CN103871828A - Array type photoelectric transmission ionizing source and application thereof - Google Patents
Array type photoelectric transmission ionizing source and application thereof Download PDFInfo
- Publication number
- CN103871828A CN103871828A CN201210555423.0A CN201210555423A CN103871828A CN 103871828 A CN103871828 A CN 103871828A CN 201210555423 A CN201210555423 A CN 201210555423A CN 103871828 A CN103871828 A CN 103871828A
- Authority
- CN
- China
- Prior art keywords
- ionization source
- ionization
- ultraviolet
- ultraviolet light
- lamp holder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 title 1
- 150000002500 ions Chemical class 0.000 claims abstract description 49
- 229910052751 metal Inorganic materials 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 28
- 239000012159 carrier gas Substances 0.000 claims description 15
- 230000000694 effects Effects 0.000 claims description 10
- 239000003153 chemical reaction reagent Substances 0.000 claims description 8
- 239000012491 analyte Substances 0.000 claims description 7
- 238000001871 ion mobility spectroscopy Methods 0.000 claims description 7
- 230000001846 repelling effect Effects 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 3
- 229910052753 mercury Inorganic materials 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910052724 xenon Inorganic materials 0.000 claims description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims 1
- 238000012546 transfer Methods 0.000 abstract description 8
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 230000005684 electric field Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 8
- 238000013508 migration Methods 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000006552 photochemical reaction Methods 0.000 description 4
- 230000002285 radioactive effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000005264 electron capture Effects 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
Images
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明设计了一种应用于离子迁移管的阵列式光电发射电离源,其特征在于:设计并采用阵列式的光电发射电离源,突破之前单个光电发射电离源的局限,一方面大幅度提高光强,能大大提高电离区电离的离子数,有效提高离子迁移管的灵敏度;另一方面使反应区电场更加均匀,提高离子利用率,从而提高离子迁移管的灵敏度。The present invention designs an array-type photoemission ionization source applied to ion transfer tubes, which is characterized in that: an array-type photoemission ionization source is designed and adopted, which breaks through the previous limitation of a single photoemission ionization source, and on the one hand greatly improves the Strong, can greatly increase the number of ions ionized in the ionization area, effectively improve the sensitivity of the ion transfer tube; on the other hand, make the electric field in the reaction area more uniform, improve the ion utilization rate, thereby improving the sensitivity of the ion transfer tube.
Description
技术领域technical field
本发明涉及一种阵列式光电发射电离源,应用于离子迁移管中能够有效提高离子迁移管的灵敏度,获得比单光电发射电离源更好的效果。The invention relates to an array type photoelectric emission ionization source, which can effectively improve the sensitivity of the ion transfer tube when applied to an ion transfer tube, and obtain better effects than a single photoelectric emission ionization source.
背景技术Background technique
传统离子迁移谱所用的电离源是63Ni放射性电离源,63Ni能够放射出平均能量为17Kev的β粒子,产生的高能电子与载气发生碰撞反应,最后形成试剂离子为H+(H2O)n(正离子检测模式)和O2 -(H2O)n(负离子检测模式),试剂离子再与待测样品反应,使得待测物电离。放射性电源因性能稳定、体积小、噪音小、操作简便、不需外加电源等优点而广受青睐,但是其辐射问题给操作、运输、处理均带来不便,同时其线性范围窄,选择性不好。因此今年来许多非放射性替代离子源应用于离子迁移谱中,有光电离源(包括光放电灯VUV灯和激光)、电晕放电电离源和电喷雾电离源等。The ionization source used in traditional ion mobility spectrometry is 63 Ni radioactive ionization source, 63 Ni can emit β particles with an average energy of 17Kev, the high-energy electrons generated collide with the carrier gas, and finally form reagent ions as H + (H 2 O ) n (positive ion detection mode) and O 2 - (H 2 O) n (negative ion detection mode), the reagent ions then react with the sample to be tested to ionize the sample to be tested. Radioactive power sources are widely favored for their stable performance, small size, low noise, easy operation, and no need for external power sources. However, their radiation problems bring inconvenience to operation, transportation, and handling. good. Therefore, many non-radioactive alternative ion sources have been used in ion mobility spectrometry in recent years, including photoionization sources (including photodischarge lamps, VUV lamps and lasers), corona discharge ionization sources, and electrospray ionization sources.
紫外灯照射到金属能够产生光电效应,得到低能量的光电子,色谱中的电子捕获检测器则是应用这些光电子。光电效应仅产生低能量的光电子,没有正离子,因此能够有效地阻止正离子和电子以及正离子和负离子之间的复合反应,简化电离源中的反应,使得到谱图简单。在2010年AnalyticalChemistry发表报道了基于紫外灯光电发射,离子迁移谱中的电离源,所述电离源结构为紫外灯配以金属栅网,该紫外光电发射电离源置于和迁移管轴向相平行的方向,形成光电发射离子迁移谱。该光电发射离子迁移谱充分利用了光电效应和光化学反应,可以通过正负高压电源实现正、负离子两种检测模式,经实验证明能能有效降低检测限,提高灵敏度。The photoelectric effect can be generated when the ultraviolet lamp is irradiated on the metal, and low-energy photoelectrons are obtained, and the electron capture detector in the chromatography uses these photoelectrons. The photoelectric effect only produces low-energy photoelectrons without positive ions, so it can effectively prevent the recombination reaction between positive ions and electrons and positive ions and negative ions, simplify the reaction in the ionization source, and make the spectrum simple. In 2010, Analytical Chemistry published a report on the ionization source in the ion mobility spectrum based on the photoelectric emission of ultraviolet light. The structure of the ionization source is an ultraviolet lamp equipped with a metal grid. direction to form a photoemission ion mobility spectrum. The photoemission ion mobility spectrometer makes full use of the photoelectric effect and photochemical reaction, and can realize positive and negative ion detection modes through positive and negative high-voltage power supplies. It has been proved by experiments that it can effectively reduce the detection limit and improve the sensitivity.
发明内容Contents of the invention
本发明的目的是提供一种应用于离子迁移谱中的阵列式光电发射电离源,这种电离源拥有数个紫外灯,利用紫外灯光照射在金属棒上产生光电效应和照射载气产生的光化学反应,在之前单个光电发射电离源装置得到较大改进,能够有效提高离子迁移谱的灵敏度。The object of the present invention is to provide an array type photoemission ionization source applied in ion mobility spectrometry. This ionization source has several ultraviolet lamps, and utilizes ultraviolet light to irradiate metal rods to produce photoelectric effect and photochemical reaction produced by irradiation of carrier gas. Reaction, a single photoemission ionization source device has been greatly improved before, which can effectively improve the sensitivity of ion mobility spectroscopy.
为实现上述目的,本发明采用的技术方案为:To achieve the above object, the technical solution adopted in the present invention is:
一种阵列式光电发射电离源,其特征在于:包括两端开口的圆筒状灯座,于圆筒状灯座圆筒侧壁上径向设有两个以上的通孔,每个通孔内均设有紫外灯光源,于圆筒状灯座的中心轴线上设有金属棒,于圆筒状灯座的一开口端设置有环状推斥电极,推斥电极与圆筒状灯座同轴,紫外灯光源的出射光照射于金属棒上。An array type photoelectric emission ionization source is characterized in that: it includes a cylindrical lamp holder with openings at both ends, and more than two through holes are arranged radially on the cylinder side wall of the cylindrical lamp holder, and each through hole There are ultraviolet light sources inside, a metal rod is arranged on the central axis of the cylindrical lamp holder, and a ring-shaped repelling electrode is arranged at an open end of the cylindrical lamp holder, and the repelling electrode and the cylindrical lamp holder Coaxial, the output light of the ultraviolet light source is irradiated on the metal rod.
所述的两个以上的通孔的中心轴处于圆筒状灯座的同一径向截面上。The central axes of the two or more through holes are on the same radial section of the cylindrical lamp holder.
所述金属棒位于数个紫外灯所围成的圆环中心,数个紫外灯环绕于金属棒360度对称分布。The metal rod is located at the center of a circle surrounded by several ultraviolet lamps, and the several ultraviolet lamps are distributed symmetrically around the metal rod at 360 degrees.
数个紫外灯与金属棒组成的圆环的半径R应小于紫外光光程L,R越小电离效果越好。The radius R of the ring composed of several ultraviolet lamps and metal rods should be smaller than the path length L of ultraviolet light, and the smaller the R, the better the ionization effect.
所述紫外光源为真空紫外灯、二极管、氙灯、汞灯或紫外激光器等能够产生紫外灯的设备;金属棒的材料为各种电子逸出功小于紫外光源电离能的金属及合金中的一种。The ultraviolet light source is a vacuum ultraviolet lamp, diode, xenon lamp, mercury lamp or ultraviolet laser device that can generate ultraviolet light; the material of the metal rod is one of various metals and alloys whose electron work function is smaller than the ionization energy of the ultraviolet light source .
所述通孔和紫外光源个数为2-8个。The number of through holes and ultraviolet light sources is 2-8.
所述电离源作为离子迁移谱仪的电离源,所述电离源的圆筒状灯座的一开口端设有载气入口,另一开口端设有推斥电极,紫外灯照射到金属棒依据光电效应可以产生光电子,光电子与载气反应产生试剂离子,试剂离子与待测物反应,使待测物电离。待测物的电离可以在正离子模式也可以在负离子模式下进行,正、负离子模式可以通过正、负高压电源实现。正离子模式是当待测物分子电离能低于紫外光源的电离能时,可以直接光电离形成正离子;负离子模式下电离通过两种方式:1、光电子吸附到待测物上,使其电离2、光电子吸附到载气光化学反应的产物O3上,得到O3 —,O3 —或其水合离子O3 —(H2O)n可以作为试剂离子,也可以与载气中其他无机分子反应生成试剂离子。The ionization source is used as the ionization source of the ion mobility spectrometer. One opening end of the cylindrical lamp holder of the ionization source is provided with a carrier gas inlet, and the other opening end is provided with a repelling electrode. The ultraviolet lamp is irradiated on the metal rod according to The photoelectric effect can generate photoelectrons, which react with the carrier gas to generate reagent ions, and the reagent ions react with the analyte to ionize the analyte. The ionization of the analyte can be carried out in positive ion mode or negative ion mode, and the positive and negative ion modes can be realized by positive and negative high voltage power supplies. In the positive ion mode, when the molecular ionization energy of the analyte is lower than the ionization energy of the ultraviolet light source, it can be directly photoionized to form positive ions; in the negative ion mode, there are two ways of ionization: 1. Photoelectrons are adsorbed on the analyte to make it ionized 2. The photoelectron is adsorbed on the product O 3 of the photochemical reaction of the carrier gas to obtain O 3 — , O 3 — or its hydrated ion O 3 — (H 2 O) n can be used as a reagent ion, and can also be combined with other inorganic molecules in the carrier gas The reaction produces reagent ions.
载气为高纯氮气或空气。The carrier gas is high-purity nitrogen or air.
本发明的优点Advantages of the invention
将该阵列式光电发射电离源应用于离子迁移谱中,与之前单光电发射电离源相比优点在于:阵列式光电发射电离源能够大幅度增加照射光强,比单个光电发射电离源相比,能够大大提高电离效率,增加离子数;金属棒与之前金属栅网相比,可以使电离区电场更加均匀,同时提高离子利用率,两方面都可以有效地提高离子迁移谱的灵敏度。Compared with the previous single photoemission ionization source, the array photoemission ionization source is applied to ion mobility spectrometry. The advantage is that the array photoemission ionization source can greatly increase the irradiation light intensity. It can greatly improve the ionization efficiency and increase the number of ions; compared with the previous metal grid, the metal rod can make the electric field in the ionization area more uniform, and at the same time improve the ion utilization rate, both of which can effectively improve the sensitivity of the ion mobility spectrum.
附图说明Description of drawings
下面结合附图及具体实施方式对本发明作进一步详细说明:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:
图1为双灯头光电发射电离离子迁移谱示意图,此仪器主要包括以下几个部分:紫外光源1、紫外光源2、金属棒3、圆筒状灯座4、推斥电极5、离子门6、迁移管7、金属环8、栅网9、样品载气10、尾吹气11、气体出口12、法拉底盘13、放大器14、A/D转换器15、数据处理系统(如示波器)16。Figure 1 is a schematic diagram of double-lamp photoemission ionization ion migration spectrum. This instrument mainly includes the following parts: ultraviolet light source 1, ultraviolet light source 2, metal rod 3, cylindrical lamp holder 4, repelling
图2为阵列式光电发射电离离子迁移谱气流方式示意图。Fig. 2 is a schematic diagram of the gas flow mode of the array photoemission ionization ion mobility spectrometer.
具体实施方式Detailed ways
本发明利用了紫外光照射金属产生的光电效应以及照射载气产生的光化学反应,在之前单光电发射电离源基础上设计了阵列式光电发射电离源,阵列式电离源结构如图所示,其主要包括以下几部分:紫外光源1、紫外光源2(紫外光源1和2可以相同波长也可以不同波长)、金属棒3以及圆筒状灯座4。紫外光源可以是真空紫外灯、二极管、氙灯、汞灯、紫外激光器等能够产生紫外光的设备,这里以真空紫外灯为例;金属棒的材料主要为各种电子逸出功小于紫外光源电离能的金属或合金的一种;灯座使用非金属材料,如可加工陶瓷、聚四氟乙烯等,金属棒位于灯座中心轴线处,数个紫外灯置于灯座中并环绕于金属棒360度对称分布。将此阵列式光电发射电离源应用于离子迁移谱中,于灯座的一开口端设有载气入口,于离子迁移谱法拉底盘一端设置有尾吹气入口,于靠近推斥电极的离子迁移管侧壁上设置有气体出口。The present invention utilizes the photoelectric effect produced by ultraviolet light irradiating metals and the photochemical reaction produced by irradiating carrier gas. An array photoemission ionization source is designed on the basis of the previous single photoemission ionization source. The structure of the array type ionization source is shown in the figure. It mainly includes the following parts: ultraviolet light source 1, ultraviolet light source 2 (ultraviolet light source 1 and 2 can have the same wavelength or different wavelengths), metal rod 3 and cylindrical lamp holder 4. The ultraviolet light source can be a vacuum ultraviolet lamp, diode, xenon lamp, mercury lamp, ultraviolet laser and other equipment that can generate ultraviolet light. Here, vacuum ultraviolet lamp is taken as an example; the material of the metal rod is mainly that the work function of various electrons is smaller than the ionization energy of the ultraviolet light source. A kind of metal or alloy; the lamp holder uses non-metallic materials, such as machinable ceramics, polytetrafluoroethylene, etc., the metal rod is located at the central axis of the lamp holder, and several ultraviolet lamps are placed in the lamp holder and surround the metal rod 360 degree symmetric distribution. This array photoemission ionization source is applied to ion mobility spectrometry. There is a carrier gas inlet at one open end of the lamp holder, and a make-up gas inlet at one end of the fara chassis of the ion mobility spectrometer. The ion migration near the repeller electrode A gas outlet is provided on the side wall of the tube.
阵列式光电发射离子迁移管中的气流方式如图2所示,载气从灯座一开口端进入,尾吹气从法拉底盘后端进入迁移管,最后从迁移管推斥电极后的气体出口排空。The gas flow mode in the array photoemission ion transfer tube is shown in Figure 2. The carrier gas enters from the open end of the lamp holder, the makeup gas enters the transfer tube from the rear end of the fara chassis, and finally exits from the transfer tube behind the electrode. emptying.
样品气在电离源的正离子模式或负离子模式下与载气碰撞反应,电离得到的样品离子,样品离子通过脉冲开启的离子门进入迁移区,在迁移区中根据其迁移率的不同得到分离,最后到达法拉第盘,由法拉第盘所接收的离子信号传送给信号采集与处理系统。The sample gas collides with the carrier gas in the positive ion mode or negative ion mode of the ionization source, and the ionized sample ions enter the migration area through the ion gate opened by the pulse, and are separated in the migration area according to their mobility. Finally, it reaches the Faraday disk, and the ion signal received by the Faraday disk is sent to the signal acquisition and processing system.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210555423.0A CN103871828B (en) | 2012-12-17 | 2012-12-17 | A kind of array photoelectricity transmitting ionization source and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210555423.0A CN103871828B (en) | 2012-12-17 | 2012-12-17 | A kind of array photoelectricity transmitting ionization source and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103871828A true CN103871828A (en) | 2014-06-18 |
CN103871828B CN103871828B (en) | 2016-05-18 |
Family
ID=50910244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210555423.0A Active CN103871828B (en) | 2012-12-17 | 2012-12-17 | A kind of array photoelectricity transmitting ionization source and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103871828B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104535499A (en) * | 2015-01-14 | 2015-04-22 | 成都海兰天澄科技有限公司 | Sulfur dioxide online monitoring method |
CN105632865A (en) * | 2014-10-28 | 2016-06-01 | 中国科学院大连化学物理研究所 | Non-radioactive ion migration tube |
CN106504973A (en) * | 2017-01-03 | 2017-03-15 | 公安部第研究所 | An integrated ion transfer tube based on ceramic materials |
CN108091538A (en) * | 2016-11-23 | 2018-05-29 | 中国科学院大连化学物理研究所 | A kind of integrated form vacuum UV lamp ionization source difference ionic migration spectrometer |
CN111220683A (en) * | 2018-11-25 | 2020-06-02 | 中国科学院大连化学物理研究所 | Method for real-time online monitoring of exhaled propofol |
CN112505134A (en) * | 2020-11-30 | 2021-03-16 | 西北大学 | High-selectivity ion mobility spectrum for on-line monitoring of benzene series in soil |
CN113764256A (en) * | 2021-08-25 | 2021-12-07 | 奕瑞影像科技成都有限公司 | Corona discharge ion source assembly and ion mobility spectrometer |
CN114388340A (en) * | 2022-01-11 | 2022-04-22 | 深圳市步锐生物科技有限公司 | Array type ion source for mass spectrum |
CN114582703A (en) * | 2022-01-14 | 2022-06-03 | 深圳市步锐生物科技有限公司 | Ionization device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002189018A (en) * | 2000-12-19 | 2002-07-05 | Mitsubishi Heavy Ind Ltd | Detection device for chemical substance |
CN101063673A (en) * | 2006-04-26 | 2007-10-31 | 中国科学院大连化学物理研究所 | Vacuumeultraviolet lamp ionization device in time-of-flight mass spectrometer |
US20080296485A1 (en) * | 2004-05-24 | 2008-12-04 | Bruker Daltonik Gmbh | Method and Device for Mass Spectrometry Examination of Analytes |
CN102103972A (en) * | 2009-12-18 | 2011-06-22 | 中国科学院大连化学物理研究所 | Vacuum ultraviolet lamp ionization device |
CN102117728A (en) * | 2009-12-30 | 2011-07-06 | 中国科学院大连化学物理研究所 | Mass spectrum VUV (Vacuum Ultraviolet) photoionization source device for in-source collision induced dissociation |
CN102299038A (en) * | 2011-07-21 | 2011-12-28 | 厦门大学 | Compound ion source |
CN102479662A (en) * | 2010-11-30 | 2012-05-30 | 中国科学院大连化学物理研究所 | Vacuum ultraviolet light ionization source for high-flux gas sample analysis |
-
2012
- 2012-12-17 CN CN201210555423.0A patent/CN103871828B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002189018A (en) * | 2000-12-19 | 2002-07-05 | Mitsubishi Heavy Ind Ltd | Detection device for chemical substance |
US20080296485A1 (en) * | 2004-05-24 | 2008-12-04 | Bruker Daltonik Gmbh | Method and Device for Mass Spectrometry Examination of Analytes |
CN101063673A (en) * | 2006-04-26 | 2007-10-31 | 中国科学院大连化学物理研究所 | Vacuumeultraviolet lamp ionization device in time-of-flight mass spectrometer |
CN102103972A (en) * | 2009-12-18 | 2011-06-22 | 中国科学院大连化学物理研究所 | Vacuum ultraviolet lamp ionization device |
CN102117728A (en) * | 2009-12-30 | 2011-07-06 | 中国科学院大连化学物理研究所 | Mass spectrum VUV (Vacuum Ultraviolet) photoionization source device for in-source collision induced dissociation |
CN102479662A (en) * | 2010-11-30 | 2012-05-30 | 中国科学院大连化学物理研究所 | Vacuum ultraviolet light ionization source for high-flux gas sample analysis |
CN102299038A (en) * | 2011-07-21 | 2011-12-28 | 厦门大学 | Compound ion source |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105632865A (en) * | 2014-10-28 | 2016-06-01 | 中国科学院大连化学物理研究所 | Non-radioactive ion migration tube |
CN105632865B (en) * | 2014-10-28 | 2017-09-15 | 中国科学院大连化学物理研究所 | A kind of on-radiation transference tube |
CN104535499A (en) * | 2015-01-14 | 2015-04-22 | 成都海兰天澄科技有限公司 | Sulfur dioxide online monitoring method |
CN104535499B (en) * | 2015-01-14 | 2017-05-03 | 成都海兰天澄科技股份有限公司 | Sulfur dioxide online monitoring method |
CN108091538A (en) * | 2016-11-23 | 2018-05-29 | 中国科学院大连化学物理研究所 | A kind of integrated form vacuum UV lamp ionization source difference ionic migration spectrometer |
CN108091538B (en) * | 2016-11-23 | 2020-01-14 | 中国科学院大连化学物理研究所 | Integrated vacuum ultraviolet lamp ionization source differential ion mobility spectrometer |
CN106504973A (en) * | 2017-01-03 | 2017-03-15 | 公安部第研究所 | An integrated ion transfer tube based on ceramic materials |
CN111220683A (en) * | 2018-11-25 | 2020-06-02 | 中国科学院大连化学物理研究所 | Method for real-time online monitoring of exhaled propofol |
CN112505134A (en) * | 2020-11-30 | 2021-03-16 | 西北大学 | High-selectivity ion mobility spectrum for on-line monitoring of benzene series in soil |
CN113764256A (en) * | 2021-08-25 | 2021-12-07 | 奕瑞影像科技成都有限公司 | Corona discharge ion source assembly and ion mobility spectrometer |
CN114388340A (en) * | 2022-01-11 | 2022-04-22 | 深圳市步锐生物科技有限公司 | Array type ion source for mass spectrum |
CN114582703A (en) * | 2022-01-14 | 2022-06-03 | 深圳市步锐生物科技有限公司 | Ionization device |
Also Published As
Publication number | Publication date |
---|---|
CN103871828B (en) | 2016-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103871828B (en) | A kind of array photoelectricity transmitting ionization source and application thereof | |
CN109841491B (en) | A combined photoionization and chemical ionization ion source | |
CN102299038B (en) | Compound ion source | |
CN202172061U (en) | Compound ion source | |
CN101281165A (en) | Ionization method and device for mass spectrometry sample | |
CN102479662B (en) | Vacuum ultraviolet light ionization source used for high-flux gas sample analysis | |
CN106876243A (en) | One kind aids in low pressure vacuum ultraviolet light ionization source for mass spectrographic reagent molecule | |
CN105632871B (en) | A kind of mass spectrum chemical ionization source based on UV LED | |
CN104716008A (en) | Radio-frequency discharge VUV composite ionization source used for mass spectrometry | |
CN102479663A (en) | A kind of ion transfer tube and its application | |
CN111430215B (en) | Soft focusing ionizer of shielding net electrode and soft focusing method | |
KR20080103959A (en) | Ionizer | |
CN105655226B (en) | A kind of vacuum ultraviolet ionized and chemi-ionization composite ionization source | |
CN104716010A (en) | Vacuum ultraviolet photoionization and chemical ionization compound ionization source based on radio frequency electric field enhancement of quadrupole rod | |
CN112185801B (en) | Novel photoelectric composite ion source | |
CN108091539A (en) | A kind of ultraviolet light chemical ionization source based on ion funnel | |
CN109449074B (en) | Ion extraction device for ionization source of mass spectrometer | |
CN106206239B (en) | A high-efficiency combined atmospheric pressure ionization source | |
CN111199864B (en) | A radio frequency enhanced reactive photochemical ionization source | |
CN107424902B (en) | A vacuum ultraviolet lamp mass spectrometry ionization source | |
CN107871650B (en) | Excited Dichloromethane Protonating Agent | |
CN211788914U (en) | Soft focusing ionizer with shielding net electrode | |
CN208985950U (en) | An ion extraction device for mass spectrometer ionization source | |
CN112908831B (en) | A laser desorption radio frequency discharge chemical ionization source at atmospheric pressure | |
CN115206770A (en) | Laser soft ionization ion source for mass spectrometry analysis of solid pharmaceuticals and its control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230202 Address after: No. 909B, Huangpu Road, High-tech Industrial Park, Dalian, Liaoning, 116000 Patentee after: Jinkai instrument (Dalian) Co.,Ltd. Address before: 116023 No. 457, Zhongshan Road, Liaoning, Dalian Patentee before: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES |