CN103938096A - High-strength high-toughness hot work die steel and preparation method thereof - Google Patents
High-strength high-toughness hot work die steel and preparation method thereof Download PDFInfo
- Publication number
- CN103938096A CN103938096A CN201410175366.2A CN201410175366A CN103938096A CN 103938096 A CN103938096 A CN 103938096A CN 201410175366 A CN201410175366 A CN 201410175366A CN 103938096 A CN103938096 A CN 103938096A
- Authority
- CN
- China
- Prior art keywords
- steel
- hot work
- strength
- work die
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 110
- 239000010959 steel Substances 0.000 title claims abstract description 110
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims abstract description 9
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 239000011651 chromium Substances 0.000 claims description 11
- 239000010955 niobium Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 238000005242 forging Methods 0.000 claims description 10
- 239000011572 manganese Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 239000011593 sulfur Substances 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 238000010583 slow cooling Methods 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 abstract description 11
- 239000000956 alloy Substances 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000004512 die casting Methods 0.000 abstract description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 abstract description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- 239000010949 copper Substances 0.000 abstract description 3
- 238000005496 tempering Methods 0.000 description 20
- 238000010791 quenching Methods 0.000 description 12
- 230000000171 quenching effect Effects 0.000 description 12
- 150000001247 metal acetylides Chemical class 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 229910000734 martensite Inorganic materials 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 206010000372 Accident at work Diseases 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- -1 Chromium forms carbides Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
一种高强度高韧性热作模具钢及其制备方法,属于模具钢技术领域。该钢化学成分重量%为:C:0.30~0.40%,Si:0.20~0.40%,S≤0.006%,P≤0.01%,Mn:0.40~0.6%,Mo:1.70~2.20%,Cr:5.00~5.40%,V:0.50~0.60%,Co:0.50~0.60%,其余为Fe及不可避免的不纯物。本发明钢与现有热作模具钢种H13相比具有高强度、高韧性,综合性能良好的优点。本发明钢在1030℃淬火,540℃以上温度回火,具有较高的回火硬度及强度,在保持较高硬度和强度的基础上具有与H13相比更高的冲击韧性,以至于本发明钢可以使用在需要更高的硬度的工作场合而不损失材料的韧性,特别适用于需要高强度、高韧性、高疲劳抗性的铜、铝及其合金的压铸模具的制造,提高压铸模具的使用寿命。A high-strength, high-toughness hot work die steel and a preparation method thereof belong to the technical field of die steel. The chemical composition weight percent of the steel is: C:0.30~0.40%, Si:0.20~0.40%, S≤0.006%, P≤0.01%, Mn:0.40~0.6%, Mo:1.70~2.20%, Cr:5.00~ 5.40%, V: 0.50-0.60%, Co: 0.50-0.60%, and the rest are Fe and unavoidable impurities. Compared with the existing hot work die steel H13, the steel of the invention has the advantages of high strength, high toughness and good comprehensive performance. The steel of the present invention is quenched at 1030°C, tempered at a temperature above 540°C, has higher tempered hardness and strength, and has higher impact toughness than H13 on the basis of maintaining high hardness and strength, so that the present invention Steel can be used in workplaces that require higher hardness without losing the toughness of the material. It is especially suitable for the manufacture of die-casting molds of copper, aluminum and their alloys that require high strength, high toughness, and high fatigue resistance. service life.
Description
技术领域 technical field
本发明属于模具钢领域,特别涉及一种高强度高韧性热作模具钢及其制备方法。适用于制造热挤压、芯棒、锻模、精锻机用模具镶块、压铸等热作模具,特别适用于需要高强度、高韧性、高疲劳抗性的铜、铝及其合金的压铸模。 The invention belongs to the field of die steel, in particular to a high-strength, high-toughness hot-work die steel and a preparation method thereof. Suitable for hot extrusion, mandrel, forging die, die insert for precision forging machine, die-casting and other hot-working dies, especially for die-casting of copper, aluminum and their alloys that require high strength, high toughness and high fatigue resistance mold. the
背景技术 Background technique
模具是制造业的重要工艺装备,用模具生产的制件所达到的高精度、高复杂程度、高一致性、高效率和低消耗是其他加工制造方法所不能比拟的,随着工业技术的迅速发展,为了降低生产成本,提高生产效率和产品质量,提高材料的利用率,国内外制造业广泛采用无切削、少切削的加工工艺。在模具的服役过程中,模具会由于以下三种原因失效,第一,由于冲击载荷和反复的加热与冷却而导致的冲击断裂和热疲劳裂纹;第二,由于高温金属流动而导致模控热蚀磨损;第三,在机械应力和热应力交互作用下而引起的模腔尺寸磨损。在使用中,每个热作模具都会出现热疲劳裂纹,它是由每次冲击时温度周期性变化引起反复的变形所造成的模具中空表面的疲劳,它对模具寿命的限制被认为是正常的,但经一定次数的冲击后,裂纹变粗,使得铸件表面光洁度不能满足要求,这个时候模具就报废了。高的热硬性、强度、抗回火软化性、热导率及较低的热膨胀系数对提高热作模具钢的抗热裂性能有较大作用。因此,使用高硬度、强度的模具材料可以延缓热疲劳裂纹的出现时间,但硬度、强度过高,模具容易出现大裂纹及整体断裂,这个时候模具完全报废,甚至会发生工业事故。较高的韧性可以阻止热疲劳裂纹向模具内部延伸,因此为了减少热裂倾向和增强产生粗裂纹的抗力,高而各向同性的塑性和韧性是非常重要的。传统的H13钢是一种使用范围较广的热作模具钢,该钢强、韧性高,但使用温度范围有限制,并不一定适合所有的热作模具应用场合,如果在保持相当的热强性的同时能提高韧性,就可以扩展该模具材料的使用范围,同时提高模具的使用寿命。 The mold is an important process equipment in the manufacturing industry. The high precision, high complexity, high consistency, high efficiency and low consumption of the parts produced by the mold are unmatched by other processing and manufacturing methods. With the rapid development of industrial technology In order to reduce production costs, improve production efficiency and product quality, and improve material utilization, domestic and foreign manufacturing industries widely adopt non-cutting and less-cutting processing techniques. During the service of the mold, the mold will fail due to the following three reasons, first, impact fracture and thermal fatigue cracks caused by impact load and repeated heating and cooling; second, mold control heat due to high temperature metal flow Erosion wear; third, the cavity size wear caused by the interaction of mechanical stress and thermal stress. In use, every hot work die will have thermal fatigue cracks, which is the fatigue of the hollow surface of the die caused by repeated deformation caused by the periodic change of temperature at each impact, and its limitation on the life of the die is considered normal , but after a certain number of impacts, the cracks become thicker, so that the surface finish of the casting cannot meet the requirements, and the mold is scrapped at this time. High hot hardness, strength, temper softening resistance, thermal conductivity and low thermal expansion coefficient have a great effect on improving the thermal cracking resistance of hot work die steel. Therefore, the use of high hardness and strength mold materials can delay the appearance of thermal fatigue cracks, but if the hardness and strength are too high, the mold is prone to large cracks and overall fracture. At this time, the mold is completely scrapped, and even industrial accidents may occur. High toughness can prevent thermal fatigue cracks from extending into the mold, so in order to reduce the tendency of hot cracking and enhance the resistance of coarse cracks, high and isotropic plasticity and toughness are very important. The traditional H13 steel is a hot work die steel with a wide range of applications. This steel is strong and tough, but its service temperature range is limited. It is not necessarily suitable for all hot work die applications. The toughness can be improved at the same time, so the use range of the mold material can be expanded, and the service life of the mold can be improved at the same time. the
发明内容 Contents of the invention
本发明的目的是提供一种高强度高韧性热作模具钢及其制备方法,能替代传统H13钢,热强性和韧性、回火稳定性均超过H13钢的热作模具钢。 The object of the present invention is to provide a high-strength and high-toughness hot work die steel and its preparation method, which can replace the traditional H13 steel, and the heat strength, toughness and tempering stability of the hot work die steel exceed the H13 steel. the
根据上述目的,本发明钢参照美国的S7等钢种,在H13(4Cr5MoSiV1)的基础上适当降低合金元素Si、V的含量,加入少量的Mo及Co,使该钢种综合性能超越H13钢。本发明采用的技术方案是:(1)降低Si和V含量,减小材料中一次碳化物数量,使材料具有更高的韧性;(2)适当增加碳化物形成元素Mo、W、Nb含量,以弥补V含量降低带来的高温强度缺失,同时也改善淬火过程中的晶粒级别,提高二次硬化效果,回火过程析出纳米级Mo2C,提高材料高温强度;(3)适量增加Co的含量,增加Co元素的固溶量,以弥补低Si含量的强化作用缺失,同时进一步提高材料的高温强度。虽然本发明钢中所添加的合金元素为热作模具钢中经常加入的合金元素,但各元素变动范围是经过大量的实验数据得出的,本发明钢的最终成分为相同合金含量的热作模具钢中综合性能最优的成分配比。 According to the above purpose, the steel of the present invention refers to steel grades such as S7 in the United States, appropriately reduces the content of alloy elements Si and V on the basis of H13 (4Cr5MoSiV1), and adds a small amount of Mo and Co, so that the comprehensive performance of the steel grade exceeds H13 steel. The technical scheme adopted in the present invention is: (1) reduce the content of Si and V, reduce the amount of primary carbide in the material, so that the material has higher toughness; (2) appropriately increase the content of carbide forming elements Mo, W, Nb, To make up for the lack of high-temperature strength caused by the reduction of V content, it also improves the grain level in the quenching process, improves the secondary hardening effect, precipitates nano-scale Mo 2 C during tempering, and improves the high-temperature strength of the material; (3) Appropriately increase Co content, increase the solid solution content of Co element to make up for the lack of strengthening effect of low Si content, and further improve the high temperature strength of the material. Although the alloy elements added in the steel of the present invention are alloy elements often added in hot work die steel, the range of variation of each element is obtained through a large amount of experimental data, and the final composition of the steel of the present invention is hot work die steel with the same alloy content. The composition ratio with the best comprehensive performance in die steel.
根据上述目的和整体技术方案,本发明具体的技术方案为: According to above-mentioned purpose and overall technical scheme, the concrete technical scheme of the present invention is:
本发明钢的具体化学成分(重量%)为:碳C:0.30~0.40%,硅Si:0.20~0.40%,硫S≤0.006%,磷P≤0.01%,锰Mn:0.40~0.6%,钼Mo:1.50~2.20%,铬Cr:5.00~5.40%,钒V:0.50~0.60%,钴Co:0.50~0.60%,其余为Fe及不可避免的不纯物。 The specific chemical composition (weight %) of the steel of the present invention is: carbon C: 0.30-0.40%, silicon Si: 0.20-0.40%, sulfur S≤0.006%, phosphorus P≤0.01%, manganese Mn: 0.40-0.6%, molybdenum Mo: 1.50-2.20%, chromium Cr: 5.00-5.40%, vanadium V: 0.50-0.60%, cobalt Co: 0.50-0.60%, and the rest is Fe and unavoidable impurities. the
作为优选,按重量百分比计该模具钢包括:碳C:0.34~0.39%,硅Si:0.20~0.40%,硫S≤0.006%,磷P≤0.01%,锰Mn:0.40~0.6%,钼Mo:1.70~2.20%,铬Cr:5.00~5.40%,钒V:0.50~0.60%,钴Co:0.50~0.60%,其余为Fe及不可避免的不纯物。 Preferably, the mold steel includes: carbon C: 0.34-0.39%, silicon Si: 0.20-0.40%, sulfur S≤0.006%, phosphorus P≤0.01%, manganese Mn: 0.40-0.6%, molybdenum Mo : 1.70-2.20%, chromium Cr: 5.00-5.40%, vanadium V: 0.50-0.60%, cobalt Co: 0.50-0.60%, and the rest are Fe and unavoidable impurities. the
作为优选,该模具钢还包括:0.2%以下的铌。 Preferably, the die steel further includes: less than 0.2% niobium. the
作为优选,该模钢还包括0~1%的钨W,并且化学成分含量还应满足:1.5%≤W+Mo≤2.5%。 Preferably, the mold steel also includes 0-1% tungsten W, and the chemical composition content should also satisfy: 1.5%≤W+Mo≤2.5%. the
上述各元素的作用及配比依据如下,以下说明中“%”表示“质量百分比”: The functions and ratios of the above-mentioned elements are as follows, and "%" in the following descriptions means "mass percentage":
C:钢中含碳量决定淬火钢的基体硬度,对热作模具钢而言,钢中的碳一部分进入钢的基体中引起固溶强化。另外一部分碳将和合金元素中的碳化物形成元素结合成合金碳化物。对热作模具钢,这种合金碳化物除少量残留的以外,还要求它在回火过程中在淬火马氏体基体上弥散析出产生二次硬化现象,从而由均匀分布的残留合金碳化物和回火马氏体组织来决定热作模具钢的性能。国内外关于低碳马氏体的大量研究表明:若要获得较好的综合机械性能,钢中碳量要控制在0.34-0.39%。 C: The carbon content in the steel determines the hardness of the matrix of the quenched steel. For hot work die steel, part of the carbon in the steel enters the matrix of the steel to cause solid solution strengthening. Another part of the carbon will combine with the carbide forming elements in the alloying elements to form alloy carbides. For hot work die steel, except for a small amount of residual alloy carbide, it is also required to disperse and precipitate on the quenched martensite matrix during tempering to produce secondary hardening, so that the uniformly distributed residual alloy carbide and Tempered martensite structure to determine the performance of hot work die steel. A large number of studies on low-carbon martensite at home and abroad show that: in order to obtain better comprehensive mechanical properties, the carbon content in steel should be controlled at 0.34-0.39%. the
Si:硅作为钢中的合金元素,以固溶体形态存在于铁素体或奥氏体中,不形成碳化物,提高退火、正火和淬火温度,提高淬透性。由于硅对偏析有促进作用,易使 钢中形成带状组织,使横向性能低于纵向,因此,在H13钢的基础上适当降低硅含量,本发明钢中硅的含量控制在0.20~0.40%。 Si: As an alloying element in steel, silicon exists in ferrite or austenite in the form of solid solution, does not form carbides, increases annealing, normalizing and quenching temperatures, and improves hardenability. Because silicon has a promoting effect on segregation, it is easy to form a band structure in the steel, so that the transverse performance is lower than the longitudinal performance. Therefore, on the basis of H13 steel, the silicon content is appropriately reduced, and the silicon content in the steel of the present invention is controlled at 0.20-0.40%. . the
S:硫在钢中易与锰结合,形成非金属夹杂物MnS,通常在热加工过程中沿加工方向被拉长成为条状,对钢材的横向韧性产生较大的影响,降低钢的等向性能,硫元素在热作模具钢中经常被认为是有害元素,因此,在冶金条件允许的情况下应尽量降低,本发明钢中硫含量应控制在0.006%以下。 S: Sulfur is easy to combine with manganese in steel to form non-metallic inclusions MnS, which are usually elongated into strips along the processing direction during hot working, which has a great impact on the transverse toughness of steel and reduces the isotropy of steel Performance. Sulfur is often considered as a harmful element in hot work die steel. Therefore, it should be reduced as much as possible when metallurgical conditions permit. The sulfur content in the steel of the present invention should be controlled below 0.006%. the
P:磷在钢液凝固时形成微观偏析,随后在奥氏体化温度加热时偏聚在晶界,使钢的脆性显著增大。控制磷的含量在0.01%以下,并且含量越低越好。 P: Phosphorus forms microscopic segregation when the molten steel solidifies, and then segregates at the grain boundary when heated at the austenitizing temperature, which significantly increases the brittleness of the steel. Control the phosphorus content below 0.01%, and the lower the content, the better. the
Mn:除了能提高淬透性之外,还可以消除硫的有害影响,本发明中控制Mn含量在0.4-0.6%。 Mn: In addition to improving hardenability, it can also eliminate the harmful effects of sulfur. In the present invention, the content of Mn is controlled at 0.4-0.6%. the
Mo、W:钼和钨均是强碳化物形成元素,在钢中可提高钢的淬透性,同时在钢中形成特殊的碳化物,提高钢的二次硬化能力和回火稳定性,本发明钢中,为了控制VC一次碳化物的数量,钒含量降低,为了不影响钢的二次硬化能力,适当提高钼元素的含量(1.70~2.20%),加入部分钨能起到提高热强性的作用。实验证明,增加的钼更多的与碳结合,在回火时析出更多细小短杆状Mo2C碳化物,对提高本发明钢的回火稳定性起了很大的作用。 Mo, W: Both molybdenum and tungsten are strong carbide forming elements, which can improve the hardenability of steel in steel, and at the same time form special carbides in steel to improve the secondary hardening ability and tempering stability of steel. In the invention steel, in order to control the amount of VC primary carbides, the content of vanadium is reduced, in order not to affect the secondary hardening ability of the steel, the content of molybdenum element (1.70-2.20%) is appropriately increased, and adding part of tungsten can improve the thermal strength role. Experiments have proved that the added molybdenum is more combined with carbon, and more fine and short rod-shaped Mo 2 C carbides are precipitated during tempering, which plays a great role in improving the tempering stability of the steel of the present invention.
Nb:铌是强碳化物形成元素,和碳固溶度积很小,很容易形成非常稳定的MC型碳化物。铌和钒具有很多相似的特性,因此,Nb和V的复合作用增加了V的效果。另外,Nb还有细化晶粒,细化铸态组织的作用。但在热作模具钢中Nb易于凝固过程中形成大块液析碳化物,对韧性不利,因此,本发明钢中Nb控制在0.2%以下。 Nb: Niobium is a strong carbide-forming element, and its solid solubility product with carbon is very small, so it is easy to form very stable MC-type carbides. Niobium and vanadium have many similar properties, therefore, the recombination of Nb and V increases the effect of V. In addition, Nb also has the effect of refining grains and refining the as-cast structure. However, in the hot work die steel, Nb is easy to form large liquefied carbides during the solidification process, which is unfavorable to the toughness. Therefore, the Nb in the steel of the present invention is controlled below 0.2%. the
Cr:铬形成碳化物,热作模具钢中可提高钢的淬透性和抗高温磨损性能。淬火加热时铬溶于奥氏体,淬火后固溶于马氏体中,可以提高钢的抗回火软化能力,回火时由基体中析出,一般形成Cr23C6合金碳化物,随着回火温度的升高及时间的延长有粗化的趋势,本发明钢使用同H13钢相当的铬含量5.00-5.40%。 Cr: Chromium forms carbides, which can improve the hardenability and high temperature wear resistance of steel in hot work die steel. Chromium dissolves in austenite when quenching and heating, and solid dissolves in martensite after quenching, which can improve the temper softening resistance of the steel. It is precipitated from the matrix during tempering and generally forms Cr 23 C 6 alloy carbides. The increase of the tempering temperature and the prolongation of the tempering time have a tendency to coarsen. The steel of the present invention uses a chromium content of 5.00-5.40% which is equivalent to that of the H13 steel.
V:钒可以降低钢的过热敏感倾向。少量的钒能使钢晶粒细化,经适当的热处理使碳化物弥散析出时,钒可提高钢的高温持久强度和蠕变抗力,在低合金钢中加入0.1-0.3%的钒就有明显的效果。马氏体钢中,钒含量达到0.5%就可以产生足够的二次硬化效应。钒含量过高,将增加钢中一次碳化物VC的形成机率,一次碳化物的大量存在将显著影响钢的韧性,降低热作模具钢抵抗大裂纹的能力。H13钢中的钒含量在0.80-1.2%,在本发明钢中钒含量控制在0.50~0.60% V: Vanadium can reduce the overheating sensitivity tendency of steel. A small amount of vanadium can refine the steel grains, and when the carbides are dispersed and precipitated after proper heat treatment, vanadium can improve the high-temperature durable strength and creep resistance of the steel. Adding 0.1-0.3% vanadium to low-alloy steel will significantly Effect. In martensitic steel, a vanadium content of 0.5% can produce sufficient secondary hardening effect. Excessive vanadium content will increase the formation probability of primary carbide VC in steel, and the existence of a large amount of primary carbide will significantly affect the toughness of steel and reduce the ability of hot work die steel to resist large cracks. The vanadium content in the H13 steel is 0.80-1.2%, and the vanadium content in the steel of the present invention is controlled at 0.50-0.60%
Co:钴主要固溶在基体中,在钢中几乎不形成碳化物,只有极少量的钴原子能进入到析出相中,因此,高温下钴主要起固溶强化作用。钴在回火或使用过程中阻止、延缓其它元素特殊碳化物的聚集,本发明钢中,Co的加入对延缓Cr碳化物聚集粗化有一定作用,因此,可以提高热作模具钢的回火稳定性。钴是本发明钢特别重要的元素,含量控制在0.50~0.60%。 Co: Cobalt is mainly dissolved in the matrix, almost no carbide is formed in the steel, and only a very small amount of cobalt atoms can enter the precipitated phase. Therefore, cobalt mainly plays a solid solution strengthening role at high temperatures. Cobalt prevents and delays the aggregation of special carbides of other elements during tempering or use. In the steel of the present invention, the addition of Co has a certain effect on delaying the aggregation and coarsening of Cr carbides. Therefore, the tempering of hot work die steel can be improved. stability. Cobalt is a particularly important element in the steel of the present invention, and its content is controlled at 0.50-0.60%. the
本发明的制备方法是锻造及退火工艺中控制的技术参数如下: Preparation method of the present invention is that the technical parameters controlled in the forging and annealing process are as follows:
锻造:1140~1180℃加热保温1小时(请给出保温时间的参数范围),1100~1150℃开锻,终锻温度不得低于900℃,以≤30℃/h缓冷至室温; Forging: heating and holding at 1140-1180°C for 1 hour (please give the parameter range of holding time), start forging at 1100-1150°C, the final forging temperature shall not be lower than 900°C, and slowly cool to room temperature at ≤30°C/h;
退火工艺:400℃热装入炉,880℃保温5小时,以小于30℃的冷速炉冷至500℃,出炉空冷。 Annealing process: 400 ℃ heat into the furnace, 880 ℃ heat preservation for 5 hours, the furnace is cooled to 500 ℃ with a cooling rate of less than 30 ℃, and the furnace is air-cooled. the
本发明钢与现有热作模具钢种H13相比具有高强度、高韧性,综合性能良好的优点。本发明钢在1030℃淬火,540℃以上温度回火,具有较高的回火硬度及强度,在保持较高硬度和强度的基础上具有与H13相比更高的冲击韧性,以至于本发明钢可以使用在需要更高的硬度的工作场合而不损失材料的韧性,特别适用于需要高强度、高韧性、高疲劳抗性的铜、铝及其合金的压铸模具的制造,提高压铸模具的使用寿命。 Compared with the existing hot work die steel H13, the steel of the invention has the advantages of high strength, high toughness and good comprehensive performance. The steel of the present invention is quenched at 1030°C, tempered at a temperature above 540°C, has higher tempered hardness and strength, and has higher impact toughness than H13 on the basis of maintaining high hardness and strength, so that the present invention Steel can be used in workplaces that require higher hardness without losing the toughness of the material. It is especially suitable for the manufacture of die-casting molds of copper, aluminum and their alloys that require high strength, high toughness, and high fatigue resistance. service life. the
具体实施方式 Detailed ways
根据上述所设计的化学成分范围,在25Kg真空感应炉上冶炼了4炉本发明钢和1炉对比钢(H13),其具体化学成分如表1所示。钢水浇铸成锭,并经1140~1180℃加热保温,1100~1150℃开锻,终锻温度≥900℃,缓冷至室温,制成□15mm棒材。本发明钢与对比钢同时于400℃热装入炉,880℃保温5小时,以小于30℃的冷速炉冷至500℃。退火后,加工成试样,经淬、回火处理(1030℃淬火,510~650℃回火),其室温力学性能见表2~5。 According to the chemical composition range designed above, 4 furnaces of the steel of the present invention and 1 furnace of comparative steel (H13) were smelted on a 25Kg vacuum induction furnace, and their specific chemical compositions are shown in Table 1. Molten steel is cast into ingots, heated and kept at 1140-1180°C, forged at 1100-1150°C, final forged at ≥900°C, and slowly cooled to room temperature. □15mm bar. The steel of the present invention and the comparison steel are hot-loaded into a furnace at 400°C at the same time, kept at 880°C for 5 hours, and cooled to 500°C at a cooling rate of less than 30°C. After annealing, it is processed into a sample, which is quenched and tempered (quenched at 1030°C and tempered at 510-650°C). The mechanical properties at room temperature are shown in Tables 2-5.
本发明钢 Steel of the present invention
1、经1030℃淬火,570℃、600℃高温回火后,本发明钢硬度高于对比钢,其余温度回火硬度与对比钢相当(见表2). 1. After quenching at 1030°C and high-temperature tempering at 570°C and 600°C, the hardness of the steel of the present invention is higher than that of the comparison steel, and the hardness of the tempering at other temperatures is equivalent to that of the comparison steel (see Table 2).
2、经1030℃淬火,各温度高温回火后,本发明钢抗拉强度与对比钢相当(见表3) 2. After quenching at 1030°C and high-temperature tempering at various temperatures, the tensile strength of the steel of the present invention is equivalent to that of the comparison steel (see Table 3)
3、经淬、回火后,本发明钢冲击韧性高于对比钢(见表4) 3. After quenching and tempering, the impact toughness of the steel of the present invention is higher than that of the comparison steel (see Table 4)
4、经淬火、回火处理(淬、回火工艺1030℃×30min油冷淬火+600℃×2h空冷 回火两次)后,本发明钢具有更强的红硬性、抗回火软化能力(见表5)。 4. After quenching and tempering treatment (quenching and tempering process 1030°C×30min oil cooling quenching+600°C×2h air cooling and tempering twice), the steel of the present invention has stronger red hardness and temper softening resistance ( See Table 5). the
表1本发明钢实施例与对比钢的化学成分,重量% The chemical composition of table 1 steel embodiment of the present invention and contrast steel, weight %
表2本发明钢实施例与对比钢1030℃淬火不同温度回火的硬度值 Table 2 Hardness values of steel examples of the present invention and comparative steels quenched at 1030°C and tempered at different temperatures
表3本发明钢实施例与对比钢的抗拉强度表 Table 3 steel embodiment of the present invention and the tensile strength table of comparison steel
表4本发明钢实施例与对比钢的U型缺口冲击韧性表 U-shaped notch impact toughness table of table 4 steel embodiment of the present invention and contrast steel
表5本发明钢实施例与对比钢的抗回火软化硬度数据表(HRC) Table 5 steel embodiment of the present invention and the anti-temper softening hardness data table (HRC) of contrast steel
(注:淬、回火工艺1030℃×3Omin油冷淬火+600℃×2h空冷回火两次) 。 (Note: Quenching and tempering process 1030℃×3Omin oil cooling quenching + 600℃×2h air cooling tempering twice).
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410175366.2A CN103938096A (en) | 2014-04-28 | 2014-04-28 | High-strength high-toughness hot work die steel and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410175366.2A CN103938096A (en) | 2014-04-28 | 2014-04-28 | High-strength high-toughness hot work die steel and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103938096A true CN103938096A (en) | 2014-07-23 |
Family
ID=51185960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410175366.2A Pending CN103938096A (en) | 2014-04-28 | 2014-04-28 | High-strength high-toughness hot work die steel and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103938096A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104178694A (en) * | 2014-08-13 | 2014-12-03 | 上海恺虹实业有限公司 | Long-service life hot work die steel |
CN106811683A (en) * | 2017-03-27 | 2017-06-09 | 钢铁研究总院 | A kind of Al Nb V composite alloyings critical point mould steel high |
CN107653416A (en) * | 2017-08-10 | 2018-02-02 | 唐山志威科技有限公司 | One kind has high tenacity, high iso advanced hot die steel |
CN107916321A (en) * | 2016-10-10 | 2018-04-17 | 中国科学院金属研究所 | A kind of heat treatment process of hot die steel |
CN108380841A (en) * | 2017-09-30 | 2018-08-10 | 湖北川冶科技有限公司 | A kind of die casting proprietary material |
CN108950394A (en) * | 2018-07-24 | 2018-12-07 | 东莞市创金属制品有限公司 | A kind of mold special steel |
CN109112426A (en) * | 2017-06-26 | 2019-01-01 | 宝钢特钢有限公司 | A kind of high heat-intensity hot-work die steel and preparation method thereof |
CN109852880A (en) * | 2019-01-10 | 2019-06-07 | 上海大学 | A kind of high heat-intensity hot-work die steel and its manufacturing method |
CN110819901A (en) * | 2019-12-05 | 2020-02-21 | 马鞍山钢铁股份有限公司 | High-strength brake disc bolt steel and heat treatment process thereof |
CN114134412A (en) * | 2021-11-08 | 2022-03-04 | 内蒙古北方重工业集团有限公司 | Hot work die steel and method for refining uniform grain structure thereof |
CN114934230A (en) * | 2022-05-27 | 2022-08-23 | 天津钢研海德科技有限公司 | Hot work die steel with high tempering softening resistance and high toughness and manufacturing method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101220442A (en) * | 2007-12-06 | 2008-07-16 | 上海大学 | High thermal stability and high strength hot work die steel |
CN101250668A (en) * | 2008-04-03 | 2008-08-27 | 上海交通大学 | Hot work die steel |
CN101294259A (en) * | 2007-04-23 | 2008-10-29 | 大同特殊钢株式会社 | Hot die steel for die-casting |
CN101440456A (en) * | 2007-11-21 | 2009-05-27 | 宝山钢铁股份有限公司 | Hot die steel with excellent heat resistance and high toughness |
CN101476082A (en) * | 2009-02-10 | 2009-07-08 | 机械科学研究总院先进制造技术研究中心 | High performance low cost hot work die steel |
CN101921959A (en) * | 2009-06-16 | 2010-12-22 | 大同特殊钢株式会社 | Hot working tool steel and the steel work that uses it to make |
CN102312172A (en) * | 2011-09-29 | 2012-01-11 | 山东远大模具材料有限公司 | B3R hot work die steel with high strength and toughness and resistance to tempering, and preparation process thereof |
-
2014
- 2014-04-28 CN CN201410175366.2A patent/CN103938096A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101294259A (en) * | 2007-04-23 | 2008-10-29 | 大同特殊钢株式会社 | Hot die steel for die-casting |
CN101440456A (en) * | 2007-11-21 | 2009-05-27 | 宝山钢铁股份有限公司 | Hot die steel with excellent heat resistance and high toughness |
CN101220442A (en) * | 2007-12-06 | 2008-07-16 | 上海大学 | High thermal stability and high strength hot work die steel |
CN101250668A (en) * | 2008-04-03 | 2008-08-27 | 上海交通大学 | Hot work die steel |
CN101476082A (en) * | 2009-02-10 | 2009-07-08 | 机械科学研究总院先进制造技术研究中心 | High performance low cost hot work die steel |
CN101921959A (en) * | 2009-06-16 | 2010-12-22 | 大同特殊钢株式会社 | Hot working tool steel and the steel work that uses it to make |
CN102312172A (en) * | 2011-09-29 | 2012-01-11 | 山东远大模具材料有限公司 | B3R hot work die steel with high strength and toughness and resistance to tempering, and preparation process thereof |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104178694A (en) * | 2014-08-13 | 2014-12-03 | 上海恺虹实业有限公司 | Long-service life hot work die steel |
CN107916321A (en) * | 2016-10-10 | 2018-04-17 | 中国科学院金属研究所 | A kind of heat treatment process of hot die steel |
CN106811683A (en) * | 2017-03-27 | 2017-06-09 | 钢铁研究总院 | A kind of Al Nb V composite alloyings critical point mould steel high |
CN109112426A (en) * | 2017-06-26 | 2019-01-01 | 宝钢特钢有限公司 | A kind of high heat-intensity hot-work die steel and preparation method thereof |
CN107653416A (en) * | 2017-08-10 | 2018-02-02 | 唐山志威科技有限公司 | One kind has high tenacity, high iso advanced hot die steel |
CN107653416B (en) * | 2017-08-10 | 2019-03-19 | 唐山志威科技有限公司 | One kind having high tenacity, high iso advanced hot die steel ZW868 |
CN108380841A (en) * | 2017-09-30 | 2018-08-10 | 湖北川冶科技有限公司 | A kind of die casting proprietary material |
CN108950394A (en) * | 2018-07-24 | 2018-12-07 | 东莞市创金属制品有限公司 | A kind of mold special steel |
CN109852880A (en) * | 2019-01-10 | 2019-06-07 | 上海大学 | A kind of high heat-intensity hot-work die steel and its manufacturing method |
CN110819901A (en) * | 2019-12-05 | 2020-02-21 | 马鞍山钢铁股份有限公司 | High-strength brake disc bolt steel and heat treatment process thereof |
CN114134412A (en) * | 2021-11-08 | 2022-03-04 | 内蒙古北方重工业集团有限公司 | Hot work die steel and method for refining uniform grain structure thereof |
CN114934230A (en) * | 2022-05-27 | 2022-08-23 | 天津钢研海德科技有限公司 | Hot work die steel with high tempering softening resistance and high toughness and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107974636B (en) | High-hardness high-hardenability pre-hardened plastic die steel and preparation method thereof | |
CN103938096A (en) | High-strength high-toughness hot work die steel and preparation method thereof | |
CN102912236B (en) | High-performance and abrasion-resistant hot work die steel and technology for manufacturing same | |
CN103397275B (en) | A kind of martensite series wear resisting steel and preparation method thereof | |
CN108220815B (en) | Hot work die steel with high heat resistance and high impact toughness for hot forging and preparation method thereof | |
WO2019128286A1 (en) | Method for fabricating low-cost, short-production-cycle wear-resistant steel | |
CN104480406A (en) | Low-alloy high-strength high-toughness steel plate and manufacturing method thereof | |
CN103334052A (en) | High-thermal conductivity high-abrasion resistance hot stamping die steel and preparation method thereof | |
CN111500928B (en) | A low temperature, high toughness, high temperature, high strength and high hardenability hot die steel and preparation technology | |
CN101392353A (en) | High manganese low chromium type high strength toughness hot work die steel and preparation method thereof | |
CN102212756A (en) | Chromium-molybdenum-vanadium hotwork tool-die steel and heat treatment process thereof | |
CN107779746B (en) | Ultra-fine grain alloy steel with ultrahigh strength, high toughness, corrosion resistance, oxidation resistance and preparation method thereof | |
CN110863156A (en) | A kind of hot work die steel and efficient preparation method thereof | |
CN101476082B (en) | High performance low cost hot work die steel | |
CN102653837A (en) | High-toughness wear-resistant cold-working die steel and preparation method thereof | |
CN104561802A (en) | High-hardness high-toughness cold work die steel as well as preparation method thereof | |
CN103938091B (en) | A kind of high-ductility high wear-resistant cold work die steel | |
CN102517509A (en) | HB 500-grade wear-resistant steel plate and preparation method thereof | |
CN105239015A (en) | High-carbon medium-magnesium abrasion resisting steel and hot rolled plate manufacturing method | |
CN102691005A (en) | Low alloy die steel | |
CN109182669B (en) | High-hardness high-toughness easy-welding pre-hardened plastic die steel and preparation method thereof | |
CN103290328A (en) | High-niobium, high-wear-resistance and high-toughness cold-work die steel | |
CN101942606B (en) | Nitrogen alloyed austenitic hot work die steel and preparation method thereof | |
CN104087824B (en) | A kind of preparation method with the hyperfine structure bainitic steel of TRIP effect | |
JP5727400B2 (en) | Steel for plastic mold and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140723 |
|
RJ01 | Rejection of invention patent application after publication |