CN103334052A - High-thermal conductivity high-abrasion resistance hot stamping die steel and preparation method thereof - Google Patents
High-thermal conductivity high-abrasion resistance hot stamping die steel and preparation method thereof Download PDFInfo
- Publication number
- CN103334052A CN103334052A CN2013102413729A CN201310241372A CN103334052A CN 103334052 A CN103334052 A CN 103334052A CN 2013102413729 A CN2013102413729 A CN 2013102413729A CN 201310241372 A CN201310241372 A CN 201310241372A CN 103334052 A CN103334052 A CN 103334052A
- Authority
- CN
- China
- Prior art keywords
- steel
- thermal conductivity
- hot stamping
- tempering
- forging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 156
- 239000010959 steel Substances 0.000 title claims abstract description 156
- 238000002360 preparation method Methods 0.000 title claims description 7
- 238000005299 abrasion Methods 0.000 title description 2
- 238000005496 tempering Methods 0.000 claims abstract description 49
- 239000000203 mixture Substances 0.000 claims abstract description 41
- 238000005242 forging Methods 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 238000000137 annealing Methods 0.000 claims abstract description 19
- 239000012535 impurity Substances 0.000 claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 9
- 239000000956 alloy Substances 0.000 claims abstract description 9
- 238000000265 homogenisation Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 36
- 230000008569 process Effects 0.000 claims description 27
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 14
- 238000010791 quenching Methods 0.000 claims description 13
- 230000000171 quenching effect Effects 0.000 claims description 13
- 238000005204 segregation Methods 0.000 claims description 7
- 238000007711 solidification Methods 0.000 claims description 7
- 230000008023 solidification Effects 0.000 claims description 7
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 5
- 238000010274 multidirectional forging Methods 0.000 claims description 5
- 238000003723 Smelting Methods 0.000 claims description 3
- 150000001247 metal acetylides Chemical class 0.000 abstract description 36
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 32
- 229910052721 tungsten Inorganic materials 0.000 abstract description 26
- 229910052799 carbon Inorganic materials 0.000 abstract description 23
- 239000011651 chromium Substances 0.000 description 33
- 239000011572 manganese Substances 0.000 description 27
- 229910052710 silicon Inorganic materials 0.000 description 20
- 229910052720 vanadium Inorganic materials 0.000 description 17
- 230000000694 effects Effects 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 229910052804 chromium Inorganic materials 0.000 description 15
- 229910052748 manganese Inorganic materials 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 238000005275 alloying Methods 0.000 description 13
- 239000011733 molybdenum Substances 0.000 description 13
- 239000010937 tungsten Substances 0.000 description 13
- 239000011159 matrix material Substances 0.000 description 12
- 239000010703 silicon Substances 0.000 description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 12
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 11
- 238000005728 strengthening Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 10
- 238000013461 design Methods 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 229910000734 martensite Inorganic materials 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- -1 molybdenum carbides Chemical class 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000003574 free electron Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000009931 harmful effect Effects 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 4
- 229910003178 Mo2C Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 3
- 229910052729 chemical element Inorganic materials 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910000717 Hot-working tool steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
本发明涉及一种新型高热导率高耐磨性热冲压模具材料。目前市场上的热冲压模具用钢主要为各种改良H13和H11等高合金热作模具钢。本发明钢的成分以质量百分含量计为:C:0.45-0.5%;Si:<0.2%;Mn:<0.20%;W:1.0-2.0%;Mo:2.0-3.5%;Cr:<0.30%;其余为Fe和不可避免的杂质元素,杂质元素中S:≤0.03%;P:≤0.03。其特点是,以简单的C、Mo和W元素为主,并协调碳化物的配比;保持低Mn、低Cr和超低Si含量;该材料经电炉熔炼→电渣重熔→退火→高温均匀化→锻造→退火后,具有良好的机加工性能;经过热处理(1060℃~1100℃淬火→多次高温回火)后,在性能上具有一般热冲压模具钢如H13钢的韧性,且硬度、回火稳定性和热疲劳性能更优;特别是较低的热膨胀系数、高的导热能力及高的耐磨性使之更适用于热冲压。
The invention relates to a novel high thermal conductivity and high wear resistance hot stamping die material. At present, the steels for hot stamping dies on the market are mainly high-alloy hot work die steels such as various improved H13 and H11. The composition of the steel of the present invention is calculated by mass percentage: C: 0.45-0.5%; Si: <0.2%; Mn: <0.20%; W: 1.0-2.0%; Mo: 2.0-3.5%; Cr: <0.30 %; the rest is Fe and unavoidable impurity elements, S: ≤0.03% in impurity elements; P: ≤0.03. Its characteristics are that simple C, Mo and W elements are the main elements, and the proportion of carbides is coordinated; the content of Mn, low Cr and ultra-low Si is maintained; the material is smelted in an electric furnace → electroslag remelting → annealing → high temperature After homogenization→forging→annealing, it has good machinability; after heat treatment (1060℃~1100℃quenching→multiple high-temperature tempering), it has the toughness and hardness of general hot stamping die steel such as H13 steel in performance. , Tempering stability and thermal fatigue performance are better; especially the lower thermal expansion coefficient, high thermal conductivity and high wear resistance make it more suitable for hot stamping.
Description
技术领域 technical field
本发明涉及一种高导热率高耐磨热冲压模具用钢及其制备方法。 The present invention relates to a steel with high thermal conductivity and high wear resistance for hot stamping dies and a preparation method thereof.
背景技术 Background technique
随着汽车行业的高速发展,以及汽车轻量化需求的提出,超高强度冲压件需求日益提升。冷冲压成形工艺获得超高强度钢所需压力大,容易降低模具使用寿命,且还易产生破裂、起皱、尺寸精度不良等问题。而热冲压成形工艺利用金属在高温状态下,塑性和延展性增加,屈服强度下降,因此得到广泛应用。 With the rapid development of the automobile industry and the demand for lightweight automobiles, the demand for ultra-high-strength stamping parts is increasing. The cold stamping forming process requires a lot of pressure to obtain ultra-high-strength steel, which easily reduces the service life of the mold, and is also prone to problems such as cracking, wrinkling, and poor dimensional accuracy. The hot stamping forming process utilizes the plasticity and ductility of the metal at high temperature to increase and the yield strength to decrease, so it is widely used.
钢板热冲压过程是将特殊的高强度钢板加热到奥氏体温度范围,快速移动到模具,快速冲压,在压机保压状态下通过布置有冷却回路的模具对零件进行淬火冷却,最后获得超高强度冲压件。在工作时,由于模具与加热的坯料直接接触,当炽热的金属放入热冲压模具型腔时,型腔表面急剧升温,且冲压和保压时表层产生压应力和压应变,这使得模具需要较好的热强性和热稳定性;还要承受强烈的塑性摩擦与磨损,模具还需要较高的耐磨性;在保压过程中通过带有冷却水道的模具对零部件淬火,为了使模具能很快地把钢板的热量带走和保证模具在服役过程中的精度,模具材料必需具有较大的导热系数和较小的热膨胀系数;当金属件取出时,型腔表面由于急剧降温而受到拉应力和拉应变作用,在这种交替变换温度的工况下模具极易产生热疲劳;并且热冲压模具钢在服役过程中,还要受到较大冲击载荷,因此模具需具备优良的韧性。为防止模具表面在服役过程中产生的拉毛,模具还需具有较高的硬度。因此,复杂的工况要求热冲压模具材料具有较高的热导率、耐磨性、热强度、硬度、冲击韧性、淬透性和热稳定性和抗冷热疲劳性能等。 The steel plate hot stamping process is to heat a special high-strength steel plate to the austenitic temperature range, quickly move to the mold, and quickly stamp it. The parts are quenched and cooled through the mold equipped with a cooling circuit under the pressure of the press, and finally super High-strength stampings. When working, because the mold is in direct contact with the heated blank, when the hot metal is put into the cavity of the hot stamping mold, the surface of the cavity heats up sharply, and the surface layer generates compressive stress and strain during stamping and holding pressure, which makes the mold need Good thermal strength and thermal stability; but also to withstand strong plastic friction and wear, the mold also needs high wear resistance; in the process of holding pressure, the parts are quenched through the mold with cooling channels, in order to make The mold can quickly take away the heat of the steel plate and ensure the accuracy of the mold during service. The mold material must have a large thermal conductivity and a small thermal expansion coefficient; Affected by tensile stress and tensile strain, the die is prone to thermal fatigue under such alternating temperature conditions; and the hot stamping die steel is also subject to a large impact load during service, so the die must have excellent toughness . In order to prevent the roughening of the mold surface during service, the mold needs to have a higher hardness. Therefore, complex working conditions require hot stamping die materials to have high thermal conductivity, wear resistance, thermal strength, hardness, impact toughness, hardenability, thermal stability, and thermal fatigue resistance.
目前,我国使用的热冲压模具钢采用的是国家标准GB/T1299-2000中钢号为4Cr5MoSiV1(相当于北美标准H13钢)。这种热冲压模具钢的化学成分采用C 0.32-0.45wt%、Cr 4.75-5.50wt%、Mo 1.20-1.75 wt%、V 0.80-1.20 wt%、Si 0.80-1.2wt%、Mn 0.20-0.5wt%、P≤0.03wt%、S≤0.03wt%。目前,日本企业采用的是热作模具钢SKD61(相当于北美标准H13钢),瑞典热冲压模具供应商采用的是ORVAR,德国企业采用的是CR7V和1.2379。从理论上,钢的组织中铁素体的热导率最高,约为71~80W/m·K,回火马氏体热导率为35W/m·K,渗碳体的热导率最低为7W/m·K。现有H13热冲压模具钢属于中碳中合金钢,得到的回火马氏体中铁素体的比例不高。从导热机理来看,对于纯金属,通过自由电子运动来导热是主要机制。对于自由电子导热而言,热传导的阻力主要是晶格振动声子对自由电子的散射作用,温度增加,晶格振动加剧,声子对自由电子运动的阻力增加,导致其导热能力下降。现有H13钢含有较多种类的合金元素,合金元素的存在导致原子铁晶格畸变,降低热导率;特别是化学成份中含有较高的Si元素,Si的外层电子结构与Fe的差异较大,会严重降低钢的热导率。H13钢的耐磨性主要与钢含Mo、V以及C的含量有关,但H13钢经过淬火回火后硬度为45-49HRC,在工作温度500℃左右时,模具的耐磨性不够,使用寿命短,而且成形材料的表面质量较差。 At present, the hot stamping die steel used in my country is the national standard GB/T1299-2000, the steel number is 4Cr5MoSiV1 (equivalent to North American standard H13 steel). The chemical composition of this hot stamping die steel adopts C 0.32-0.45wt%, Cr 4.75-5.50wt%, Mo 1.20-1.75wt%, V 0.80-1.20wt%, Si 0.80-1.2wt%, Mn 0.20-0.5wt% %, P≤0.03wt%, S≤0.03wt%. At present, Japanese companies use SKD61 hot work die steel (equivalent to North American standard H13 steel), Swedish hot stamping die suppliers use ORVAR, and German companies use CR7V and 1.2379. Theoretically, the thermal conductivity of ferrite in the structure of steel is the highest, about 71~80W/m K, the thermal conductivity of tempered martensite is 35W/m K, and the thermal conductivity of cementite is the lowest. 7W/m·K. The existing H13 hot stamping die steel is a medium-carbon medium-alloy steel, and the proportion of ferrite in the obtained tempered martensite is not high. From the perspective of heat conduction mechanism, for pure metals, heat conduction through free electron movement is the main mechanism. For free electron heat conduction, the resistance of heat conduction is mainly the scattering effect of lattice vibration phonons on free electrons. As the temperature increases, the lattice vibration intensifies, and the resistance of phonons to the movement of free electrons increases, resulting in a decrease in its thermal conductivity. Existing H13 steel contains many kinds of alloying elements, the existence of alloying elements leads to the distortion of the atomic iron lattice and reduces the thermal conductivity; especially the high Si element is contained in the chemical composition, and the difference between the outer electronic structure of Si and Fe Larger, will seriously reduce the thermal conductivity of steel. The wear resistance of H13 steel is mainly related to the content of Mo, V and C in the steel, but the hardness of H13 steel after quenching and tempering is 45-49HRC. When the working temperature is about 500°C, the wear resistance of the mold is not enough, and the service life Short, and the surface quality of the formed material is poor. the
对相关技术的中外专利检索内容分析Analysis of Chinese and foreign patent retrieval content for related technologies
通过输入相关本发明内容的关键词在对中外专利进行检索发现,涉及到和本专利相关联的热作模具钢及其冶金制造技术的专利号为 By entering keywords related to the content of the present invention to search Chinese and foreign patents, it is found that the patent number related to the hot work die steel and its metallurgical manufacturing technology associated with this patent is
(1)专利申请号:201110007324.4,名称:新型耐热耐磨热冲压模具用合金钢材料,其化学成分重量百分比含量为:C=0.40~0.50,Si=0.3~0.5;Mn=0.65~0.85;P<0.025;S<0.005;Cr2.5~2.7;Mo=2.1~2.4;V=0.8~1.0;其余为Fe及微量杂质。 (1) Patent application number: 201110007324.4, name: new heat-resistant and wear-resistant alloy steel material for hot stamping dies, its chemical composition weight percentage content is: C=0.40~0.50, Si=0.3~0.5; Mn=0.65~0.85; P<0.025; S<0.005; Cr2.5~2.7; Mo=2.1~2.4; V=0.8~1.0; the rest are Fe and trace impurities.
(2)专利申请号:200810046104.0,名称:一种新型铬系热作模具钢及其热处理工艺,其化学成份重量百分比含量为:碳C 0.35~0.7%,硅Si 0.3~1.3%,锰Mn 0.3~1.3%,铬Cr 7.0~11.0%,钨W 0.4~1.2%,钼Mo 0.4~1.2%,钒V 0.4~1.2%,镍Ni 1.0%, 硫S≤0.005%,磷P≤0.030%,硼B 0.03%-0.10%,氮化物含量的范围为0.02%≤氮化 物≤0.20%,0.02%≤氮N≤0.10%,其余量为铁Fe。 (2) Patent application number: 200810046104.0, name: a new type of chromium-based hot work die steel and its heat treatment process, its chemical composition weight percentage content is: carbon C 0.35-0.7%, silicon Si 0.3-1.3%, manganese Mn 0.3 ~1.3%, chromium Cr 7.0~11.0%, tungsten W 0.4~1.2%, molybdenum Mo 0.4~1.2%, vanadium V 0.4~1.2%, nickel Ni 1.0%, sulfur S≤0.005%, phosphorus P≤0.030%, boron B 0.03%-0.10%, the range of nitride content is 0.02% ≤ nitride ≤ 0.20%, 0.02% ≤ nitrogen N ≤ 0.10%, and the rest is iron Fe.
(3)专利申请号:201080014370.0,名称:具有出色的韧性和热导率的热加工工具钢,其化学成份重量百分比含量为:C=0.2-1.2%;N=0-1%;B=0-1%;Cr<1.5%;Ni=1.0-9;Si<0.4;Mn=0-3%;Al=0-2.5%;Mo=0-10%;W=0-15%;Ti=0-3%;Ta=0-3%;Zr=0-3%;Hf=0-3%;V=0-4%; Nb=0-3%;Cu=0-4%;Co=0-6%;S=0-1%;Se=0-1%;Te=0-1%;Bi=0-1%;As=0-1%;Sb=0-1%;Ca=0-1%;余量由铁和不可避免的杂质构成,其中%Ceq=%C+0.86*%N+1.2*%B,其特征在于%Mo+1/2*%W>1.2。 (3) Patent application number: 201080014370.0, name: hot working tool steel with excellent toughness and thermal conductivity, its chemical composition weight percentage content is: C=0.2-1.2%; N=0-1%; B=0 -1%; Cr<1.5%; Ni=1.0-9; Si<0.4; Mn=0-3%; Al=0-2.5%; Mo=0-10%; W=0-15%; Ti=0 -3%; Ta=0-3%; Zr=0-3%; Hf=0-3%; V=0-4%; Nb=0-3%; Cu=0-4%; Co=0- 6%; S=0-1%; Se=0-1%; Te=0-1%; Bi=0-1%; As=0-1%; Sb=0-1%; Ca=0-1 %; the balance is composed of iron and unavoidable impurities, where %Ceq=%C+0.86*%N+1.2*%B, characterized by %Mo+1/2*%W>1.2.
(4)专利申请号:200710170723.6,名称:一种具有良好热强性及高韧性的热作模具钢,其化学成分重量百分比含量为:C 0.28~0.35、Si 0.20~0.50、Mn 0.20~0.80、Cr 4.50~5.50、Mo 2.00~2.80、V 0.4~0.80、P≤0.025、S≤0.025、Nb 0.05~0.20、N 0.01~ 0.03、余量为Fe和不可避免杂质元素。 (4) Patent application number: 200710170723.6, name: a hot work die steel with good thermal strength and high toughness, its chemical composition weight percentage content is: C 0.28~0.35, Si 0.20~0.50, Mn 0.20~0.80, Cr 4.50~5.50, Mo 2.00~2.80, V 0.4~0.80, P≤0.025, S≤0.025, Nb 0.05~0.20, N 0.01~0.03, the balance is Fe and unavoidable impurity elements.
对比分析如下:从成份的对比可以看出,本发明的化学成份的元素含量和专利1-4明显不同,元素对材料的性能作用的机理也就不同,材料的应用环境也有所不同。 The comparative analysis is as follows: From the comparison of the components, it can be seen that the element content of the chemical composition of the present invention is obviously different from that of patents 1-4, the mechanism of the element's effect on the performance of the material is also different, and the application environment of the material is also different.
(1)专利申请201110007324.4和本专利相似之处是,为了获得耐热耐磨热冲压模具钢,采用较低的Si和Mn的含量,控制低含量Cr元素,并增加了W和Mo,两专利合金化原理添加了V;添加V能细化晶粒,形成的VC提高耐磨性。本发明与其想比之下控制较低的Si、Mn、Cr,主要是通过低合金化获得更多的铁素体基体,从而获得更多的热导率,增加Mo含量,也能提高耐磨性。添加W的作用是使钢获得更好的高温强度和回火稳定性等。 (1) The similarity between the patent application 201110007324.4 and this patent is that in order to obtain heat-resistant and wear-resistant hot stamping die steel, the content of Si and Mn is lower, the content of Cr is controlled, and W and Mo are added. The two patents The principle of alloying adds V; adding V can refine the grains, and the formed VC improves wear resistance. The present invention controls lower Si, Mn, and Cr by comparison, mainly obtains more ferrite matrix through low alloying, thereby obtains more thermal conductivity, increases Mo content, and can also improve wear resistance sex. The effect of adding W is to make the steel obtain better high temperature strength and tempering stability.
(2)专利200810046104.0将铬含量提高到7~11%,能提高回火温度性和耐腐蚀性。但当钢中含有铬、钼时,Cr>3%时,铬会推迟Mo2C的共格析出,Mo2C是提高钢材的高温强度和抗回火性的强化相。并且合金元素Cr的添加,会降低钢的热导率。而本发明与其相比之下的化学成份组成中控制Cr含量0.3%以下,基本没有使用Cr元素,使得本发明制造的热冲压模具钢具有更好热导率、高温强度和抗回火性。专利200810046104.0与本发明不同的是加入了1%的镍,这和本发明相比具有的特点是通过在钢中增加了镍,来细化晶粒增加韧性。而本发明没有添加Ni也能得到较细的组织,专利200810046104.0化学成份组成和本发明相比唯一类似之处是添加的Mo、V和W元素,但本发明添加Mo和W都比专利200810046104.0更高,这使得材料的组织中形成大量的钨和钼的碳化物进行组织强化,V的含量很接近,主要为了形成VC增加耐磨性。本发明与其相比之下的化学成份组成中不加入镍元素,控制较低的硅、锰、铬元素含量,并减少碳含量,增加Mo和W含量,其对性能的强化作用主要是通过低合金化(低硅低锰铬),低碳获得更多铁素体基体,从而获得更高的热导率,而钼和钨的多种碳化物的复合作用获得钢更好的高温强度和回火稳定性等。 (2) Patent 200810046104.0 increases the chromium content to 7~11%, which can improve the tempering temperature and corrosion resistance. But when the steel contains chromium and molybdenum, when Cr>3%, chromium will delay the coherent precipitation of Mo2C, and Mo2C is a strengthening phase that improves the high temperature strength and tempering resistance of steel. And the addition of alloying element Cr will reduce the thermal conductivity of steel. In contrast, the chemical composition of the present invention controls the Cr content below 0.3%, basically does not use Cr element, so that the hot stamping die steel manufactured by the present invention has better thermal conductivity, high temperature strength and tempering resistance. Patent 200810046104.0 differs from the present invention in that 1% nickel is added. Compared with the present invention, it has the feature of refining grains and increasing toughness by adding nickel to the steel. However, the present invention can obtain a finer structure without adding Ni. The only similarity between the chemical composition of the patent 200810046104.0 and the present invention is the addition of Mo, V and W elements, but the addition of Mo and W in the present invention is more finer than that of the patent 200810046104.0 High, which makes a large amount of tungsten and molybdenum carbides formed in the structure of the material to strengthen the structure, and the content of V is very close, mainly to form VC to increase wear resistance. The chemical composition of the present invention compared with it does not add nickel element, controls lower silicon, manganese, chromium element content, and reduces carbon content, increases Mo and W content, and its strengthening effect to performance is mainly through low Alloying (low silicon, low manganese and chromium), low carbon to obtain more ferrite matrix, thereby obtaining higher thermal conductivity, and the composite effect of multiple carbides of molybdenum and tungsten to obtain better high temperature strength and resilience of steel fire stability etc.
(3)专利201080014370.0和本发明类似之处是在于为了获得高热导率工具钢。本发明采用控制较低C、Si、Mn、Cr元素,添加W、V和Mo,但专利201080014370.0添加了Ni、Nb、N和B;Ni有利于提高淬透性,Nb能细化晶粒,B和N的添加有利于获得高热导率。为了协调Mo、V和W形成碳化物的比例,C含量控制在0.45~0.5,从而获得更高热导率。加入Mo和V的作用是提高耐磨性,增加W是为了起到强化作用,起到提高回火稳定性与热疲劳能力的作用。 (3) The similarity between patent 201080014370.0 and the present invention is to obtain high thermal conductivity tool steel. The present invention adopts the control of lower C, Si, Mn, Cr elements, and adds W, V, and Mo, but the patent 201080014370.0 adds Ni, Nb, N, and B; Ni is beneficial to improve hardenability, and Nb can refine grains, The addition of B and N is beneficial to obtain high thermal conductivity. In order to coordinate the ratio of Mo, V and W to form carbides, the C content is controlled at 0.45~0.5 to obtain higher thermal conductivity. The role of adding Mo and V is to improve wear resistance, and adding W is to strengthen and improve tempering stability and thermal fatigue ability.
(4)专利200710170723.6和本发明类似之处是添加的Mo含量大致一样,主要是为了回火时马氏体析出Mo2C,使钢具有二次硬化效果。但专利200710170723.6的Si、Mn、Cr含量均比本发明高,并增加了Nb和N,添加V是为了细化晶粒,Nb获得的碳化物增强材料的抗回火软化能力。本发明增加V的含量主要是为了获得碳化物以提高耐磨性、细化晶粒;添加W主要是为了提高热稳定性。增加了C是为了协调碳化物的形成,提高材料的耐磨性及高温稳定性。降低Cr是为了获得更高的热导率。 (4) The similarity between patent 200710170723.6 and the present invention is that the added Mo content is roughly the same, mainly for the precipitation of Mo2C in the martensite during tempering, so that the steel has a secondary hardening effect. However, patent 200710170723.6 has higher contents of Si, Mn, and Cr than the present invention, and Nb and N are added. V is added to refine grains, and the carbide obtained by Nb enhances the temper softening resistance of the material. In the present invention, the main purpose of increasing the V content is to obtain carbides to improve wear resistance and refine grains; the main purpose of adding W is to improve thermal stability. C is added to coordinate the formation of carbides and improve the wear resistance and high temperature stability of the material. Cr is reduced in order to obtain higher thermal conductivity.
发明内容 Contents of the invention
针对现有技术存在的缺陷,本发明的目的是一种高热导高耐磨热冲压模具用钢及制备方法。其目的是采用一种简单的化学成份的配比,协调了C和W、V、Mo形成碳化物的配比。采用1080℃淬火,使合金元素充分固溶,达到提高材料的热导率、耐磨性、硬度、冲击韧性和抗回火稳定性等关键性能指标的目的。从节约经济成本的角度出发,采用C、Mo、W、V三种元素作为主要的合金化元素,保持低Mn、低Cr、超低的Si含量,充分降低Si等元素对热导率的影响,使得本专利钢具备高的热导率。主要添加Mo、V、W元素,使得材料的组织中形成大量的W、V、Mo的复杂的碳化物达到强化效果,这三种元素的碳化物在增加钢的强度的基础上又能保证其韧性,并能使钢获得良好的回火稳定性、红硬性、热强性,特别是W、V能形成特殊碳化物而增加钢的耐磨性。从而开发了一种具有高热导率、高硬度、高耐磨性、良好的抗回火稳定性以及良好冲击韧性的低成本经济型热冲压模具钢。 Aiming at the defects existing in the prior art, the object of the present invention is a steel for hot stamping die with high thermal conductivity and high wear resistance and its preparation method. Its purpose is to use a simple chemical composition ratio to coordinate the ratio of C, W, V, and Mo to form carbides. Quenching at 1080°C is used to fully dissolve the alloying elements to achieve the purpose of improving the key performance indicators of the material such as thermal conductivity, wear resistance, hardness, impact toughness and tempering resistance stability. From the perspective of saving economic costs, C, Mo, W, and V are used as the main alloying elements to maintain low Mn, low Cr, and ultra-low Si content, and fully reduce the influence of Si and other elements on thermal conductivity. , so that the patented steel has high thermal conductivity. The main addition of Mo, V, and W elements makes a large amount of complex carbides of W, V, and Mo formed in the structure of the material to achieve a strengthening effect. The carbides of these three elements can increase the strength of the steel and ensure its strength. Toughness, and can make steel obtain good tempering stability, red hardness, hot strength, especially W, V can form special carbides to increase the wear resistance of steel. Therefore, a low-cost and economical hot stamping die steel with high thermal conductivity, high hardness, high wear resistance, good stability against tempering and good impact toughness has been developed.
为达到上述目的,本发明采用的技术方案如下: In order to achieve the above object, the technical scheme adopted in the present invention is as follows:
一种超高热导率热冲压模具用钢,其合金成分主要以下列元素组成(以质量百分含量计): A steel for hot stamping dies with ultra-high thermal conductivity, the alloy composition of which is mainly composed of the following elements (by mass percentage):
C:0.45-0.50%; C: 0.45-0.50%;
Si:<0.2%; Si: <0.2%;
Mn:<0.20%; Mn: <0.20%;
W:1.0-2.0%; W: 1.0-2.0%;
Mo:2. 5-3.5%; Mo: 2.5-3.5%;
Cr:<0.30%; Cr: <0.30%;
V:0.5-1.0% V: 0.5-1.0%
其余为Fe和不可避免的杂质元素,杂质元素中S:≤0.03%;P:≤0.03。 The rest is Fe and unavoidable impurity elements, S: ≤0.03% in impurity elements; P: ≤0.03.
以下是本发明主要化学元素的作用: The following are the effects of the main chemical elements of the present invention:
C 0.45~0.5% C 0.45~0.5%
碳元素是主要是以碳化物的形式存在。碳元素以第二相形式存在时对钢导热能力的损害比以固溶于基体时小,它可使强碳化物以及锰弱碳化物从基体进入碳化物中,从而提高热导率,因此本专利协调碳与钨、钒、钼的成分配比,使其都形成碳化物,而又不致碳含量过高;同时,碳是高热强性热作模具钢的主要化学元素之一,碳一部分进入基体起到固溶强化的作用,另一部分则是形成碳化物,钼和钨形成的强碳化物能在高温回火过程细小弥散析出产生二次硬化现象,钒和钨形成的碳化物能够有效增加耐磨性。本设计碳含量相对原有的材料4Cr5MoSiV1有所降低,其目的是尽量获得较多的铁素体基体,从而提高热导率和韧性,并改善钢的显微组织中的碳化物的分布和性质,改善钢的液析碳化物的级别和分布。因此,碳含量如果高于此成分设计上限,将导致过多的碳化物的形成和组织的偏析产生,影响钢的冲击韧性性能,特别是造成钢的液析碳化物的不均匀性严重使得钢的冲击韧性降低;但是碳元素低于此成分的设计范围也将要造成碳元素和其他合金元素结合形成碳化物的当量发生偏差,不能有效地形成稳定的钼碳化物、钨碳化物和各种类型碳化物复合作用,影响钢的硬度、冲击韧性和高温性能。 Carbon is mainly present in the form of carbides. When carbon exists in the form of the second phase, the damage to the thermal conductivity of steel is smaller than when it is dissolved in the matrix. It can make strong carbides and manganese weak carbides enter carbides from the matrix, thereby improving thermal conductivity. Therefore, this The patent coordinates the composition ratio of carbon, tungsten, vanadium, and molybdenum, so that they all form carbides without excessive carbon content; at the same time, carbon is one of the main chemical elements of high thermal strength hot work die steel, and part of carbon enters The matrix plays the role of solid solution strengthening, and the other part is to form carbides. The strong carbides formed by molybdenum and tungsten can be finely dispersed and precipitated during high temperature tempering to produce secondary hardening. The carbides formed by vanadium and tungsten can effectively increase abrasion resistance. The carbon content of this design is lower than that of the original material 4Cr5MoSiV1. The purpose is to obtain as much ferrite matrix as possible, thereby improving thermal conductivity and toughness, and improving the distribution and properties of carbides in the steel microstructure. , Improve the level and distribution of liquid carbides in steel. Therefore, if the carbon content is higher than the upper limit of the composition design, it will lead to the formation of excessive carbides and segregation of the structure, which will affect the impact toughness of the steel, especially the inhomogeneity of the liquid carbides in the steel is serious, making the steel The impact toughness is reduced; but the carbon element is lower than the design range of this composition, which will also cause the deviation of the equivalent of carbon and other alloying elements to form carbides, and cannot effectively form stable molybdenum carbides, tungsten carbides and various types. The composite action of carbides affects the hardness, impact toughness and high temperature properties of steel.
Si <0.2% Si <0.2%
硅外层电子结构与Fe的差异较大,研究表明它会严重降低钢的导热性能,因此本设计中硅的含量控制在2%以下。降低硅含量,使宏观组织更加均匀化,并且能减少凝固时凝固界面上的成分过冷,塑性和韧性增加。Si固溶强化效果显著,不形成碳化物, 也不溶于其它碳化物, 除了提高钢的淬透性外, Si还有助于提高在高温回火过程中析出特殊碳化物的弥散度, 可使二次硬化峰增高, 因而Si是提高基体的强度及提高回火抗力的有效元素,硅元素的作用是可以使得钢在回火的过程中马氏体的分解减缓,可以在奥氏体到马氏体的转变之后的回火过程中有效阻碍马氏体的分解,这主要是通过抑制ε碳化物质点的长大和扩大ε碳化物稳定区,延迟了ε-碳化物向θ-碳化物的转变。硅推迟ε→θ转变,并能充分减小钢中渗碳体在回火过程中的长大速率,硅原子从θ相析出而在θ相周围形成硅原子的富集区,抑制θ相的长大粗化;另外硅能有效提高钢的抗回火软化能力。 The electronic structure of the outer layer of silicon is quite different from that of Fe. Studies have shown that it will seriously reduce the thermal conductivity of steel. Therefore, the content of silicon in this design is controlled below 2%. Reducing the silicon content can make the macrostructure more uniform, and can reduce the overcooling of the components on the solidification interface during solidification, and increase the plasticity and toughness. The solid solution strengthening effect of Si is remarkable, no carbide is formed, and it is also insoluble in other carbides. In addition to improving the hardenability of steel, Si also helps to improve the dispersion of special carbides precipitated during high temperature tempering, which can make The secondary hardening peak increases, so Si is an effective element to increase the strength of the matrix and improve the tempering resistance. The role of silicon is to slow down the decomposition of martensite during the tempering process of the steel, and it can be transformed from austenite to martensite. The tempering process after the transformation of tensite effectively hinders the decomposition of martensite, which is mainly by inhibiting the growth of ε carbide points and expanding the stable area of ε carbide, delaying the transformation from ε-carbide to θ-carbide . Silicon delays the transformation of ε→θ, and can fully reduce the growth rate of cementite in steel during tempering. Silicon atoms precipitate from the θ phase and form a silicon atom-enriched region around the θ phase, inhibiting the growth of the θ phase. Growth and coarsening; in addition, silicon can effectively improve the temper softening resistance of steel.
但是,硅量过高时还会加重钢的脱碳敏感性,并且使碳化物聚集的过时效速度增大而难以控制。另外,硅和锰共同作用使钢的高温性能,如高温抗回火软化性能和热疲劳性能得到更显著的提高,这些都是对热作模具钢使用性能和寿命有利的。综合以上几点,本专利添加少量的Si。 However, when the amount of silicon is too high, the decarburization sensitivity of steel will be aggravated, and the overaging speed of carbide accumulation will increase, making it difficult to control. In addition, silicon and manganese work together to improve the high temperature performance of steel, such as high temperature temper softening resistance and thermal fatigue performance, which are beneficial to the service performance and life of hot work die steel. Based on the above points, this patent adds a small amount of Si.
Mn <0.20% Mn<0.20%
在炼钢过程中,锰能够降低热脆性,是良好的脱氧剂和脱硫剂。它与S和有较大的亲合力,可以避免在晶界上形成低熔点的硫化物FeS,而以熔点较高的具有一定塑性的MnS存在,可防止因FeS而导致的热脆现象从而消除硫的有害影响,改善钢的热加工性能。锰溶入奥氏体中能提高钢的淬透性。Mn具有固溶强化作用,从而提高铁素体和奥氏体的强度和硬度,虽然其固溶强化效果不及碳、磷和硅,但其对钢的延展性几乎没有影响。 In the steelmaking process, manganese can reduce hot brittleness and is a good deoxidizer and desulfurizer. It has a greater affinity with S and can avoid the formation of sulfide FeS with a low melting point on the grain boundary, and the existence of MnS with a certain plasticity with a higher melting point can prevent the thermal embrittlement caused by FeS and eliminate The harmful effects of sulfur improve the hot workability of steel. Dissolving manganese into austenite can improve the hardenability of steel. Mn has a solid solution strengthening effect, thereby increasing the strength and hardness of ferrite and austenite. Although its solid solution strengthening effect is not as good as that of carbon, phosphorus and silicon, it has almost no effect on the ductility of steel.
锰元素虽然是弱碳化物形成元素,不能够形成碳化物强化作用,但是一定量的锰元素的加入可以促进渗碳体的分解和推迟碳化物的析出与长大,有利于钢的热稳定性。另外,锰元素可以造成钢中的残余奥氏体的含量增加与稳定,这样可以提高钢的韧性和抗热疲劳性能。 Although manganese is a weak carbide forming element and cannot form carbide strengthening, the addition of a certain amount of manganese can promote the decomposition of cementite and delay the precipitation and growth of carbides, which is beneficial to the thermal stability of steel . In addition, manganese can increase and stabilize the content of retained austenite in steel, which can improve the toughness and thermal fatigue resistance of steel.
但是锰含量过高,促进有害元素偏聚使脆性增加,减弱钢的抗腐蚀能力,降低导热性能、焊接性能等,综合考虑将其含量控制在0.2%以下。 However, if the manganese content is too high, it will promote the segregation of harmful elements, increase the brittleness, weaken the corrosion resistance of steel, reduce the thermal conductivity, welding performance, etc., and comprehensively consider its content to be controlled below 0.2%.
Cr <0.30 % Cr <0.30%
虽然铬元素能在铁素体中固溶,又能形成碳化物。并且现有热作模具钢中大多添加铬元素,铬碳化物类型是Cr7C3和Cr23C6类型碳化物起到强化基体的作用,并且这种铬元素的控制使得钢在回火的过程中析出稳定的弥散相,这种弥散相M7C3和Cr23C6不但能够提高钢的抗回火性能,而且能够使得钢产生一定的红硬性,提高钢的热强性。但是考虑到当回火温度高于600 ℃时,Cr 的碳化物就迅速聚集粗化,使得钢的抗回火稳定能较差,而且在热导率方面,Cr含量增加比W和Mo增加对钢的热导率损害影响大。因此,本设计把铬含量控制在<0.30%的范围,主要利用W和Mo的碳化物来代替铬碳化物的作用,不仅能起到一样的效果,还降低了Cr对热导率的影响以及降低了钢的合金成本。 Although chromium can be dissolved in ferrite, it can also form carbides. And most of the existing hot work die steels are added with chromium element. The types of chromium carbides are Cr7C3 and Cr23C6 carbides to strengthen the matrix, and the control of this chromium element makes the steel precipitate stable dispersion Phase, this kind of dispersed phase M7C3 and Cr23C6 can not only improve the tempering resistance of the steel, but also make the steel have a certain red hardness and improve the thermal strength of the steel. However, considering that when the tempering temperature is higher than 600 °C, the carbides of Cr will quickly aggregate and coarsen, making the steel's resistance to tempering stability poor, and in terms of thermal conductivity, the increase in Cr content is more important than the increase in W and Mo. The thermal conductivity of steel has a great influence on damage. Therefore, this design controls the chromium content in the range of <0.30%, and mainly uses the carbides of W and Mo to replace the chromium carbides, which can not only achieve the same effect, but also reduce the influence of Cr on thermal conductivity and Reduced steel alloy costs.
Mo: 2.5-3.5% Mo: 2.5-3.5%
钼提高淬透性和热强性,降低回火脆性,增加回火稳定性,细化晶粒。在工具钢中可提高红性。钼元素是强碳化物形成元素,也是本设计成分设计中的重要化学元素之一,在本设计中的钼元素添加量在2.5-3.5%范围。因为钼的固溶温度不高,低温淬火时便可大量固溶,并在回火的过程中以M2C的形式在马氏体板条内的亚晶界上以平行的细针状(二维为层片状)析出,与基体保持共格,提高钢的高温硬度。因此,通过提高钢中Mo含量,在提高回火马氏体的回复、再结晶温度的同时,Mo在钢中能形成较为细小的碳化物,从而进一步提高材料的热强性及热稳定性。钼元素的加入提高了钢奥氏体的稳定性以及钢的淬透性,并且在钢的回火过程中和碳元素结合形成数量较多的较稳定的M2C合金碳化物的析出,这种析出过程是一种弥散的质点强化相析出,较为均匀的分布在钢的基体中,具有较好的二次硬化效果。钼的加入量的控制在此范围使得钢在回火的过程中获得更多的M2C合金碳化物,并产生较大的两次强化的作用,这对钢的硬度和冲击韧性的提高起着重要的作用。另外,本专利中添加钨,使得钼和钨形成多种复杂碳化物,不仅增加了钢的强度,还增加了钢的抗回火稳定性和热强性。 Molybdenum improves hardenability and heat strength, reduces temper brittleness, increases temper stability, and refines grains. Improves redness in tool steels. Molybdenum element is a strong carbide forming element, and it is also one of the important chemical elements in the composition design of this design. The addition amount of molybdenum element in this design is in the range of 2.5-3.5%. Because the solid solution temperature of molybdenum is not high, it can be dissolved in a large amount during low temperature quenching, and in the form of M2C in the process of tempering, it forms parallel thin needles (two-dimensional Lamellar) precipitates, maintains coherence with the matrix, and improves the high-temperature hardness of the steel. Therefore, by increasing the Mo content in the steel, while increasing the recovery and recrystallization temperature of tempered martensite, Mo can form relatively fine carbides in the steel, thereby further improving the thermal strength and thermal stability of the material. The addition of molybdenum element improves the stability of the steel austenite and the hardenability of the steel, and combines with the carbon element during the tempering process of the steel to form a larger amount of more stable M2C alloy carbide precipitation. The process is the precipitation of a dispersed particle strengthening phase, which is more uniformly distributed in the steel matrix and has a better secondary hardening effect. The control of the amount of molybdenum added in this range makes the steel obtain more M2C alloy carbides in the process of tempering, and produces a larger secondary strengthening effect, which plays an important role in improving the hardness and impact toughness of the steel role. In addition, the addition of tungsten in this patent makes molybdenum and tungsten form a variety of complex carbides, which not only increases the strength of the steel, but also increases the tempering stability and thermal strength of the steel.
W:1. 0~2.0% W: 1. 0~2.0%
钨的作用主要是增加钢的回火稳定性、红硬性、热强性以及形成特殊碳化物而增加其耐磨性,本专利中添加钼和钨元素,使得材料的组织中形成大量的钼和钨的碳化物进行组织强化,并且有利于提高热导率。 The role of tungsten is mainly to increase the tempering stability, red hardness, heat strength and form special carbides to increase the wear resistance of steel. The addition of molybdenum and tungsten elements in this patent makes a large amount of molybdenum and tungsten formed in the structure of the material. Tungsten carbides strengthen the structure and contribute to improving thermal conductivity.
V:0.5%-1.0% V: 0.5%-1.0%
钒元素是强碳化物形成元素,在钢中的强化作用和钨元素相似,能够提高耐磨性,同时还能阻碍晶粒长大,起到细化晶粒的作用。为了获得高的耐磨性,同时为了协调碳化物的比例,将V控制在0.5%-1.0%。 Vanadium element is a strong carbide forming element. Its strengthening effect in steel is similar to that of tungsten element. It can improve wear resistance, and at the same time it can hinder the growth of grains and play a role in refining grains. In order to obtain high wear resistance and coordinate the proportion of carbides, V is controlled at 0.5%-1.0%.
P ≤0.03% P ≤0.03%
在一般情况下,磷是钢中的有害元素,增加钢的脆性,降低钢的冲击韧性,因此磷元素控制是本技术钢的严格的冶炼要求 ,对钢性能指标值有一定的影响。 In general, phosphorus is a harmful element in steel, which increases the brittleness of steel and reduces the impact toughness of steel. Therefore, the control of phosphorus element is a strict smelting requirement of steel in this technology, which has a certain impact on the performance index value of steel.
S ≤0.03% S ≤0.03%
硫主要以硫化物的形态存在于钢中。一般认为硫是钢中的有害元素之一。硫在钢中易于偏析,恶化钢的质量。如以熔点较低的FeS的形式存在时,将导致钢的热脆现象。硫元素在一定的程度上容易造成钢的加工性能的恶化,容易使得钢在热加工的过程中产生过热和过烧现象。因此控制硫含量可以保证钢的加工性能和机械性能,特别是对径锻机锻造开坯时的连续锻造加工所产生的的过热现象起到拟制的作用。并对热作模具钢的显微组织的改善起到一定的作用。 Sulfur exists in steel mainly in the form of sulfides. It is generally believed that sulfur is one of the harmful elements in steel. Sulfur is easy to segregate in steel and deteriorates the quality of steel. If it exists in the form of FeS with a lower melting point, it will cause hot embrittlement of steel. To a certain extent, sulfur element is easy to cause the deterioration of the processing performance of steel, and it is easy to cause overheating and overburning of steel in the process of hot working. Therefore, controlling the sulfur content can ensure the processing performance and mechanical properties of the steel, especially to prevent the overheating phenomenon caused by the continuous forging process when the radial forging machine is forging the billet. And play a certain role in improving the microstructure of hot work die steel.
一种超高热导率热冲压模具用钢的制备方法,用于制备上述的超高热导率热冲压模具用钢,本方法采用如下步骤: A method for preparing steel for an ultra-high thermal conductivity hot stamping die, which is used to prepare the above-mentioned steel for an ultra-high thermal conductivity hot stamping die. The method adopts the following steps:
(a) 熔炼:合金按上述成分设计后,按传统常规的方法进行熔炼,将上述配方中的配合料放置于电炉中,在1500℃以上的温度进行熔炼;然后浇注钢锭,进入下一步骤待用; (a) Melting: After the alloy is designed according to the above composition, it is smelted according to the traditional method. The batch material in the above formula is placed in the electric furnace and smelted at a temperature above 1500°C; then the steel ingot is poured and enters the next step to be use;
(b) 电渣重熔:电渣重熔工艺为电压50V,电流2800A,熔速11mm/min,熔池深度50mm,电渣锭规格Φ120。电渣重熔后可降低气体和夹杂物的含量,并获得成份均匀、组织致密、质量高的钢锭; (b) Electroslag remelting: The electroslag remelting process is a voltage of 50V, a current of 2800A, a melting speed of 11mm/min, a depth of molten pool of 50mm, and an electroslag ingot specification of Φ120. After electroslag remelting, the content of gas and inclusions can be reduced, and a steel ingot with uniform composition, compact structure and high quality can be obtained;
(c) 退火:于700℃~900℃保温8小时后随炉冷却; (c) Annealing: keep warm at 700℃~900℃ for 8 hours and then cool with the furnace;
(d) 高温均匀化:将上述钢锭加热到1235~1250℃,并保温8~10小时,使钢成分均匀化,防止成分偏析,改善材料的凝固组织,随后置于空气中冷却; (d) Homogenization at high temperature: Heating the above-mentioned steel ingot to 1235-1250°C and keeping it warm for 8-10 hours to homogenize the steel composition, prevent composition segregation, improve the solidification structure of the material, and then place it in the air to cool;
(e) 锻造:钢锭加热至1200~1230℃,进行多向锻造,终锻温度900℃~950℃,锻造比应大于6;锻后退火:于800℃~860℃退火8小时,随炉冷却; (e) Forging: heat the steel ingot to 1200-1230°C for multi-directional forging, the final forging temperature is 900°C-950°C, the forging ratio should be greater than 6; post-forging annealing: anneal at 800°C-860°C for 8 hours, then cool with the furnace ;
(f) 退火:将上述钢锻件毛坯放入加热炉中,加热到660~700℃,保温20-26h,然后炉冷至200℃后再空冷至室温; (f) Annealing: Put the above-mentioned steel forging blank into a heating furnace, heat it to 660-700°C, keep it warm for 20-26h, then cool it to 200°C in the furnace, and then air-cool it to room temperature;
热处理工艺:1060℃~1100℃淬火,560℃~640℃回火3次,各回火2h;为了获得更高的热导率必须让更多的合金元素固溶到基体中,所以淬火温度定在至少1060℃。 Heat treatment process: Quenching at 1060°C to 1100°C, tempering at 560°C to 640°C for 3 times, each tempering for 2 hours; in order to obtain higher thermal conductivity, more alloying elements must be dissolved into the matrix, so the quenching temperature is set at At least 1060°C.
以上;最终得到新型高热导率热冲压模具材料。 Above; Finally, a new type of high thermal conductivity hot stamping die material is obtained.
与现有技术相比,本发明具有以下突出的优点: Compared with the prior art, the present invention has the following outstanding advantages:
本发明涉及一种新型高热导率高耐磨性热冲压模具材料,在合金化思路上,本发明钢的特点是简单的合金化,以C、Mo、V和W四种元素为主;其次,保持较低的Mn、超低的Si、Cr元素,使得本专利钢具备高的热导率和耐磨性;这也能节约经济成本。本发明钢的性能为:经1080℃淬火,硬度为54.9HRC,经过200℃回火2h硬度为55.5HRC;经过300℃回火2h硬度为55.1HRC;经过400℃回火2h硬度为53.9HRC;经过500℃回火2h硬度为54.7HRC;经过520℃回火2h硬度为54HRC;经过540回火2h硬度为55.9HRC;经过560℃回火2h硬度为55.5HRC;经过580℃回火硬度为56.9HRC;经过600℃回火2h硬度为57.9;经过620℃回火2h硬度为56.7;经过640℃回火2h硬度为51.8HRC。具有优异的回火稳定性。经1080℃淬火+560℃回火2h+580℃回火2h +600℃回火2h后,硬度能达56HRC,比H13高出近8个HRC,能提高模具的耐磨性能,能有效的防止模具表面的拉毛;在1080℃高温下淬火,使得合金元素充分的固溶到基体中,具有超高的热导率,见表1,热导率较之于现有的H13钢在700℃时高出近31%,在400℃时高出53%,在200℃时是H13的近2倍,这能大大的加快冲压节拍提高生产效益,增加生产效益;耐磨性能较H13钢大有提高。 The invention relates to a new type of high thermal conductivity and high wear resistance hot stamping die material. In terms of alloying ideas, the steel of the invention is characterized by simple alloying, mainly composed of four elements: C, Mo, V and W; secondly , keep low Mn, ultra-low Si, Cr elements, so that the patented steel has high thermal conductivity and wear resistance; this can also save economic costs. The properties of the steel of the present invention are: after quenching at 1080°C, the hardness is 54.9HRC; after tempering at 200°C for 2 hours, the hardness is 55.5HRC; after tempering at 300°C for 2 hours, the hardness is 55.1HRC; after tempering at 400°C for 2 hours, the hardness is 53.9HRC; After tempering at 500°C for 2 hours, the hardness is 54.7HRC; after tempering at 520°C for 2 hours, the hardness is 54HRC; after tempering at 540°C for 2 hours, the hardness is 55.9HRC; after tempering at 560°C for 2 hours, the hardness is 55.5HRC; after tempering at 580°C, the hardness is 56.9 HRC; after tempering at 600°C for 2 hours, the hardness is 57.9; after tempering at 620°C for 2 hours, the hardness is 56.7; after tempering at 640°C for 2 hours, the hardness is 51.8HRC. Has excellent temper stability. After quenching at 1080°C + tempering at 560°C for 2 hours + tempering at 580°C for 2 hours + tempering at 600°C for 2 hours, the hardness can reach 56HRC, which is nearly 8 HRC higher than H13, which can improve the wear resistance of the mold and effectively prevent Brushing on the surface of the mold; quenching at a high temperature of 1080°C, so that the alloying elements can be fully dissolved into the matrix, with ultra-high thermal conductivity, see Table 1, the thermal conductivity is compared with that of the existing H13 steel at 700°C It is nearly 31% higher, 53% higher at 400°C, and nearly twice that of H13 at 200°C, which can greatly speed up the stamping cycle and increase production efficiency; the wear resistance is greatly improved compared with H13 steel .
表1 不同温度下进口H13、国产H13和发明钢的热导率(W/(m*k)) Table 1 Thermal conductivity of imported H13, domestic H13 and invented steel at different temperatures (W/(m*k))
本发明钢经过电炉熔炼→电渣重熔→退火→高温均匀化→锻造→退火后,具有良好的机加工性能;经过热处理(淬火+高温回火)后,本发明钢具有良好的热硬度,并具有高的导热系数,具有高的耐磨性。 The steel of the present invention has good machinability after electric furnace smelting → electroslag remelting → annealing → high temperature homogenization → forging → annealing; after heat treatment (quenching + high temperature tempering), the steel of the present invention has good hot hardness, And has a high thermal conductivity, with high wear resistance.
附图说明 Description of drawings
图1为实施例1各温度下普通H13热作模具钢与本发明的钢的热导率的对比; Fig. 1 is the comparison of the thermal conductivity of common H13 hot work die steel and steel of the present invention under each temperature of embodiment 1;
图2为实施例2高热导率高耐磨热冲压模具钢淬火态的显微组织;
Fig. 2 is the microstructure of the quenched state of high thermal conductivity and high wear resistance hot stamping die steel of
图3为实施例2高热导率高耐磨热冲压模具钢回火态的显微组织;
Fig. 3 is the microstructure of the tempered state of high thermal conductivity and high wear resistance hot stamping die steel of
图4为实施例3回火态组织SEM电镜下观察W、V和Mo碳化物及能谱分析。 Fig. 4 is the observation and energy spectrum analysis of W, V and Mo carbides under the SEM electron microscope of the tempered structure of Example 3.
图5为图4点17能谱元素分析。
Figure 5 shows the energy spectrum elemental analysis of
图6为实实例3高热导率热冲压模具钢HDCM3回火态扫描电镜照片。 Fig. 6 is a scanning electron micrograph of the tempered state of high thermal conductivity hot stamping die steel HDCM3 in Example 3.
具体实施方式 Detailed ways
现将本发明的具体实施例结合附图叙述于下。 The specific embodiment of the present invention is described below in conjunction with accompanying drawing now.
实施例1Example 1
本实施例生产了一种钢,其具体成分如下: Present embodiment has produced a kind of steel, and its concrete composition is as follows:
C:0.45%; C: 0.45%;
Si:0.15%; Si: 0.15%;
Mn:0.12%; Mn: 0.12%;
W: 2.55%; W: 2.55%;
Mo:2.6%; Mo: 2.6%;
Cr:0.18%; Cr: 0.18%;
V:0.67%; V: 0.67%;
其余为Fe和不可避免的杂质元素,杂质元素中S:≤0.03%;P:≤0.03%; The rest is Fe and unavoidable impurity elements, S: ≤0.03% in impurity elements; P: ≤0.03%;
制备工艺及热处理工艺如下: The preparation process and heat treatment process are as follows:
(a) 熔炼:合金按上述成分设计后,按传统常规的方法进行熔炼,将上述配方中的配合料放置于电炉中,在1530℃的温度进行熔炼;然后浇注钢锭,进入下一步骤待用; (a) Melting: After the alloy is designed according to the above composition, it is smelted according to the traditional method, the batch material in the above formula is placed in the electric furnace, and smelted at a temperature of 1530°C; then the steel ingot is poured, and the next step is ready for use ;
(b) 电渣重熔:电压50V,电流2800A,熔速11mm/min,熔池深度50mm,电渣锭规格Φ120。电渣重熔后可降低气体和夹杂物的含量,并获得成份均匀、组织致密、质量高的钢锭; (b) Electroslag remelting: voltage 50V, current 2800A, melting speed 11mm/min, molten pool depth 50mm, electroslag ingot specification Φ120. After electroslag remelting, the content of gas and inclusions can be reduced, and a steel ingot with uniform composition, compact structure and high quality can be obtained;
(c) 退火:于900℃保温8小时后随炉冷却; (c) Annealing: heat at 900°C for 8 hours and then cool with the furnace;
(d) 高温均匀化:将上述钢锭加热到1250℃,并保温10小时,使钢成分均匀化,防止成分偏析,改善材料的凝固组织,随后置于空气中冷却; (d) Homogenization at high temperature: Heating the steel ingot above to 1250°C and keeping it warm for 10 hours to homogenize the composition of the steel, prevent composition segregation, improve the solidification structure of the material, and then place it in the air to cool;
(e) 锻造:钢锭加热至1230℃,进行多向锻造,终锻温度950℃,锻造比应大于6; 锻后退火:于860℃退火8小时,随炉冷却; (e) Forging: heat the steel ingot to 1230°C for multi-directional forging, the final forging temperature is 950°C, and the forging ratio should be greater than 6; Annealing after forging: anneal at 860°C for 8 hours, then cool in the furnace;
(f) 退火:将上述钢锻件毛坯放入加热炉中,加热到700℃,保温25h,然后炉冷至200℃后再空冷至室温; (f) Annealing: Put the above-mentioned steel forging blank into a heating furnace, heat it to 700°C, keep it for 25 hours, then cool it to 200°C in the furnace, and then air cool it to room temperature;
(g) 热处理工艺:1080℃保温45分钟淬火,560-2h+580-2h+600-2h回火三次;在推荐的热处理工艺条件下,硬度值为57HRC,冲击韧性值为110-130J。 (g) Heat treatment process: quenching at 1080°C for 45 minutes, tempering three times at 560-2h+580-2h+600-2h; under the recommended heat treatment process conditions, the hardness value is 57HRC, and the impact toughness value is 110-130J.
(h) 如图1所示为热导率测试结果,在200℃时,热导率为43 W/(m*K),在700℃时,热导率为33.2 W/(m*K)。随温度升高,本专利钢的热导率逐渐减小,但在700℃时热导率比H13钢高出近31%。 (h) Figure 1 shows the thermal conductivity test results. At 200°C, the thermal conductivity is 43 W/(m*K), and at 700°C, the thermal conductivity is 33.2 W/(m*K) . As the temperature increases, the thermal conductivity of the patented steel gradually decreases, but at 700°C, the thermal conductivity is nearly 31% higher than that of the H13 steel.
实施例2Example 2
本实施例生产了一种钢,其具体成分如下: Present embodiment has produced a kind of steel, and its concrete composition is as follows:
C:0.50%; C: 0.50%;
Si:0.08%; Si: 0.08%;
Mn:0. 15%; Mn: 0.15%;
W: 1.8%; W: 1.8%;
Mo:2.5%; Mo: 2.5%;
Cr:0.08%; Cr: 0.08%;
V:0.8%; V: 0.8%;
其余为Fe和不可避免的杂质元素,杂质元素中S:≤0.05%;P:≤0.03%; The rest is Fe and unavoidable impurity elements, S: ≤0.05% in impurity elements; P: ≤0.03%;
制备工艺及热处理工艺如下: The preparation process and heat treatment process are as follows:
(a) 熔炼:合金按上述成分设计后,按传统常规的方法进行熔炼,将上述配方中的配合料放置于电炉中,在1500℃以上的温度进行熔炼;然后浇注钢锭,进入下一步骤待用; (a) Melting: After the alloy is designed according to the above composition, it is smelted according to the traditional method, the batch material in the above formula is placed in the electric furnace, and smelted at a temperature above 1500°C; then the steel ingot is poured, and the next step is to be use;
(b) 电渣重熔:电渣重熔工艺为电压50V,电流2800A,熔速11mm/min,熔池深度50mm,电渣锭规格Φ120。电渣重熔后可降低气体和夹杂物的含量,并获得成份均匀、组织致密、质量高的钢锭; (b) Electroslag remelting: The electroslag remelting process is a voltage of 50V, a current of 2800A, a melting speed of 11mm/min, a depth of molten pool of 50mm, and an electroslag ingot specification of Φ120. After electroslag remelting, the content of gas and inclusions can be reduced, and a steel ingot with uniform composition, compact structure and high quality can be obtained;
(c) 退火:于800℃保温8小时后随炉冷却; (c) Annealing: heat at 800°C for 8 hours and then cool with the furnace;
(d) 高温均匀化:将上述钢锭加热到1250℃,并保温10小时,使钢成分均匀化,防止成分偏析,改善材料的凝固组织,随后置于空气中冷却; (d) Homogenization at high temperature: Heating the above-mentioned steel ingot to 1250°C and holding it for 10 hours to homogenize the composition of the steel, prevent composition segregation, improve the solidification structure of the material, and then place it in the air to cool;
(e) 锻造:钢锭加热至1230℃,进行多向锻造,终锻温度950℃,锻造比应大于6; 锻后退火:于860℃退火8小时,随炉冷却; (e) Forging: heat the steel ingot to 1230°C for multi-directional forging, the final forging temperature is 950°C, and the forging ratio should be greater than 6; Annealing after forging: anneal at 860°C for 8 hours, then cool with the furnace;
(f) 退火:将上述钢锻件毛坯放入加热炉中,加热到700℃,保温25h,然后炉冷至200℃后再空冷至室温; (f) Annealing: Put the above-mentioned steel forging blank into a heating furnace, heat it to 700°C, keep it for 25 hours, then cool it to 200°C in the furnace, and then air cool it to room temperature;
(g) 热处理工艺:1080℃保温45分钟淬火,560-2h+600-2h+620-2h回火三次;在推荐的热处理工艺条件下,硬度值为56HRC,冲击韧性值为120-150J。 (g) Heat treatment process: quenching at 1080°C for 45 minutes, tempering three times at 560-2h+600-2h+620-2h; under the recommended heat treatment process conditions, the hardness value is 56HRC, and the impact toughness value is 120-150J.
(h) 如图1所示为热导率测试结果,在200℃时,热导率为44.2 W/(m*K),在700℃时,热导率为34.2 W/(m*K)。 (h) As shown in Figure 1, the thermal conductivity test results are shown. At 200°C, the thermal conductivity is 44.2 W/(m*K), and at 700°C, the thermal conductivity is 34.2 W/(m*K) .
实施例3Example 3
本实施例生产了一种钢,其具体成分如下: Present embodiment has produced a kind of steel, and its concrete composition is as follows:
C:0.48%; C: 0.48%;
Si:0.12%; Si: 0.12%;
Mn:0. 15%; Mn: 0.15%;
W: 1.8%; W: 1.8%;
Mo:2.7%; Mo: 2.7%;
Cr:0.18%; Cr: 0.18%;
V:0.54%; V: 0.54%;
其余为Fe和不可避免的杂质元素,杂质元素中S:≤0.03%;P:≤0.03%; The rest is Fe and unavoidable impurity elements, S: ≤0.03% in impurity elements; P: ≤0.03%;
制备工艺及热处理工艺如下: The preparation process and heat treatment process are as follows:
(a) 熔炼:合金按上述成分设计后,按传统常规的方法进行熔炼,将上述配方中的配合料放置于电炉中,在1500℃以上的温度进行熔炼;然后浇注钢锭,进入下一步骤待用; (a) Melting: After the alloy is designed according to the above composition, it is smelted according to the traditional method, the batch material in the above formula is placed in the electric furnace, and smelted at a temperature above 1500°C; then the steel ingot is poured, and the next step is to be use;
(b) 电渣重熔:电渣重熔工艺为电压50V,电流2800A,熔速11mm/min,熔池深度50mm,电渣锭规格Φ120。电渣重熔后可降低气体和夹杂物的含量,并获得成份均匀、组织致密、质量高的钢锭; (b) Electroslag remelting: The electroslag remelting process is a voltage of 50V, a current of 2800A, a melting speed of 11mm/min, a depth of molten pool of 50mm, and an electroslag ingot specification of Φ120. After electroslag remelting, the content of gas and inclusions can be reduced, and a steel ingot with uniform composition, compact structure and high quality can be obtained;
(c) 退火:于900℃保温8小时后随炉冷却; (c) Annealing: heat at 900°C for 8 hours and then cool with the furnace;
(d) 高温均匀化:将上述钢锭加热到1235℃,并保温10小时,使钢成分均匀化,防止成分偏析,改善材料的凝固组织,随后置于空气中冷却; (d) Homogenization at high temperature: heat the above-mentioned steel ingot to 1235°C and keep it warm for 10 hours to homogenize the steel composition, prevent composition segregation, improve the solidification structure of the material, and then place it in the air to cool;
(e) 锻造:钢锭加热至1210℃,进行多向锻造,终锻温度950℃,锻造比应大于6; 锻后退火:于860℃退火8小时,随炉冷却; (e) Forging: heat the steel ingot to 1210°C for multi-directional forging, the final forging temperature is 950°C, and the forging ratio should be greater than 6; Annealing after forging: anneal at 860°C for 8 hours, then cool with the furnace;
(f) 退火:将上述钢锻件毛坯放入加热炉中,加热到680℃,保温24h,然后炉冷至200℃后再空冷至室温; (f) Annealing: Put the above-mentioned steel forging blank into a heating furnace, heat it to 680°C, keep it for 24 hours, then cool it to 200°C in the furnace, and then air cool it to room temperature;
(g) 热处理工艺:1080℃保温45分钟淬火560-2h+600-2h+640-2h回火三次;在推荐的热处理工艺条件下,硬度值为52HRC,冲击韧性值为160-180J。 (g) Heat treatment process: heat preservation at 1080°C for 45 minutes, quenching, 560-2h+600-2h+640-2h and tempering three times; under the recommended heat treatment process conditions, the hardness value is 52HRC, and the impact toughness value is 160-180J.
(h) 如图1所示为热导率测试结果,在200℃时,热导率为42.4W/(m*K),在700℃时,热导率为32.2 W/(m*K)。 (h) As shown in Figure 1, the thermal conductivity test results are shown. At 200°C, the thermal conductivity is 42.4W/(m*K), and at 700°C, the thermal conductivity is 32.2 W/(m*K) . the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102413729A CN103334052A (en) | 2013-06-18 | 2013-06-18 | High-thermal conductivity high-abrasion resistance hot stamping die steel and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102413729A CN103334052A (en) | 2013-06-18 | 2013-06-18 | High-thermal conductivity high-abrasion resistance hot stamping die steel and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103334052A true CN103334052A (en) | 2013-10-02 |
Family
ID=49242247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013102413729A Pending CN103334052A (en) | 2013-06-18 | 2013-06-18 | High-thermal conductivity high-abrasion resistance hot stamping die steel and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103334052A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103898283A (en) * | 2014-03-25 | 2014-07-02 | 宁夏共享集团有限责任公司 | Tempering heat treatment process of high-strength steel |
CN103993223A (en) * | 2014-05-06 | 2014-08-20 | 上海大学 | Ultrahigh thermal conductivity wear-resistant hot stamping die steel and manufacturing method thereof |
CN104313462A (en) * | 2014-09-28 | 2015-01-28 | 宝山钢铁股份有限公司 | High wear-resistant hot-stamping die steel and manufacturing method thereof |
CN105002337A (en) * | 2015-07-21 | 2015-10-28 | 北京奥普科星技术有限公司 | H13 die steel heat treating method and H13 die steel obtained through same |
CN108774712A (en) * | 2018-06-21 | 2018-11-09 | 河南中原特钢装备制造有限公司 | Superelevation thermal conductivity hot stamping die steel and its manufacturing method |
CN109457168A (en) * | 2018-12-24 | 2019-03-12 | 宁波颂杰电器有限公司 | Household gas range fuel gas conduit alloy and preparation method thereof and fuel gas conduit |
CN109518084A (en) * | 2018-12-07 | 2019-03-26 | 南京工业职业技术学院 | A kind of high heat conductance is containing Al, Nb nitriding hot die steel and preparation method thereof |
CN110468345A (en) * | 2019-08-29 | 2019-11-19 | 江苏大学 | A kind of hot die steel of high abrasion |
CN111850393A (en) * | 2020-06-29 | 2020-10-30 | 河北工业职业技术学院 | A kind of bainite die steel and preparation method thereof |
CN111902558A (en) * | 2018-03-27 | 2020-11-06 | 株式会社神户制钢所 | Steel sheet for hot stamping |
CN112501520A (en) * | 2020-12-03 | 2021-03-16 | 上海工程技术大学 | Impact-resistant and smashing-resistant wear-resistant steel and preparation method thereof |
CN112725688A (en) * | 2020-11-25 | 2021-04-30 | 河钢股份有限公司 | Cold and hot dual-purpose steel for thread rolling die and preparation method thereof |
CN113151732A (en) * | 2020-01-07 | 2021-07-23 | 武汉昆伦特钢装备科技开发有限公司 | High-strength high-temperature-resistant and low-temperature-resistant special gold steel and manufacturing process thereof |
CN114318124A (en) * | 2020-09-29 | 2022-04-12 | 宝山钢铁股份有限公司 | Ultrahigh wear-resistant high-toughness hot-work die steel and preparation method thereof |
CN114395738A (en) * | 2022-01-18 | 2022-04-26 | 河北工业职业技术学院 | Die steel with high thermal diffusivity and preparation method thereof |
CN114908301A (en) * | 2019-03-01 | 2022-08-16 | 育材堂(苏州)材料科技有限公司 | Hot work die steel, heat treatment method and hot work die |
CN115216700A (en) * | 2022-08-01 | 2022-10-21 | 马鞍山钢铁股份有限公司 | 1700 MPa-level steel for fasteners and production method and heat treatment process thereof |
CN116555679A (en) * | 2023-05-19 | 2023-08-08 | 苏州沃泰尔精密模具机械有限公司 | High red hardness hot extrusion die steel and preparation method thereof |
CN117026068A (en) * | 2023-10-08 | 2023-11-10 | 中北大学 | Investment precision casting ferrite stainless steel and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008056982A (en) * | 2006-08-30 | 2008-03-13 | Daido Steel Co Ltd | Die steel having excellent thermal fatigue property |
CN102212753A (en) * | 2011-01-14 | 2011-10-12 | 上海大学 | Novel heat and abrasion resistant alloy steel material for hot stamping die |
CN102373376A (en) * | 2010-08-18 | 2012-03-14 | 宝山钢铁股份有限公司 | High-silicon high-manganese hot-work die steel and preparation method thereof |
CN102676923A (en) * | 2012-05-29 | 2012-09-19 | 上海大学 | Steel with ultra-high thermal conductivity for hot-stamping die and preparation method of steel |
-
2013
- 2013-06-18 CN CN2013102413729A patent/CN103334052A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008056982A (en) * | 2006-08-30 | 2008-03-13 | Daido Steel Co Ltd | Die steel having excellent thermal fatigue property |
CN102373376A (en) * | 2010-08-18 | 2012-03-14 | 宝山钢铁股份有限公司 | High-silicon high-manganese hot-work die steel and preparation method thereof |
CN102212753A (en) * | 2011-01-14 | 2011-10-12 | 上海大学 | Novel heat and abrasion resistant alloy steel material for hot stamping die |
CN102676923A (en) * | 2012-05-29 | 2012-09-19 | 上海大学 | Steel with ultra-high thermal conductivity for hot-stamping die and preparation method of steel |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103898283B (en) * | 2014-03-25 | 2016-06-15 | 宁夏共享集团有限责任公司 | A kind of tempering heat treatment process of high strength steel |
CN103898283A (en) * | 2014-03-25 | 2014-07-02 | 宁夏共享集团有限责任公司 | Tempering heat treatment process of high-strength steel |
CN103993223A (en) * | 2014-05-06 | 2014-08-20 | 上海大学 | Ultrahigh thermal conductivity wear-resistant hot stamping die steel and manufacturing method thereof |
CN104313462A (en) * | 2014-09-28 | 2015-01-28 | 宝山钢铁股份有限公司 | High wear-resistant hot-stamping die steel and manufacturing method thereof |
CN105002337A (en) * | 2015-07-21 | 2015-10-28 | 北京奥普科星技术有限公司 | H13 die steel heat treating method and H13 die steel obtained through same |
CN111902558A (en) * | 2018-03-27 | 2020-11-06 | 株式会社神户制钢所 | Steel sheet for hot stamping |
CN108774712A (en) * | 2018-06-21 | 2018-11-09 | 河南中原特钢装备制造有限公司 | Superelevation thermal conductivity hot stamping die steel and its manufacturing method |
CN109518084A (en) * | 2018-12-07 | 2019-03-26 | 南京工业职业技术学院 | A kind of high heat conductance is containing Al, Nb nitriding hot die steel and preparation method thereof |
CN109457168A (en) * | 2018-12-24 | 2019-03-12 | 宁波颂杰电器有限公司 | Household gas range fuel gas conduit alloy and preparation method thereof and fuel gas conduit |
CN109457168B (en) * | 2018-12-24 | 2021-07-06 | 宁波正直科技有限公司 | Gas pipe alloy of household gas stove, preparation method thereof and gas pipe |
CN114908301A (en) * | 2019-03-01 | 2022-08-16 | 育材堂(苏州)材料科技有限公司 | Hot work die steel, heat treatment method and hot work die |
CN110468345A (en) * | 2019-08-29 | 2019-11-19 | 江苏大学 | A kind of hot die steel of high abrasion |
CN113151732A (en) * | 2020-01-07 | 2021-07-23 | 武汉昆伦特钢装备科技开发有限公司 | High-strength high-temperature-resistant and low-temperature-resistant special gold steel and manufacturing process thereof |
CN111850393A (en) * | 2020-06-29 | 2020-10-30 | 河北工业职业技术学院 | A kind of bainite die steel and preparation method thereof |
CN111850393B (en) * | 2020-06-29 | 2021-09-07 | 河北工业职业技术学院 | A kind of bainite die steel and preparation method thereof |
CN114318124A (en) * | 2020-09-29 | 2022-04-12 | 宝山钢铁股份有限公司 | Ultrahigh wear-resistant high-toughness hot-work die steel and preparation method thereof |
CN112725688A (en) * | 2020-11-25 | 2021-04-30 | 河钢股份有限公司 | Cold and hot dual-purpose steel for thread rolling die and preparation method thereof |
CN112501520A (en) * | 2020-12-03 | 2021-03-16 | 上海工程技术大学 | Impact-resistant and smashing-resistant wear-resistant steel and preparation method thereof |
CN114395738A (en) * | 2022-01-18 | 2022-04-26 | 河北工业职业技术学院 | Die steel with high thermal diffusivity and preparation method thereof |
CN115216700A (en) * | 2022-08-01 | 2022-10-21 | 马鞍山钢铁股份有限公司 | 1700 MPa-level steel for fasteners and production method and heat treatment process thereof |
CN116555679A (en) * | 2023-05-19 | 2023-08-08 | 苏州沃泰尔精密模具机械有限公司 | High red hardness hot extrusion die steel and preparation method thereof |
CN117026068A (en) * | 2023-10-08 | 2023-11-10 | 中北大学 | Investment precision casting ferrite stainless steel and preparation method and application thereof |
CN117026068B (en) * | 2023-10-08 | 2023-12-22 | 中北大学 | Investment precision casting ferrite stainless steel and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103334052A (en) | High-thermal conductivity high-abrasion resistance hot stamping die steel and preparation method thereof | |
CN103993223A (en) | Ultrahigh thermal conductivity wear-resistant hot stamping die steel and manufacturing method thereof | |
CN108220815B (en) | Hot work die steel with high heat resistance and high impact toughness for hot forging and preparation method thereof | |
CN107974636A (en) | A kind of high rigidity high-hardenability pre-hardening plastic die steel and preparation method thereof | |
CN102212756A (en) | Chromium-molybdenum-vanadium hotwork tool-die steel and heat treatment process thereof | |
CN101906588B (en) | Preparation method for air-cooled lower bainite/martensite multi-phase wear-resistant cast steel | |
CN105779898B (en) | Cold-work die steel plate and manufacturing method thereof | |
CN102676923A (en) | Steel with ultra-high thermal conductivity for hot-stamping die and preparation method of steel | |
CN104046915A (en) | Large-section high-performance hot work die steel for die casting and preparation technology thereof | |
CN102650020A (en) | High-silicon high-manganese type high-thermal stability hot work die steel and thermal treatment process thereof | |
CN105002439B (en) | A kind of grade wear-resisting steel of Brinell hardness 400 and its manufacture method | |
CN104313462A (en) | High wear-resistant hot-stamping die steel and manufacturing method thereof | |
CN101392353A (en) | High manganese low chromium type high strength toughness hot work die steel and preparation method thereof | |
CN102605261A (en) | Hot stamping mould steel and method for manufacturing same | |
CN102691005B (en) | Low alloy die steel | |
CN104911501B (en) | A kind of superhigh intensity high-carbon dislocation type martensite steel and preparation method thereof | |
CN109735777B (en) | Anti-oxidation hot-work die steel and preparation method thereof | |
CN106498294A (en) | A kind of high-level low-alloy wear-resistant steel of NM600 and its application | |
CN101476082B (en) | High performance low cost hot work die steel | |
CN102517509A (en) | HB 500-grade wear-resistant steel plate and preparation method thereof | |
CN102234743A (en) | Low carbon martensite steel plate and production method | |
CN102212753A (en) | Novel heat and abrasion resistant alloy steel material for hot stamping die | |
CN104451421A (en) | High-strength high-toughness bimetallic strip saw blade back steel and preparation method thereof | |
CN111500928A (en) | A low temperature, high toughness, high temperature, high strength and high hardenability hot die steel and preparation technology | |
CN101748331B (en) | High-aluminum nano-bainitic steel high-speed railway frog and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20131002 |