[go: up one dir, main page]

CN103868648B - The centroid measurement method of three axle air supporting emulation experiment platforms - Google Patents

The centroid measurement method of three axle air supporting emulation experiment platforms Download PDF

Info

Publication number
CN103868648B
CN103868648B CN201410128649.1A CN201410128649A CN103868648B CN 103868648 B CN103868648 B CN 103868648B CN 201410128649 A CN201410128649 A CN 201410128649A CN 103868648 B CN103868648 B CN 103868648B
Authority
CN
China
Prior art keywords
axis
theta
omega
centerdot
air flotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410128649.1A
Other languages
Chinese (zh)
Other versions
CN103868648A (en
Inventor
付振宪
李宗哲
刘杨
陈兴林
周乃新
强盛
李欣
马晔
陈震宇
王伟峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CN201410128649.1A priority Critical patent/CN103868648B/en
Publication of CN103868648A publication Critical patent/CN103868648A/en
Application granted granted Critical
Publication of CN103868648B publication Critical patent/CN103868648B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gyroscopes (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

三轴气浮仿真实验平台的质心测量方法,属于物理仿真领域,本发明为解决现有测量气浮台质心技术存在的问题。本发明方法包括以下步骤:步骤一、采用双轴倾斜角传感器测量、获取X轴角速度ωx和Y轴角速度ωy;采用角加速度传感器测量、获取Z轴角速度ωz;步骤二、列出三轴气浮仿真实验平台的运动学方程:步骤三、列出三轴气浮仿真实验平台的动力学方程:步骤四、对步骤三所述动力学方程的三个公式分别在时间t0、t1和t2内进行积分,并与步骤二的运动学方程联立求解,获取三轴气浮仿真实验平台的质心位置(rx,ry,rz)。

The invention discloses a method for measuring the center of mass of a three-axis air flotation simulation experiment platform, which belongs to the field of physical simulation. The invention aims to solve the problems existing in the existing technique of measuring the center of mass of an air flotation platform. The method of the present invention comprises the following steps: Step 1, using a dual-axis inclination angle sensor to measure and obtain the X-axis angular velocity ω x and Y-axis angular velocity ω y ; adopting an angular acceleration sensor to measure and obtain the Z-axis angular velocity ω z ; Step 2, listing three The kinematic equation of the axial air flotation simulation experiment platform: Step 3, list the dynamic equations of the three-axis air flotation simulation experiment platform: Step 4, the three formulas of the dynamic equation described in the step 3 are respectively at time t0, t1 and Integrate within t2, and solve it simultaneously with the kinematic equation in step 2 to obtain the centroid position (r x , ry , r z ) of the three-axis air flotation simulation experiment platform.

Description

三轴气浮仿真实验平台的质心测量方法Centroid measurement method of three-axis air flotation simulation experiment platform

技术领域technical field

本发明涉及三轴气浮仿真实验平台的质心测量方法,属于物理仿真领域。The invention relates to a centroid measurement method of a three-axis air flotation simulation experiment platform, belonging to the field of physical simulation.

背景技术Background technique

随着人们对外太空的探索,将研制的卫星置于气浮仿真平台进行仿真测试,以此降低研究成本,提高卫星执行任务的成功率,已经成为研制发射卫星的必要步骤。三轴仿真实验平台主要用于模拟飞行器等设备在某种环境下的姿态运动。控制技术和计算机技术的发展,以及新型材料的开发运用,使得三轴气浮仿真实验平台体积变小,刚度加大,承载能力更高。此外科学技术的进步还使得三轴气浮仿真实验平台的控制精度以及位资精度都有了极大的提高。因此,三轴气浮仿真实验平台将不再仅限于空间飞行器的实验模拟,也逐渐适用于其他各种方向,如航海时的模拟训练以及某些高精度,高成本的实验设备在投入使用之前的仿真测试。With people's exploration of outer space, it has become a necessary step to develop and launch satellites by placing the developed satellites on the air flotation simulation platform for simulation tests, so as to reduce research costs and improve the success rate of satellite missions. The three-axis simulation experiment platform is mainly used to simulate the attitude movement of aircraft and other equipment in a certain environment. The development of control technology and computer technology, as well as the development and application of new materials, have made the three-axis air flotation simulation experiment platform smaller in size, stronger in stiffness, and higher in carrying capacity. In addition, the progress of science and technology has also greatly improved the control accuracy and position accuracy of the three-axis air flotation simulation experiment platform. Therefore, the three-axis air flotation simulation experimental platform will no longer be limited to the experimental simulation of space vehicles, but will gradually be applicable to various other directions, such as simulation training during navigation and some high-precision, high-cost experimental equipment before they are put into use. simulation test.

在三轴气浮仿真实验平台中工作台是气浮台的本体,它用来安装姿态控制系统的测试部件。由于卫星在空间飞行时所须的驱动力矩很小,所以在进行地面模拟试验时,必须将干扰力矩控制到很小的数值。当各项干扰力矩控制到规定数值后,工作台便可浮在球轴承上在任意姿态角达随迁平衡,以实现稳定,此时卫星就像飘浮在空间飞行轨道上一样,再通过遥测、遥控装置,姿控系统就可在模拟台上进行各种试验了。传统人工调平费时费力,且往往达不到良好的调节效果。通过此调平机构,使旋转中心与整体质心重合,研制出的工作台具有很高的平衡精度,以满足地面仿真实验的使用要求。In the three-axis air flotation simulation experiment platform, the workbench is the body of the air flotation platform, which is used to install the test components of the attitude control system. Since the driving torque required by satellites in space flight is very small, it is necessary to control the disturbance torque to a small value when carrying out ground simulation tests. When the disturbance torques are controlled to the prescribed values, the workbench can float on the ball bearings at any attitude angle to achieve a dynamic balance to achieve stability. At this time, the satellite is like floating on a space flight orbit, and then through telemetry, The remote control device and the attitude control system can carry out various tests on the simulation platform. Traditional manual leveling is time-consuming and laborious, and often fails to achieve good adjustment results. Through this leveling mechanism, the center of rotation coincides with the center of mass of the whole, and the developed workbench has high balance accuracy to meet the requirements of ground simulation experiments.

中国专利《一种三维姿态角的测量方法和系统》,其公开号为CN102135421A,公开日为2011年10月12日,该专利提出了通过分析两路平行光线经孔光阑在图像传感器上形成的光斑,求解出平台三维空间的运动信息的方案。但是上述装置未考虑仿真实验时实验环境可能不够理想化,如灰尘,线缆等对光线的遮挡以及机械台体的震动带动光线的震荡,都会影响测量的准确性。Chinese patent "A Method and System for Measuring Three-Dimensional Attitude Angle", its publication number is CN102135421A, and its publication date is October 12, 2011. The solution to solve the motion information of the three-dimensional space of the platform. However, the above-mentioned device does not consider that the experimental environment may not be ideal when the simulation experiment is carried out. For example, dust, cables, etc., which block the light and the vibration of the mechanical platform drive the vibration of the light, which will affect the accuracy of the measurement.

中国专利《一种适用于光纤陀螺观测系统的质心测量装置》,其公开号为CN201138270,公开日为2009年1月14日,该专利用于测量陀螺敏感轴上的速度。然而光纤陀螺属于电子陀螺,无转动部分,易受电磁干扰,使用场合受限制。其漂移非常大,在实际应用中,如果用于精确的导航、制导,需要进行非常复杂的解算和补偿。Chinese patent "A Centroid Measuring Device Applicable to Fiber Optic Gyro Observation System", its publication number is CN201138270, and its publication date is January 14, 2009. This patent is used to measure the speed on the sensitive axis of the gyroscope. However, fiber optic gyroscopes are electronic gyroscopes, which have no rotating parts, are susceptible to electromagnetic interference, and are limited in use. Its drift is very large. In practical applications, if it is used for precise navigation and guidance, very complicated calculation and compensation are required.

中国专利《一种只用单个电子水平仪的质心调节装置》,其公开号为CN101900627A,公开日为2011年9月14日,该专利虽然可以直接得到一个平面即X、Y平面上的姿态角信息,但是在调节Z向时其方法采用了电机带动质量块上升,直至电子水平仪输出非零信号,即三轴气浮台台面处于临界状态。此种临界状态较难判断,需要丰富的工程经验,最后偏差较大,并且在Z向调解过程中难以求解质心具体位置。Chinese patent "A Centroid Adjusting Device Using Only a Single Electronic Level", its publication number is CN101900627A, and the publication date is September 14, 2011. Although this patent can directly obtain the attitude angle information on a plane, that is, the X and Y planes , but when adjusting the Z direction, the method uses the motor to drive the mass to rise until the electronic level outputs a non-zero signal, that is, the three-axis air bearing table is in a critical state. This kind of critical state is difficult to judge and requires rich engineering experience. In the end, the deviation is relatively large, and it is difficult to solve the specific position of the center of mass during the Z-direction adjustment process.

发明内容Contents of the invention

本发明目的是为了解决现有测量气浮台质心技术存在的问题,提供了一种三轴气浮仿真实验平台的质心测量方法。The object of the invention is to solve the problems existing in the existing technique of measuring the center of mass of an air flotation platform, and to provide a method for measuring the center of mass of a three-axis air flotation simulation experiment platform.

本发明所述三轴气浮仿真实验平台的质心测量方法,该方法包括以下步骤:The method for measuring the center of mass of the three-axis air flotation simulation experiment platform of the present invention comprises the following steps:

步骤一、采用双轴倾斜角传感器测量三轴气浮仿真实验平台的X轴角度信息和Y轴角度信息,进而获取X轴角速度ωx和Y轴角速度ωyStep 1. Measure the X-axis angle information and the Y-axis angle information of the three-axis air flotation simulation experiment platform by using a dual-axis tilt angle sensor, and then obtain the X-axis angular velocity ω x and the Y-axis angular velocity ω y ;

采用角加速度传感器测量三轴气浮仿真实验平台的Z轴旋转角的角加速度,进而获取Z轴角速度ωzUse the angular acceleration sensor to measure the angular acceleration of the Z-axis rotation angle of the three-axis air flotation simulation experiment platform, and then obtain the Z-axis angular velocity ω z ;

步骤二、根据步骤一获取的X轴角速度ωx、Y轴角速度ωy和Z轴角速度ωz列出三轴气浮仿真实验平台的运动学方程:Step 2. According to the X-axis angular velocity ω x , Y-axis angular velocity ω y and Z-axis angular velocity ω z obtained in step 1, list the kinematic equations of the three-axis air flotation simulation experiment platform:

φφ ·· θθ ·· ψψ ·· == (( coscos )) -- 11 ·· coscos θθ sinsin θθ sinsin φφ sinsin θθ coscos φφ 00 coscos φφ coscos θθ -- coscos θθ sinsin φφ 00 sinsin φφ coscos φφ ·· ωω xx ωω ythe y ωω zz

其中,φ为横滚角,为横滚角的微分;θ为俯仰角,为俯仰角的微分;ψ为偏航角,为偏航角的微分;Among them, φ is the roll angle, is the differential of the roll angle; θ is the pitch angle, is the differential of the pitch angle; ψ is the yaw angle, is the differential of the yaw angle;

步骤三、将步骤一获取的X轴角速度ωx、Y轴角速度ωy和Z轴角速度ωz微分,列出三轴气浮仿真实验平台的动力学方程:Step 3. Differentiate the X-axis angular velocity ω x , Y-axis angular velocity ω y and Z-axis angular velocity ω z obtained in step 1, and list the dynamic equation of the three-axis air flotation simulation experiment platform:

ωω ·· xx ωω ·· ythe y ωω ·· zz == (( II ythe y -- II zz )) ·&Center Dot; ωω ythe y ·· ωω zz ++ mm gg ·· (( -- cc oo sthe s φφ ·· cc oo sthe s θθ ·· rr ythe y ++ sthe s ii nno φφ ·· cc oo sthe s θθ ·· rr zz )) II xx (( II zz -- II xx )) ·· ωω xx ·&Center Dot; ωω zz ++ mm gg ·&Center Dot; (( coscos φφ ·&Center Dot; cc oo sthe s θθ ·&Center Dot; rr xx ++ sthe s ii nno θθ ·&Center Dot; rr zz )) II ythe y (( II xx -- II ythe y )) ·&Center Dot; ωω xx ·· ωω ythe y ++ mm gg ·&Center Dot; (( -- sthe s ii nno φφ ·&Center Dot; cc oo sthe s θθ ·&Center Dot; rr xx -- sthe s ii nno θθ ·&Center Dot; rr ythe y )) II zz

其中:Ix表示X轴的转动惯量,Iy表示Y轴的转动惯量,Iz表示Z轴的转动惯量;Wherein: I x represents the moment of inertia of the X axis, I y represents the moment of inertia of the Y axis, and I z represents the moment of inertia of the Z axis;

m表示三轴气浮仿真实验平台及仿真部件总质量;m represents the total mass of the three-axis air flotation simulation experiment platform and simulation components;

g为重力加速度;g is the acceleration due to gravity;

(rx,ry,rz)表示三轴气浮仿真实验平台的质心位置;(r x , ry , r z ) represent the position of the center of mass of the three-axis air flotation simulation experiment platform;

步骤四、对步骤三所述动力学方程的三个公式分别在时间t0、t1和t2内进行积分,并与步骤二的运动学方程联立求解,获取三轴气浮仿真实验平台的质心位置(rx,ry,rz):Step 4. Integrate the three formulas of the dynamic equations described in step 3 respectively within time t0, t1 and t2, and solve them simultaneously with the kinematic equations in step 2 to obtain the position of the center of mass of the three-axis air flotation simulation experiment platform (r x , r y , r z ):

rr xx rr ythe y rr zz == 11 mm gg ·· -- II ythe y ·&Center Dot; ∫∫ tt 00 cc oo sthe s φφ cc oo sthe s θθ ·&Center Dot; ∫∫ tt 11 ++ II zz ·&Center Dot; ∫∫ tt 00 sthe s ii nno φφ cc oo sthe s θθ ·&Center Dot; ∫∫ tt 22 ωω zz II xx ·&Center Dot; ∫∫ tt 11 cc oo sthe s φφ cc oo sthe s θθ ·&Center Dot; ∫∫ tt 00 ωω xx ++ II zz ·· ∫∫ tt 11 sthe s ii nno θθ ·· ∫∫ tt 22 ωω zz -- II xx ·· ∫∫ tt 22 sinsin φφ cc oo sthe s θθ ·· ∫∫ tt 00 ωω xx -- II zz ·· ∫∫ tt 22 sthe s ii nno θθ ·· ∫∫ tt 22 ωω zz ..

本发明的优点:本发明所述三轴气浮仿真实验平台的质心测量方法调节方案较为便捷,受环境影响较小且具有较高的测量精度。The advantages of the present invention: the adjustment scheme of the centroid measurement method of the three-axis air flotation simulation experiment platform in the present invention is relatively convenient, less affected by the environment and has high measurement accuracy.

附图说明Description of drawings

图1是本发明所述三轴气浮仿真实验平台的质心测量方法的控制原理框图;Fig. 1 is the control principle block diagram of the centroid measurement method of three-axis air flotation simulation experiment platform of the present invention;

图2是本发明所述三轴气浮仿真实验平台的质心测量方法的流程图。Fig. 2 is a flow chart of the centroid measurement method of the three-axis air flotation simulation experiment platform of the present invention.

具体实施方式detailed description

具体实施方式一:下面结合图1和图2说明本实施方式,本实施方式所述三轴气浮仿真实验平台的质心测量方法,该方法包括以下步骤:Specific embodiment one: below in conjunction with Fig. 1 and Fig. 2 illustrate this embodiment, the centroid measurement method of three-axis air flotation simulation experiment platform described in this embodiment, this method comprises the following steps:

步骤一、采用双轴倾斜角传感器测量三轴气浮仿真实验平台的X轴角度信息和Y轴角度信息,进而获取X轴角速度ωx和Y轴角速度ωyStep 1. Measure the X-axis angle information and the Y-axis angle information of the three-axis air flotation simulation experiment platform by using a dual-axis tilt angle sensor, and then obtain the X-axis angular velocity ω x and the Y-axis angular velocity ω y ;

采用角加速度传感器测量三轴气浮仿真实验平台的Z轴旋转角的角加速度,进而获取Z轴角速度ωzUse the angular acceleration sensor to measure the angular acceleration of the Z-axis rotation angle of the three-axis air flotation simulation experiment platform, and then obtain the Z-axis angular velocity ω z ;

步骤二、根据步骤一获取的X轴角速度ωx、Y轴角速度ωy和Z轴角速度ωz列出三轴气浮仿真实验平台的运动学方程:Step 2. According to the X-axis angular velocity ω x , Y-axis angular velocity ω y and Z-axis angular velocity ω z obtained in step 1, list the kinematic equations of the three-axis air flotation simulation experiment platform:

φφ ·· θθ ·· ψψ ·&Center Dot; == (( coscos )) -- 11 ·· coscos θθ sinsin θθ sinsin φφ sinsin θθ coscos φφ 00 coscos φφ coscos θθ -- coscos θθ sinsin φφ 00 sinsin φφ coscos φφ ·&Center Dot; ωω xx ωω ythe y ωω zz

其中,φ为横滚角,为横滚角的微分;θ为俯仰角,为俯仰角的微分;ψ为偏航角,为偏航角的微分;Among them, φ is the roll angle, is the differential of the roll angle; θ is the pitch angle, is the differential of the pitch angle; ψ is the yaw angle, is the differential of the yaw angle;

步骤三、将步骤一获取的X轴角速度ωx、Y轴角速度ωy和Z轴角速度ωz微分,列出三轴气浮仿真实验平台的动力学方程:Step 3. Differentiate the X-axis angular velocity ω x , Y-axis angular velocity ω y and Z-axis angular velocity ω z obtained in step 1, and list the dynamic equation of the three-axis air flotation simulation experiment platform:

ωω ·· xx ωω ·&Center Dot; ythe y ωω ·· zz == (( II ythe y -- II zz )) ·&Center Dot; ωω ythe y ·&Center Dot; ωω zz ++ mm gg ·· (( -- cc oo sthe s φφ ·&Center Dot; cc oo sthe s θθ ·· rr ythe y ++ sthe s ii nno φφ ·· cc oo sthe s θθ ·· rr zz )) II xx (( II zz -- II xx )) ·· ωω xx ·&Center Dot; ωω zz ++ mm gg ·· (( coscos φφ ·&Center Dot; cc oo sthe s θθ ·&Center Dot; rr xx ++ sthe s ii nno θθ ·&Center Dot; rr zz )) II ythe y (( II xx -- II ythe y )) ·&Center Dot; ωω xx ·· ωω ythe y ++ mm gg ·&Center Dot; (( -- sthe s ii nno φφ ·&Center Dot; cc oo sthe s θθ ·&Center Dot; rr xx -- sthe s ii nno θθ ·&Center Dot; rr ythe y )) II zz

其中:Ix表示X轴的转动惯量,Iy表示Y轴的转动惯量,Iz表示Z轴的转动惯量;Wherein: I x represents the moment of inertia of the X axis, I y represents the moment of inertia of the Y axis, and I z represents the moment of inertia of the Z axis;

m表示三轴气浮仿真实验平台及仿真部件总质量;m represents the total mass of the three-axis air flotation simulation experiment platform and simulation components;

g为重力加速度;g is the acceleration due to gravity;

(rx,ry,rz)表示三轴气浮仿真实验平台的质心位置;(r x , ry , r z ) represent the position of the center of mass of the three-axis air flotation simulation experiment platform;

步骤四、对步骤三所述动力学方程的三个公式分别在时间t0、t1和t2内进行积分,并与步骤二的运动学方程联立求解,获取三轴气浮仿真实验平台的质心位置(rx,ry,rz):Step 4. Integrate the three formulas of the dynamic equations described in step 3 respectively within time t0, t1 and t2, and solve them simultaneously with the kinematic equations in step 2 to obtain the position of the center of mass of the three-axis air flotation simulation experiment platform (r x , r y , r z ):

该方法涉及的控制原理框图如图1所示,The block diagram of the control principle involved in this method is shown in Figure 1.

双轴倾角传感器采用陀螺仪来实现。角加速度传感器采用电子倾角仪来实现。The dual-axis inclination sensor is implemented using a gyroscope. The angular acceleration sensor is realized by an electronic inclinometer.

当三轴气浮仿真实验平台质心与气浮球轴承旋转中心不重合时,气浮球轴承上的载物平台会呈现出一种周期震荡的运动状态。该三轴气浮仿真实验平台运动时即可看作是本体坐标系相对于参考坐标系的定点旋转运动。根据欧拉定理,以原点为旋转中心,绕Z轴旋转偏航角ψ,然后绕Y轴旋转俯仰角θ,最后,以X轴为旋转轴旋转横滚角φ。此时这三个欧拉角ψ,θ,φ就可以确定本体坐标系中平台旋转的任何一个姿态。When the center of mass of the three-axis air flotation simulation experiment platform does not coincide with the rotation center of the air flotation ball bearing, the loading platform on the air flotation ball bearing will show a state of periodic oscillation motion. When the three-axis air flotation simulation experiment platform moves, it can be regarded as a fixed-point rotational movement of the body coordinate system relative to the reference coordinate system. According to Euler's theorem, with the origin as the center of rotation, rotate the yaw angle ψ around the Z axis, then rotate the pitch angle θ around the Y axis, and finally rotate the roll angle φ around the X axis. At this time, the three Euler angles ψ, θ, φ can determine any posture of the platform rotation in the body coordinate system.

三个欧拉角ψ,θ,φ为中间变量,代表欧拉角的微分,即三个欧拉角的角速度。Ix,Iy,Iz为已知量,在三轴气浮仿真实验平台制作时就确定了。The three Euler angles ψ, θ, φ are intermediate variables, Represents the differential of the Euler angles, that is, the angular velocity of the three Euler angles. I x , I y , and I z are known quantities, which are determined when the three-axis air flotation simulation experiment platform is made.

步骤四中对步骤三所述动力学方程的三个公式分别在时间t0、t1和t2内进行积分,此法既可以保证等式成立,又可解决解算过程中欧拉角矩阵不可逆的情况。联立平台运动学公式及动力学公式,将质心位置(rx,ry,rz)作为未知量,即可反解出三轴气浮仿真实验平台当前质心位置。In Step 4, the three formulas of the kinetic equation described in Step 3 are respectively integrated within time t0, t1 and t2. This method can not only ensure the establishment of the equation, but also solve the situation that the Euler angle matrix is irreversible during the solution process. Combining the platform kinematics formula and dynamics formula, taking the position of the center of mass (r x , ry , r z ) as the unknown quantity, the current position of the center of mass of the three-axis air flotation simulation experimental platform can be inversely solved.

具体实施方式二:下面结合图1说明本实施方式,本实施方式对实施方式一作进一步说明,步骤一中获取X轴角速度ωx和Y轴角速度ωy的获取过程为:Specific embodiment two: the present embodiment is described below in conjunction with Fig. 1, and present embodiment is further described to embodiment one, obtains the acquisition process of X-axis angular velocity ω x and Y-axis angular velocity ω y in step 1:

双轴倾斜角传感器测量三轴气浮仿真实验平台的X轴角度信息和Y轴角度信息,所述X轴角度信息经串行通信接口电路输出给工控机,工控机对X轴角度信息进行微分处理,获取X轴角速度ωxThe dual-axis inclination angle sensor measures the X-axis angle information and the Y-axis angle information of the three-axis air flotation simulation experiment platform, and the X-axis angle information is output to the industrial computer through the serial communication interface circuit, and the industrial computer differentiates the X-axis angle information Processing, to obtain the X-axis angular velocity ω x ;

所述Y轴角度信息经RS485接口电路输出给工控机,工控机对Y轴角度信息进行微分处理,获取Y轴角速度ωyThe Y-axis angle information is output to the industrial computer through the RS485 interface circuit, and the industrial computer performs differential processing on the Y-axis angle information to obtain the Y-axis angular velocity ω y .

串行通信接口电路采用RS485或RS232串行接口电路。The serial communication interface circuit adopts RS485 or RS232 serial interface circuit.

具体实施方式三:下面结合图1说明本实施方式,本实施方式对实施方式一作进一步说明,步骤一中Z轴角速度ωz的获取过程:Specific embodiment three: the present embodiment is described below in conjunction with Fig. 1, and the embodiment one is further described in this embodiment, the acquisition process of the Z-axis angular velocity ω z in the step 1:

角加速度传感器测量三轴气浮仿真实验平台的Z轴旋转角的角加速度,所述Z轴旋转角的角加速度由A/D转换电路转换成数字信号的角加速度,所述数字信号的角加速度被工控机进行积分处理,获取Z轴角速度ωzThe angular acceleration sensor measures the angular acceleration of the Z-axis rotation angle of the three-axis air flotation simulation experiment platform, and the angular acceleration of the Z-axis rotation angle is converted into the angular acceleration of the digital signal by the A/D conversion circuit, and the angular acceleration of the digital signal is Integral processing is carried out by the industrial computer to obtain the Z-axis angular velocity ω z .

具体实施方式四:本实施方式对实施方式一作进一步说明,t0=8ms~12ms;t1=16ms~25ms;t2=25ms~35ms。Embodiment 4: In this embodiment, Embodiment 1 is further explained, t0=8ms˜12ms; t1=16ms˜25ms; t2=25ms˜35ms.

具体实施方式五:本实施方式对实施方式一作进一步说明,t0=10ms;t1=20ms;t2=30ms。Embodiment 5: In this embodiment, Embodiment 1 is further explained, t0=10ms; t1=20ms; t2=30ms.

Claims (6)

1.三轴气浮仿真实验平台的质心测量方法,其特征在于,该方法包括以下步骤:1. The method for measuring the center of mass of the three-axis air flotation simulation experiment platform is characterized in that the method comprises the following steps: 步骤一、采用双轴倾斜角传感器测量三轴气浮仿真实验平台的X轴角度信息和Y轴角度信息,进而获取X轴角速度ωx和Y轴角速度ωyStep 1. Measure the X-axis angle information and the Y-axis angle information of the three-axis air flotation simulation experiment platform by using a dual-axis tilt angle sensor, and then obtain the X-axis angular velocity ω x and the Y-axis angular velocity ω y ; 采用角加速度传感器测量三轴气浮仿真实验平台的Z轴旋转角的角加速度,进而获取Z轴角速度ωzUse the angular acceleration sensor to measure the angular acceleration of the Z-axis rotation angle of the three-axis air flotation simulation experiment platform, and then obtain the Z-axis angular velocity ω z ; 步骤二、根据步骤一获取的X轴角速度ωx、Y轴角速度ωy和Z轴角速度ωz列出三轴气浮仿真实验平台的运动学方程:Step 2. According to the X-axis angular velocity ω x , Y-axis angular velocity ω y and Z-axis angular velocity ω z obtained in step 1, list the kinematic equations of the three-axis air flotation simulation experiment platform: φφ ·&Center Dot; θθ ·&Center Dot; ψψ ·&Center Dot; == (( cc oo sthe s )) -- 11 ·· cc oo sthe s θθ sthe s ii nno θθ sthe s ii nno φφ sthe s ii nno θθ cc oo sthe s φφ 00 cc oo sthe s φφ coscos θθ -- cc oo sthe s θθ sthe s ii nno φφ 00 sinsin φφ coscos φφ ·&Center Dot; ωω xx ωω ythe y ωω zz 其中,φ为横滚角,为横滚角的微分;θ为俯仰角,为俯仰角的微分;ψ为偏航角,为偏航角的微分;Among them, φ is the roll angle, is the differential of the roll angle; θ is the pitch angle, is the differential of the pitch angle; ψ is the yaw angle, is the differential of the yaw angle; 步骤三、将步骤一获取的X轴角速度ωx、Y轴角速度ωy和Z轴角速度ωz微分,列出三轴气浮仿真实验平台的动力学方程:Step 3. Differentiate the X-axis angular velocity ω x , Y-axis angular velocity ω y and Z-axis angular velocity ω z obtained in step 1, and list the dynamic equation of the three-axis air flotation simulation experiment platform: ωω ·&Center Dot; xx ωω ·&Center Dot; ythe y ωω ·· zz == (( II ythe y -- II zz )) ·· ωω ythe y ·· ωω zz ++ mm gg ·· (( -- cc oo sthe s φφ ·· cc oo sthe s θθ ·&Center Dot; rr ythe y ++ sthe s ii nno φφ ·· cc oo sthe s θθ ·· rr zz )) II xx (( II zz -- II xx )) ·· ωω xx ·&Center Dot; ωω zz ++ mm gg ·· (( coscos φφ ·&Center Dot; cc oo sthe s θθ ·· rr xx ++ sthe s ii nno θθ ·· rr zz )) II ythe y (( II xx -- II ythe y )) ·&Center Dot; ωω xx ·&Center Dot; ωω ythe y ++ mm gg ·&Center Dot; (( -- sthe s ii nno φφ ·&Center Dot; cc oo sthe s θθ ·· rr xx -- sthe s ii nno θθ ·· rr ythe y )) II zz 其中:Ix表示X轴的转动惯量,Iy表示Y轴的转动惯量,Iz表示Z轴的转动惯量;Wherein: I x represents the moment of inertia of the X axis, I y represents the moment of inertia of the Y axis, and I z represents the moment of inertia of the Z axis; m表示三轴气浮仿真实验平台及仿真部件总质量;m represents the total mass of the three-axis air flotation simulation experiment platform and simulation components; g为重力加速度;g is the acceleration due to gravity; (rx,ry,rz)表示三轴气浮仿真实验平台的质心位置;(r x , ry , r z ) represent the position of the center of mass of the three-axis air flotation simulation experiment platform; 步骤四、对步骤三所述动力学方程的三个公式分别在时间t0、t1和t2内进行积分,并与步骤二的运动学方程联立求解,获取三轴气浮仿真实验平台的质心位置(rx,ry,rz):Step 4. Integrate the three formulas of the dynamic equations described in step 3 respectively within time t0, t1 and t2, and solve them simultaneously with the kinematic equations in step 2 to obtain the position of the center of mass of the three-axis air flotation simulation experiment platform (r x , r y , r z ): rr xx rr ythe y rr zz == 11 mm gg ·&Center Dot; -- II ythe y ·&Center Dot; ∫∫ tt 00 coscos φφ coscos θθ ·&Center Dot; ∫∫ tt 11 ωω ythe y ++ II zz ·· ∫∫ tt 00 sinsin φφ coscos θθ ·· ∫∫ tt 22 ωω zz II xx ·&Center Dot; ∫∫ tt 11 coscos φφ coscos θθ ·&Center Dot; ∫∫ tt 00 ωω xx ++ II zz ·&Center Dot; ∫∫ tt 11 sinsin θθ ·&Center Dot; ∫∫ tt 22 ωω zz -- II xx ·&Center Dot; ∫∫ tt 22 sinsin φφ coscos θθ ·&Center Dot; ∫∫ tt 00 ωω xx -- II ythe y ·&Center Dot; ∫∫ tt 22 sinsin θθ ·&Center Dot; ∫∫ tt 22 ωω zz .. 2.根据权利要求1所述三轴气浮仿真实验平台的质心测量方法,其特征在于,步骤一中获取X轴角速度ωx和Y轴角速度ωy的获取过程为:2. according to the centroid measuring method of three-axis air flotation simulation experiment platform described in claim 1, it is characterized in that, in the step 1, obtain the acquisition process of X-axis angular velocity ω x and Y-axis angular velocity ω y as: 双轴倾斜角传感器测量三轴气浮仿真实验平台的X轴角度信息和Y轴角度信息,所述X轴角度信息经串行通信接口电路输出给工控机,工控机对X轴角度信息进行微分处理,获取X轴角速度ωxThe dual-axis inclination angle sensor measures the X-axis angle information and the Y-axis angle information of the three-axis air flotation simulation experiment platform, and the X-axis angle information is output to the industrial computer through the serial communication interface circuit, and the industrial computer differentiates the X-axis angle information Processing, to obtain the X-axis angular velocity ω x ; 所述Y轴角度信息经RS485接口电路输出给工控机,工控机对Y轴角度信息进行微分处理,获取Y轴角速度ωyThe Y-axis angle information is output to the industrial computer through the RS485 interface circuit, and the industrial computer performs differential processing on the Y-axis angle information to obtain the Y-axis angular velocity ω y . 3.根据权利要求2所述三轴气浮仿真实验平台的质心测量方法,其特征在于,串行通信接口电路采用RS485或RS232串行接口电路。3. The method for measuring the centroid of the three-axis air flotation simulation experiment platform according to claim 2, wherein the serial communication interface circuit adopts RS485 or RS232 serial interface circuit. 4.根据权利要求1所述三轴气浮仿真实验平台的质心测量方法,其特征在于,步骤一中Z轴角速度ωz的获取过程:4. according to the centroid measuring method of three-axis air flotation simulation experiment platform described in claim 1, it is characterized in that, the acquisition process of Z-axis angular velocity ω z in the step 1: 角加速度传感器测量三轴气浮仿真实验平台的Z轴旋转角的角加速度,所述Z轴旋转角的角加速度由A/D转换电路转换成数字信号的角加速度,所述数字信号的角加速度被工控机进行积分处理,获取Z轴角速度ωzThe angular acceleration sensor measures the angular acceleration of the Z-axis rotation angle of the three-axis air flotation simulation experiment platform, and the angular acceleration of the Z-axis rotation angle is converted into the angular acceleration of the digital signal by the A/D conversion circuit, and the angular acceleration of the digital signal is Integral processing is carried out by the industrial computer to obtain the Z-axis angular velocity ω z . 5.根据权利要求1所述三轴气浮仿真实验平台的质心测量方法,其特征在于,t0=8ms~12ms;t1=16ms~25ms;t2=25ms~35ms。5. The centroid measurement method of the three-axis air flotation simulation experiment platform according to claim 1, characterized in that t0=8ms~12ms; t1=16ms~25ms; t2=25ms~35ms. 6.根据权利要求1所述三轴气浮仿真实验平台的质心测量方法,其特征在于,t0=10ms;t1=20ms;t2=30ms。6. The method for measuring the center of mass of the three-axis air flotation simulation experiment platform according to claim 1, wherein t0=10ms; t1=20ms; t2=30ms.
CN201410128649.1A 2014-04-01 2014-04-01 The centroid measurement method of three axle air supporting emulation experiment platforms Expired - Fee Related CN103868648B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410128649.1A CN103868648B (en) 2014-04-01 2014-04-01 The centroid measurement method of three axle air supporting emulation experiment platforms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410128649.1A CN103868648B (en) 2014-04-01 2014-04-01 The centroid measurement method of three axle air supporting emulation experiment platforms

Publications (2)

Publication Number Publication Date
CN103868648A CN103868648A (en) 2014-06-18
CN103868648B true CN103868648B (en) 2016-06-01

Family

ID=50907422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410128649.1A Expired - Fee Related CN103868648B (en) 2014-04-01 2014-04-01 The centroid measurement method of three axle air supporting emulation experiment platforms

Country Status (1)

Country Link
CN (1) CN103868648B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296908B (en) * 2014-09-29 2016-08-24 哈尔滨工业大学 Three freedom degree air floating platform disturbance torque composition measuring apparatus
CN104458123B (en) * 2014-11-03 2017-03-08 上海卫星工程研究所 The method calculating centroid of satellite using quality and the barycenter information of parts
CN104932559A (en) * 2015-06-11 2015-09-23 北京控制工程研究所 Six-degree-of-freedom air bearing table mass center adjustment mechanism and adjustment method
CN104960676B (en) * 2015-07-13 2017-06-06 哈尔滨工业大学 Multiple degrees of freedom air floating platform stable-pressure device and method for stabilizing voltage
CN105300597B (en) * 2015-08-04 2018-01-02 上海卫星工程研究所 Three-axis air-bearing table barycenter balancing method and device
CN105628303B (en) * 2015-12-25 2019-11-15 南京理工大学 CubeSat centroid measurement method
CN110196139B (en) * 2019-01-31 2020-12-11 上海卫星工程研究所 Static unbalance testing method for two-dimensional rotary table
CN110146224B (en) * 2019-05-22 2021-02-09 哈尔滨工业大学 Method for identifying mass, centroid position and inertia tensor of combined spacecraft
CN112327942B (en) * 2020-11-09 2023-10-17 山东航天电子技术研究所 Automatic leveling method of three-axis air-floating satellite simulation platform
CN116661335B (en) * 2023-07-27 2023-10-13 哈尔滨工业大学 Spacecraft attitude control physical simulation system with tracking and aiming device and evaluation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4146141B2 (en) * 2002-03-12 2008-09-03 東芝エレベータ株式会社 Vibration adjusting device and vibration adjusting method
DE102010015571A1 (en) * 2010-04-19 2011-10-20 Schenck Process Gmbh System and method for determining the center of gravity of rail vehicles
CN101900627B (en) * 2010-08-10 2011-09-14 哈尔滨工业大学 Device and method for automatically adjusting center of mass after applying load to triaxial air-bearing turntable board
CN103389183B (en) * 2013-08-06 2015-07-08 北京卫星环境工程研究所 A comprehensive test bench for spacecraft quality characteristics based on spherical air bearings

Also Published As

Publication number Publication date
CN103868648A (en) 2014-06-18

Similar Documents

Publication Publication Date Title
CN103868648B (en) The centroid measurement method of three axle air supporting emulation experiment platforms
CN103090867B (en) Error restraining method for fiber-optic gyroscope strapdown inertial navigation system rotating relative to geocentric inertial system
Prado et al. Three-axis air-bearing based platform for small satellite attitude determination and control simulation
CN102829781B (en) Implementation method of rotation type strapdown optical-fiber compass
CN101514899B (en) Error Suppression Method of Fiber Optic Gyro Strapdown Inertial Navigation System Based on Single-axis Rotation
CN100541132C (en) Mooring fine alignment method for marine fiber optic gyro strapdown attitude system under large misalignment angle
CN104567932A (en) High-precision fiber-optic gyroscope inertial measurement device calibration method
CN102087110B (en) Miniature underwater moving vehicle autonomous attitude detecting device and method
CN101216321A (en) A Fast and Fine Alignment Method for Strapdown Inertial Navigation System
CN1932444B (en) Attitude measurement method suitable for high-speed rotating body
CN101963512A (en) Initial alignment method for marine rotary fiber-optic gyroscope strapdown inertial navigation system
CN102645223B (en) Serial inertial navigation vacuum filtering correction method based on specific force observation
CN103727939B (en) Biaxial rotating attitude measurement system and measuring method thereof
CN103363992A (en) Method for solving attitude and heading reference system of four-rotor unmanned aerial vehicle based on gradient descent
CN112179340B (en) A dual-axis rotation modulation method for redundantly configured inertial measurement units
CN103090865B (en) A kind of modulation type strapdown inertial navigation system attitude error suppressing method
CN103256943A (en) Compensation method for scale factor error in single-axial rotating strapdown inertial navigation system
CN106052682A (en) Mixed inertial navigation system and navigation method
CN106052686A (en) Full-autonomous strapdown inertial navigation system based on DSPTMS 320F28335
CN104697521A (en) Method for measuring posture and angle speed of high-speed rotating body by gyro redundant oblique configuration mode
CN105737848B (en) System-level star sensor star viewing system and star viewing method
CN104296908A (en) Three-degree-of-freedom air bearing table disturbance torque composition measuring device
CN1644456A (en) Miniature assembled gesture measuring system for mini-satellite
CN102788597B (en) Error suppressing method of rotary strap-down inertial navigation system based on space stabilization
CN105737842A (en) Vehicle-mounted autonomous navigation method based on rotary modulation and virtual odometer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160601