CN103956413B - 一种led外延层生长方法及制得的led外延层 - Google Patents
一种led外延层生长方法及制得的led外延层 Download PDFInfo
- Publication number
- CN103956413B CN103956413B CN201410165337.8A CN201410165337A CN103956413B CN 103956413 B CN103956413 B CN 103956413B CN 201410165337 A CN201410165337 A CN 201410165337A CN 103956413 B CN103956413 B CN 103956413B
- Authority
- CN
- China
- Prior art keywords
- layer
- gan layer
- growth
- thickness
- raw materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/16—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/38—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Led Devices (AREA)
Abstract
本发明提供了一种LED外延层生长方法及制得的LED外延层,生长方法中的生长P型GaN层步骤为:在温度930‑950℃,压力200‑600mbar的反应室内,重复间隔性地通入A、B两组原料,直至P型GaN层的厚度为100‑300nm;A组原料为NH3、TMGa,生成1‑5nm的GaN层;B组原料为NH3、TMGa、Cp2Mg,生成10‑20nm的掺Mg的GaN层。本发明通过调整P型GaN层生长方式,将高温P型掺Mg的GaN层设计为GaN/GaN:Mg层超晶格,改善空穴迁移时分布,使得器件工作电流得到疏散,通入发光层的电流更加均匀,降低器件的驱动电压以及提升发光效率。
Description
技术领域
本发明涉及LED外延设计技术领域,特别地,涉及一种LED外延层生长方法及制得的LED外延层。
背景技术
以GaN为基础的发光二极管(LED)作为一种高效、环保、绿色新型固态照明光源,具有低电压、低功耗、体积小、重量轻、寿命长、高可靠性灯优点,正在迅速被广泛地应用于交通信号灯、手机背光源、户外全彩显示屏、城市景观照明、汽车内外灯、隧道灯等。
因此,LED的各方面性能提升都被业界重点关注。
目前,空穴在LED外延结构的P层传播时,其纵向运动会受到超晶格的GaN层的阻碍,使得器件偶尔出现不工作的现象。
发明内容
本发明目的在于提供一种LED外延层生长方法及制得的LED外延层,以解决空穴在P层纵向运动受到阻碍的技术问题。
为实现上述目的,本发明提供了一种LED外延层生长方法,依次包括处理衬底、生长低温缓冲GaN层、生长非掺杂GaN层、生长掺Si的GaN层、生长有缘层MQW、生长P型AlGaN层、生长P型GaN层步骤,所述生长P型GaN层步骤为:
在温度为930-950℃,反应腔压力在200-600mbar的反应室内,重复间隔性地通入A、B两组原料,直至P型GaN层的厚度为100-300nm;
其中,A组原料为50000-60000sccm的NH3、20-40sccm的TMGa源,生成厚度为1-5nm的GaN层;B组原料为50000-60000sccm的NH3、20-40sccm的TMGa、1500-2500sccm的Cp2Mg源,生成厚度为10-20nm的掺Mg的GaN层,Mg的掺杂浓度为1E19-1E20atom/cm3。
优选的,先通入A组原料,再通入B组原料。
优选的,先通入B组原料,再通入A组原料。
优选的,所述生长掺Si的GaN层步骤为:
持续生长厚度为2-4um的N型掺Si的GaN层,Si的掺杂浓度为5E18-1E19atom/cm3。
优选的,所述生长有缘层MQW步骤为:
在温度700-750℃,压力300-400mbar的反应室内,通入1500-1700sccm的TMIn和20-30sccm的TMGa生长掺杂In的厚度为3-4nm的InxGa(1-x)N层,其中x=0.15-0.25;
温度为800-850℃,生长厚度为10-15nm的GaN层,InxGa(1-x)N/GaN层的周期数为10-15;In的掺杂浓度为1E20-3E20atom/cm3。
本发明还公开了根据上述的LED外延层生长方法制得的LED外延层,包括厚度为100-300nm的P型GaN层,所述P型GaN层包括若干个双层单元,每个双层单元包括:
GaN层:厚度为1-5nm;
掺Mg的GaN层:厚度为10-20nm。
优选的,在所述双层单元中,所述GaN层在所述掺Mg的GaN层之上,或者,所述GaN层在所述掺Mg的GaN层之下。
优选的,在非掺杂GaN层和有缘层MQW之间,包括掺Si的GaN层,厚度为2-4um。
本发明具有以下有益效果:
本发明通过对P型GaN层生长方式的调整,将原本恒定掺杂的高温P型掺Mg的GaN层设计为GaN/GaN:Mg层超晶格,并将超晶格内含的GaN材料的厚度设计为1-5nm。不但增加超晶格内部的空穴浓度,增加界面的空穴的横向扩展,又能使得空穴纵向迁移率没有受到明显的限制,整体的效果是改善空穴迁移时分布,使得器件工作时拥挤的电流得到疏散,通入发光层的电流更加均匀,一方面可以显著降低器件的驱动电压,一方面可以提升器件的发光效率。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明对比实施例的结构示意图;
图2是本发明实施例的结构示意图;
图3是样品1与样品2的亮度对比图;
图4是样品1与样品2的电压对比图;
其中,1、衬底,2、低温缓冲GaN层,3、非掺杂GaN层,4、掺Si的GaN层,5、有缘层MQW,6、P型AlGaN层,7、P型GaN层,8、GaN层,9、掺Mg的GaN层。
具体实施方式
以下结合附图对本发明的实施例进行详细说明,但是本发明可以根据权利要求限定和覆盖的多种不同方式实施。
以下分别说明采用以现有传统方法制备样品1的对比实施例一,和采用本发明生长方法制备样品2的实施例一,再将两种方法得到样品1和样品2进行性能检测比较。
对比实施例一、
参见图1,本发明运用MOCVD来生长高亮度GaN基LED外延片。采用高纯H2或高纯N2或高纯H2和高纯N2的混合气体作为载气,高纯NH3作为N源,金属有机源三甲基镓(TMGa)作为镓源,三甲基铟(TMIn)作为铟源,N型掺杂剂为硅烷(SiH4),三甲基铝(TMAl)作为铝源,P型掺杂剂为二茂镁(CP2Mg),衬底为(0001)面蓝宝石,反应压力在100mbar到800mbar之间。
1、在1000-1200℃,反应腔压力维持在75-150mbar的氢气气氛下高温处理蓝宝石衬底5-10分钟;
2、降温至550-650℃下,反应腔压力维持在400-600mbar,在蓝宝石衬底上生长厚度为20-50nm的低温缓冲层GaN;
3、升高温度到1000-1200℃下,反应腔压力维持在150-300mbar,持续生长2-4μm的不掺杂GaN;
4、然后持续生长掺杂Si的N型GaN,Si掺杂浓度5E18-1E19atom/cm3,总厚度控制在2-4μm;
5、周期性生长有缘层MQW,反应腔压力维持在300-400mbar,低温700-750℃生长掺杂In的3-4nm InxGa(1-x)N(x=0.15-0.25)层,In掺杂浓度1E20-3E20atom/cm3,高温800-850℃生长10-15nmGaN层,InxGa(1-x)N/GaN周期数为10-15;
6、再升高温度到900-1000℃,反应腔压力维持在200-400mbar,持续生长20-50nm的P型AlGaN层,Al掺杂浓度1E20-3E20atom/cm3,Mg掺杂浓度5E18-1E19atom/cm3;
7、再升高温度到930-950℃,反应腔压力维持在200-600mbar,持续生长100-300nm的掺镁的P型GaN层,Mg掺杂浓度1E19-1E20atom/cm3;
8、最后降温至700-800℃,保温20-30min,接着炉内冷却。
实施例一、
参见图2,本发明运用MOCVD来生长高亮度GaN基LED外延片。采用高纯H2或高纯N2或高纯H2和高纯N2的混合气体作为载气,高纯NH3作为N源,金属有机源三甲基镓(TMGa)作为镓源,三甲基铟(TMIn)作为铟源,N型掺杂剂为硅烷(SiH4),三甲基铝(TMAl)作为铝源,P型掺杂剂为二茂镁(CP2Mg),衬底为(0001)面蓝宝石,反应压力在100mbar到800mbar之间。
一种LED外延层生长方法,依次包括处理衬底、生长低温缓冲GaN层、生长非掺杂GaN层、生长掺Si的GaN层、生长有缘层MQW、生长P型AlGaN层、生长P型GaN层步骤,其操作方式为:
1、在1000-1200℃,反应腔压力维持在75-150mbar的氢气气氛下高温处理蓝宝石衬底5-10分钟;
2、降温至550-650℃下,反应腔压力维持在400-600mbar,在蓝宝石衬底上生长厚度为20-50nm的低温缓冲层GaN;
3、升高温度到1000-1200℃下,反应腔压力维持在150-300mbar,持续生长2-4μm的不掺杂GaN;
4、然后持续生长掺杂Si的N型GaN,Si掺杂浓度5E18-1E19atom/cm3,总厚度控制在2-4μm;
5、周期性生长有缘层MQW,反应腔压力维持在300-400mbar,通入1500-1700sccm的TMIn和20-30sccm的TMGa,低温700-750℃生长掺杂In的3-4nm InxGa(1-x)N(x=0.15-0.25)层,In掺杂浓度1E+20-3E+20atom/cm3,高温800-850℃生长10-15nmGaN层,InxGa(1-x)N/GaN周期数为10-15;
6、再升高温度到900-1000℃,反应腔压力维持在200-400mbar,持续生长20-50nm的P型AlGaN层,Al掺杂浓度1E20-3E20atom/cm3,Mg掺杂浓度5E18-1E19atom/cm3;
7、再升高温度到930-950℃,反应腔压力维持在200-600mbar,(1)通入50000-60000sccm的NH3、20-40sccmTMGa源以及载气生长1-5nm的GaN;(2)接着通入50000-60000sccm的NH3、20-40sccm的TMGa、1500-2500sccm的Cp2Mg源以及载气生长10-20nm的GaN:Mg层,Mg的掺杂浓度1E19-1E20atom/cm3;接着以(1)、(2)为基础交替时长,高温P层控制在100-300nm;
其中,(1)(2)步骤的先后顺序可以调换。也即是,GaN层可以在掺Mg的GaN层之上,GaN层也可以在掺Mg的GaN层之下。
8、最后降温至700-800℃,保温20-30min,接着炉内冷却。
然后,采用对比实施例一描述的方法制备样品1,采用实施例一描述的方法制备样品2;样品1和样品2不同点在于高温P层参数不同,生长其它外延层生长条件完全一样。生长条件请参考表1。
表1生长参数的对比
样品1和样品2在相同的前工艺条件下镀ITO层2300约埃,相同的条件下镀Cr/Pt/Au电极约1500埃,相同的条件下镀保护层SiO2约500埃,然后在相同的条件下将样品研磨切割成762μm*762μm(30mi*30mil)的芯片颗粒,然后样品1和样品2在相同位置各自挑选100颗晶粒,在相同的封装工艺下,封装成白光LED。然后采用积分球在驱动电流350mA条件下测试样品1和样品2的光电性能。
将积分球获得的数据进行分析对比,对比结果请参考附图三和附图四,从图三数据得出样品2较样品1光输出高出约5%-6%,图四数据得出样品2驱动电压下降约0.10-0.15v。
参见图2,本发明还提供了一种根据上述LED外延层生长方法制得的LED外延层,依次包括衬底1、低温缓冲GaN层2、非掺杂GaN层3、掺Si的GaN层4、有缘层MQW5、P型AlGaN层6和P型GaN层7,其中,所述P型GaN层7的厚度为100-300nm,所述P型GaN层7包括若干个双层单元,每个双层单元包括:
GaN层8:厚度为1-5nm;
掺Mg的GaN层9:厚度为10-20nm。
可以理解的是,双层单元中的层次顺序可以根据实际情况调整,所述掺Mg的GaN层9在所述GaN层8之上,或者,所述掺Mg的GaN层9在所述GaN层8之下。
在非掺杂GaN层3和有缘层MQW5之间的掺Si的GaN层4,厚度为2-4um。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (8)
1.一种LED外延层生长方法,依次包括处理衬底、生长低温缓冲GaN层、生长非掺杂GaN层、生长掺Si的GaN层、生长有缘层MQW、生长P型AlGaN层、生长P型GaN层步骤,其特征在于,
所述生长P型GaN层步骤为:
在温度为930-950℃,反应腔压力在200-600mbar的反应室内,重复间隔性地通入A、B两组原料,A、B两组原料的重复次数为10次,A组原料的通入时长为40s,B组原料的通入时长为160s,直至P型GaN层的厚度为100-300nm;
其中,A组原料为50000-60000sccm的NH3、20-40sccm的TMGa源,生成厚度为1-5nm的GaN层;B组原料为50000-60000sccm的NH3、20-40sccm的TMGa、1500-2500sccm的Cp2Mg源,生成厚度为10-20nm的掺Mg的GaN层,Mg的掺杂浓度为1E19-1E20atom/cm3。
2.根据权利要求1所述的一种LED外延层生长方法,其特征在于,先通入A组原料,再通入B组原料。
3.根据权利要求1所述的一种LED外延层生长方法,其特征在于,先通入B组原料,再通入A组原料。
4.根据权利要求1所述的一种LED外延层生长方法,其特征在于,所述生长掺Si的GaN层步骤为:
持续生长厚度为2-4um的N型掺Si的GaN层,Si的掺杂浓度为5E18-1E19atom/cm3。
5.根据权利要求1所述的一种LED外延层生长方法,其特征在于,所述生长有缘层MQW步骤为:
在温度700-750℃,压力300-400mbar的反应室内,通入1500-1700sccm的TMIn和20-30sccm的TMGa生长掺杂In的厚度为3-4nm的InxGa(1-x)N层,其中x=0.15-0.25;
温度为800-850℃,生长厚度为10-15nm的GaN层,InxGa(1-x)N/GaN层的周期数为10-15;In的掺杂浓度为1E20-3E20atom/cm3。
6.根据权利要求1-5任一项所述的LED外延层生长方法制得的LED外延层,其特征在于,包括厚度为100-300nm的P型GaN层,所述P型GaN层包括若干个双层单元,每个双层单元包括:
GaN层:厚度为1-5nm;
掺Mg的GaN层:厚度为10-20nm。
7.根据权利要求6所述的LED外延层,其特征在于,在所述双层单元中,所述GaN层在所述掺Mg的GaN层之上,或者,所述GaN层在所述掺Mg的GaN层之下。
8.根据权利要求6所述的LED外延层,其特征在于,在非掺杂GaN层和有缘层MQW之间,包括掺Si的GaN层,厚度为2-4um。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410165337.8A CN103956413B (zh) | 2014-04-23 | 2014-04-23 | 一种led外延层生长方法及制得的led外延层 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410165337.8A CN103956413B (zh) | 2014-04-23 | 2014-04-23 | 一种led外延层生长方法及制得的led外延层 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103956413A CN103956413A (zh) | 2014-07-30 |
CN103956413B true CN103956413B (zh) | 2017-04-12 |
Family
ID=51333663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410165337.8A Active CN103956413B (zh) | 2014-04-23 | 2014-04-23 | 一种led外延层生长方法及制得的led外延层 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103956413B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106328783A (zh) * | 2015-06-29 | 2017-01-11 | 南通同方半导体有限公司 | 一种能提高抗静电能力和发光效率的蓝光led外延结构 |
CN106328494A (zh) * | 2016-09-20 | 2017-01-11 | 湘能华磊光电股份有限公司 | 提高光效的led外延生长方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101069289A (zh) * | 2004-12-23 | 2007-11-07 | Lg伊诺特有限公司 | 氮化物半导体发光器件及其制造方法 |
CN103107255A (zh) * | 2012-12-21 | 2013-05-15 | 湘能华磊光电股份有限公司 | 一种led外延片生长方法 |
-
2014
- 2014-04-23 CN CN201410165337.8A patent/CN103956413B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101069289A (zh) * | 2004-12-23 | 2007-11-07 | Lg伊诺特有限公司 | 氮化物半导体发光器件及其制造方法 |
CN103107255A (zh) * | 2012-12-21 | 2013-05-15 | 湘能华磊光电股份有限公司 | 一种led外延片生长方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103956413A (zh) | 2014-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101488550B (zh) | 高In组分多InGaN/GaN量子阱结构的LED的制造方法 | |
CN104009136B (zh) | 提高发光效率的led外延层生长方法及led外延层 | |
CN103560187B (zh) | 含有超晶格势垒层的led结构外延生长方法及其结构 | |
CN104157746A (zh) | 新型量子阱势垒层的led外延生长方法及外延层 | |
CN103996759A (zh) | Led外延层生长方法及led外延层 | |
CN104064643A (zh) | Led的p型外延层、其制作方法及包括其的led外延片 | |
CN106098870A (zh) | Led外延接触层生长方法 | |
CN114284406B (zh) | 一种氮化物发光二极管的制备方法 | |
CN105869999A (zh) | Led外延生长方法 | |
CN106531855A (zh) | 一种led外延结构及其生长方法 | |
CN105870270B (zh) | Led外延超晶格生长方法 | |
CN103943740B (zh) | 增加发光效率的led外延层生长方法及led外延层 | |
CN107394018A (zh) | 一种led外延生长方法 | |
CN103594570B (zh) | 含有超晶格势垒层的led结构外延生长方法及其结构 | |
CN106409999A (zh) | 一种led外延超晶格生长方法 | |
CN103746054B (zh) | 阻挡电子泄漏和缺陷延伸的外延生长方法及其结构 | |
CN105932126A (zh) | 基于有源层提高发光二极管亮度的外延生长方法 | |
CN105514237A (zh) | 一种GaN基LED外延结构及其生产方法 | |
CN105869994B (zh) | 一种超晶格层的生长方法及含此结构的led外延结构 | |
CN105355735A (zh) | 一种降低led接触电阻的外延生长方法 | |
CN108574026B (zh) | 一种led外延电子阻挡层生长方法 | |
CN106410000A (zh) | 一种led外延层生长方法 | |
CN106299062A (zh) | 电流扩展层的外延生长方法 | |
CN103956413B (zh) | 一种led外延层生长方法及制得的led外延层 | |
CN105845788B (zh) | 一种led电流扩展层外延生长方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |