CN103918119B - 具有优异的生产率和安全性的二次电池 - Google Patents
具有优异的生产率和安全性的二次电池 Download PDFInfo
- Publication number
- CN103918119B CN103918119B CN201280041160.XA CN201280041160A CN103918119B CN 103918119 B CN103918119 B CN 103918119B CN 201280041160 A CN201280041160 A CN 201280041160A CN 103918119 B CN103918119 B CN 103918119B
- Authority
- CN
- China
- Prior art keywords
- secondary battery
- insulator
- electrolyte
- roll
- battery according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0431—Cells with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/60—Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
- H01M50/609—Arrangements or processes for filling with liquid, e.g. electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/10—Batteries in stationary systems, e.g. emergency power source in plant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/552—Terminals characterised by their shape
- H01M50/559—Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
- H01M50/56—Cup shaped terminals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Cell Separators (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
本发明公开一种具有其中将具有正极/隔膜/负极结构的卷状物安装在圆筒状电池壳中的结构的二次电池,其中安装在所述卷状物顶部的板状绝缘体包含由聚合物树脂或聚合物复合材料制成的成型品,并且多个细孔贯穿通过所述成型品。
Description
技术领域
本发明涉及具有优越的生产率和安全性的二次电池。更具体地,本发明涉及具有其中将具有正极/隔膜/负极结构的卷状物(jelly-roll)安装在圆筒状电池壳中的结构的二次电池,其中安装在卷状物顶部的板状绝缘体(insulator)包含由聚合物树脂或聚合物复合材料制成的成型品(molded article)并且多个细孔贯穿通过所述成型品。
背景技术
与移动装置相关的技术的开发以及为此的需求增加已经使得对作为能源的二次电池的需求快速增加。在二次电池中,将具有高能量密度、高驱动电压以及优越的存储和寿命特性的锂二次电池广泛用作包括移动装置的各种电类产品的能源。
根据电池壳的形状,二次电池可分成分别安装在圆筒状和矩状金属罐中的圆筒状和矩状电池,以及安装在由铝层压片制成的袋状壳中的袋状电池。其中,圆筒状电池具有容量相对高和结构稳定性优越的优势。安装在电池壳中的电极组件是使得能够充放电的发电装置,其具有正极/隔膜/负极层压体结构,并且分成:卷状物型,其中包含设置在各自由涂布有活性材料的长片制成的正极和负极之间的隔膜的电极组件被卷绕;堆叠型,其中将多个正极和多个负极依次层压,使得隔膜被设置在正极和负极之间;以及堆叠/折叠型,其为卷状物型和堆叠型的组合。其中,卷状物型电极组件具有制造容易和每单位重量的能量密度高的优势。
在这点上,图1中示出常规的圆筒状二次电池。图2和图3的平面图中示出通常用于圆筒状二次电池的绝缘体。
参考图2和图3,通过如下制造圆筒状二次电池100:将卷状物型(卷绕型)电极组件120安装在电池壳130中,将电解质注射到电池壳130中,并且将具有电极端子(例如正极端子;未示出)的盖组件(cap assembly)140结合到壳130的开放顶部。
通过如下获得电极组件120:将隔膜123插在正极121和负极122之间,并且将所得结构卷绕成圆形。将圆筒状中心销150插入到卷状物的核心(中心)。中心销150通常由金属制成以赋予预定强度,并且具有圆曲板材料的中空形圆筒状结构。这种中心销150安置和支撑电极组件,并且用作使得能够排放在充放电和运行期间的内部反应所产生的气体的通道。
另外,板状绝缘体180a被安装在电极组件120的顶部,并且在其中心具有与中心销150的通孔(through hole)151连通以便排放气体的开口181a,并且将电极组件120的正极极耳(cathode tap)142连接到盖组件140的盖板145。
然而,布置在卷状物顶部的绝缘体180a是阻断使得在将电解质注射到电池的过程中能够使电解质渗透到电池中的通道的结构。因此,电解质仅通过与中心销150连通的开口181a以及除绝缘体180a以外的区域而渗透到电池中,由此注射电解质会不利地需要长时间并因此导致生产率劣化。
为了提高电解质的渗透性,如图3中所示,提出具有其中在开口181b周围形成多个通孔182b的结构的部分连接构件180b。
然而,发现这种结构具有严重的安全性问题。也就是说,在制造和/或组装盖组件140、电池壳130等的过程中产生的导电杂质粒子如金属粉末会通过贯穿绝缘体180b的通孔182b而渗透到电极组件120中,由此不利地导致出现短路或电池寿命劣化。
因此,对提高电解质的注射处理性并且防止在组装电池的过程中引入异物从而延长寿命的二次电池的需求日益增大。
发明内容
【技术问题】
因此,为了解决有待解决的上述和其它技术问题而作出了本发明。
作为各种用于解决上述问题的广泛而深入的研究和实验的结果,本发明人开发了具有下述特定形状的绝缘体,并且发现所述绝缘体会大大提高电解质的可注射性、防止在卷状物中引入在组装过程期间产生的异物如珠粒(beading),并从而防止电池缺陷且提高安全性。已经基于该发现完成了本发明。
【技术方案】
根据本发明的一个方面,提供了具有其中将具有正极/隔膜/负极结构的卷状物安装在圆筒状电池壳中的结构的二次电池,其中安装在卷状物顶部的板状绝缘体包含由聚合物树脂或聚合物复合材料制成的成型品并且多个细孔贯穿通过所述成型品。
因此,根据本发明的二次电池使用绝缘体,所述绝缘体包含多个贯穿通过由聚合物树脂或聚合物复合材料制成的成型品的细孔,从而因细孔而作为注射电解质的结果使注射通道分支、缩短注射时间并因此提高可注射性。
另外,据本发明的二次电池不具有在卷状物中引入异物的风险,因为在注射电解质期间仅有电解质通过细孔被注射入卷状物中,由此省略筛选并除去异物的过程,从而有利地极大提高生产率。
此外,根据本发明的二次电池没有由引入异物导致的短路风险并由此有效地提高了安全性。
在一个优选实施方式中,细孔允许渗透电解质,但是不允许渗透尺寸为100μm以上的异物。
优选地,细孔提供作为绝缘体的固有功能的电绝缘性,并且在注射电解质期间对电解质具有高渗透性,且具有1μm~100μm的尺寸以防止尺寸为100μm以上的异物的渗透。
细孔的位置以及其间的距离不受限制,只要其不对防止引入异物、电解质可注射性和气体排放造成损害即可。
在一个具体实施方式中,细孔可在绝缘体的整个表面上彼此相隔均匀或不均匀的距离以防止引入尺寸为100μm以上的异物、使得可注射电解质和排放气体。此处,距离是指在细孔之间的距离并且可为例如10μm~100μm。
当将电解质注射到在绝缘体的整个表面上形成的细孔中时,可使注射通道进一步分支,提高了可注射性,可缩短注射时间,在细孔之间的预定距离下注射速度是恒定的,电解质可均匀地浸渗到卷状物中,且结果,有利地提高了电池性能。
另外,在绝缘体的整个表面上彼此间隔预定距离的细孔提供通道,从而使得能够排放在电解质分解期间产生的气体。就气体扩散来说,当通过分支的排放通道排放气体时可以增大排放速度。
然而,如上所述,细孔之间的距离可以是不均匀的。
细孔可以采用在纵向具有均匀直径的通孔或在纵向具有不均匀直径的连通孔(communication hole)的形式。通孔和连通孔的形状与绝缘体中电解质和气体的通道相关。
具体地,具有均匀直径的通孔形状形成二维通道,而具有不均匀直径的连通孔形状形成三维通道。就电解质的均匀注射和气体的扩散来说,细孔优选具有在纵向具有不均匀直径的连通孔形状。
优选地,成型品具有电绝缘性以实现卷状物和顶盖组件之间的绝缘。
聚合物树脂可以是选自聚乙烯(PE)、聚丙烯(PP)、聚丁烯(PB)、聚苯乙烯(PS)、聚对苯二甲酸乙二醇酯(PET)、天然橡胶和合成橡胶的一种或多种。
存在各种在用于本发明绝缘体的由聚合物树脂或聚合物复合材料制成的成型品中形成细孔的方法。
所述方法的实例包括但不限于使用预定的针型构件在成型品中穿孔,以及包括将填料添加到用于形成成型品的树脂熔体或溶液中、通过冷却或干燥使混合物固化并除去填料的方法。
优选地,绝缘体的总厚度为0.1mm~0.5mm。当绝缘体的厚度过小时,可能不会充分发挥绝缘体的固有电绝缘功能,并且当其厚度过大时,不利地,在尺寸相同的电池壳中,卷状物尺寸减小并且电池容量由此减小。
优选地,可以将根据本发明的二次电池应用于通过将含锂电解质浸渗在卷状物中而制造的锂二次电池。
通常,锂二次电池包含正极、负极、隔膜、含锂水性电解质等。
例如,通过如下制造正极:通过将含有正极活性材料并任选地含有导电材料、粘合剂、填料等的正极混合物与溶剂如NMP混合以制备浆料,并将所述浆料涂布至正极集电器,随后进行干燥和轧制。
正极活性材料的实例包括但不限于层状化合物如锂钴氧化物(LiCoO2)或锂镍氧化物(LiNiO2)或被一种以上过渡金属置换的所述化合物;锂锰氧化物如Li1+yMn2-yO4(其中y是0~0.33)、LiMnO3和LiMn2O3,以及LiMnO2;锂铜氧化物(Li2CuO2);钒氧化物如LiV3O8、LiFe3O4、V2O5和Cu2V2O7;由LiNi1-yMyO2(其中M=Co、Mn、Al、Cu、Fe、Mg、B或Ga,y=0.01~0.3)表示的Ni位点型锂镍氧化物;由式LiMn2-yMyO2(其中M=Co、Ni、Fe、Cr、Zn或Ta,y=0.01~0.1)或Li2Mn3MO8(其中M=Fe、Co、Ni、Cu或Zn)表示的锂锰复合氧化物;其中Li的一部分被碱土金属离子置换的LiMn2O4;二硫化合物;Fe2(MoO4)3等。
通常将正极集电器制成具有3μm~500μm的厚度。可以使用任意正极集电器而没有特别限制,只要其具有合适的导电性而不在制造的电池中造成不利的化学变化即可。正极集电器的实例包括不锈钢,铝,镍,钛,烧结碳,以及用碳、镍、钛或银表面处理过的铝或不锈钢。这些集电器在其表面上包含细小的不规则以增强对电极活性材料的粘合。另外,可以以包括膜、片、箔、网、多孔结构、泡沫和无纺布的各种形式使用集电器。
基于包含正极活性材料的混合物的总重量,通常以1重量%至30重量%的量使用导电材料。可以使用任意导电材料而没有特别限制,只要其具有合适的导电性而不在电池中造成不利的化学变化即可。导电材料的实例包括导电材料,包括石墨;碳黑如碳黑、乙炔黑、科琴黑、槽法碳黑、炉黑、灯黑和热裂法碳黑;导电纤维如碳纤维和金属纤维;金属粉末如氟化碳粉末、铝粉末和镍粉末;导电晶须如氧化锌和钛酸钾;导电金属氧化物如二氧化钛;以及聚苯撑衍生物。
粘合剂是增强电极活性材料对导电材料和集电器的粘合的组分。基于包含正极活性材料的混合物的总重量,通常以1重量%至30重量%的量添加粘合剂。粘合剂的实例包括聚乙二烯(polyvinylidene)、聚乙烯醇、羧甲基纤维素(CMC)、淀粉、羟丙基纤维素、再生纤维素、聚乙烯基吡咯烷酮、四氟乙烯、聚乙烯、聚丙烯、乙烯-丙烯-二烯三元共聚物(EPDM)、磺化EPDM、丁苯橡胶、氟橡胶以及各种共聚物。
填料是任选地用于抑制电极膨胀的组分。可以使用任意填料而没有特别限制,只要所述填料不在制造的电池中造成不利的化学变化并且是纤维材料即可。填料的实例包括烯烃聚合物如聚乙烯和聚丙烯;以及纤维材料如玻璃纤维和碳纤维。
隔膜设置在正极和负极之间。将具有高离子渗透性和机械强度的绝缘薄膜用作隔膜。所述隔膜典型地具有0.01μm~10μm的孔径和5μm~300μm的厚度。将具有耐化学性和疏水性的、由烯烃聚合物如聚丙烯和/或玻璃纤维或聚乙烯制成的片或无纺布用作隔膜。当将诸如聚合物的固体电解质用作电解质时,所述固体电解质也可以充当隔膜和电解质两者。
例如,通过如下制造负极:通过将含有负极活性材料的负极混合物与溶剂如NMP混合以制备浆料,并将所述浆料涂布至负极集电器,随后进行干燥和轧制。负极混合物可以进一步任选地含有上述组分。
负极活性材料的实例包括碳如硬碳、石墨基碳;金属复合氧化物如LixFe2O3(0≤x≤1)、LixWO2(0≤x≤1)、SnxMe1-xMe’yOz(Me:Mn,Fe,Pb,Ge;Me’:Al,B,P,Si,I、II和III族元素,卤素;0<x≤1;1≤y≤3;1≤z≤8);锂金属;锂合金;硅基合金;锡基合金;金属氧化物如SnO、SnO2、PbO、PbO2、Pb2O3、Pb3O4、Sb2O3、Sb2O4、Sb2O5、GeO、GeO2、Bi2O3、Bi2O4和Bi2O5;导电聚合物如聚乙炔;Li-Co-Ni基材料等。
通常将负极集电器制成具有3μm~500μm的厚度。可以使用任意负极集电器而没有特别限制,只要其具有合适的导电性而不在电池中造成不利的化学变化即可。负极集电器的实例包括铜,不锈钢,铝,镍,钛,烧结碳,以及用碳、镍、钛或银表面处理过的铜或不锈钢,以及铝-镉合金。类似于正极集电器,所述集电器在其表面上包含细小的不规则以增强对电极活性材料的粘合。另外,可以以包括膜、片、箔、网、多孔结构、泡沫和无纺布的各种形式使用集电器。
同时,电解质由非水电解质和锂盐组成。优选电解质的实例包括非水有机溶剂、有机固体电解质、无机固体电解质等。
非水溶剂的实例包括非质子性有机溶剂如N-甲基-2-吡咯烷酮、碳酸亚丙酯、碳酸亚乙酯、碳酸亚丁酯、碳酸二甲酯、碳酸二乙酯、γ-丁内酯、1,2-二甲氧基乙烷、四羟基franc、2-甲基四氢呋喃、二甲亚砜、1,3-二氧戊烷、甲酰胺、二甲基甲酰胺、二氧戊烷、乙腈、硝基甲烷、甲酸甲酯、乙酸甲酯、磷酸三酯、三甲氧基甲烷、二氧戊烷衍生物、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、碳酸亚丙酯衍生物、四氢呋喃衍生物、醚、丙酸甲酯和丙酸乙酯。
有机固体电解质的实例包括聚乙烯衍生物、聚氧化乙烯衍生物、聚氧化丙烯衍生物、磷酸酯聚合物、聚搅拌赖氨酸(poly agitation lysine)、聚酯硫化物、聚乙烯醇、聚偏二氟乙烯和含有离子离解基团的聚合物。
无机固体电解质的实例包括锂的氮化物、卤化物和硫酸盐如Li3N、LiI、Li5NI2、Li3N-LiI-LiOH、LiSiO4、LiSiO4-LiI-LiOH、Li2SiS3、Li4SiO4、Li4SiO4-LiI-LiOH和Li3PO4-Li2S-SiS2。
锂盐是易溶于上述非水电解质中的材料并且其实例包括LiCl、LiBr、LiI、LiClO4、LiBF4、LiB10Cl10、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiAlCl4、CH3SO3Li、CF3SO3Li、(CF3SO2)2NLi、氯硼烷锂、低级脂族羧酸锂、四苯基硼酸锂和酰亚胺。
另外,为了提高充放电特性和阻燃性,例如可以向非水电解质中添加吡啶、亚磷酸三乙酯、三乙醇胺、环醚、乙二胺、正甘醇二甲醚、六磷酸三酰胺(hexaphosphoric triamide)、硝基苯衍生物、硫、醌亚胺染料、N-取代的唑烷酮、N,N-取代的咪唑烷、乙二醇二烷基醚、铵盐、吡咯、2-甲氧基乙醇、三氯化铝等。如果必要,为了赋予不燃性,非水电解质可以进一步包含含卤素的溶剂如四氯化碳和三氟乙烯。此外,为了提高高温存储特性,非水电解质可另外含有二氧化碳气体、氟代碳酸亚乙酯(FEC)、丙烯磺酸内酯(PRS)或氟代碳酸亚丙酯(FPC)。
同时,电池可以包含在绝缘体中贯穿的开口以使得能够排放气体并使得电极端子穿过。
本发明还提供包含所述二次电池作为电源的装置,并且就优越的寿命和安全性来说,优选将根据本发明的装置用于移动装置如移动电话和可携式电脑以及轻型电动车辆(light electronic vehicles,LEV)、电动车辆(EV)、混合动力车辆(HEV)、插电式混合动力车辆和电力存储装置。
锂二次电池,以及包含锂二次电池作为单元电池的中型和大型电池模块和装置的结构和制造方法在本领域中是熟知的并因此将其详细描述省略。
附图说明
根据以下详细描述并结合附图,将更加清楚地理解本发明的上述和其它目的、特征和其它优势,其中:
图1是示出代表性圆筒状二次电池的示意性截面图;
图2是示出根据一个实施方式的用于图1二次电池的绝缘体的平面图;
图3是示出根据另一实施方式的用于图1二次电池的绝缘体的平面图;并且
图4是示出根据本发明的一个实施方式的绝缘体的平面图。
具体实施方式
现在,将参考以下实施例更详细地描述本发明。提供这些实施例仅为了说明本发明并且不应将其解释为限制本发明的范围和主旨。
图4是示意性示出根据本发明的一个实施方式的绝缘体的平面图。
参考图4和图1,二次电池100具有其中将具有正极121/隔膜123/负极122结构的卷状物120安装在圆筒状电池壳130中的结构,其中将绝缘体180c安装在卷状物120的顶部。
绝缘体180c包含厚度为约0.4mm的聚对苯二甲酸乙二醇酯(PET),在其一侧设置有开口181c并且在其整个表面上设置有多个直径为10μm~30μm的彼此间隔预定距离的细孔182c。
因此,电解质在注射之后通过多个细孔182c渗透到绝缘体180c的整个表面,由此使得可注射性大大改善并且防止短路。
现在,将参考以下实施例更详细地描述本发明。提供这些实施例仅为了说明本发明并且不应将其解释为限制本发明的范围和主旨。
[实施例1]
如图4中所示,使用PET制造厚度为0.4mm的绝缘体,所述绝缘体包含在其一侧穿孔的宽度为6mm并且长度为2.5mm的矩状开口,并且在其整个表面上包含多个直径为约60μm的、以约100μm预定距离穿孔的细孔。然后,将绝缘体安装在其中正极/隔膜/负极结构基于中心销卷绕的卷状物顶部,并且在将在电池组装的过程中产生的细金属粉末置于绝缘体上的状态下制造18650标准(直径18mm、长度65mm)的圆筒状二次电池。
[实施例2]
以与实施例1中相同的方式制造绝缘体和二次电池,不同之处在于制备了在其整个表面上包含多个以约120μm预定距离形成的直径为约100μm的细孔的绝缘体。
[比较例1]
以与实施例1中相同的方式制造绝缘体和二次电池,不同之处在于不包含多个细孔,如图2中所示。
[比较例2]
以与实施例1中相同的方式制造绝缘体和二次电池,不同之处在于形成三个直径为2.5mm的通孔以代替细孔,如图3中所示。
[比较例3]
以与实施例1中相同的方式制造绝缘体和二次电池,不同之处在于制备了在其整个表面上包含多个以约120μm预定距离穿孔的直径为150μm的细孔的绝缘体。
[试验例1]
对实施例1和实施例2以及比较例1~比较例3中制造的二次电池进行电解质浸渗试验。下表1中示出结果。通过如下进行电解质浸渗试验:将1M LiPF6碳酸酯电解质注射到所制造的圆筒状电池壳中,测量卷状物的浸渗比达到100%所用的时间,重复这个过程四次并计算四个值的平均值。
另外,将盖组件焊接至所制造的二次电池的开放顶部以制造10个样品。对样品进行充放电试验并且确认短路的产生。下表1中示出结果。
[表1]
如从表1可见,与比较例1相比,根据本发明的实施例1~实施例2的电池的电解质浸渗时间大大缩短。也就是说,可见电解质有效地渗透通过在绝缘体中形成的多个细孔。
与比较例1的电池相比,尽管比较例2的电池显示浸渗改善,但是短路增加;而尽管比较例3的电池也显示与实施例1和实施例2相当的浸渗,但是显示更高的短路比。发现其原因在于金属粉末渗透到相对大的孔中,从而导致卷状物中的短路。
另一方面,比较例1的电池虽然在安装在电池上的绝缘体中没有贯穿细孔,但是与实施例1和实施例2的电池相比,比较例1的电池显示高的短路比。认为短路比高的原因归因于以下事实:在实施例1和实施例2的电池中,当金属粉末陷入在细孔中时,金属粉末的移动受到抑制,而在比较例1的电池中,金属粉末会在绝缘体的光滑表面上自由移动并由此通过开口或绝缘体的周围移动至卷状物。
虽然为了例示性目的而公开了本发明的优选实施方式,但是本领域技术人员应了解,在不偏离如在随附权利要求书中公开的本发明的范围和主旨的情况下,可能有各种修改、增加和替代。
工业实用性
如根据前述内容显而易见,根据本发明的二次电池包含多个贯穿通过由聚合物树脂或聚合物复合材料制成的成型品的细孔,从而因细孔而在注射电解质期间使注射通道分支、缩短注射时间并因此提高可注射性。
根据本发明的二次电池可有利地省略用于筛选并除去异物的过程,在一些情况下,省略用于防止或除去弯曲现象的过程,将绝缘体切成预定尺寸并且极大地提高生产率。
另外,根据本发明的二次电池没有由引入异物导致的短路风险并且改善了气体排放,由此提高了安全性。
另外,因为将卷状物均匀地浸渗在电解质中,所以根据本发明的二次电池改善了倍率特性。
Claims (7)
1.一种二次电池,具有其中将具有正极/隔膜/负极结构的卷状物安装在圆筒状电池壳中的结构,
其中安装在所述卷状物顶部的板状绝缘体包含由聚合物树脂或聚合物复合材料制成的成型品,并且多个细孔贯穿通过所述成型品,并且
其中所述细孔允许渗透电解质,但是不允许渗透尺寸为100μm以上的异物,并且所述细孔的尺寸为1μm~100μm,并且
其中所述细孔具有在纵向具有不均匀直径的连通孔的形状,并且其中所述板状绝缘体的厚度为0.1mm~0.5mm。
2.根据权利要求1所述的二次电池,其中所述成型品具有电绝缘性。
3.根据权利要求1所述的二次电池,其中所述聚合物树脂是选自聚乙烯(PE)、聚丙烯(PP)、聚丁烯(PB)、聚苯乙烯(PS)、聚对苯二甲酸乙二醇酯(PET)、天然橡胶和合成橡胶的至少一种。
4.根据权利要求1所述的二次电池,其中所述电池是锂二次电池。
5.根据权利要求1所述的二次电池,其中所述电池包含在所述绝缘体中贯穿的开口以使得能够排放气体并使得电极端子穿过。
6.一种装置,其包含根据权利要求1至5中任一项所述的二次电池作为电源。
7.根据权利要求6所述的装置,其中所述装置选自移动电话、可携式电脑、电动车辆和电力存储装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110097267A KR20130033551A (ko) | 2011-09-27 | 2011-09-27 | 우수한 제조 공정성과 안전성의 이차전지 |
KR10-2011-0097267 | 2011-09-27 | ||
PCT/KR2012/007411 WO2013048042A1 (ko) | 2011-09-27 | 2012-09-17 | 우수한 제조 공정성과 안전성의 이차전지 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103918119A CN103918119A (zh) | 2014-07-09 |
CN103918119B true CN103918119B (zh) | 2016-08-24 |
Family
ID=47995999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280041160.XA Active CN103918119B (zh) | 2011-09-27 | 2012-09-17 | 具有优异的生产率和安全性的二次电池 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9276286B2 (zh) |
EP (1) | EP2763230B1 (zh) |
JP (1) | JP5851039B2 (zh) |
KR (1) | KR20130033551A (zh) |
CN (1) | CN103918119B (zh) |
TW (1) | TWI459614B (zh) |
WO (1) | WO2013048042A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102051554B1 (ko) * | 2016-08-17 | 2019-12-03 | 주식회사 엘지화학 | 침상 도체로 인한 단락을 방지하는 인슐레이터 어셈블리를 포함하는 전지셀 |
KR102176432B1 (ko) | 2017-02-13 | 2020-11-09 | 주식회사 엘지화학 | 원통형 이차 전지 절연부재 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1992422A (zh) * | 2005-12-29 | 2007-07-04 | 三星Sdi株式会社 | 锂离子可再充电电池 |
CN1992421A (zh) * | 2005-12-29 | 2007-07-04 | 三星Sdi株式会社 | 锂离子二次电池 |
CN102067355A (zh) * | 2008-06-13 | 2011-05-18 | 丰田自动车株式会社 | 电池 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4200589B2 (ja) * | 1999-06-02 | 2008-12-24 | ソニー株式会社 | 非水電解液二次電池 |
JP2004241251A (ja) * | 2003-02-05 | 2004-08-26 | Sony Corp | 電池用インシュレータ及び非水電解液電池 |
US7183020B2 (en) * | 2004-08-13 | 2007-02-27 | Mitsui Chemicals, Inc. | Separator for battery and lithium ion battery using the same |
KR100778998B1 (ko) * | 2005-12-29 | 2007-11-22 | 삼성에스디아이 주식회사 | 리튬 이차전지 |
KR100779001B1 (ko) * | 2005-12-29 | 2007-11-22 | 삼성에스디아이 주식회사 | 리튬 이차전지 |
JP4795177B2 (ja) | 2005-12-29 | 2011-10-19 | 三星エスディアイ株式会社 | リチウムイオン二次電池 |
US8053101B2 (en) | 2005-12-29 | 2011-11-08 | Samsung Sdi Co., Ltd. | Lithium ion rechargeable battery |
JP4748193B2 (ja) * | 2008-09-01 | 2011-08-17 | ソニー株式会社 | 非水電解質二次電池の絶縁板、非水電解質二次電池および非水電解質二次電池の絶縁板の製造方法 |
JP5885317B2 (ja) * | 2011-06-30 | 2016-03-15 | エルジー ケム. エルティーディ. | 優れた製造工程性と安全性を有する二次電池 |
-
2011
- 2011-09-27 KR KR1020110097267A patent/KR20130033551A/ko not_active Application Discontinuation
-
2012
- 2012-09-17 EP EP12837191.1A patent/EP2763230B1/en active Active
- 2012-09-17 WO PCT/KR2012/007411 patent/WO2013048042A1/ko active Application Filing
- 2012-09-17 CN CN201280041160.XA patent/CN103918119B/zh active Active
- 2012-09-17 JP JP2014527090A patent/JP5851039B2/ja active Active
- 2012-09-19 TW TW101134239A patent/TWI459614B/zh active
-
2014
- 2014-02-11 US US14/177,647 patent/US9276286B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1992422A (zh) * | 2005-12-29 | 2007-07-04 | 三星Sdi株式会社 | 锂离子可再充电电池 |
CN1992421A (zh) * | 2005-12-29 | 2007-07-04 | 三星Sdi株式会社 | 锂离子二次电池 |
CN102067355A (zh) * | 2008-06-13 | 2011-05-18 | 丰田自动车株式会社 | 电池 |
Also Published As
Publication number | Publication date |
---|---|
US9276286B2 (en) | 2016-03-01 |
EP2763230A4 (en) | 2015-02-18 |
TWI459614B (zh) | 2014-11-01 |
TW201334262A (zh) | 2013-08-16 |
EP2763230A1 (en) | 2014-08-06 |
EP2763230B1 (en) | 2017-12-20 |
CN103918119A (zh) | 2014-07-09 |
JP2014524652A (ja) | 2014-09-22 |
US20140162102A1 (en) | 2014-06-12 |
WO2013048042A1 (ko) | 2013-04-04 |
KR20130033551A (ko) | 2013-04-04 |
JP5851039B2 (ja) | 2016-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11784315B2 (en) | Lithium secondary battery | |
CN103620849B (zh) | 生产率和安全性优异的二次电池 | |
CN103765653B (zh) | 具有优异生产率和安全性的二次电池 | |
KR101455165B1 (ko) | 안전성이 향상된 전극조립체 및 이를 포함하는 이차전지 | |
KR102079929B1 (ko) | 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법 | |
CN104584305A (zh) | 制造二次电池的方法 | |
KR20180097243A (ko) | 전극판들의 정렬하는 과정을 포함하는 전극조립체의 제조방법 | |
CN103765654B (zh) | 具有优异的生产率和安全性的二次电池 | |
KR102070907B1 (ko) | 충방전 시 발생하는 가스를 수용할 수 있는 잉여부를 포함하는 전지셀 | |
CN103918119B (zh) | 具有优异的生产率和安全性的二次电池 | |
KR20130116033A (ko) | 전극 합제의 제조방법 및 이를 사용하여 제조되는 전극 합제 | |
KR20180086364A (ko) | 코로나 표면 처리된 분리막을 포함하는 전극조립체 및 이를 포함하는 이차전지 | |
KR20180081228A (ko) | 단위셀의 위치에 따라 기공률이 상이한 전극을 포함하는 전극조립체 | |
US10581059B2 (en) | Method of manufacturing electrode for rechargeable battery including process of drying electrode slurry by applying vacuum in certain direction | |
KR101592193B1 (ko) | 전기 전도도가 향상된 전극 | |
KR20130121276A (ko) | 안전성이 향상된 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211206 Address after: Seoul, South Kerean Patentee after: LG Energy Solution Address before: Seoul, South Kerean Patentee before: LG CHEM, Ltd. |
|
TR01 | Transfer of patent right |