CN103923656B - A kind of preparation method of gadolinium oxide coated ferroferric oxide magnetic fluorescence nano hollow ball - Google Patents
A kind of preparation method of gadolinium oxide coated ferroferric oxide magnetic fluorescence nano hollow ball Download PDFInfo
- Publication number
- CN103923656B CN103923656B CN201310013691.4A CN201310013691A CN103923656B CN 103923656 B CN103923656 B CN 103923656B CN 201310013691 A CN201310013691 A CN 201310013691A CN 103923656 B CN103923656 B CN 103923656B
- Authority
- CN
- China
- Prior art keywords
- distilled water
- preparation
- red
- precipitation
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 title claims abstract description 4
- 229940075613 gadolinium oxide Drugs 0.000 title claims 2
- 229910001938 gadolinium oxide Inorganic materials 0.000 title claims 2
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 title claims 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000002245 particle Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000012153 distilled water Substances 0.000 claims description 22
- 239000001257 hydrogen Substances 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- 238000001556 precipitation Methods 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 10
- 239000008187 granular material Substances 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 6
- 239000004202 carbamide Substances 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000000084 colloidal system Substances 0.000 claims 4
- 238000004140 cleaning Methods 0.000 claims 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims 2
- 238000002156 mixing Methods 0.000 claims 2
- MWFSXYMZCVAQCC-UHFFFAOYSA-N gadolinium(iii) nitrate Chemical compound [Gd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O MWFSXYMZCVAQCC-UHFFFAOYSA-N 0.000 claims 1
- 238000007654 immersion Methods 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 21
- 239000002077 nanosphere Substances 0.000 abstract description 9
- 230000008569 process Effects 0.000 abstract description 9
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 9
- 239000002244 precipitate Substances 0.000 abstract description 7
- 229910052688 Gadolinium Inorganic materials 0.000 abstract description 5
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 abstract description 5
- 239000000090 biomarker Substances 0.000 abstract description 4
- 239000002872 contrast media Substances 0.000 abstract description 4
- 239000003814 drug Substances 0.000 abstract description 4
- 238000003384 imaging method Methods 0.000 abstract description 4
- 238000002595 magnetic resonance imaging Methods 0.000 abstract description 4
- 239000003937 drug carrier Substances 0.000 abstract description 3
- 239000006249 magnetic particle Substances 0.000 abstract description 3
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 3
- 241001391944 Commicarpus scandens Species 0.000 abstract description 2
- 230000009471 action Effects 0.000 abstract description 2
- 230000002776 aggregation Effects 0.000 abstract description 2
- 229940079593 drug Drugs 0.000 abstract description 2
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 238000005054 agglomeration Methods 0.000 abstract 1
- 235000014413 iron hydroxide Nutrition 0.000 abstract 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 10
- 239000011259 mixed solution Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000004005 microsphere Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 5
- 239000010453 quartz Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- ZSOJHTHUCUGDHS-UHFFFAOYSA-N gadolinium iron Chemical compound [Fe].[Gd] ZSOJHTHUCUGDHS-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229960005191 ferric oxide Drugs 0.000 description 2
- XWFVFZQEDMDSET-UHFFFAOYSA-N gadolinium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Gd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XWFVFZQEDMDSET-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 235000013980 iron oxide Nutrition 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 238000005424 photoluminescence Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- HVENHVMWDAPFTH-UHFFFAOYSA-N iron(3+) trinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HVENHVMWDAPFTH-UHFFFAOYSA-N 0.000 description 1
- SZQUEWJRBJDHSM-UHFFFAOYSA-N iron(3+);trinitrate;nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O SZQUEWJRBJDHSM-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000000707 layer-by-layer assembly Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000013421 nuclear magnetic resonance imaging Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000012946 outsourcing Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910003153 β-FeOOH Inorganic materials 0.000 description 1
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
一种氧化钆包裹四氧化三铁磁性荧光纳米空心球的制备方法,其利用硬模板法,用不同内径的二氧化硅作为模板,在二氧化硅的凝胶上沉淀氢氧化铁并且以此为模板再进行包覆稀土元素钆,从而获得颗粒直径大小不一的Gd2O3包裹Fe3O4磁性荧光纳米空心球。本发明工艺简便、成本低、重复性好,适宜规模化生产,且避免因磁性颗粒团聚带来的影响。制得的空心球具有相对较大的比表面积;粒径大小的可调节范围比较大,拓宽了空心球的尺寸可调领域;同时具有磁性和荧光性能,加磁场控制其取向和可透视化光学性能的药物载体可直观了解药物的走向,且在外力或扰动的作用下易于破碎,可用于造影剂和生物标记,核磁共振成像(MRI)、生物和生物医学成像。
A preparation method of gadolinium oxide-wrapped ferroferric oxide magnetic fluorescent nano hollow spheres, which utilizes a hard template method, uses silicon dioxide with different inner diameters as a template, precipitates iron hydroxide on a gel of silicon dioxide and uses it as a template. The template is further coated with the rare earth element gadolinium, thereby obtaining Gd 2 O 3 coated Fe 3 O 4 magnetic fluorescent hollow nanospheres with different particle diameters. The invention has the advantages of simple process, low cost and good repeatability, is suitable for large-scale production, and avoids the influence caused by the agglomeration of magnetic particles. The prepared hollow sphere has a relatively large specific surface area; the adjustable range of particle size is relatively large, which broadens the size adjustable field of the hollow sphere; it has magnetic and fluorescent properties at the same time, and its orientation can be controlled by adding a magnetic field and can be transparentized. The high-performance drug carrier can intuitively understand the direction of the drug, and is easy to break under the action of external force or disturbance, and can be used for contrast agents and biomarkers, magnetic resonance imaging (MRI), biological and biomedical imaging.
Description
技术领域technical field
本发明属于无机纳米材料技术领域,具体涉及一种Gd2O3包裹Fe3O4磁性荧光纳米空心球的制备方法。The invention belongs to the technical field of inorganic nanometer materials, and in particular relates to a preparation method of Gd 2 O 3 wrapped Fe 3 O 4 magnetic fluorescent nano hollow spheres.
背景技术Background technique
近年来,随着技术的发展,人们发现,与块体材料相比,相对应的同种材料的空心球由于具有高比表面积、更好的渗透和低密度,在催化、封装、细胞分离、化学反应器、药物输送、轻质材料、光电子器件等很多领域都有非常重要的应用[(a)C.N.R.Rao,A.Govindaraj,G.Gundiah,S.R.C.Vivekchand,Chem.Eng.Sci.2004,59,4665.(b)F.Caruso,Top.Curr.Chem.2003,227,145.]。因此,具有不同组成的空心微球的研究引起人们广泛的关注,特别是具有光学和磁性的多功能的空心微球,可以与外部磁场定位在一个特定区域针对药物输送和荧光成像。因为这些性能,已经被成功地用于造影剂和生物标记,用于磁共振成像(MRI)、生物和生物医学成像。在众多光学材料中,由于稀土材料高光致发光(PL)量子产率,发射波长可调谐,低的声子能量,化学稳定性和热稳定性高而备受青睐。许多科研工作者通过设计不同的路线制备了此类具有晶态或非晶态纳米结构球壁的空心微球。在已报道的文章中,空心微球的制备主要通过模板法,即以ɑ-Fe2O3,Fe3O4及β-FeOOH颗粒为模板,通过均匀沉淀法、层层静电自组装法、溶胶凝胶法等,将无机物包覆到模板上,然后通过热解或溶解除去模板,从而得到相应的核壳结构。模板法又分为硬模板法和软模板法。因为软模板是由一系列由两亲性分子形成的超分子聚集体,当体系环境有所改变时,其形貌可能发生变化,而不利于制备单分散且规则的结构。而硬模板法可以通过控制硬模板的尺寸而实现对空心球尺寸及均一性的控制,同时在反应体系和沉淀过程不改变其形貌,从而可以实现对球壁厚度和组成的控制。因此目前有关空心微球的制备,多是利用硬模板技术,而采用Gd2O3包裹Fe3O4磁性荧光纳米空心球的制备方法还未见报道。In recent years, with the development of technology, it has been found that, compared with bulk materials, the corresponding hollow spheres of the same material have high specific surface area, better penetration and low density, which are useful in catalysis, encapsulation, cell separation, There are very important applications in chemical reactors, drug delivery, lightweight materials, optoelectronic devices, etc. (b) F. Caruso, Top. Curr. Chem. 2003, 227, 145.]. Therefore, the study of hollow microspheres with different compositions has attracted widespread attention, especially the multifunctional hollow microspheres with optical and magnetic properties, which can be localized in a specific area with an external magnetic field for drug delivery and fluorescence imaging. Because of these properties, they have been successfully used as contrast agents and biomarkers for magnetic resonance imaging (MRI), biological and biomedical imaging. Among many optical materials, rare earth materials are favored due to their high photoluminescence (PL) quantum yield, tunable emission wavelength, low phonon energy, and high chemical and thermal stability. Many researchers have prepared such hollow microspheres with crystalline or amorphous nanostructure walls by designing different routes. In the reported articles, the preparation of hollow microspheres is mainly through the template method, that is, using ɑ-Fe 2 O 3 , Fe 3 O 4 and β-FeOOH particles as templates, through uniform precipitation method, layer-by-layer electrostatic self-assembly method, Sol-gel method, etc., coat inorganic substances on the template, and then remove the template by pyrolysis or dissolution, so as to obtain the corresponding core-shell structure. The template method is further divided into a hard template method and a soft template method. Because the soft template is a series of supramolecular aggregates formed by amphiphilic molecules, when the system environment changes, its morphology may change, which is not conducive to the preparation of monodisperse and regular structures. The hard template method can realize the control of the size and uniformity of the hollow sphere by controlling the size of the hard template, and at the same time do not change its morphology during the reaction system and precipitation process, so that the thickness and composition of the sphere wall can be controlled. Therefore, at present, the preparation of hollow microspheres mostly utilizes the hard template technology, but the preparation method of magnetically fluorescent hollow nanospheres wrapped with Gd 2 O 3 has not been reported yet.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种工艺简单、操作安全、成本低的氧化钆包裹四氧化三铁磁性荧光纳米空心球的制备方法,解决了由磁性颗粒作为模板带来的颗粒聚集问题,从而达到简化实验困的目的。The technical problem to be solved by the present invention is to provide a preparation method of gadolinium oxide-wrapped ferric iron tetroxide magnetic fluorescent nano hollow spheres with simple process, safe operation and low cost, which solves the problem of particle aggregation caused by magnetic particles as templates, In order to achieve the purpose of simplifying the experimental difficulties.
本发明解决上述技术问题所采用的技术方案为:一种氧化钆包裹四氧化三铁磁性荧光纳米空心球的制备方法,其特征在于包括如下步骤:The technical scheme adopted by the present invention to solve the above-mentioned technical problems is: a preparation method of gadolinium oxide-wrapped ferroferric oxide magnetic fluorescent hollow nanospheres, which is characterized in that it includes the following steps:
1)取二氧化硅纳米颗粒1.2~1.6g,加入10~25ml蒸馏水,制得二氧化硅胶体溶液;取九水硝酸铁0.200~0.268g和尿素0.200~0.300g溶于20~25ml蒸馏水中,制得A混合液;1) Take 1.2-1.6g of silica nanoparticles and add 10-25ml of distilled water to prepare a colloidal silica solution; take 0.200-0.268g of ferric nitrate nonahydrate and 0.200-0.300g of urea and dissolve them in 20-25ml of distilled water, Prepare A mixed solution;
2)将上述制得的二氧化硅胶体溶液和A混合液混合,制得B混合液,加入40~80ml蒸馏水,在80~95℃温度条件下搅拌4~6小时,得到红褐色均匀体系,冷却,得到红褐色颗粒沉淀,完成颗粒外第一次包覆;2) Mix the silica colloidal solution prepared above with A mixed solution to prepare B mixed solution, add 40-80ml of distilled water, and stir at 80-95°C for 4-6 hours to obtain a reddish-brown uniform system. After cooling, reddish-brown particle precipitation is obtained, and the first coating outside the particle is completed;
3)将上述红褐色颗粒沉淀清洗干燥后,取1.0~1.5g,加入10~25ml蒸馏水,制得均匀胶体溶液;取六水硝酸钆0.200~0.310g和尿素0.200~0.300g溶于20~25ml蒸馏水中,制得C混合液;3) After washing and drying the above-mentioned reddish-brown particle precipitate, take 1.0-1.5g and add 10-25ml of distilled water to obtain a uniform colloidal solution; take 0.200-0.310g of gadolinium nitrate hexahydrate and 0.200-0.300g of urea and dissolve them in 20-25ml In distilled water, the C mixed solution was obtained;
4)将步骤3)制备的均匀胶体溶液和C混合液混合,制得D混合液,加入40~80ml蒸馏水,在80~95℃温度条件下搅拌4~6小时,得到红色均匀体系,冷却,得到红色颗粒沉淀,完成颗粒外第二次包覆;4) Mix the homogeneous colloidal solution prepared in step 3) with the mixed solution C to prepare the mixed solution D, add 40-80ml of distilled water, and stir for 4-6 hours at a temperature of 80-95°C to obtain a red uniform system, cool, Red granule precipitation is obtained, and the second coating outside the granule is completed;
5)取上述包覆后的红色颗粒进行内核刻蚀,取底部的红色颗粒沉淀;5) Take the above-mentioned coated red particles for core etching, and take the red particles at the bottom to precipitate;
6)将底部的红色颗粒沉淀清洗干燥后得到的干燥粉末用氢气还原即可得到所需制备的Gd2O3包裹Fe3O4磁性荧光纳米空心球。6) The dry powder obtained after washing and drying the red particle precipitate at the bottom is reduced with hydrogen to obtain the desired prepared Gd 2 O 3 wrapped Fe 3 O 4 magnetic fluorescent hollow nanospheres.
以上各个物质的质量或者体积是以二氧化硅纳米颗粒1.2~1.6g为基准计算的。The mass or volume of each of the above substances is calculated on the basis of 1.2-1.6 g of silica nanoparticles.
作为改进,所述步骤3)中的清洗干燥是用蒸馏水清洗红褐色颗粒沉淀获得红褐色颗粒,然后真空干燥,干燥温度保持在30~60℃,得到干燥粉末。As an improvement, the washing and drying in the step 3) is to wash the precipitated reddish-brown particles with distilled water to obtain reddish-brown particles, and then vacuum-dry at a drying temperature of 30-60°C to obtain dry powder.
作为改进,所述步骤5)中的内核刻蚀是在红色颗粒中加入0.5~2.0mol/LNaOH溶液浸泡进行内核刻蚀,浸泡时间为3~6小时。As an improvement, the inner core etching in the step 5) is to add 0.5-2.0 mol/L NaOH solution to the red particles for soaking to perform inner core etching, and the soaking time is 3-6 hours.
再改进,所述步骤6)中的清洗干燥是用蒸馏水清洗红色颗粒沉淀获得红色颗粒,然后真空干燥,干燥温度保持在30~60℃,得到干燥粉末。Further improvement, the washing and drying in the step 6) is to wash the precipitated red particles with distilled water to obtain red particles, and then vacuum-dry them at a drying temperature of 30-60°C to obtain dry powder.
最后,所述步骤6)中的氢气还原的工艺为:氢气的气流速度为40~60mL/min,加热温度控制在450~550℃,保持此恒定温度和氢气流速2~3小时。Finally, the process of hydrogen reduction in step 6) is as follows: the flow rate of hydrogen is 40-60mL/min, the heating temperature is controlled at 450-550°C, and the constant temperature and hydrogen flow rate are maintained for 2-3 hours.
与现有技术相比,本发明的优点在于:采用湿法注入过程来制备铁/二氧化硅的工艺:并以铁/二氧化硅为模板外包覆Gd2O3,将其还原得到金属Fe3O4Gd2O3多功能纳米空心球;相比在磁性颗粒外包SiO2并以此为模板进行增頻实验,本发明的制备方法工艺简单、操作安全、成本低、重复性好,适宜规模化生产;制得的空心球分散性好,包覆均匀;表面具有多孔结构,具有相对大的比表面积和较强的磁性,易于实现控制,在医学方面具有很高的应用潜力,可用于造影剂和生物标记,核磁共振成像(MRI)、生物和生物医学成像;并且通过使用不同尺寸的模板,可按需要大量合成出不同内径大小的Fe3O4Gd2O3多功能纳米空心球。Compared with the prior art, the present invention has the advantages of: using a wet injection process to prepare iron/silicon dioxide: and using iron/silicon dioxide as a template to coat Gd 2 O 3 and reduce it to obtain metal Fe 3 O 4 Gd 2 O 3 multifunctional nano-hollow spheres; compared with outsourcing SiO 2 on magnetic particles and using this as a template for frequency-increasing experiments, the preparation method of the present invention has simple process, safe operation, low cost and good repeatability. It is suitable for large-scale production; the prepared hollow spheres have good dispersion and uniform coating; the surface has a porous structure, a relatively large specific surface area and strong magnetism, which is easy to control and has high application potential in medicine. For contrast agents and biomarkers, nuclear magnetic resonance imaging (MRI), biological and biomedical imaging; and by using templates of different sizes, a large number of Fe 3 O 4 Gd 2 O 3 multifunctional nano-hollows with different inner diameters can be synthesized as required ball.
附图说明Description of drawings
图1为实施例1中铁纳米空心球的扫描电子显微镜照片;Fig. 1 is the scanning electron micrograph of iron nano hollow sphere in embodiment 1;
图2为实施例1中铁-钆复合材料纳米空心球的扫描电子显微镜照片;Fig. 2 is the scanning electron micrograph of iron-gadolinium composite nano hollow sphere in embodiment 1;
图3为实施例1中铁-钆复合材料纳米空心球的元素分析照片;Fig. 3 is the elemental analysis photograph of iron-gadolinium composite nano hollow sphere in embodiment 1;
图4为实施例2中铁-钆复合材料纳米空心球的扫描电子显微镜照片;Fig. 4 is the scanning electron micrograph of iron-gadolinium composite nano hollow sphere in embodiment 2;
图5为实施例1中Fe3O4Gd2O3纳米空心球的X射线衍射图(Fe3O4:JCPDS CardNo.89-6466);Figure 5 is the X-ray diffraction pattern of Fe 3 O 4 Gd 2 O 3 nano hollow spheres in Example 1 (Fe 3 O 4 : JCPDS Card No. 89-6466);
图6为实施例1中Fe3O4Gd2O3纳米空心球的磁滞回线图。6 is a hysteresis loop diagram of Fe 3 O 4 Gd 2 O 3 hollow nanospheres in Example 1.
具体实施方式Detailed ways
以下结合附图实施例对本发明作进一步详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
实施例1Example 1
①取二氧化硅粒径为500nm的纳米微球1.5g,加10ml蒸馏水,超声至均匀胶体溶液。① Take 1.5g of nano-microspheres with a particle size of 500nm of silica, add 10ml of distilled water, and sonicate to a uniform colloidal solution.
②分别称量六水硝酸铁0.268g与尿素0.290g,将两者混合后溶解于20ml蒸馏水中,加入三颈烧瓶中。②Weigh 0.268g of ferric nitrate hexahydrate and 0.290g of urea respectively, mix them together, dissolve them in 20ml of distilled water, and add them into a three-necked flask.
③将①的混合溶液加入②的三颈烧瓶中,加入70ml蒸馏水,为红色均匀胶体溶液。③Put the mixed solution of ① into the three-neck flask of ②, and add 70ml of distilled water to form a red homogeneous colloidal solution.
④将三颈烧瓶放入恒温水槽中,搅拌,调节恒温水浴温度在95℃,在体系温度达到95℃后,持续搅拌4h。④Put the three-necked flask into a constant temperature water tank, stir, adjust the temperature of the constant temperature water bath at 95°C, and keep stirring for 4 hours after the system temperature reaches 95°C.
⑤将上述混合液离心,用二次蒸馏水清洗,再离心,得到红褐色固体沉淀。⑤ Centrifuge the above mixed solution, wash with double distilled water, and then centrifuge to obtain a reddish-brown solid precipitate.
⑥以上步骤是进行一次颗粒外包覆的完整工艺,可以依据制备需要在此产物的基础上继续进行包覆稀土元素钆。取上述已制备的纳米微球1.5g,加10ml蒸馏水,超声至均匀胶体溶液。⑥ The above steps are a complete process for one-time coating of particles, and the coating of rare earth element gadolinium can be continued on the basis of this product according to the preparation needs. Take 1.5 g of the above prepared nano-microspheres, add 10 ml of distilled water, and sonicate to obtain a uniform colloidal solution.
⑦分别称量六水硝酸钆0.310g与尿素0.290g,将两者混合后溶解于20ml蒸馏水中,加入三颈烧瓶中。将三颈烧瓶放入恒温水槽中,搅拌,调节恒温水浴温度在95℃,在体系温度达到95℃后,持续搅拌4h。⑦Weigh 0.310g of gadolinium nitrate hexahydrate and 0.290g of urea respectively, mix them together, dissolve them in 20ml of distilled water, and add them to a three-neck flask. Put the three-necked flask into a constant temperature water tank, stir, adjust the temperature of the constant temperature water bath at 95°C, and keep stirring for 4 hours after the system temperature reaches 95°C.
⑧将上述混合液离心,用二次蒸馏水清洗,再离心,得到红色固体沉淀。⑧ Centrifuge the above mixed solution, wash with double distilled water, and then centrifuge to obtain a red solid precipitate.
⑨将红色固体粉末中加入0.8mol/L NaOH溶液浸泡,浸泡4h,将上层溶液倾倒出,得到底部红色固体沉淀。用蒸馏水多次洗涤红色固体沉淀,将洗涤干净的粉末于真空干燥箱中,60℃真空干燥。⑨Add 0.8mol/L NaOH solution to the red solid powder and soak for 4 hours, then pour out the upper layer solution to obtain a red solid precipitate at the bottom. The red solid precipitate was washed several times with distilled water, and the washed powder was vacuum-dried at 60°C in a vacuum oven.
⑩取少量上述干燥粉末,置于小石英舟中,放入石英玻璃管中。通入纯氢气60mL/min,保持恒定氢气流速,采用程序升温,在45分钟内升温至450℃,保持此恒定温度和氢气流速2h后,停止加热,让炉膛及石英管自然冷却至常温状态,此间仍然保持恒定氢气流12h。此时可以打开石英管,小心将石英舟取出,迅速将粉末装入小试剂瓶内真空保存。⑩ Take a small amount of the above dry powder, put it in a small quartz boat, and put it into a quartz glass tube. Inject pure hydrogen at 60mL/min, maintain a constant hydrogen flow rate, and use a temperature program to raise the temperature to 450°C within 45 minutes. After maintaining this constant temperature and hydrogen flow rate for 2 hours, stop heating, and let the furnace and quartz tube naturally cool to room temperature. During this period, a constant hydrogen flow was maintained for 12 hours. At this time, the quartz tube can be opened, the quartz boat can be carefully taken out, and the powder can be quickly put into a small reagent bottle for vacuum storage.
如图2所示,从SEM(Scanning Electron Microscopy扫描电子显微镜)图中可以看出,本实施例中的Fe3O4Gd2O3纳米空心球具有球状且中空结构,分散性好,粒径均匀,表面具有条状突起,包覆的外壳厚度大约50nm左右,表面存在小孔。As shown in Figure 2, it can be seen from the SEM (Scanning Electron Microscopy) figure that the Fe 3 O 4 Gd 2 O 3 hollow nanospheres in this example have a spherical and hollow structure, good dispersion, and a particle size of Uniform, with strip-like protrusions on the surface, the thickness of the coated shell is about 50nm, and there are small holes on the surface.
实施例2Example 2
按上述实施例1的方法中的配量不变,用二氧化硅粒径180nm作为内核,进行包覆,然后用氢氧化钠0.5mol/L刻蚀掉内核,用氢气还原,还原温度保持在450℃,其他条件与实施例1相同,得到Fe3O4Gd2O3纳米空心球。从图4的SEM可以看出,整体包覆比较均匀,单分散且规则。The proportioning in the method of above-mentioned embodiment 1 is constant, uses silicon dioxide particle diameter 180nm as inner core, carries out coating, then etches away inner core with sodium hydroxide 0.5mol/L, reduces with hydrogen, and reduction temperature remains at 450° C., other conditions were the same as in Example 1, and Fe 3 O 4 Gd 2 O 3 hollow nanospheres were obtained. It can be seen from the SEM of Figure 4 that the overall coating is relatively uniform, monodisperse and regular.
总之,本发明报道了一种利用硬模板法,用不同内径的二氧化硅作为模板,通过水解过程合成出颗粒内径大小大约为500nm和180nm的金属Fe3O4Gd2O3纳米空心球。我们采用湿法注入过程后并且将其还原,得到金属Fe3O4Gd2O3纳米空心球。In conclusion, the present invention reports a method of using a hard template method, using silica with different inner diameters as a template, and synthesizing metal Fe 3 O 4 Gd 2 O 3 hollow nanospheres with inner diameters of about 500nm and 180nm through a hydrolysis process. We used the wet injection process and reduced it to obtain metallic Fe 3 O 4 Gd 2 O 3 hollow nanospheres.
本专利中得到的空心球具有相对较大的比表面积;粒径大小的调节范围比较大,拓宽了空心球的尺寸可调领域;Fe3O4Gd2O3纳米空心球具有荧光和磁性,可以加磁场控制其取向,可透视化光学性能的药物载体可直观了解药物的走向,且这种多孔空心球在外力或扰动的作用下易于破碎,这为以后能在医学方面作为药物载体具有很高的潜在应用价值。目前这类带有荧光和磁性能的材料,现已被成功地用于造影剂和生物标记,核磁共振成像(MRI)、生物和生物医学成像。The hollow spheres obtained in this patent have a relatively large specific surface area; the adjustment range of the particle size is relatively large, which broadens the size adjustable field of the hollow spheres; the Fe 3 O 4 Gd 2 O 3 nano hollow spheres have fluorescence and magnetism, Its orientation can be controlled by adding a magnetic field, and the drug carrier with transparent optical properties can intuitively understand the direction of the drug, and this porous hollow sphere is easy to break under the action of external force or disturbance, which has great potential as a drug carrier in medicine in the future. High potential application value. At present, such materials with fluorescent and magnetic properties have been successfully used in contrast agents and biomarkers, magnetic resonance imaging (MRI), biological and biomedical imaging.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310013691.4A CN103923656B (en) | 2013-01-14 | 2013-01-14 | A kind of preparation method of gadolinium oxide coated ferroferric oxide magnetic fluorescence nano hollow ball |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310013691.4A CN103923656B (en) | 2013-01-14 | 2013-01-14 | A kind of preparation method of gadolinium oxide coated ferroferric oxide magnetic fluorescence nano hollow ball |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103923656A CN103923656A (en) | 2014-07-16 |
CN103923656B true CN103923656B (en) | 2015-08-26 |
Family
ID=51142058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310013691.4A Expired - Fee Related CN103923656B (en) | 2013-01-14 | 2013-01-14 | A kind of preparation method of gadolinium oxide coated ferroferric oxide magnetic fluorescence nano hollow ball |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103923656B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104830323B (en) * | 2015-05-25 | 2016-08-31 | 广东工业大学 | A preparation method of Yb3+/Er3+ co-doped MnF2 inner hollow spheres |
CN105482804B (en) * | 2016-01-11 | 2018-03-09 | 东北师范大学 | A kind of latent fingerprint detection probe and preparation method thereof |
CN105950148A (en) * | 2016-04-29 | 2016-09-21 | 中国计量大学 | Preparation method for preparing ferroferric oxide hollow ball-based fluorescent magnetic composite material |
CN106799233B (en) * | 2017-01-13 | 2019-05-21 | 河北科技大学 | A kind of hollow Nanometer Copper/rare earth catalyst and its preparation method and application for removing underwater trace hardly degraded organic substance |
CN108919386B (en) * | 2018-06-20 | 2019-10-18 | 中山大学 | Method for preparing magnetic amorphous photonic crystals based on ferroferric oxide/silica core-shell nanoparticles |
CN109536448B (en) * | 2018-12-10 | 2020-01-10 | 济宁医学院 | Multifunctional tretinoin-loaded gadolinium-doped ferroferric oxide composite nanoparticle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1616593A (en) * | 2004-11-03 | 2005-05-18 | 东南大学 | Ultrafine spindle-shaped fluorescent paramagnetic rare earth particle material and preparation method thereof |
CN102198385A (en) * | 2011-05-23 | 2011-09-28 | 同济大学 | Preparation method of magnetic fluorescence dual-function silicon oxide hollow microspheres |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6666991B1 (en) * | 1998-11-27 | 2003-12-23 | Nittetsu Mining Co., Ltd. | Fluorescent or phosphorescent composition |
-
2013
- 2013-01-14 CN CN201310013691.4A patent/CN103923656B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1616593A (en) * | 2004-11-03 | 2005-05-18 | 东南大学 | Ultrafine spindle-shaped fluorescent paramagnetic rare earth particle material and preparation method thereof |
CN102198385A (en) * | 2011-05-23 | 2011-09-28 | 同济大学 | Preparation method of magnetic fluorescence dual-function silicon oxide hollow microspheres |
Also Published As
Publication number | Publication date |
---|---|
CN103923656A (en) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103923656B (en) | A kind of preparation method of gadolinium oxide coated ferroferric oxide magnetic fluorescence nano hollow ball | |
CN102633265B (en) | Preparation method for controllable hollow mesoporous silicon dioxide nanospheres | |
CN103949193B (en) | Universal method for preparing inorganic hollow microspheres | |
CN108529692B (en) | Preparation method of hollow spherical nickel oxide | |
CN101767205B (en) | Preparation method of hollow nickel nanosphere | |
CN105129857B (en) | A kind of flower-shaped tungsten oxide nanometer material and preparation method thereof | |
CN102672169A (en) | Method for preparing gold/titanium dioxide core-shell nanoparticle | |
CN102350281A (en) | Preparation method of fluorescent mesoporous silica-based core-shell nanoscale capsule | |
CN103754837B (en) | Utilize porous bismuth oxide for the method for Template preparation bismuth-containing nano-hollow ball | |
CN103447549B (en) | Preparation method of cobalt nanosphere | |
CN101318709B (en) | A method for preparing γ-Fe2O3 nano hollow magnetic microspheres | |
CN105238349B (en) | A kind of Fe3O4ZnO nano composite and preparation method thereof | |
CN105084410A (en) | Regulating and controlling preparation method for spherical CuO micro-nano hierarchical structure | |
CN104439276B (en) | A kind of quick method and product preparing hollow porous silica/argentum nano composite material | |
CN113066657B (en) | A kind of hedgehog-shaped magnetic microsphere and preparation method thereof | |
CN103143359A (en) | A magnetic recyclable hollow TiO2-SiO2-CoFe2O4 nano photocatalytic material and its preparation method | |
CN101236816B (en) | Preparation method of magnetic core mesoporous hollow sphere | |
CN102689917A (en) | Method for preparing barium sulfate porous microspheres and titanium dioxide nano-particles by using titanium sulfate | |
CN105950148A (en) | Preparation method for preparing ferroferric oxide hollow ball-based fluorescent magnetic composite material | |
CN106241879A (en) | A kind of preparation method of nano tungsten trioxide hollow reunion ball powder | |
CN105198004B (en) | A kind of Fe3O4-SnO2 nanocomposite material and preparation method thereof | |
CN102531068B (en) | Method for synthesizing lot of mono-dispersed ferroferric oxide (Fe3O4) nano-crystals | |
CN105562715B (en) | A kind of low temperature aqueous phase preparation method of porous gold nanocrystals | |
CN105712401B (en) | Calcium vanadate sphere material and its preparation method and application | |
CN105060331B (en) | A kind of preparation method of the micro-nano hierarchy of controllable basic copper carbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150826 Termination date: 20180114 |
|
CF01 | Termination of patent right due to non-payment of annual fee |