[go: up one dir, main page]

CN101514899B - Error Suppression Method of Fiber Optic Gyro Strapdown Inertial Navigation System Based on Single-axis Rotation - Google Patents

Error Suppression Method of Fiber Optic Gyro Strapdown Inertial Navigation System Based on Single-axis Rotation Download PDF

Info

Publication number
CN101514899B
CN101514899B CN2009100717333A CN200910071733A CN101514899B CN 101514899 B CN101514899 B CN 101514899B CN 2009100717333 A CN2009100717333 A CN 2009100717333A CN 200910071733 A CN200910071733 A CN 200910071733A CN 101514899 B CN101514899 B CN 101514899B
Authority
CN
China
Prior art keywords
omega
carrier
axis
coordinate system
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100717333A
Other languages
Chinese (zh)
Other versions
CN101514899A (en
Inventor
孙枫
孙伟
张鑫
高伟
奔粤阳
柴永利
王文静
孙巧英
李国强
赵彦雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN2009100717333A priority Critical patent/CN101514899B/en
Publication of CN101514899A publication Critical patent/CN101514899A/en
Application granted granted Critical
Publication of CN101514899B publication Critical patent/CN101514899B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)

Abstract

本发明提供的是一种基于单轴旋转的光纤陀螺捷联惯性导航系统误差抑制方法。确定载体的初始位置参数;采集光纤陀螺仪和石英加速度计输出的数据;对加速度计的输出与重力加速度的关系以及陀螺仪输出与地球自转角速率的关系确定载体的姿态信息并完成系统的初始对准;惯性测量单元坐标系绕载体坐标系oyb轴正向旋转45度并确定两坐标系之间的初始相对位置;IMU绕载体坐标系方位轴ozb正向以角速度ω=6°/s连续转动;将IMU旋转后光纤陀螺仪和石英加速度计生成的数据转换到载体坐标系下,得到惯性器件常值偏差的调制形式;利用光纤陀螺的输出值ωib b对捷联矩阵Tb n进行更新;计算IMU旋转调制后载体的速度和位置;本发明将三轴方向上的惯性器件常值偏差进行调制,提高导航定位精度。

Figure 200910071733

The invention provides an error suppression method for a fiber optic gyroscope strapdown inertial navigation system based on single-axis rotation. Determine the initial position parameters of the carrier; collect the data output by the fiber optic gyroscope and the quartz accelerometer; determine the attitude information of the carrier and complete the system initial Alignment; the inertial measurement unit coordinate system rotates 45 degrees positively around the carrier coordinate system oy b axis and determines the initial relative position between the two coordinate systems; the IMU rotates around the carrier coordinate system azimuth axis oz b positively at an angular velocity s rotates continuously; convert the data generated by the fiber optic gyroscope and quartz accelerometer after the IMU rotates to the carrier coordinate system, and obtain the modulation form of the constant value deviation of the inertial device; use the output value ωi b b of the fiber optic gyroscope to the strapdown matrix T b n is updated; the speed and position of the carrier after the IMU rotation modulation are calculated; the present invention modulates the constant value deviation of the inertial device in the three-axis direction to improve the navigation and positioning accuracy.

Figure 200910071733

Description

基于单轴旋转的光纤陀螺捷联惯性导航系统误差抑制方法 Error Suppression Method of Fiber Optic Gyro Strapdown Inertial Navigation System Based on Single-axis Rotation

(一)技术领域(1) Technical field

本发明涉及的是一种误差抑制方法,特别是涉及一种基于单轴旋转的光纤陀螺捷联惯性导航系统的误差抑制方法。The invention relates to an error suppression method, in particular to an error suppression method based on a fiber optic gyro strapdown inertial navigation system based on single-axis rotation.

(二)背景技术(2) Background technology

捷联惯性导航系统SINS是一种完全自主的导航系统,利用陀螺仪和加速度计测量载体相对惯性空间的线运动和角运动参数,在给定初始条件下,由计算机进行积分运算,连续、实时地提供位置、速度和姿态信息。由于SINS完全依靠自身的惯性元件,不依靠任何外界信息测量导航参数,因此,它具有隐蔽性好,Strapdown Inertial Navigation System SINS is a completely autonomous navigation system. It uses gyroscopes and accelerometers to measure the linear and angular motion parameters of the carrier relative to the inertial space. provide position, velocity and attitude information accurately. Since SINS completely relies on its own inertial components and does not rely on any external information to measure navigation parameters, it has good concealment and

不受气候条件限制,不受干扰等优点,是一种完全自主式、全天候的导航系统,已广泛应用于航空、航天、航海等领域。根据SINS的基本原理,SINS在导航过程中惯性器件常值偏差的存在是导致惯导系统导航精度难以提高的主要因素。如何有效限制惯性导航误差发散、提高惯性导航系统精度是惯性导航领域一项非常重要的课题。Not limited by weather conditions, free from interference and other advantages, it is a completely autonomous, all-weather navigation system, which has been widely used in aviation, aerospace, navigation and other fields. According to the basic principle of SINS, the existence of the constant value deviation of the inertial device in the navigation process of SINS is the main factor that makes it difficult to improve the navigation accuracy of the inertial navigation system. How to effectively limit the divergence of inertial navigation errors and improve the accuracy of inertial navigation systems is a very important topic in the field of inertial navigation.

为了提高捷联系统自身的精度,一方面可以提高惯性元件的精度,但是由于受加工技术水平的限制,无限制的提高元件的精度是很难实现的;另一方面就是采取捷联惯性导航系统的误差抑制技术,自动抵消惯性器件的误差对系统精度的影响。这样就可以应用现有精度的惯性元件构成较高精度的捷联惯性导航系统。In order to improve the accuracy of the strapdown system itself, on the one hand, the accuracy of the inertial components can be improved, but due to the limitation of the processing technology level, it is difficult to achieve unlimited improvement of the accuracy of the components; on the other hand, the strapdown inertial navigation system is adopted The advanced error suppression technology can automatically offset the influence of the error of the inertial device on the system accuracy. In this way, the existing high-precision inertial components can be used to form a higher-precision strapdown inertial navigation system.

惯导系统的误差抑制,不是依赖于外部辅助对误差状态进行估计,而是研究惯性导航误差在特定运动条件下的传播规律,并依据此规律限制误差发散,提高导航精度的方法。转动抑制是最典型的误差抑制方法:通过绕一个轴或多个轴转动惯性测量单元(IMU),对导航误差进行调制,达到控制导航误差发散、提高导航精度的目的。The error suppression of the inertial navigation system does not rely on external assistance to estimate the error state, but to study the propagation law of inertial navigation errors under specific motion conditions, and based on this law to limit the error divergence and improve navigation accuracy. Rotation suppression is the most typical error suppression method: by rotating the inertial measurement unit (IMU) around one or more axes, the navigation error is modulated to control the divergence of navigation errors and improve navigation accuracy.

单轴旋转仅能补偿两个敏感轴方向上惯性器件的常值偏差;双轴旋转虽然可以补偿三个敏感轴方向上惯性器件的常值偏差,但是旋转机构的复杂化导致了系统的可靠性及导航解算效率的降低。因此,如何设计合理的单轴旋转补偿方式提高光纤惯导系统的导航精度有重要的意义。Single-axis rotation can only compensate for the constant value deviation of inertial devices in the directions of two sensitive axes; although dual-axis rotation can compensate for the constant value deviation of inertial devices in the directions of three sensitive axes, the complexity of the rotating mechanism leads to the reliability of the system And the reduction of navigation solution efficiency. Therefore, how to design a reasonable single-axis rotation compensation method to improve the navigation accuracy of the fiber optic inertial navigation system is of great significance.

(三)发明内容(3) Contents of the invention

本发明的目的在于提供一种将惯性测量单元绕载体方位轴连续旋转,既保证了三个敏感轴方向上惯性器件的常值偏差得以调制,又避免了双轴旋转所需的复杂的旋转机构及导航解算算法的基于单轴旋转的光纤陀螺捷联惯性导航系统误差抑制方法。The purpose of the present invention is to provide a continuous rotation of the inertial measurement unit around the azimuth axis of the carrier, which not only ensures that the constant value deviation of the inertial device in the direction of the three sensitive axes can be modulated, but also avoids the complicated rotation mechanism required for dual-axis rotation An error suppression method for fiber optic gyroscope strapdown inertial navigation system based on single-axis rotation and navigation solution algorithm.

本发明的技术解决方案为:一种捷联惯导系统的单轴旋转调制方法,其特征在于将惯性测量单元绕不与自身重合的载体方位轴连续转动,利用惯性测量单元连续转动过程中IMU坐标系与载体坐标系的相对位置关系,即可确定惯性器件常值偏差的抑制形式,其具体步骤如下:The technical solution of the present invention is: a single-axis rotation modulation method of a strapdown inertial navigation system, which is characterized in that the inertial measurement unit is continuously rotated around the carrier azimuth axis that does not coincide with itself, and the IMU is used during the continuous rotation of the inertial measurement unit. The relative position relationship between the coordinate system and the carrier coordinate system can determine the suppression form of the constant value deviation of the inertial device. The specific steps are as follows:

(1)利用全球定位系统GPS确定载体的初始位置参数,将它们装订至导航计算机中;(1) Utilize the global positioning system GPS to determine the initial position parameters of the carrier, and bind them into the navigation computer;

(2)光纤陀螺捷联惯性导航系统进行预热后采集光纤陀螺仪和石英加速度计输出的数据。其中,三个陀螺的常值漂移相等、三个加速度计零位偏差相等。根据加速度计的输出与重力加速度的关系以及陀螺仪输出与地球自转角速率的关系初步确定此时载体的姿态信息(纵摇角θ、横摇角γ和航向角ψ)完成系统的初始对准,建立惯导系统的初始捷联矩阵Tb n(2) The fiber optic gyroscope strapdown inertial navigation system collects the output data of the fiber optic gyroscope and quartz accelerometer after warming up. Among them, the constant value drift of the three gyroscopes is equal, and the zero position deviation of the three accelerometers is equal. According to the relationship between the output of the accelerometer and the acceleration of gravity and the relationship between the output of the gyroscope and the angular rate of the earth's rotation, the attitude information of the carrier at this time (pitch angle θ, roll angle γ and heading angle ψ) is initially determined to complete the initial alignment of the system , to establish the initial strapdown matrix T b n of the inertial navigation system:

TT bb nno == coscos γγ coscos ψψ -- sinsin γγ sinsin θθ sinsin ψψ -- coscos θθ sinsin ψψ sinsin γγ coscos ψψ ++ coscos γγ sinsin θθ sinsin ψψ coscos γγ coscos ψψ ++ sinsin γγ sinsin θθ sinsin ψψ coscos θθ coscos ψψ sinsin γγ sinsin ψψ -- coscos γγ sinsin θθ coscos ψψ -- sinsin γγ coscos θθ sinsin θθ coscos γγ coscos θθ

(3)惯性测量单元绕载体坐标系oyb轴正向旋转45度(如附图2),确定IMU坐标系与载体坐标系之间的初始相对位置:(3) The inertial measurement unit is rotated 45 degrees positively around the oy b axis of the carrier coordinate system (as shown in Figure 2), and the initial relative position between the IMU coordinate system and the carrier coordinate system is determined:

载体坐标系与IMU坐标系具有同一坐标原点o,oys轴与oyb轴相重合,oxs轴、ozs轴、oxb轴和ozb轴位于同一平面内,但ozs轴与ozb轴的夹角为45°,ozs轴与oxb轴的夹角为90°-45°=45°。The carrier coordinate system and the IMU coordinate system have the same coordinate origin o, the oy s axis coincides with the oy b axis, and the ox s axis, oz s axis, ox b axis and oz b axis are located in the same plane, but the oz s axis and oz b The angle between the axes is 45°, and the angle between the oz s axis and the ox b axis is 90°-45°=45°.

(4)确定两坐标系相对初始位置关系后,惯性测量单元绕载体坐标系方位轴ozb正向以角速度ω=6°/s连续转动(如附图3):(4) After determining the relative initial position relationship of the two coordinate systems, the inertial measurement unit rotates continuously at an angular velocity ω=6°/s around the azimuth axis oz b of the carrier coordinate system (as shown in Figure 3):

IMU转动过程中,IMU坐标系到载体坐标系的转换矩阵为:During the rotation of the IMU, the transformation matrix from the IMU coordinate system to the carrier coordinate system is:

Figure G2009100717333D00031
Figure G2009100717333D00031

(5)将惯性测量单元旋转后光纤陀螺仪和石英加速度计生成的数据转换到载体坐标系下,得到惯性器件常值偏差的调制形式:(5) After the IMU rotates, the data generated by the fiber optic gyroscope and the quartz accelerometer are converted to the carrier coordinate system, and the modulation form of the constant value deviation of the inertial device is obtained:

光纤陀螺仪和加速度计的输出值分别为ωis s和fis sThe output values of the fiber optic gyroscope and accelerometer are ω is s and f is s respectively:

ωω isis sthe s == (( TT sthe s bb )) TT ωω ibdibd bb ++ ϵϵ xx ϵϵ ythe y ϵϵ zz TT ++ ωω bsbs sthe s

ff isis sthe s == (( TT sthe s bb )) TT ff ibdibd bb ++ ▿▿ xx ▿▿ ythe y ▿▿ zz TT ++ ff bsbs sthe s

其中, ω bs s = - ( T s b ) T ω sb b = 0 0 ω T , (·)T表示矩阵·的转秩,ωibd b、fibd b为载体运动的真实输出。εx、εy、εz为陀螺仪的漂移误差,

Figure G2009100717333D00035
为加速度计零位误差。由于s系相对b系只有旋转运动,没有相对直线运动,所以 f bs s = 0 , 故加速度计输出可表示为: f is s = T b s f ibd b + ▿ x ▿ y ▿ z T . in, ω bs the s = - ( T the s b ) T ω sb b = 0 0 ω T , (·) T represents the transformation rank of the matrix ·, ω ibd b , f ibd b are the real output of the carrier motion. ε x , ε y , ε z are the drift errors of the gyroscope,
Figure G2009100717333D00035
is the accelerometer zero error. Since the s system has only rotational motion relative to the b system, there is no relative linear motion, so f bs the s = 0 , So the accelerometer output can be expressed as: f is the s = T b the s f ibd b + ▿ x ▿ the y ▿ z T .

光纤陀螺仪和加速度计的输出从IMU坐标系到载体坐标系的变换可以表示为:The transformation of the output of the fiber optic gyroscope and accelerometer from the IMU coordinate system to the carrier coordinate system can be expressed as:

ωω ibib bb == TT sthe s bb ωω isis sthe s ++ ωω sbsb bb ,, ff ibib bb == TT sthe s bb ff isis sthe s

惯性测量单元绕载体坐标系oyb轴正向旋转45度,此时可以得到εzcos45°=εxcos(90°-45°)、

Figure G2009100717333D00039
载体坐标系ozb轴方向上不受陀螺常值漂移和加速度计零位偏差的影响,此时载体相对惯性空间的运动角速度及载体相对惯性空间的线运动加速度在载体坐标系的投影分别如下:The inertial measurement unit rotates 45 degrees positively around the oy b axis of the carrier coordinate system. At this time, ε z cos45°=ε x cos(90°-45°),
Figure G2009100717333D00039
The direction of the oz b- axis of the carrier coordinate system is not affected by the constant value drift of the gyroscope and the zero position deviation of the accelerometer. At this time, the projections of the angular velocity of the carrier relative to the inertial space and the linear motion acceleration of the carrier relative to the inertial space on the carrier coordinate system are as follows:

ωω ibib bxbx == ωω ibdibd bxbx ++ 22 // 22 coscos ωtωt (( ϵϵ xx ++ ϵϵ zz )) -- sinsin ωtωt ϵϵ ythe y ωω ibib byby == ωω ibdibd byby ++ 22 // 22 sinsin ωtωt (( ϵϵ xx ++ ϵϵ ZZ )) ++ coscos ωtωt ϵϵ ythe y ωω ibib bzbz == ωω ibdibd bzbz

ff ibib bxbx == ff ibdibd bxbx ++ 22 // 22 coscos ωtωt (( ▿▿ xx ++ ▿▿ zz )) -- sinsin ωtωt ▿▿ ythe y ff ibib byby == ff ibdibd byby ++ 22 // 22 sinsin ωtωt (( ▿▿ xx ++ ▿▿ zz )) ++ coscos ωtωt ▿▿ ythe y ff ibib bzbz == ff ibdibd bzbz

其中,ωib bx、ωib by、ωib bz分别为载体相对惯性空间的运动角速度在载体坐标系的oxb轴、oyb轴、ozb轴上的分量;fib bx、fib by、fib bz分别为载体相对惯性空间的线加速度在载体坐标系的oxb轴、oyb轴、ozb轴上的分量。Among them, ω ib bx , ω ib by , and ω ib bz are the components of the angular velocity of the carrier relative to the inertial space on the ox b axis, oy b axis, and oz b axis of the carrier coordinate system; f ib bx , f ib by , f ib bz are the components of the linear acceleration of the carrier relative to the inertial space on the ox b axis, oy b axis, and oz b axis of the carrier coordinate system.

至此,载体坐标系中方位轴上惯性器件的常值偏差得到抵消;水平方向上惯性器件的常值偏差被调制成周期变化的量,经过惯导系统中积分环节,该常值偏差对系统的作用为零。So far, the constant value deviation of the inertial device on the azimuth axis in the carrier coordinate system is offset; the constant value deviation of the inertial device in the horizontal direction is modulated into a periodical variable amount, and after the integration link in the inertial navigation system, the constant value deviation has a great influence on the system Effect is zero.

(6)将步骤(5)获得的载体系下光纤陀螺的输出值ωib b带入惯导系统中采用四元数法对捷联矩阵Tb n进行更新:(6) Bring the output value ω ib b of the fiber optic gyroscope under the carrier system obtained in step (5) into the inertial navigation system and use the quaternion method to update the strapdown matrix T b n :

ωω nbnb bb == ωω ibib bb -- (( TT bb nno )) TT (( ωω ieie nno ++ ωω enen nno ))

其中:ωie n为地球自转角速度在导航系下的分量;ωen n为导航坐标系相对地球坐标系的运动角速度在导航系下的分量;ωnb b为载体相对导航坐标系的运动角速度在载体坐标系上的分量。Among them: ω ie n is the component of the angular velocity of the earth's rotation in the navigation system; ω en n is the component of the angular velocity of the navigation coordinate system relative to the earth coordinate system in the navigation system; ω nb b is the angular velocity of the carrier relative to the navigation coordinate system in Components in the vector coordinate system.

更新四元数和姿态矩阵:Update the quaternion and pose matrix:

设载体坐标系相对导航坐标系的转动四元数为:Let the rotation quaternion of the carrier coordinate system relative to the navigation coordinate system be:

Q=q0+q1ib+q2jb+q3kb Q=q 0 +q 1 i b +q 2 j b +q 3 k b

其中:ib、jb、kb分别表示载体坐标系oxb轴、oyb轴、ozb轴上的单位方向向量。Where: i b , j b , and k b represent unit direction vectors on the ox b axis, oy b axis, and oz b axis of the carrier coordinate system, respectively.

四元数的即时修正可以通过解四元数微分方程 Q · = 1 2 Q ω nb b 来实现:On-the-fly corrections to quaternions can be achieved by solving quaternion differential equations Q &Center Dot; = 1 2 Q ω nb b to fulfill:

qq ·· 00 qq ·&Center Dot; 11 qq ·&Center Dot; 22 qq ·· 33 == 11 22 00 -- ωω nbnb bxbx -- ωω nbnb byby -- ωω nbnb bzbz ωω nbnb bxbx 00 ωω nbnb bzbz -- ωω nbnb byby ωω nbnb byby -- ωω nbnb bzbz 00 ωω nbnb bxbx ωω nbnb bzbz ωω nbnb byby -- ωω nbnb bxbx 00 qq 00 qq 11 qq 22 qq 33

其中:ωnb bx、ωnb by、ωnb bz分别表示载体相对导航系的运动角速度在载体坐标系oxb轴、oyb轴、ozb轴上的分量。Among them: ω nb bx , ω nb by , and ω nb bz represent the components of the angular velocity of the carrier relative to the navigation system on the ox b axis, oy b axis, and oz b axis of the carrier coordinate system, respectively.

姿态矩阵Tb n的更新过程为:The update process of attitude matrix T b n is:

TT bb nno == qq 00 22 ++ qq 11 22 -- qq 22 22 -- qq 33 22 22 (( qq 11 qq 22 -- qq 00 qq 33 )) 22 (( qq 11 qq 33 ++ qq 00 qq 22 )) 22 (( qq 11 qq 22 ++ qq 00 qq 33 )) qq 00 22 -- qq 11 22 ++ qq 22 22 -- qq 33 22 22 (( qq 22 qq 33 -- qq 00 qq 11 )) 22 (( qq 11 qq 33 -- qq 00 qq 22 )) 22 (( qq 22 qq 33 ++ qq 00 qq 11 )) qq 00 22 -- qq 11 22 -- qq 22 22 ++ qq 33 22

(7)利用石英加速度计的输出值fib b和步骤(6)计算的姿态矩阵Tb n,计算出经过IMU旋转调制后载体的速度和位置。(7) Using the output value f ib b of the quartz accelerometer and the attitude matrix T b n calculated in step (6), calculate the velocity and position of the carrier after the IMU rotation modulation.

1)计算导航系下加速度:1) Calculate the acceleration under the navigation system:

ff nxnx ff nyno ff nznz == TT bb nno ff ibib bxbx ff ibib byby ff ibib bzbz

2)计算载体的水平速度和位置:2) Calculate the horizontal velocity and position of the carrier:

根据t1时刻的载体东向水平速度Vx(t1)和北向水平速度Vy(t1),求取t1时刻载体水平速度的变化率为:According to the carrier’s eastward horizontal velocity V x (t 1 ) and northward horizontal velocity V y (t 1 ) at time t 1 , the rate of change of carrier’s horizontal velocity at time t 1 is calculated as:

VV ·&Center Dot; xx (( tt 11 )) == ff nxnx ++ (( 22 ωω ieie nznz ++ ωω enen nznz )) VV ythe y (( tt 11 )) VV ·&Center Dot; ythe y (( tt 11 )) == ff nyno -- (( 22 ωω ieie nznz ++ ωω enen nznz )) VV xx (( tt 11 ))

在t2时刻水平速度和载体位置分别为:The horizontal velocity and carrier position at time t2 are respectively:

VV xx (( tt 22 )) == VV xx (( tt 11 )) ++ VV ·&Center Dot; xx (( tt 11 )) (( tt 22 -- tt 11 )) VV ythe y (( tt 22 )) == VV ythe y (( tt 11 )) ++ VV ·&Center Dot; ythe y (( tt 11 )) (( tt 22 -- tt 11 ))

Figure G2009100717333D00055
Figure G2009100717333D00055

3)计算载体速度误差和位置误差:3) Calculate carrier velocity error and position error:

ΔΔ VV xx == VV xx (( tt 22 )) -- VV xx 00 ΔΔ VV ythe y == VV ythe y (( tt 22 )) -- VV ythe y 00

Figure G2009100717333D00057
Figure G2009100717333D00057

其中:Vx0、Vy0分别表示初始时刻载体的东向和北向速度;ΔVx、ΔVy分别表示载体东向、北向速度的变化量;

Figure G2009100717333D00058
λ0分别表示初始时刻载体所处位置的经度和纬度;
Figure G2009100717333D00059
Δλ分别表示载体的纬度、经度的变化量;Rxp、Ryp分别表示地球子午圈、卯酉圈的曲率半径;t1、t2为惯导系统的解算过程中两个相邻的时间点。Among them: V x0 and V y0 represent the eastward and northward velocity of the carrier at the initial moment respectively; ΔV x and ΔV y represent the variation of the carrier’s eastward and northward velocity respectively;
Figure G2009100717333D00058
λ 0 represents the longitude and latitude of the carrier's position at the initial moment, respectively;
Figure G2009100717333D00059
Δλ respectively represent the change of the latitude and longitude of the carrier; R xp and R yp represent the curvature radius of the earth's meridian circle and Maoyou circle respectively; t 1 and t 2 are two adjacent times in the solution process of the inertial navigation system point.

本发明与现有技术相比的优点在于:本发明打破了传统单轴旋转不能补偿三个方向上惯性器件常值偏差及双轴旋转所需的复杂旋转机构和导航解算算法的约束,提出一种旋转轴与陀螺敏感轴成一定角度的捷联惯导系统误差旋转调制方案,该方法可以将三轴方向上的惯性器件常值偏差进行调制,有效地提高导航定位精度。Compared with the prior art, the present invention has the advantages that: the present invention breaks the constraint that traditional single-axis rotation cannot compensate the constant value deviation of inertial devices in three directions and the complex rotation mechanism and navigation solution algorithm required by dual-axis rotation, and proposes A strapdown inertial navigation system error rotation modulation scheme in which the rotation axis and the gyro sensitive axis form a certain angle, the method can modulate the constant value deviation of the inertial device in the three-axis direction, and effectively improve the navigation positioning accuracy.

对本发明有益的效果说明如下:The beneficial effects of the present invention are described as follows:

在Matlab仿真条件下,对该方法进行仿真实验:Under the condition of Matlab simulation, the simulation experiment of this method is carried out:

载体作三轴摇摆运动。载体以正弦规律绕纵摇轴、横摇轴和航向轴摇摆,其数学模型为:The carrier makes a three-axis rocking motion. The carrier swings around the pitch axis, roll axis and yaw axis in a sinusoidal law, and its mathematical model is:

θθ == θθ mm sinsin (( ωω θθ ++ φφ θθ )) γγ == γγ mm sinsin (( ωω γγ ++ φφ γγ )) ψψ == ψψ mm sinsin (( ωω ψψ ++ φφ ψψ )) ++ kk

其中:θ、γ、ψ分别表示纵摇角、横摇角和航向角的摇摆角度变量;θm、γm、ψm分别表示相应的摇摆角度幅值;ωθ、ωγ、ωψ分别表示相应的摇摆角频率;φθ、φγ、φψ分别表示相应的初始相位;ωi=2π/Ti,i=θ、γ、ψ,Ti表示相应的摇摆周期,k为初始航向角。仿真时取:θm=12°,γm=15°,ψm=10°,Tθ=8s,Tγ=10s,Tψ=6s,k=0。Among them: θ, γ, ψ represent the roll angle variables of pitch angle, roll angle and heading angle respectively; θ m , γ m , ψ m represent the corresponding swing angle amplitudes; Indicates the corresponding swing angle frequency; φ θ , φ γ , φ ψ respectively represent the corresponding initial phase; ω i = 2π/T i , i = θ, γ, ψ, T i represents the corresponding swing period, and k is the initial heading horn. During simulation, take: θ m =12°, γ m =15°, ψ m =10°, T θ =8s, T γ =10s, T ψ =6s, k=0.

载体初始位置:北纬45.7796°,东经126.6705°;The initial position of the carrier: 45.7796° north latitude, 126.6705° east longitude;

初始姿态误差角:三个初始姿态误差角均为零;Initial attitude error angle: the three initial attitude error angles are all zero;

赤道半径:Re=6378393.0m;Equatorial radius: R e = 6378393.0m;

椭球度:e=3.367e-3;Ellipsoid: e=3.367e-3;

由万有引力可得的地球表面重力加速度:g0=9.78049;The gravitational acceleration on the earth's surface obtained from the universal gravitation: g 0 =9.78049;

地球自转角速度(弧度/秒):7.2921158e-5;Earth rotation angular velocity (rad/s): 7.2921158e-5;

陀螺仪常值漂移:0.01度/小时;Gyroscope constant value drift: 0.01 degrees/hour;

加速度计零偏:10-4g0Accelerometer zero bias: 10 -4 g 0 ;

常数:π=3.1415926;Constant: π=3.1415926;

利用发明所述方法得到载体姿态角误差曲线、速度误差曲线和位置误差曲线分别如图4、图5、图6所示。结果表明有摇摆干扰条件下,采用本发明方法可以获得较高的定位精度。Using the method described in the invention to obtain carrier attitude angle error curves, velocity error curves and position error curves are shown in Fig. 4, Fig. 5 and Fig. 6 respectively. The results show that under the condition of sway interference, the method of the invention can obtain higher positioning accuracy.

(四)附图说明(4) Description of drawings

图1为本发明的基于IMU单轴旋转的捷联惯性导航系统误差抑制方法流程图;Fig. 1 is the flow chart of the error suppression method of the strapdown inertial navigation system based on IMU uniaxial rotation of the present invention;

图2为初始时刻IMU坐标系与载体坐标系的初始相对位置关系;Figure 2 shows the initial relative positional relationship between the IMU coordinate system and the carrier coordinate system at the initial moment;

图3为IMU转动过程中,IMU坐标系与载体坐标系的相对位置关系;Figure 3 shows the relative positional relationship between the IMU coordinate system and the carrier coordinate system during the rotation of the IMU;

图4为载体摇摆条件下,基于IMU静止时的载体姿态角误差实验曲线;Figure 4 is the experimental curve of the carrier attitude angle error based on the static IMU under the carrier swing condition;

图5为载体摇摆条件下,基于IMU静止时的载体速度误差实验曲线;Figure 5 is the experimental curve of the carrier speed error based on the static IMU under the carrier swing condition;

图6为载体摇摆条件下,基于IMU静止时的载体位置误差实验曲线。Fig. 6 is the experimental curve of the carrier position error based on the static state of the IMU under the carrier swing condition.

图7为载体摇摆条件下,本发明的基于IMU单轴连续旋转的载体姿态角误差实验曲线;Fig. 7 is the experimental curve of the attitude angle error of the carrier based on the single-axis continuous rotation of the IMU under the condition of the carrier swing;

图8为载体摇摆条件下,本发明的基于IMU单轴连续旋转的载体速度误差实验曲线;Fig. 8 is the experimental curve of the carrier speed error based on the IMU single-axis continuous rotation of the present invention under the carrier swing condition;

图9为载体摇摆条件下,本发明的基于IMU单轴连续旋转的载体位置误差实验曲线。FIG. 9 is an experimental curve of the position error of the carrier based on the single-axis continuous rotation of the IMU under the condition of the carrier swinging.

(五)具体实施方式(5) Specific implementation methods

下面结合附图对本发明的具体实施方式进行详细地描述:The specific embodiment of the present invention is described in detail below in conjunction with accompanying drawing:

(1)利用全球定位系统GPS确定载体的初始位置参数(包括经度、纬度),将它们装订至导航计算机中。(1) Use the global positioning system (GPS) to determine the initial position parameters (including longitude and latitude) of the carrier, and bind them to the navigation computer.

(2)光纤陀螺捷联惯性导航系统进行预热后采集光纤陀螺仪和石英加速度计输出的数据。其中,三个陀螺的常值漂移相等、三个加速度计零位偏差相等。根据加速度计的输出与重力加速度的关系以及陀螺仪输出与地球自转角速率的关系初步确定此时载体的姿态信息(纵摇角θ、横摇角γ和航向角ψ)完成系统的初始对准,建立惯导系统的初始捷联矩阵Tb n(2) The fiber optic gyroscope strapdown inertial navigation system collects the output data of the fiber optic gyroscope and quartz accelerometer after warming up. Among them, the constant value drift of the three gyroscopes is equal, and the zero position deviation of the three accelerometers is equal. According to the relationship between the output of the accelerometer and the acceleration of gravity and the relationship between the output of the gyroscope and the angular rate of the earth's rotation, the attitude information of the carrier at this time (pitch angle θ, roll angle γ and heading angle ψ) is initially determined to complete the initial alignment of the system , to establish the initial strapdown matrix T b n of the inertial navigation system:

TT bb nno == coscos γγ coscos ψψ -- sinsin γγ sinsin θθ sinsin ψψ -- coscos θθ sinsin ψψ sinsin γγ coscos ψψ ++ coscos γγ sinsin θθ sinsin ψψ coscos γγ coscos ψψ ++ sinsin γγ sinsin θθ sinsin ψψ coscos θθ coscos ψψ sinsin γγ sinsin ψψ -- coscos γγ sinsin θθ coscos ψψ -- sinsin γγ coscos θθ sinsin θθ coscos γγ coscos θθ -- -- -- (( 11 ))

(3)惯性测量单元绕载体坐标系oyb轴正向旋转45度(如附图2),确定IMU坐标系与载体坐标系之间的初始相对位置:(3) The inertial measurement unit is rotated 45 degrees positively around the oy b axis of the carrier coordinate system (as shown in Figure 2), and the initial relative position between the IMU coordinate system and the carrier coordinate system is determined:

载体坐标系与IMU坐标系具有同一坐标原点o,oys轴与oyb轴相重合,oxs轴、ozs轴、oxb轴和ozb轴位于同一平面内,但ozs轴与ozb轴的夹角为45°,ozs轴与oxb轴的夹角为90°-45°=45°。The carrier coordinate system and the IMU coordinate system have the same coordinate origin o, the oy s axis coincides with the oy b axis, and the ox s axis, oz s axis, ox b axis and oz b axis are located in the same plane, but the oz s axis and oz b The angle between the axes is 45°, and the angle between the oz s axis and the ox b axis is 90°-45°=45°.

(4)确定两坐标系相对初始位置关系后,惯性测量单元绕载体坐标系方位轴ozb正向以角速度ω=6°/s连续转动(如附图3):(4) After determining the relative initial position relationship of the two coordinate systems, the inertial measurement unit rotates continuously at an angular velocity ω=6°/s around the azimuth axis oz b of the carrier coordinate system (as shown in Figure 3):

IMU转动过程中,IMU坐标系到载体坐标系的转换矩阵为:During the rotation of the IMU, the transformation matrix from the IMU coordinate system to the carrier coordinate system is:

Figure G2009100717333D00082
Figure G2009100717333D00082

(5)将惯性测量单元旋转后光纤陀螺仪和石英加速度计生成的数据转换到载体坐标系下,得到惯性器件常值偏差的调制形式:(5) After the inertial measurement unit rotates, the data generated by the fiber optic gyroscope and the quartz accelerometer are converted to the carrier coordinate system, and the modulation form of the constant value deviation of the inertial device is obtained:

光纤陀螺仪和加速度计的输出值分别为ωis s和fis sThe output values of the fiber optic gyroscope and accelerometer are ω is s and f is s respectively:

ωω isis sthe s == (( TT sthe s bb )) TT ωω ibdibd bb ++ ϵϵ xx ϵϵ ythe y ϵϵ zz TT ++ ωω bsbs sthe s

ff isis sthe s == (( TT sthe s bb )) TT ff ibdibd bb ++ ▿▿ xx ▿▿ ythe y ▿▿ zz TT ++ ff bsbs sthe s -- -- -- (( 33 ))

其中, ω bs s = - ( T s b ) T ω sb b = 0 0 ω T , (·)T表示矩阵·的转秩,ωibd b、fibd b为载体运动的真实输出。εx、εy、εz为陀螺仪的漂移误差,

Figure G2009100717333D00086
为加速度计零位误差。由于s系相对b系只有旋转运动,没有相对直线运动,所以 f bs s = 0 , 故加速度计输出可表示为: f is s = T b s f ibd b + ▿ x ▿ y ▿ z T . in, ω bs the s = - ( T the s b ) T ω sb b = 0 0 ω T , (·) T represents the transformation rank of the matrix ·, ω ibd b , f ibd b are the real output of the carrier motion. ε x , ε y , ε z are the drift errors of the gyroscope,
Figure G2009100717333D00086
is the accelerometer zero error. Since the s system has only rotational motion relative to the b system, there is no relative linear motion, so f bs the s = 0 , So the accelerometer output can be expressed as: f is the s = T b the s f ibd b + ▿ x ▿ the y ▿ z T .

光纤陀螺仪和加速度计的输出从IMU坐标系到载体坐标系的变换可以表示为:The transformation of the output of the fiber optic gyroscope and accelerometer from the IMU coordinate system to the carrier coordinate system can be expressed as:

ωω ibib bb == TT sthe s bb ωω isis sthe s ++ ωω sbsb bb ,, ff ibib bb == TT sthe s bb ff isis sthe s -- -- -- (( 44 ))

惯性测量单元绕载体坐标系oyb轴正向旋转45度,三个陀螺的常值漂移相等,三个加速度计零位偏差相等,此时可以得到εzcos 45°=εxcos(90°-45°)、

Figure G2009100717333D00091
载体坐标系ozb轴方向上不受陀螺常值漂移和加速The inertial measurement unit rotates 45 degrees positively around the oy b axis of the carrier coordinate system, the constant drift of the three gyroscopes is equal, and the zero position deviation of the three accelerometers is equal. At this time, ε z cos 45° = ε x cos(90° -45°),
Figure G2009100717333D00091
The carrier coordinate system is not subject to gyro constant drift and acceleration in the direction of the oz b axis

度计零位偏差的影响,此时载体相对惯性空间的运动角速度及载体相对惯性空间The impact of the zero position deviation of the metric, at this time the angular velocity of the carrier relative to the inertial space and the relative inertial space of the carrier

的线运动加速度在载体坐标系的投影分别如下:The projections of the linear motion acceleration on the carrier coordinate system are as follows:

ωω ibib bxbx == ωω ibdibd bxbx ++ 22 // 22 coscos ωtωt (( ϵϵ xx ++ ϵϵ zz )) -- sinsin ωtωt ϵϵ ythe y ωω ibib byby == ωω ibdibd byby ++ 22 // 22 sinsin ωtωt (( ϵϵ xx ++ ϵϵ zz )) ++ coscos ωtωt ϵϵ ythe y ωω ibib bzbz == ωω ibdibd bzbz

ff ibib bxbx == ff ibdibd bxbx ++ 22 // 22 coscos ωtωt (( ▿▿ xx ++ ▿▿ zz )) -- sinsin ωtωt ▿▿ ythe y ff ibib byby == ff ibdibd byby ++ 22 // 22 sinsin ωtωt (( ▿▿ xx ++ ▿▿ zz )) ++ coscos ωtωt ▿▿ ythe y ff ibib bzbz == ff ibdibd bzbz -- -- -- (( 55 ))

其中,ωib bx、ωib by、ωib bz分别为载体相对惯性空间的运动角速度在载体坐标系的oxb轴、oyb轴、ozb轴上的分量;fib bx、fib by、fib bz分别为载体相对惯性空间的线加速度在载体坐标系的oxb轴、oyb轴、ozb轴上的分量。Among them, ω ib bx , ω ib by , and ω ib bz are the components of the angular velocity of the carrier relative to the inertial space on the ox b axis, oy b axis, and oz b axis of the carrier coordinate system; f ib bx , f ib by , f ib bz are the components of the linear acceleration of the carrier relative to the inertial space on the ox b axis, oy b axis, and oz b axis of the carrier coordinate system.

至此,载体坐标系中方位轴上惯性器件的常值偏差得到抵消;水平方向上惯性器件的常值偏差被调制成周期变化的量,经过惯导系统中积分环节,该常值偏差对系统的作用为零。So far, the constant value deviation of the inertial device on the azimuth axis in the carrier coordinate system is offset; the constant value deviation of the inertial device in the horizontal direction is modulated into a periodical variable amount, and after the integration link in the inertial navigation system, the constant value deviation has a great influence on the system Effect is zero.

(6)将步骤(5)获得的载体系下光纤陀螺的输出值ωib b带入惯导系统中采用四元数法对捷联矩阵Tb n进行更新:(6) Bring the output value ω ib b of the fiber optic gyroscope under the carrier system obtained in step (5) into the inertial navigation system and use the quaternion method to update the strapdown matrix T b n :

ωω nbnb bb == ωω ibib bb -- (( TT bb nno )) TT (( ωω ieie nno ++ ωω enen nno )) -- -- -- (( 66 ))

其中:ωie n为地球自转角速度在导航系下的分量;ωen n为导航坐标系相对地球坐标系的运动角速度在导航系下的分量;ωnb b为载体相对导航坐标系的运动角速度在载体坐标系上的分量。Among them: ω ie n is the component of the angular velocity of the earth's rotation in the navigation system; ω en n is the component of the angular velocity of the navigation coordinate system relative to the earth coordinate system in the navigation system; ω nb b is the angular velocity of the carrier relative to the navigation coordinate system in Components in the vector coordinate system.

更新四元数和姿态矩阵:Update the quaternion and pose matrix:

设载体坐标系相对导航坐标系的转动四元数为:Let the rotation quaternion of the carrier coordinate system relative to the navigation coordinate system be:

Q=q0+q1ib+q2jb+q3kb    (7)Q=q 0 +q 1 i b +q 2 j b +q 3 k b (7)

其中:ib、jb、kb分别表示载体坐标系oxb轴、oyb轴、ozb轴上的单位方向向量。Where: i b , j b , and k b represent unit direction vectors on the ox b axis, oy b axis, and oz b axis of the carrier coordinate system, respectively.

四元数的即时修正可以通过解四元数微分方程 Q · = 1 2 Q ω nb b 来实现:On-the-fly corrections to quaternions can be achieved by solving quaternion differential equations Q · = 1 2 Q ω nb b to fulfill:

qq ·· 00 qq ·· 11 qq ·· 22 qq ·· 33 == 11 22 00 -- ωω nbnb bxbx -- ωω nbnb byby -- ωω nbnb bzbz ωω nbnb bxbx 00 ωω nbnb bzbz -- ωω nbnb byby ωω nbnb byby -- ωω nbnb bzbz 00 ωω nbnb bxbx ωω nbnb bzbz ωω nbnb byby -- ωω nbnb bxbx 00 qq 00 qq 11 qq 22 qq 33 -- -- -- (( 88 ))

其中:ωnb bx、ωnb by、ωnb bz分别表示载体相对导航系的运动角速度在载体坐标系oxb轴、oyb轴、ozb轴上的分量。Among them: ω nb bx , ω nb by , and ω nb bz represent the components of the angular velocity of the carrier relative to the navigation system on the ox b axis, oy b axis, and oz b axis of the carrier coordinate system, respectively.

姿态矩阵Tb n的更新过程如下:The update process of attitude matrix T b n is as follows:

TT bb nno == qq 00 22 ++ qq 11 22 -- qq 22 22 -- qq 33 22 22 (( qq 11 qq 22 -- qq 00 qq 33 )) 22 (( qq 11 qq 33 ++ qq 00 qq 22 )) 22 (( qq 11 qq 22 ++ qq 00 qq 33 )) qq 00 22 -- qq 11 22 ++ qq 22 22 -- qq 33 22 22 (( qq 22 qq 33 -- qq 00 qq 11 )) 22 (( qq 11 qq 33 -- qq 00 qq 22 )) 22 (( qq 22 qq 33 ++ qq 00 qq 11 )) qq 00 22 -- qq 11 22 -- qq 22 22 ++ qq 33 22 -- -- -- (( 99 ))

(7)利用石英加速度计的输出值fib b和步骤(6)计算的姿态矩阵Tb n,计算出经过IMU旋转调制后载体的速度和位置。(7) Using the output value f ib b of the quartz accelerometer and the attitude matrix T b n calculated in step (6), calculate the velocity and position of the carrier after the IMU rotation modulation.

1)计算导航系下加速度:1) Calculate the acceleration under the navigation system:

ff nxnx ff nyno ff nznz == TT bb nno ff ibib bxbx ff ibib byby ff ibib bzbz -- -- -- (( 1010 ))

2)计算载体的水平速度和位置:2) Calculate the horizontal velocity and position of the carrier:

根据t1时刻的载体东向水平速度Vx(t1)和北向水平速度Vy(t1),求取t1时刻载体水平速度的变化率为:According to the carrier’s eastward horizontal velocity V x (t 1 ) and northward horizontal velocity V y (t 1 ) at time t 1 , the rate of change of carrier’s horizontal velocity at time t 1 is calculated as:

VV ·· xx (( tt 11 )) == ff nxnx ++ (( 22 ωω ieie nznz ++ ωω enen nznz )) VV ythe y (( tt 11 )) VV ·· ythe y (( tt 11 )) == ff nyno -- (( 22 ωω ieie nznz ++ ωω enen nznz )) VV xx (( tt 11 )) -- -- -- (( 1111 ))

在t2时刻水平速度和载体位置分别为:The horizontal velocity and carrier position at time t2 are respectively:

VV xx (( tt 22 )) == VV xx (( tt 11 )) ++ VV ·&Center Dot; xx (( tt 11 )) (( tt 22 -- tt 11 )) VV ythe y (( tt 22 )) == VV ythe y (( tt 11 )) ++ VV ·&Center Dot; ythe y (( tt 11 )) (( tt 22 -- tt 11 )) -- -- -- (( 1212 ))

3)计算载体速度误差和位置误差:3) Calculate carrier velocity error and position error:

ΔΔ VV xx == VV xx (( tt 22 )) -- VV xx 00 ΔΔ VV ythe y == VV ythe y (( tt 22 )) -- VV ythe y 00 -- -- -- (( 1414 ))

Figure G2009100717333D00113
Figure G2009100717333D00113

其中:Vx0、Vy0分别表示初始时刻载体的东向和北向速度;ΔVx、ΔVy分别表示载体东向、北向速度的变化量;

Figure G2009100717333D00114
λ0分别表示初始时刻载体所处位置的经度和纬度;
Figure G2009100717333D00115
Δλ分别表示载体的纬度、经度的变化量;Rxp、Ryp分别表示地球子午圈、卯酉圈的曲率半径;t1、t2为惯导系统的解算过程中两个相邻的时间点。Among them: V x0 and V y0 represent the eastward and northward velocity of the carrier at the initial moment respectively; ΔV x and ΔV y represent the variation of the carrier’s eastward and northward velocity respectively;
Figure G2009100717333D00114
λ 0 represents the longitude and latitude of the carrier's position at the initial moment, respectively;
Figure G2009100717333D00115
Δλ respectively represent the change of the latitude and longitude of the carrier; R xp and R yp represent the curvature radius of the earth's meridian circle and Maoyou circle respectively; t 1 and t 2 are two adjacent times in the solution process of the inertial navigation system point.

Claims (2)

1.一种基于单轴旋转的光纤陀螺捷联惯性导航系统误差抑制方法,其特征在于包括以下步骤:1. A fiber optic gyroscope strapdown inertial navigation system error suppression method based on single-axis rotation, is characterized in that comprising the following steps: (1)利用全球定位系统GPS确定载体的包括经度、纬度的初始位置参数,将它们装订至导航计算机中;(1) Utilize the global positioning system GPS to determine the initial position parameters comprising longitude and latitude of the carrier, and bind them into the navigation computer; (2)采集光纤陀螺捷联惯性导航系统的光纤陀螺仪和石英加速度计输出的数据,其中,三个陀螺的常值漂移相等、三个加速度计零位偏差相等,根据加速度计的输出与重力加速度的关系以及陀螺仪输出与地球自转角速率的关系初步确定此时载体的纵摇角θ、横摇角γ和航向角ψ姿态信息,完成系统的初始对准,建立惯导系统的初始捷联矩阵Tb n(2) Collect the data output by the fiber optic gyroscope and the quartz accelerometer of the fiber optic gyroscope strapdown inertial navigation system. The relationship between the acceleration and the relationship between the output of the gyroscope and the angular rate of the earth's rotation is preliminarily determined at this time. Connected matrix T b n : TT bb nno == coscos γγ coscos ψψ -- sinsin γγ sinsin θθ sinsin ψψ -- coscos θθ sinsin ψψ sinsin γγ coscos ψψ ++ coscos γγ sinsin θθ sinsin ψψ coscos γγ coscos ψψ ++ sinsin γγ sinsin θθ sinsin ψψ coscos θθ coscos ψψ sinsin γγ sinsin ψψ -- coscos γγ sinsin θθ coscos ψψ -- sinsin γγ coscos θθ sinsin θθ coscos γγ coscos θθ ;; (3)惯性测量单元绕载体坐标系oyb轴正向旋转45度,确定IMU坐标系与载体坐标系之间的初始相对位置:(3) The inertial measurement unit rotates 45 degrees positively around the oy b axis of the carrier coordinate system to determine the initial relative position between the IMU coordinate system and the carrier coordinate system: 载体坐标系与IMU坐标系具有同一坐标原点o,oys轴与oyb轴相重合,oxs轴、ozs轴、oxb轴和ozb轴位于同一平面内,但ozs轴与ozb轴的夹角为45°,ozs轴与oxb轴的夹角为90°-45°=45°;The carrier coordinate system and the IMU coordinate system have the same coordinate origin o, the oy s axis coincides with the oy b axis, and the ox s axis, oz s axis, ox b axis and oz b axis are located in the same plane, but the oz s axis and oz b The included angle of the axis is 45°, and the included angle between the oz s axis and the ox b axis is 90°-45°=45°; (4)确定两坐标系相对初始位置关系后,惯性测量单元绕载体坐标系方位轴ozb正向以角速度ω=6°/s连续转动;(4) After determining the relative initial position relationship of the two coordinate systems, the inertial measurement unit rotates continuously around the azimuth axis oz b of the carrier coordinate system at an angular velocity ω=6°/s; (5)将惯性测量单元旋转后光纤陀螺仪和石英加速度计生成的数据转换到载体坐标系下,得到惯性器件常值偏差的调制形式:(5) After the IMU rotates, the data generated by the fiber optic gyroscope and the quartz accelerometer are converted to the carrier coordinate system, and the modulation form of the constant value deviation of the inertial device is obtained: 光纤陀螺仪和加速度计的输出值分别为ωis s和fis sThe output values of the fiber optic gyroscope and accelerometer are ω is s and f is s respectively: ωω isis sthe s == (( TT sthe s bb )) TT ωω ibdibd bb ++ ϵϵ xx ϵϵ ythe y ϵϵ zz TT ++ ωω bsbs sthe s ff isis sthe s == (( TT sthe s bb )) TT ff ibdibd bb ++ ▿▿ xx ▿▿ ythe y ▿▿ zz TT ++ ff bsbs sthe s 其中,
Figure FSB00000103819900021
(·)T表示矩阵·的转秩,ωibd b、fibd b为载体运动的真实输出,εx、εy、εz为陀螺仪的漂移误差,
Figure FSB00000103819900022
为加速度计零位误差;由于s系相对b系只有旋转运动,没有相对直线运动,所以
Figure FSB00000103819900023
故加速度计输出可表示为:
Figure FSB00000103819900024
in,
Figure FSB00000103819900021
(·) T represents the transfer rank of the matrix ·, ω ibd b , f ibd b are the real output of the carrier motion, ε x , ε y , ε z are the drift errors of the gyroscope,
Figure FSB00000103819900022
is the zero position error of the accelerometer; since the s system has only rotational motion relative to the b system, there is no relative linear motion, so
Figure FSB00000103819900023
So the accelerometer output can be expressed as:
Figure FSB00000103819900024
光纤陀螺仪和加速度计的输出从IMU坐标系到载体坐标系的变换可以表示为:The transformation of the output of the fiber optic gyroscope and accelerometer from the IMU coordinate system to the carrier coordinate system can be expressed as: ωω ibib bb == TT sthe s bb ωω isis sthe s ++ ωω sbsb bb ,, ff ibib bb == TT sthe s bb ff isis sthe s 惯性测量单元绕载体坐标系oyb轴正向旋转45度,三个陀螺的常值漂移相等,三个加速度计零位偏差相等,此时可以得到εzcos45°=εxcos(90°-45°)、
Figure FSB00000103819900027
载体坐标系ozb轴方向上不受陀螺常值漂移和加速度计零位偏差的影响,此时载体相对惯性空间的运动角速度及载体相对惯性空间的线运动加速度在载体坐标系的投影分别如下:
The inertial measurement unit rotates 45 degrees positively around the oy b axis of the carrier coordinate system, the constant value drift of the three gyroscopes is equal, and the zero position deviation of the three accelerometers is equal. At this time, ε z cos45°=ε x cos(90°- 45°),
Figure FSB00000103819900027
The direction of the oz b- axis of the carrier coordinate system is not affected by the constant value drift of the gyroscope and the zero position deviation of the accelerometer. At this time, the projections of the angular velocity of the carrier relative to the inertial space and the linear motion acceleration of the carrier relative to the inertial space on the carrier coordinate system are as follows:
ωω ibib bxbx == ωω ibdibd bxbx ++ 22 // 22 coscos ωtωt (( ϵϵ xx ++ ϵϵ zz )) -- sinsin ωtωt ϵϵ ythe y ωω ibib byby == ωω ibdibd byby ++ 22 // 22 sinsin ωtωt (( ϵϵ xx ++ ϵϵ zz )) ++ coscos ωtωt ϵϵ ythe y ωω ibib bzbz == ωω ibdibd bzbz ff ibib bxbx == ff ibdibd bxbx ++ 22 // 22 coscos ωtωt (( ▿▿ xx ++ ▿▿ zz )) -- sinsin ωtωt ▿▿ ythe y ff ibib byby == ff ibdibd byby ++ 22 // 22 sinsin ωtωt (( ▿▿ xx ++ ▿▿ zz )) ++ coscos ωtωt ▿▿ ythe y ff ibib bzbz == ff ibdibd bzbz 其中,ωib bx、ωib by、ωib bz分别为载体相对惯性空间的运动角速度在载体坐标系的oxb轴、oyb轴、ozb轴上的分量;fib bx、fib by、fib bz分别为载体相对惯性空间的线加速度在载体坐标系的oxb轴、oyb轴、ozb轴上的分量;Among them, ω ib bx , ω ib by , and ω ib bz are the components of the angular velocity of the carrier relative to the inertial space on the ox b axis, oy b axis, and oz b axis of the carrier coordinate system; f ib bx , f ib by , f ib bz are the components of the linear acceleration of the carrier relative to the inertial space on the ox b axis, oy b axis, and oz b axis of the carrier coordinate system; (6)将步骤(5)获得的载体系下光纤陀螺的输出值ωib b带入惯导系统中采用四元数法对捷联矩阵Tb n进行更新:(6) Bring the output value ω ib b of the fiber optic gyroscope under the carrier system obtained in step (5) into the inertial navigation system and use the quaternion method to update the strapdown matrix T b n : ωω nbnb bb == ωω ibib bb -- (( TT bb nno )) TT (( ωω ieie nno ++ ωω enen nno )) 其中:ωie n为地球自转角速度在导航系下的分量;ωen n为导航坐标系相对地球坐标系的运动角速度在导航系下的分量;ωnb b为载体相对导航坐标系的运动角速度在载体坐标系上的分量;Among them: ω ie n is the component of the angular velocity of the earth's rotation in the navigation system; ω en n is the component of the angular velocity of the navigation coordinate system relative to the earth coordinate system in the navigation system; ω nb b is the angular velocity of the carrier relative to the navigation coordinate system in Components on the carrier coordinate system; 更新四元数和姿态矩阵:Update the quaternion and pose matrix: 设载体坐标系相对导航坐标系的转动四元数为:Let the rotation quaternion of the carrier coordinate system relative to the navigation coordinate system be: Q=q0+q1ib+q2jb+q3kb Q=q 0 +q 1 i b +q 2 j b +q 3 k b 其中:ib、jb、kb分别表示载体坐标系oxb轴、oyb轴、ozb轴上的单位方向向量;Among them: i b , j b , k b represent the unit direction vectors on the ox b axis, oy b axis, and oz b axis of the carrier coordinate system, respectively; 四元数的即时修正可以通过解四元数微分方程
Figure FSB00000103819900031
来实现:
On-the-fly corrections to quaternions can be achieved by solving quaternion differential equations
Figure FSB00000103819900031
to fulfill:
qq ·&Center Dot; 00 qq ·&Center Dot; 11 qq ·&Center Dot; 22 qq ·&Center Dot; 33 == 11 22 00 -- ωω nbnb bxbx -- ωω nbnb byby -- ωω nbnb bzbz ωω nbnb bxbx 00 ωω nbnb bzbz -- ωω nbnb byby ωω nbnb byby -- ωω nbnb bzbz 00 ωω nbnb bxbx ωω nbnb bzbz ωω nbnb byby -- ωω nbnb bxbx 00 qq 00 qq 11 qq 22 qq 33 其中:ωnb bx、ωnb by、ωnb bz分别表示载体相对导航系的运动角速度在载体坐标系oxb轴、oyb轴、ozb轴上的分量;Among them: ω nb bx , ω nb by , ω nb bz represent the components of the angular velocity of the carrier relative to the navigation system on the ox b axis, oy b axis, and oz b axis of the carrier coordinate system, respectively; 姿态矩阵Tb n的更新过程如下:The update process of attitude matrix T b n is as follows: TT bb nno == qq 00 22 ++ qq 11 22 -- qq 22 22 -- qq 33 22 22 (( qq 11 qq 22 -- qq 00 qq 33 )) 22 (( qq 11 qq 33 ++ qq 00 qq 22 )) 22 (( qq 11 qq 22 ++ qq 00 qq 33 )) qq 00 22 -- qq 11 22 ++ qq 22 22 -- qq 33 22 22 (( qq 22 qq 33 -- qq 00 qq 11 )) 22 (( qq 11 qq 33 -- qq 00 qq 22 )) 22 (( qq 22 qq 33 ++ qq 00 qq 11 )) qq 00 22 -- qq 11 22 -- qq 22 22 ++ qq 33 22 ;; (7)利用石英加速度计的输出值fib b和步骤(6)计算的姿态矩阵Tb n,计算出经过IMU旋转调制后载体的速度和位置;(7) Utilize the output value f ib b of the quartz accelerometer and the attitude matrix T b n calculated in step (6) to calculate the velocity and position of the carrier after the IMU rotation modulation; 所述的计算出经过IMU旋转调制后载体的速度和位置的方法为:The method for calculating the speed and position of the carrier after IMU rotation modulation is as follows: 1)计算导航系下加速度:1) Calculate the acceleration under the navigation system: ff nxnx ff nyno ff nznz == TT bb nno ff ibib bxbx ff ibib byby ff ibib bzbz ;; 2)计算载体的水平速度和位置:2) Calculate the horizontal velocity and position of the carrier: 根据t1时刻的载体东向水平速度Vx(t1)和北向水平速度Vy(t1),求取t1时刻载体水平速度的变化率为:According to the carrier’s eastward horizontal velocity V x (t 1 ) and northward horizontal velocity V y (t 1 ) at time t 1 , the rate of change of carrier’s horizontal velocity at time t 1 is calculated as: VV ·&Center Dot; xx (( tt 11 )) == ff nxnx ++ (( 22 ωω ieie nznz ++ ωω enen nznz )) VV ythe y (( tt 11 )) VV ·&Center Dot; ythe y (( tt 11 )) == ff nyno -- (( 22 ωω ieie nznz ++ ωω enen nznz )) VV xx (( tt 11 )) 在t2时刻水平速度和载体位置分别为:The horizontal velocity and carrier position at time t2 are respectively: VV xx (( tt 22 )) == VV xx (( tt 11 )) ++ VV ·· xx (( tt 11 )) (( tt 22 -- tt 11 )) VV ythe y (( tt 22 )) == VV ythe y (( tt 11 )) ++ VV ·&Center Dot; ythe y (( tt 11 )) (( tt 22 -- tt 11 )) 3)计算载体速度误差和位置误差:3) Calculate carrier velocity error and position error: ΔVΔV xx == VV xx (( tt 22 )) -- VV xx 00 ΔVΔV ythe y == VV ythe y (( tt 22 )) -- VV ythe y 00 其中:Vx0、Vy0分别表示初始时刻载体的东向和北向速度;ΔVx、ΔVy分别表示载体东向、北向速度的变化量;
Figure FSB00000103819900046
λ0分别表示初始时刻载体所处位置的经度和纬度;
Figure FSB00000103819900047
Δλ分别表示载体的纬度、经度的变化量;Rxp、Ryp分别表示地球子午圈、卯酉圈的曲率半径;t1、t2为惯导系统的解算过程中两个相邻的时间点。
Among them: V x0 and V y0 represent the eastward and northward velocity of the carrier at the initial moment respectively; ΔV x and ΔV y represent the variation of the carrier’s eastward and northward velocity respectively;
Figure FSB00000103819900046
λ 0 represents the longitude and latitude of the carrier's position at the initial moment, respectively;
Figure FSB00000103819900047
Δλ respectively represent the change of latitude and longitude of the carrier; R xp and R yp respectively represent the curvature radius of the meridian circle and Maoyou circle of the earth; t 1 and t 2 are two adjacent times in the solution process of the inertial navigation system point.
2.根据权利要求1所述的基于单轴旋转的光纤陀螺捷联惯性导航系统误差抑制方法,其特征在于所述的确定两坐标系相对初始位置关系后,惯性测量单元绕载体坐标系方位轴ozb正向以角速度ω=6°/s连续转动步骤中,IMU转动过程中,IMU坐标系到载体坐标系的转换矩阵为:2. The error suppression method of the fiber optic gyroscope strapdown inertial navigation system based on single-axis rotation according to claim 1, wherein after the relative initial position relationship of the two coordinate systems is determined, the inertial measurement unit rotates around the carrier coordinate system azimuth axis In the step of continuous rotation of oz b at an angular velocity ω=6°/s in the forward direction, during the rotation of the IMU, the transformation matrix from the IMU coordinate system to the carrier coordinate system is:
Figure FSB00000103819900048
Figure FSB00000103819900048
CN2009100717333A 2009-04-08 2009-04-08 Error Suppression Method of Fiber Optic Gyro Strapdown Inertial Navigation System Based on Single-axis Rotation Expired - Fee Related CN101514899B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100717333A CN101514899B (en) 2009-04-08 2009-04-08 Error Suppression Method of Fiber Optic Gyro Strapdown Inertial Navigation System Based on Single-axis Rotation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100717333A CN101514899B (en) 2009-04-08 2009-04-08 Error Suppression Method of Fiber Optic Gyro Strapdown Inertial Navigation System Based on Single-axis Rotation

Publications (2)

Publication Number Publication Date
CN101514899A CN101514899A (en) 2009-08-26
CN101514899B true CN101514899B (en) 2010-12-01

Family

ID=41039446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100717333A Expired - Fee Related CN101514899B (en) 2009-04-08 2009-04-08 Error Suppression Method of Fiber Optic Gyro Strapdown Inertial Navigation System Based on Single-axis Rotation

Country Status (1)

Country Link
CN (1) CN101514899B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706287B (en) * 2009-11-20 2012-01-04 哈尔滨工程大学 Rotating strapdown system on-site proving method based on digital high-passing filtering
CN102003968B (en) * 2010-09-03 2012-03-14 哈尔滨工程大学 Single-axle table calibration method for fiber optic gyro strapdown inertial navigation system
CN102052921B (en) * 2010-11-19 2012-08-22 哈尔滨工程大学 Method for determining initial heading of single-axis rotating strapdown inertial navigation system
CN102564459B (en) * 2012-01-17 2015-03-11 北京理工大学 Method for calibrating single-shaft-rotation modulation strapdown inertial navigation system at sea
CN102788598B (en) * 2012-08-16 2014-12-03 辽宁工程技术大学 Error suppressing method of fiber strap-down inertial navigation system based on three-axis rotation
CN102788597B (en) * 2012-08-16 2014-10-29 辽宁工程技术大学 Error suppressing method of rotary strap-down inertial navigation system based on space stabilization
US9714955B2 (en) 2012-11-02 2017-07-25 Qualcomm Incorporated Method for aligning a mobile device surface with the coordinate system of a sensor
CN103090866B (en) * 2012-11-02 2015-05-27 哈尔滨工程大学 Method for restraining speed errors of single-shaft rotation optical fiber gyro strapdown inertial navigation system
CN102997919B (en) * 2012-11-22 2015-07-15 北京理工大学 Method for improving error inhibition effect of rotary type strapdown inertial navigation by insulation of carrier movement
CN103090865B (en) * 2013-01-06 2015-08-12 哈尔滨工程大学 A kind of modulation type strapdown inertial navigation system attitude error suppressing method
CN104121926B (en) * 2013-04-26 2017-06-16 北京自动化控制设备研究所 The rotating shaft of dual-axis rotation inertial navigation system and the Calibration Method of sensitive between centers fix error angle
CN103292809B (en) * 2013-05-14 2016-03-09 哈尔滨工程大学 A kind of single shaft rotary inertial navigation system and special error method of self compensation thereof
CN103900566B (en) * 2014-03-06 2016-09-14 哈尔滨工程大学 A kind of eliminate the method that rotation modulation type SINS precision is affected by rotational-angular velocity of the earth
CN103940445B (en) * 2014-04-10 2016-08-17 哈尔滨工程大学 A kind of single-shaft-rotation inertial navigation system inertial device error compensation method
CN104121928B (en) * 2014-05-29 2016-09-28 湖北航天技术研究院总体设计所 A kind of it be applicable to low precision and have the Inertial Measurement Unit scaling method of azimuth reference single shaft indexing apparatus
CN104503473B (en) * 2014-11-18 2017-01-18 北京空间机电研究所 Inertial stabilization controller
CN104697521B (en) * 2015-03-13 2019-01-11 哈尔滨工程大学 A method of high-speed rotary body posture and angular speed are measured using gyro redundancy oblique configuration mode
CN104748692B (en) * 2015-03-24 2017-08-25 上海大学 Three rollers integrally load the photoelastic stream testing machine of needle roller
CN104990550B (en) * 2015-07-29 2017-11-14 北京航空航天大学 A kind of three cell cube rotation modulation formula remaining strapdown inertial navigation systems
CN105116430B (en) * 2015-08-21 2017-06-27 北京航天万达高科技有限公司 The sea pool state based on Kalman filtering for the pseudo- course of communication in moving searches star method
CN105588562B (en) * 2015-12-16 2018-12-04 北京理工大学 The method of carrier angular movement is isolated in a kind of rotation modulation inertial navigation system
CN105628025B (en) * 2015-12-31 2018-06-29 中国人民解放军国防科学技术大学 A kind of constant speed offset frequency/machine laser gyroscope shaking inertial navigation system air navigation aid
CN108051866B (en) * 2017-10-30 2019-04-26 中国船舶重工集团公司第七0七研究所 Based on strap down inertial navigation/GPS combination subsidiary level angular movement isolation Gravimetric Method
CN108168516B (en) * 2017-12-13 2020-07-03 陕西宝成航空仪表有限责任公司 Method for measuring inclined included angle between to-be-measured table top and reference horizontal plane based on fiber-optic gyroscope
FR3097316B1 (en) * 2019-06-14 2022-01-28 Safran Electronics & Defense Method for monitoring the performance of inertial measurement units
CN110187400B (en) * 2019-07-12 2020-11-10 中国人民解放军国防科技大学 Course tracking-based sea-air gravity disturbance horizontal component measurement error modulation method
CN110319809B (en) * 2019-07-16 2021-05-14 江西省水利厅工程建设稽察事务中心 Line monitoring device and monitoring method for dam interior and exterior
CN118443012B (en) * 2024-07-08 2024-09-24 中国船舶集团有限公司第七〇七研究所 Four-axis rotation inertial navigation system and stabilizing and rotation modulation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029833A (en) * 2007-03-12 2007-09-05 北京航空航天大学 Method for calibrating connected MEMS gyro dynamic error
CN101183004A (en) * 2007-12-03 2008-05-21 哈尔滨工程大学 A Method for Eliminating Oscillation Errors of Fiber Optic Gyro Strapdown Inertial Navigation System Online and Real Time
CN101261130A (en) * 2008-04-15 2008-09-10 哈尔滨工程大学 A method for evaluating transfer alignment accuracy of marine optical fiber strapdown inertial navigation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029833A (en) * 2007-03-12 2007-09-05 北京航空航天大学 Method for calibrating connected MEMS gyro dynamic error
CN101183004A (en) * 2007-12-03 2008-05-21 哈尔滨工程大学 A Method for Eliminating Oscillation Errors of Fiber Optic Gyro Strapdown Inertial Navigation System Online and Real Time
CN101261130A (en) * 2008-04-15 2008-09-10 哈尔滨工程大学 A method for evaluating transfer alignment accuracy of marine optical fiber strapdown inertial navigation system

Also Published As

Publication number Publication date
CN101514899A (en) 2009-08-26

Similar Documents

Publication Publication Date Title
CN101514899B (en) Error Suppression Method of Fiber Optic Gyro Strapdown Inertial Navigation System Based on Single-axis Rotation
CN103245360B (en) Carrier-borne aircraft rotation type strapdown inertial navigation system Alignment Method under swaying base
CN101893445B (en) Fast Initial Alignment Method for Low Precision Strapdown Inertial Navigation System in Swing State
CN103090867B (en) Error restraining method for fiber-optic gyroscope strapdown inertial navigation system rotating relative to geocentric inertial system
CN103471616B (en) Initial Alignment Method under a kind of moving base SINS Large azimuth angle condition
CN101706287B (en) Rotating strapdown system on-site proving method based on digital high-passing filtering
CN101514900B (en) A single-axis rotation strapdown inertial navigation system initial alignment method
CN101718560B (en) Strapdown system error inhibition method based on uniaxial four-position rotation and stop scheme
CN101713666B (en) Single-shaft rotation-stop scheme-based mooring and drift estimating method
CN102829781B (en) Implementation method of rotation type strapdown optical-fiber compass
CN100541132C (en) Mooring fine alignment method for marine fiber optic gyro strapdown attitude system under large misalignment angle
CN101629826A (en) Coarse alignment method for fiber optic gyro strapdown inertial navigation system based on single axis rotation
CN103743413B (en) Heeling condition modulated is sought northern instrument alignment error On-line Estimation and is sought northern error compensating method
CN102798399A (en) SINS error inhibiting method based on biaxial rotation scheme
CN108871326B (en) A kind of single-shaft-rotation modulation inertia-astronomy deep integrated navigation method
CN102679978B (en) Initial alignment method of static base of rotary type strap-down inertial navigation system
CN102749079A (en) Optical fiber strapdown inertial navigation double-shaft rotation modulation method and double-shaft rotation mechanism
CN103148854A (en) Attitude measurement method of micro-electro mechanical system (MEMS) inertial navigation system based on single-shaft forward revolution and reverse revolution
CN103256943A (en) Compensation method for scale factor error in single-axial rotating strapdown inertial navigation system
CN101963513A (en) Alignment method for eliminating lever arm effect error of strapdown inertial navigation system (SINS) of underwater carrier
CN101915579A (en) A New Initial Alignment Method for Large Misalignment Angles of SINS Based on CKF
CN108195400A (en) The moving alignment method of strapdown micro electro mechanical inertia navigation system
CN102788598B (en) Error suppressing method of fiber strap-down inertial navigation system based on three-axis rotation
CN103148868B (en) Based on the combination alignment methods that Doppler log Department of Geography range rate error is estimated under at the uniform velocity sailing through to
CN109752000A (en) A method for initial alignment of MEMS dual-axis rotational modulation strapdown compass

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101201

Termination date: 20170408