种或几种制成,其厚度为时可被锡膏或银胶焊接使用。In a possible implementation manner, a protective layer may further be formed on at least one of the conductive layer 60 , the first electrode and the second electrode. The protective layer can be made of one or several metal materials such as titanium, nickel, chromium and gold, and its thickness is It can be soldered by solder paste or silver glue when used.
此外,在一种可能的实现方式中,该LED芯片还可包括由高硬度的绝缘材料制成的绝缘保护层90,该绝缘保护层90覆盖该LED芯片的所有侧面、并且仅暴露第一电极500和第二电极800,从而可形成如图3(e)所示的俯视结构以及如图5(b)所示的局部剖面结构。In addition, in a possible implementation manner, the LED chip may further include an insulating protection layer 90 made of a high-hardness insulating material, and the insulating protection layer 90 covers all sides of the LED chip and only exposes the first electrode 500 and the second electrode 800, thereby forming a top view structure as shown in FIG. 3(e) and a partial cross-sectional structure as shown in FIG. 5(b).
根据本发明的又一实施例,还提供了一种HV-LED结构。下面将参照图5(a)-图5(b)详细描述。According to yet another embodiment of the present invention, an HV-LED structure is also provided. It will be described in detail below with reference to FIG. 5( a )- FIG. 5( b ).
如图5(a)所示,该HV-LED结构中的每个LED芯片具有如图3(e)所示的俯视结构。此外,要安装有LED芯片的基板1000本身绝缘,但如图5(b)所示,基板1000上形成有第一电极接点510、第二电极接点810。As shown in Fig. 5(a), each LED chip in this HV-LED structure has a top view structure as shown in Fig. 3(e). In addition, the substrate 1000 on which the LED chip is to be mounted is itself insulated, but as shown in FIG. 5( b ), a first electrode contact 510 and a second electrode contact 810 are formed on the substrate 1000 .
在一种可能的实现方式中,在串接LED芯片之前,如图5(b)所示,需要将LED芯片之间的隔离带蚀刻到衬底10,以使得各LED芯片彼此间不能有例如氮化镓的半导体材料,否则有可能产生漏电。然后,如图5(a),利用导电金属900将相连LED芯片的第一电极500、第二电极800相接,以串接多个LED芯片来形成HV-LED结构。In a possible implementation, before the LED chips are connected in series, as shown in FIG. Gallium nitride semiconductor material, otherwise leakage may occur. Then, as shown in FIG. 5( a ), the first electrode 500 and the second electrode 800 of the connected LED chips are connected with a conductive metal 900 to form a HV-LED structure by connecting multiple LED chips in series.
其中,如图5(b)所示,仅第一个LED芯片的第一电极500与基板1000上的第一电极接点510导通,仅最后一个LED芯片的第二电极800与基板1000上的第二电极接点810导通,而任一个中间LED芯片的第一电极500经由导电金属900与前一LED芯片的第二电极800连接、其第二电极800经由导电金属900与后一LED芯片的第一电极500连接、并且整体不与基板1000导通。Among them, as shown in Figure 5(b), only the first electrode 500 of the first LED chip is connected to the first electrode contact 510 on the substrate 1000, and only the second electrode 800 of the last LED chip is connected to the contact point 510 on the substrate 1000. The second electrode contact 810 is turned on, and the first electrode 500 of any intermediate LED chip is connected to the second electrode 800 of the previous LED chip through the conductive metal 900, and its second electrode 800 is connected to the second electrode 800 of the next LED chip through the conductive metal 900. The first electrode 500 is connected and not conducted with the substrate 1000 as a whole.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310068439.3A CN103985804A (en) | 2013-02-08 | 2013-03-04 | LED chip and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310050696 | 2013-02-08 | ||
CN201310050696.4 | 2013-02-08 | ||
CN201310068439.3A CN103985804A (en) | 2013-02-08 | 2013-03-04 | LED chip and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103985804A true CN103985804A (en) | 2014-08-13 |
Family
ID=51277701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310068439.3A Pending CN103985804A (en) | 2013-02-08 | 2013-03-04 | LED chip and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103985804A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108336204A (en) * | 2018-04-04 | 2018-07-27 | 上海恩弼科技有限公司 | The LED chip and preparation method thereof of single side light extraction |
CN108963037A (en) * | 2017-05-27 | 2018-12-07 | 合肥彩虹蓝光科技有限公司 | A kind of manufacturing method of deep ultraviolet LED chip |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102194949A (en) * | 2010-03-08 | 2011-09-21 | Lg伊诺特有限公司 | Light emitting device |
CN102339913A (en) * | 2011-09-30 | 2012-02-01 | 映瑞光电科技(上海)有限公司 | High-voltage LED (Light Emitting Diode) device and manufacturing method thereof |
CN102386295A (en) * | 2010-08-27 | 2012-03-21 | 丰田合成株式会社 | Light-emitting element |
CN102386294A (en) * | 2010-08-27 | 2012-03-21 | 丰田合成株式会社 | Light emitting element |
CN203260616U (en) * | 2013-02-08 | 2013-10-30 | 刘艳 | Led chip |
-
2013
- 2013-03-04 CN CN201310068439.3A patent/CN103985804A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102194949A (en) * | 2010-03-08 | 2011-09-21 | Lg伊诺特有限公司 | Light emitting device |
CN102386295A (en) * | 2010-08-27 | 2012-03-21 | 丰田合成株式会社 | Light-emitting element |
CN102386294A (en) * | 2010-08-27 | 2012-03-21 | 丰田合成株式会社 | Light emitting element |
CN102339913A (en) * | 2011-09-30 | 2012-02-01 | 映瑞光电科技(上海)有限公司 | High-voltage LED (Light Emitting Diode) device and manufacturing method thereof |
CN203260616U (en) * | 2013-02-08 | 2013-10-30 | 刘艳 | Led chip |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108963037A (en) * | 2017-05-27 | 2018-12-07 | 合肥彩虹蓝光科技有限公司 | A kind of manufacturing method of deep ultraviolet LED chip |
CN108963037B (en) * | 2017-05-27 | 2021-04-27 | 宁波安芯美半导体有限公司 | A kind of manufacturing method of deep ultraviolet LED chip |
CN108336204A (en) * | 2018-04-04 | 2018-07-27 | 上海恩弼科技有限公司 | The LED chip and preparation method thereof of single side light extraction |
CN108336204B (en) * | 2018-04-04 | 2024-06-07 | 上海恩弼科技有限公司 | LED chip with single-sided light emitting function and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111223973B (en) | Light emitting diode array | |
CN104521012B (en) | Wafer level led array and its manufacture method | |
CN105552180B (en) | A kind of production method of novel high-pressure LED | |
JP4804485B2 (en) | Nitride semiconductor light emitting device and manufacturing method | |
CN101868866A (en) | Improved Light Emitting Diode Structure | |
TWI415308B (en) | Wafer-level light-emitting diode package structure for increasing luminous efficiency and heat dissipation effect and manufacturing method thereof | |
CN101515621A (en) | LED chip, manufacturing method and encapsulating method | |
CN110047983A (en) | Semiconductor light-emitting elements | |
CN106449924B (en) | A kind of flip LED chips and preparation method thereof that photo-thermal is electrically separated | |
CN102637784A (en) | Light-emitting diode packaging substrate and manufacturing method thereof | |
CN104409585B (en) | A kind of vertical LED structure and preparation method thereof | |
CN105280772A (en) | Light emitting diode and method of fabricating the same | |
CN104409466A (en) | Inverted high voltage light emitting device and making method thereof | |
JP7112596B2 (en) | semiconductor light emitting device | |
CN103794689A (en) | Manufacture method of flip chip type light-emitting diode (LED) chip | |
US20100213810A1 (en) | Light emitting device package | |
CN103794695A (en) | Flip chip type light-emitting diode (LED) chip | |
CN203456495U (en) | Led chip | |
KR20140071689A (en) | Semiconductor light emitting device and manufacturing method of the same | |
CN104900770A (en) | LED chips, manufacturing method thereof and display device | |
CN203260616U (en) | Led chip | |
JP6261927B2 (en) | Semiconductor light emitting device | |
CN102956784A (en) | Light emitting diode structure and manufacturing method thereof | |
CN205488228U (en) | Light -emitting device | |
CN203503689U (en) | Flip Chip LED Chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140813 |