CN101713666B - Single-shaft rotation-stop scheme-based mooring and drift estimating method - Google Patents
Single-shaft rotation-stop scheme-based mooring and drift estimating method Download PDFInfo
- Publication number
- CN101713666B CN101713666B CN2009100732329A CN200910073232A CN101713666B CN 101713666 B CN101713666 B CN 101713666B CN 2009100732329 A CN2009100732329 A CN 2009100732329A CN 200910073232 A CN200910073232 A CN 200910073232A CN 101713666 B CN101713666 B CN 101713666B
- Authority
- CN
- China
- Prior art keywords
- imu
- omega
- coordinate system
- error
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Navigation (AREA)
Abstract
本发明提供的是一种基于单轴转停方案的系泊估漂方法。通过GPS确定载体的初始位置参数;采集光纤陀螺仪输出和加速度计输出的数据并对数据进行处理;IMU采用8个转停次序为一个旋转周期的转位方案;根据IMU转动状态下陀螺仪的输出对捷联矩阵进行实时更新,同时对采集到的IMU旋转状态下的加速度信息进行坐标转换,转换到数学平台坐标系;根据载体动基座误差模型建立载体系泊状态时的分离位置回路的卡尔曼估漂模型;经过卡尔曼滤波后得到的惯性器件常值偏差采用平均滤波方法进行处理,得到相对稳定的估计平均值。载体处于系泊状态时,利用本发明提供的估漂方法,依据卡尔曼滤波技术可以准确地估计出惯性器件的常值偏差。
The invention provides a method for estimating mooring drift based on a single-axis rotation-stop scheme. The initial position parameters of the carrier are determined by GPS; the data output by the fiber optic gyroscope and the accelerometer are collected and processed; the IMU adopts an indexing scheme in which 8 rotation and stop sequences are one rotation cycle; The output updates the strapdown matrix in real time, and at the same time performs coordinate transformation on the acceleration information collected under the IMU rotation state, and converts it to the coordinate system of the mathematical platform; establishes the separation position loop of the carrier in the mooring state according to the error model of the moving base of the carrier Kalman drift estimation model; the constant value deviation of the inertial device obtained after Kalman filtering is processed by the average filtering method to obtain a relatively stable estimated average value. When the carrier is in the mooring state, the drift estimation method provided by the invention can be used to accurately estimate the constant value deviation of the inertial device according to the Kalman filter technology.
Description
技术领域technical field
本发明涉及的是一种测量方法,尤其涉及的是一种基于单轴转停方案的系泊估漂方法。The present invention relates to a measurement method, in particular to a method for estimating mooring drift based on a single-axis rotation-stop scheme.
背景技术Background technique
捷联惯性导航系统SINS是一种完全自主的导航系统,利用陀螺仪和加速度计测量载体相对惯性空间的角运动和线运动参数,在给定初始条件下,由计算机进行积分运算,连续、实时地提供位置、速度和姿态信息。由于SINS完全依靠自身的惯性元件,不依靠任何外界信息测量导航参数,因此具有隐蔽性好,不受气候条件限制、不受干扰等优点,是一种完全自主式、全天候的导航系统,已广泛应用于航空、航天、航海等领域。根据SINS的基本原理,SINS在导航过程中惯性器件常值偏差的存在是导致惯性导航系统定位精度难以提高的主要因素。如何有效地限制惯性导航误差发散、提高惯性导航系统精度是惯性导航领域一项非常重要的课题。The strapdown inertial navigation system (SINS) is a completely autonomous navigation system. It uses gyroscopes and accelerometers to measure the angular motion and linear motion parameters of the carrier relative to the inertial space. Provide position, velocity and attitude information accurately. Since SINS completely relies on its own inertial components and does not rely on any external information to measure navigation parameters, it has the advantages of good concealment, no limitation of weather conditions, and no interference. It is a completely autonomous and all-weather navigation system, which has been widely used. Used in aviation, aerospace, navigation and other fields. According to the basic principle of SINS, the existence of the constant value deviation of the inertial device in the navigation process of SINS is the main factor that makes it difficult to improve the positioning accuracy of the inertial navigation system. How to effectively limit the error divergence of inertial navigation and improve the accuracy of inertial navigation system is a very important topic in the field of inertial navigation.
根据SINS的基本原理,SINS在进入导航状态前需要获得初始信息,包括初始位置、速度和姿态。其中初始姿态的精度就是SINS进入导航状态时的初始对准精度,因此在捷联惯导系统进入导航状态前必须首先完成初始姿态的确定。由于“平台”是测量比力的基准,因此“平台”的初始对准就非常重要;在捷联惯性导航系统中捷联矩阵起到数学平台的作用。因此初始对准的关键性问题就是如何在较短的时间内得到较高精度的初始捷联矩阵的初始值。而惯性器件偏差是导致初始捷联矩阵存在偏差的主要因素,因此估漂技术的重要性就得以体现。According to the basic principle of SINS, SINS needs to obtain initial information before entering the navigation state, including initial position, velocity and attitude. The accuracy of the initial attitude is the initial alignment accuracy when the SINS enters the navigation state, so the initial attitude must be determined before the SINS enters the navigation state. Since the "platform" is the benchmark for measuring the specific force, the initial alignment of the "platform" is very important; in a strapdown inertial navigation system, the strapdown matrix acts as a mathematical platform. Therefore, the key issue of initial alignment is how to obtain the initial value of the initial strapdown matrix with higher precision in a shorter time. The inertial device deviation is the main factor leading to the deviation of the initial strapdown matrix, so the importance of drift estimation technology is reflected.
旋转调制技术是惯性导航系统的一种自校正方法。它不需要引入外部校正信息,能够自动对系统中惯性器件的常值偏差进行平均,达到抵消漂移对系统精度的影响。因而可以提高惯性导航系统长时间工作的精度,充分发挥惯性导航“自主式”的优点。应用旋转调制技术,还可以应用较低精度的惯性器件,构成较高精度的惯性导航系统,有利于降低惯性导航系统的成本,同时由于引入外界运动可以有效地提高惯导系统部分参数的可观测度。The rotational modulation technique is a self-calibration method of the inertial navigation system. It does not need to introduce external correction information, and can automatically average the constant value deviation of the inertial device in the system to offset the influence of drift on the system accuracy. Therefore, the long-time working precision of the inertial navigation system can be improved, and the "autonomous" advantage of the inertial navigation system can be fully utilized. The application of rotational modulation technology can also use lower-precision inertial devices to form a higher-precision inertial navigation system, which is conducive to reducing the cost of the inertial navigation system. At the same time, the introduction of external motion can effectively improve the observability of some parameters of the inertial navigation system. Spend.
舰船处于系泊状态时,由于受到海浪因素的影响产生摇摆与荡运动,这些干扰运动产生的干扰加速度和干扰角速度分别被加速度计和陀螺感知,其中干扰加速度经过惯导系统中的积分环节解算出的载体速度中存在着较大的误差,与载体实际线速度进行比较后作为系统滤波模型的观测量。观测量的不准确将导致系统在进行估计的时候会降低参数的收敛速度同时降低参数的估计精度。When the ship is in the mooring state, due to the influence of sea wave factors, it produces swaying and swaying motions. The interference acceleration and interference angular velocity generated by these interference motions are sensed by the accelerometer and the gyro respectively, and the interference acceleration is solved by the integral link in the inertial navigation system. There is a large error in the calculated carrier velocity, which is compared with the actual linear velocity of the carrier and used as the observation of the system filtering model. The inaccuracy of observations will cause the system to reduce the convergence speed of parameters and reduce the estimation accuracy of parameters when estimating the system.
在CNKI数据库中与本发明相关的公开报道有:1、《旋转光纤捷联惯性导航系统的误差调制分析》,提出一种带连续稳定旋转平台的新型光纤捷联惯性导航系统,旨在提高系统导航精度的同时,不增加惯导系统的成本。研究该惯导系统的组成结构和工作原理,分析旋转光纤捷联惯性导航系统误差调制过程,最后对整套惯性导航系统进行仿真。2、《利用旋转调制技术实现快速高精度方位对准》,提出了研制旋转调制系统的技术指标。但都没有提出与本发明相关的调制方法及估漂方法。Public reports related to the present invention in the CNKI database include: 1. "The Error Modulation Analysis of the Rotating Fiber Optic Strapdown Inertial Navigation System", which proposes a novel fiber optic strapdown inertial navigation system with a continuous stable rotating platform, aiming to improve the system While improving the navigation accuracy, the cost of the inertial navigation system is not increased. The structure and working principle of the inertial navigation system are studied, the error modulation process of the rotating optical fiber strapdown inertial navigation system is analyzed, and finally the whole inertial navigation system is simulated. 2. "Using Rotary Modulation Technology to Realize Fast and High-precision Azimuth Alignment", puts forward the technical indicators for developing the rotary modulation system. However, no modulation method and drift estimation method related to the present invention have been proposed.
发明内容Contents of the invention
本发明的目的在于提供一种载体处于系泊状态时,可以准确地估计出惯性器件的常值偏差的一种基于单轴转停方案的系泊估漂方法。The purpose of the present invention is to provide a method for estimating mooring drift based on a single-axis rotation-stop scheme that can accurately estimate the constant value deviation of an inertial device when the carrier is in a mooring state.
本发明的目的是这样实现的:包括以下步骤:The object of the present invention is achieved like this: comprise the following steps:
(1)通过GPS确定载体的初始位置参数,并装订至导航计算机中;(1) Determine the initial position parameters of the carrier through GPS, and bind them into the navigation computer;
(2)捷联惯导系统进行预热准备,采集光纤陀螺仪和石英加速度计输出的数据并对数据进行处理;(2) The strapdown inertial navigation system is preheated, and the data output by the fiber optic gyroscope and the quartz accelerometer are collected and processed;
(3)惯性测量单元(IMU)采用8个转停次序为一个旋转周期的转位方案;(3) The inertial measurement unit (IMU) adopts an indexing scheme in which 8 rotation-stop sequences are one rotation cycle;
(4)根据旋转状态下陀螺仪的输出确定出捷联矩阵Ts p,并将加速度计的输出转换到数学平台坐标系;(4) Determine the strapdown matrix T sp p according to the output of the gyroscope in the rotating state, and convert the output of the accelerometer to the coordinate system of the mathematical platform;
(5)根据惯导系统动基座误差方程建立载体系泊状态时的估漂模型,以GPS提供的载体速度v0为基准,并与惯导系统结算速度的差值作为观测量,利用卡尔曼滤波技术实现惯性器件偏差的估计;(5) According to the inertial navigation system moving base error equation to establish the drift estimation model when the carrier is in mooring state, take the carrier velocity v 0 provided by GPS as the reference, and take the difference between the settlement velocity of the inertial navigation system as the observation quantity, and use Karl Mann filtering technology realizes the estimation of inertial device deviation;
(6)将卡尔曼滤波估计出的惯性器件常值偏差采用平均滤波的方法将其进行平滑,滤除小幅度波动的影响。(6) The constant value deviation of the inertial device estimated by the Kalman filter is smoothed by the average filter method, and the influence of small fluctuations is filtered out.
本发明还可以包括:The present invention may also include:
1、所述IMU采用8个转停次序为一个旋转周期的转位方案为:次序1,IMU从A点出发顺时针转动180°到达位置C,停止时Tt;次序2,IMU从C点出发顺时针转动90°到达位置D,停止时间Tt;次序3,IMU从D点出发逆时针转动180°到达位置B,停止时间Tt;次序4,IMU从B点出发逆时针转动90°到达位置A,停止时间Tt;次序5,IMU从A点出发逆时针转动180°到达位置C,停止时间Tt;次序6,IMU从C点出发逆时针转动90°到达位置B,停止时间Tt;次序7,IMU从B点出发顺时针转动180°到达位置D,停止时间Tt;次序8,IMU从D点出发顺时针转动90°到达位置A,停止时间Tt;IMU按照此转动顺序循环进行;其中水平东向轴上的IMU停顿点p3、p8与p4、p7对称于转轴中心;北向轴上的停顿点p1、p5与p2、p6对称于转轴中心。1. The IMU adopts 8 rotation-stop sequences as one rotation period. The transposition scheme is as follows:
2、所述根据旋转状态下陀螺仪的输出确定出捷联矩阵Ts p,并将加速度计的输出转换到数学平台坐标系的方法为:2. According to the output of the gyroscope in the rotating state, the strapdown matrix T sp p is determined, and the method of converting the output of the accelerometer to the coordinate system of the mathematical platform is:
根据四阶龙格库塔法,应用四元数对惯导系统的捷联矩阵进行实时更新,其公式表示为:According to the fourth-order Runge-Kutta method, the quaternion is used to update the strapdown matrix of the inertial navigation system in real time, and the formula is expressed as:
其中ωis s表示陀螺仪输出;利用IMU坐标系与数学平台坐标系的转换关系,计算出数学平台坐标系下的加速度值,
3、所述根据惯导系统动基座误差方程建立载体系泊状态时的估漂模型,以GPS提供的载体速度v0为基准,并与惯导系统结算速度的差值作为观测量,利用卡尔曼滤波技术实现惯性器件偏差的估计的方法为:3. According to the inertial navigation system moving base error equation to establish the drift estimation model when the carrier is in mooring state, the carrier velocity v 0 provided by GPS is used as the benchmark, and the difference with the inertial navigation system settlement speed is used as the observation quantity, using The method of Kalman filtering technology to realize the estimation of inertial device deviation is as follows:
采用分离载体位置信息的误差模型作为系统的估漂模型,建立以速度误差为状态变量的卡尔曼滤波状态方程及速度误差为量测量的量测方程;Using the error model that separates the position information of the carrier as the drift estimation model of the system, the Kalman filter state equation with the speed error as the state variable and the measurement equation for the measurement of the speed error are established;
1)建立卡尔曼滤波的状态方程:1) Establish the state equation of the Kalman filter:
用一阶线性微分方程来描述旋转捷联惯导系统的状态误差:The state error of the rotating strapdown inertial navigation system is described by a first-order linear differential equation:
其中X(t)为t时刻系统的状态向量;A(t)和B(t)分别为系统的状态矩阵和噪声矩阵;W(t)为系统噪声向量;Where X(t) is the state vector of the system at time t; A(t) and B(t) are the state matrix and noise matrix of the system respectively; W(t) is the system noise vector;
系统的状态向量为:The state vector of the system is:
系统的白噪声向量为:The white noise vector of the system is:
W=[ax ay ωx ωy ωz 0 0 0 0 0]T W=[a x a y ω x ω y ω z 0 0 0 0 0] T
其中δVe、δVn分别表示东向、北向的速度误差;分别为IMU坐标系oxs、oys轴加速度计零偏;εx、εy、εz分别为IMU坐标系oxs、oys、ozs轴陀螺的常值漂移;ax、ay分别为IMU坐标系oxs、oys轴加速度计的白噪声误差;ωx、ωy、ωz分别为IMU坐标系oxs、oys、ozs轴陀螺的白噪声误差;Among them, δV e and δV n represent the speed errors in the east direction and north direction respectively; are the zero bias of the IMU coordinate system ox s , oy s axis accelerometer; ε x , ε y , ε z are the constant drift of the IMU coordinate system ox s , oy s , oz s axis gyroscope respectively; a x , a y are respectively is the white noise error of the IMU coordinate system ox s , oy s axis accelerometer; ω x , ω y , ω z are the white noise errors of the IMU coordinate system ox s , oy s , oz s axis gyroscope respectively;
系统的状态转移矩阵为:The state transition matrix of the system is:
其中:in:
Ve、Vn分别表示东向、北向的速度;ωie表示地球自转角速度;Rm、Rn分别表示地球子午、卯酉曲率半径;L表示当地纬度;fe、fn、fu分别表示为导航坐标系下东向、北向、天向的比力;V e , V n represent eastward and northward velocities, respectively; ω ie represents the angular velocity of the earth's rotation; R m , R n represent the earth's meridian and the radius of curvature, respectively; L represents the local latitude; f e , f n , f u respectively Expressed as the ratio of east, north, and sky directions in the navigation coordinate system;
捷联矩阵Ts p为:The strapdown matrix T sp p is:
则but
2)建立卡尔曼滤波的量测方程:2) Establish the measurement equation of the Kalman filter:
用一阶线性微分方程来描述旋转捷联惯导系统的量测方程如下:The measurement equation of the rotating strapdown inertial navigation system is described by the first-order linear differential equation as follows:
Z(t)=H(t)X(t)+v(t)Z(t)=H(t)X(t)+v(t)
其中:Z(t)表示t时刻系统的量测向量;H(t)表示系统的量测矩阵;v(t)表示系统的量测噪声;Among them: Z(t) represents the measurement vector of the system at time t; H(t) represents the measurement matrix of the system; v(t) represents the measurement noise of the system;
系统量测矩阵为:The system measurement matrix is:
量测量为水平速度误差:Quantity measured as horizontal velocity error:
v(t)=[ve vn]T。v(t)=[v e v n ] T .
4、所述将卡尔曼滤波估计出的惯性器件常值偏差采用平均滤波的方法将其进行平滑,滤除小幅度波动的影响的方法为:已知等距采样点x0<x1<…<xn-1<…上的观测数据为y0,y1,…,yn-1,yi表示yi的平滑值;取加权系数为1,取低通滤波后的400秒到600秒数据做一次平滑,则:4. The method of smoothing the constant value deviation of the inertial device estimated by the Kalman filter with the method of average filtering, and filtering out the influence of small amplitude fluctuations is: known equidistant sampling points x 0 <x 1 <... The observed data on <x n-1 <... are y 0 , y 1 ,..., y n-1 , and y i represents the smooth value of y i ; the weighting coefficient is set to 1, and the value from 400 seconds to 600 after low-pass filtering is taken The second data is smoothed once, then:
本发明利用惯性测量单元(IMU)间歇性转动提高惯导系统中部分参数的可观测度;根据系泊状态下载体位置变化范围小的特点,应用载体位置回路与系统分离的卡尔曼滤波技术估计出三个方向上陀螺仪常值漂移和水平方向上加速度计零偏。考虑到载体系泊状态下估计出的惯性器件常值偏差中存在小范围的波动,将估计出的数据采用平均滤波的方法将其进行平滑。The invention utilizes the intermittent rotation of the inertial measurement unit (IMU) to improve the observability of some parameters in the inertial navigation system; according to the characteristics of the small variation range of the carrier position in the mooring state, the carrier position circuit is separated from the system by using the Kalman filter technology estimation The constant value drift of the gyroscope in the three directions and the zero bias of the accelerometer in the horizontal direction are displayed. Considering that there are small-scale fluctuations in the estimated constant value deviation of the inertial device under the mooring state of the carrier, the estimated data is smoothed by the method of average filtering.
本发明与现有技术相比的优点在于:本发明打破了舰船系泊状态下,由于摇摆和荡运动的干扰导致导航系下估漂技术难以适用这一问题,利用IMU的转动可以有效地提高系统部分参数的可观测度,同时考虑到舰船系泊状态下位置信息变化幅度小导致忽略位置回路与系统的耦合关系,使载体在系泊状态下达到较好的估计精度。Compared with the prior art, the present invention has the advantages that: under the mooring state of the ship, it is difficult to apply the drift estimation technology under the navigation system due to the interference of the swaying and swaying motion of the ship, and the rotation of the IMU can be used to effectively Improve the observability of some parameters of the system. At the same time, considering the small change of position information in the mooring state of the ship, the coupling relationship between the position loop and the system is ignored, so that the carrier can achieve better estimation accuracy in the mooring state.
对本发明有益的效果说明如下:The beneficial effects of the present invention are described as follows:
在Visual C++仿真条件下,对该方法进行仿真实验:Under Visual C++ simulation conditions, the simulation experiment of this method is carried out:
设定陀螺仪常值漂移为0.01°/h,加速度计零位偏差为10-4g;系统初始对准误差为0.1°、0.1°、0.5°;载体以正弦规律绕纵摇轴、横摇轴和航向轴作三轴摇摆运动,其数学模型为:Set the constant drift of the gyroscope to 0.01°/h, the zero position deviation of the accelerometer to 10 -4 g; the initial alignment error of the system to be 0.1°, 0.1°, 0.5°; Axis and yaw axis do three-axis rocking motion, and its mathematical model is:
其中:θ、γ、ψ分别表示纵摇角、横摇角和航向角的摇摆角度变量;θm、γm、ψm分别表示相应的摇摆角度幅值;ωθ、ωγ、ωψ分别表示相应的摇摆角频率;φθ、φγ、φψ分别表示相应的初始相位;ωi=2π/Ti,i=θ、γ、ψ,Ti表示相应的摇摆周期,k为初始航向角。仿真时取:θm=6°,γm=12°,ψm=10°,Tθ=8s,Tγ=10s,Tψ=6s,k=0°。Among them: θ, γ, ψ represent the roll angle variables of pitch angle, roll angle and heading angle respectively; θ m , γ m , ψ m represent the corresponding swing angle amplitudes; Indicates the corresponding swing angle frequency; φ θ , φ γ , φ ψ respectively represent the corresponding initial phase; ω i = 2π/T i , i = θ, γ, ψ, T i represents the corresponding swing period, and k is the initial heading horn. During simulation, take: θ m = 6°, γ m = 12°, ψ m = 10°, T θ = 8s, T γ = 10s, T ψ = 6s, k = 0°.
载体的横荡、纵荡和垂荡引起的线速度为:The linear velocity caused by the sway, surge and heave of the carrier is:
式中,i=x,y,z为地理坐标系的东向、北向、天向。
载体初始位置:北纬45.7796°,东经126.6705°;The initial position of the carrier: 45.7796° north latitude, 126.6705° east longitude;
初始姿态误差角:三个初始姿态误差角均为零;Initial attitude error angle: the three initial attitude error angles are all zero;
赤道半径:Re=6378393.0m;Equatorial radius: R e = 6378393.0m;
椭球度:e=3.367e-3;Ellipsoid: e=3.367e-3;
由万有引力可得的地球表面重力加速度:g0=9.78049;The gravitational acceleration on the earth's surface obtained from the universal gravitation: g 0 =9.78049;
地球自转角速度(弧度/秒):7.2921158e-5;Earth rotation angular velocity (rad/s): 7.2921158e-5;
陀螺仪常值漂移:0.01度/小时;Gyroscope constant value drift: 0.01 degrees/hour;
陀螺仪随机游走:0.001度/ Gyroscope random walk: 0.001 degrees/
加速度计零偏:10-4g0;Accelerometer zero bias: 10 -4 g 0 ;
加速度计噪声:10-6g0;Accelerometer noise: 10 -6 g 0 ;
常数:π=3.1415926。Constant: π = 3.1415926.
附图说明Description of drawings
图1为本发明的一种基于单轴转停方案的系泊估漂方法;Fig. 1 is a mooring drift estimation method based on a single-axis rotation-stop scheme of the present invention;
图2为本发明的IMU单轴四位置转停;Figure 2 is the IMU single-axis four-position rotation stop of the present invention;
图3为本发明的估计的陀螺仪常值漂移;Fig. 3 is the estimated gyroscope constant value drift of the present invention;
图4为本发明的估计的水平方向上的加速度计零偏。FIG. 4 is the estimated horizontal accelerometer bias of the present invention.
具体实施方式Detailed ways
下面结合附图举例对本发明做更详细地描述:The present invention is described in more detail below in conjunction with accompanying drawing example:
(1)通过GPS确定载体的初始位置参数,并装订至导航计算机中;(1) Determine the initial position parameters of the carrier through GPS, and bind them into the navigation computer;
(2)捷联惯导系统进行预热准备,采集光纤陀螺仪和石英加速度计输出的数据并对数据进行处理;(2) The strapdown inertial navigation system is preheated, and the data output by the fiber optic gyroscope and the quartz accelerometer are collected and processed;
(3)IMU采用8个转停次序为一个旋转周期的转位方案(如附图2);(3) The IMU adopts an indexing scheme with 8 rotation-stop sequences as one rotation cycle (as shown in Figure 2);
次序1,IMU从A点出发顺时针转动180°到达位置C,停止时间Tt;次序2,IMU从C点出发顺时针转动90°到达位置D,停止时间Tt;次序3,IMU从D点出发逆时针转动180°到达位置B,停止时间Tt;次序4,IMU从B点出发逆时针转动90°到达位置A,停止时间Tt;次序5,IMU从A点出发逆时针转动180°到达位置C,停止时间Tt;次序6,IMU从C点出发逆时针转动90°到达位置B,停止时间Tt;次序7,IMU从B点出发顺时针转动180°到达位置D,停止时间Tt;次序8,IMU从D点出发顺时针转动90°到达位置A,停止时间Tt;IMU按照此转动顺序循环进行。为了有效地对水平方向上的惯性器件偏差在对称位置上进行正负平均,定义水平东向轴上的IMU停顿点p3、p8与p4、p7对称于转轴中心;北向轴上的停顿点p1、p5与p2、p6对称于转轴中心。四位置转停方案仍然是转动角度为180°或90°间隔进行。
(4)根据旋转状态下陀螺仪的输出确定出捷联矩阵Ts p,并将加速度计的输出转换到数学平台坐标系;(4) Determine the strapdown matrix T sp p according to the output of the gyroscope in the rotating state, and convert the output of the accelerometer to the coordinate system of the mathematical platform;
根据四阶龙格库塔法,应用四元数对惯导系统的捷联矩阵进行实时更新,其公式表示为:According to the fourth-order Runge-Kutta method, the quaternion is used to update the strapdown matrix of the inertial navigation system in real time, and the formula is expressed as:
其中ωis s表示陀螺仪输出。利用IMU坐标系与数学平台坐标系的转换关系,计算出数学平台坐标系下的加速度值。where ω is s represents the gyroscope output. Using the conversion relationship between the IMU coordinate system and the mathematical platform coordinate system, the acceleration value in the mathematical platform coordinate system is calculated.
(5)根据惯导系统动基座误差方程建立载体系泊状态时的估漂模型,以GPS提供的载体速度v0为基准,并与惯导系统结算速度的差值作为观测量。利用卡尔曼滤波技术实现惯性器件偏差的估计;(5) According to the error equation of the inertial navigation system's moving base, the drift estimation model of the vehicle in the mooring state is established, and the vehicle velocity v 0 provided by GPS is used as the reference, and the difference with the settlement velocity of the inertial navigation system is used as the observation. Using Kalman filter technology to realize the estimation of inertial device deviation;
由于采用IMU的转动可以有效地提高惯导系统中部分参数的可观测度,同时考虑到系泊状态时载体的位置变化幅度小,因此可以采用分离载体位置信息的误差模型作为系统的估漂模型。建立以速度误差为状态变量的卡尔曼滤波状态方程及速度误差为量测量的量测方程;Since the rotation of the IMU can effectively improve the observability of some parameters in the inertial navigation system, and considering that the position of the carrier in the mooring state has a small change range, the error model that separates the position information of the carrier can be used as the drift estimation model of the system . Establish the Kalman filter state equation with the speed error as the state variable and the measurement equation for the measurement of the speed error;
1)建立卡尔曼滤波的状态方程:1) Establish the state equation of the Kalman filter:
用一阶线性微分方程来描述旋转捷联惯导系统的状态误差:The state error of the rotating strapdown inertial navigation system is described by a first-order linear differential equation:
其中X(t)为t时刻系统的状态向量;A(t)和B(t)分别为系统的状态矩阵和噪声矩阵;W(t)为系统噪声向量;Where X(t) is the state vector of the system at time t; A(t) and B(t) are the state matrix and noise matrix of the system respectively; W(t) is the system noise vector;
系统的状态向量为:The state vector of the system is:
系统的白噪声向量为:The white noise vector of the system is:
W=[ax ay ωx ωy ωz 0 0 0 0 0]T (5)W=[a x a y ω x ω y ω z 0 0 0 0 0] T (5)
其中δVe、δVn分别表示东向、北向的速度误差;分别为IMU坐标系oxs、oys轴加速度计零偏;εx、εy、εz分别为IMU坐标系oxs、oys、ozs轴陀螺的常值漂移;ax、ay分别为IMU坐标系oxs、oys轴加速度计的白噪声误差;ωx、ωy、ωz分别为IMU坐标系oxs、oys、ozs轴陀螺的白噪声误差;Among them, δV e and δV n represent the speed errors in the east direction and north direction respectively; are the zero bias of the IMU coordinate system ox s , oy s axis accelerometer; ε x , ε y , ε z are the constant drift of the IMU coordinate system ox s , oy s , oz s axis gyroscope respectively; a x , a y are respectively is the white noise error of the IMU coordinate system ox s , oy s axis accelerometer; ω x , ω y , ω z are the white noise errors of the IMU coordinate system ox s , oy s , oz s axis gyroscope respectively;
系统的状态转移矩阵为:The state transition matrix of the system is:
其中:in:
Ve、Vn分别表示东向、北向的速度;ωie表示地球自转角速度;Rm、Rn分别表示地球子午、卯酉曲率半径;L表示当地纬度;fe、fn、fu分别表示为导航坐标系下东向、北向、天向的比力。V e , V n represent eastward and northward velocities, respectively; ω ie represents the angular velocity of the earth's rotation; R m , R n represent the earth's meridian and the radius of curvature, respectively; L represents the local latitude; f e , f n , f u respectively It is expressed as the ratio of east, north, and sky directions in the navigation coordinate system.
令捷联矩阵Ts p为:Let the strapdown matrix T sp p be:
则but
2)建立卡尔曼滤波的量测方程:2) Establish the measurement equation of the Kalman filter:
用一阶线性微分方程来描述旋转捷联惯导系统的量测方程如下:The measurement equation of the rotating strapdown inertial navigation system is described by the first-order linear differential equation as follows:
Z(t)=H(t)X(t)+v(t) (14)Z(t)=H(t)X(t)+v(t) (14)
其中:Z(t)表示t时刻系统的量测向量;H(t)表示系统的量测矩阵;v(t)表示系统的量测噪声;Among them: Z(t) represents the measurement vector of the system at time t; H(t) represents the measurement matrix of the system; v(t) represents the measurement noise of the system;
系统量测矩阵为:The system measurement matrix is:
量测量为水平速度误差:Quantity measured as horizontal velocity error:
v(t)=[ve vn]T (16)v(t)=[v e v n ] T (16)
(6)将卡尔曼滤波估计出的惯性器件常值偏差采用平均滤波的方法将其进行平滑,滤除小幅度波动的影响;(6) The constant value deviation of the inertial device estimated by the Kalman filter is smoothed by the method of average filtering, and the influence of small fluctuations is filtered out;
考虑到载体系泊状态下估计出的惯性器件常值偏差中存在小范围的波动,这样的信号不利于惯性器件常值偏差的修正,因此采用加权求平均滤波算法对卡尔曼滤波后的惯性器件常值偏差信息进行再次消噪处理。这种方法是最简单的一种信号处理方式,算法公式如下:设已知等距采样点x0<x1<…<xn-1<…上的观测数据为y0,y1,…,yn-1,yi表示yi的平滑值。我们取加权系数为1,取低通滤波后的400秒到600秒数据做一次平滑,则有:Considering that there are small-scale fluctuations in the estimated constant value deviation of the inertial device under the mooring state of the carrier, such a signal is not conducive to the correction of the constant value deviation of the inertial device, so the weighted average filtering algorithm is used to analyze the The constant value deviation information is de-noised again. This method is the simplest signal processing method, and the algorithm formula is as follows: Let the observed data on the known equidistant sampling point x 0 <x 1 <...<x n-1 <... be y 0 , y 1 ,... , y n-1 , y i represents the smooth value of y i . We take the weighting coefficient as 1, and take the data from 400 seconds to 600 seconds after low-pass filtering to do a smoothing, then:
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100732329A CN101713666B (en) | 2009-11-20 | 2009-11-20 | Single-shaft rotation-stop scheme-based mooring and drift estimating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100732329A CN101713666B (en) | 2009-11-20 | 2009-11-20 | Single-shaft rotation-stop scheme-based mooring and drift estimating method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101713666A CN101713666A (en) | 2010-05-26 |
CN101713666B true CN101713666B (en) | 2011-09-14 |
Family
ID=42417497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100732329A Expired - Fee Related CN101713666B (en) | 2009-11-20 | 2009-11-20 | Single-shaft rotation-stop scheme-based mooring and drift estimating method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101713666B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101963512A (en) * | 2010-09-03 | 2011-02-02 | 哈尔滨工程大学 | Initial alignment method for marine rotary fiber-optic gyroscope strapdown inertial navigation system |
CN102175095B (en) * | 2011-03-02 | 2013-06-19 | 浙江大学 | Strap-down inertial navigation transfer alignment algorithm parallel implementation method |
CN102538789B (en) * | 2011-12-09 | 2014-07-02 | 北京理工大学 | Rotating method of modulation type inertial navigation system with double-axis rotating continuously |
CN102636081B (en) * | 2011-12-29 | 2014-10-15 | 南京航空航天大学 | Transfer alignment method and device based on visual movement modeling |
CN102620734B (en) * | 2012-04-09 | 2015-08-05 | 北京自动化控制设备研究所 | A kind of single-shaft-rotation modulation micro-mechanical inertial navigation method |
EP2679954A1 (en) * | 2012-06-26 | 2014-01-01 | ST-Ericsson SA | Sequential estimation in a real-time positioning or navigation system using historical states |
CN104199993B (en) * | 2014-02-18 | 2017-08-08 | 广州市香港科大霍英东研究院 | A kind of two-dimentional Dynamic Kalman Filtering device design method for batch process |
CN104880182B (en) * | 2015-05-25 | 2017-08-29 | 北京航天控制仪器研究所 | One kind is based on biaxial rotated lasergyro combined error coefficient separation method |
CN108168574B (en) * | 2017-11-23 | 2022-02-11 | 东南大学 | An 8-Position Strapdown Inertial Navigation System-Level Calibration Method Based on Velocity Observation |
CN111474938A (en) * | 2020-04-30 | 2020-07-31 | 内蒙古工业大学 | Inertial navigation automatic guided vehicle and track determination method thereof |
CN112013876A (en) * | 2020-08-28 | 2020-12-01 | 上海爱观视觉科技有限公司 | IMU data calibration method, terminal device and computer readable storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101109636A (en) * | 2007-08-08 | 2008-01-23 | 浙江大学 | A Data Processing Method for Fiber Optic Gyroscope North Seeking |
CN101514900A (en) * | 2009-04-08 | 2009-08-26 | 哈尔滨工程大学 | Method for initial alignment of a single-axis rotation strap-down inertial navigation system (SINS) |
-
2009
- 2009-11-20 CN CN2009100732329A patent/CN101713666B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101109636A (en) * | 2007-08-08 | 2008-01-23 | 浙江大学 | A Data Processing Method for Fiber Optic Gyroscope North Seeking |
CN101514900A (en) * | 2009-04-08 | 2009-08-26 | 哈尔滨工程大学 | Method for initial alignment of a single-axis rotation strap-down inertial navigation system (SINS) |
Non-Patent Citations (2)
Title |
---|
JP特开2004-264240A 2004.09.24 |
翁海娜 等.旋转式光学陀螺捷联惯导系统的旋转方案设计.《中国惯性技术学报》.2009,第17卷(第1期),8-14. * |
Also Published As
Publication number | Publication date |
---|---|
CN101713666A (en) | 2010-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101713666B (en) | Single-shaft rotation-stop scheme-based mooring and drift estimating method | |
CN103245360B (en) | Carrier-borne aircraft rotation type strapdown inertial navigation system Alignment Method under swaying base | |
CN101706287B (en) | Rotating strapdown system on-site proving method based on digital high-passing filtering | |
CN100541132C (en) | Mooring fine alignment method for marine fiber optic gyro strapdown attitude system under large misalignment angle | |
CN101672649B (en) | A mooring alignment method for marine optical fiber strapdown system based on digital low-pass filtering | |
CN101514899B (en) | Error Suppression Method of Fiber Optic Gyro Strapdown Inertial Navigation System Based on Single-axis Rotation | |
CN103471616B (en) | Initial Alignment Method under a kind of moving base SINS Large azimuth angle condition | |
CN101893445B (en) | Fast Initial Alignment Method for Low Precision Strapdown Inertial Navigation System in Swing State | |
CN101514900B (en) | A single-axis rotation strapdown inertial navigation system initial alignment method | |
CN101718560B (en) | Strapdown system error inhibition method based on uniaxial four-position rotation and stop scheme | |
CN104165641B (en) | Milemeter calibration method based on strapdown inertial navigation/laser velocimeter integrated navigation system | |
CN101881619B (en) | Ship's inertial navigation and astronomical positioning method based on attitude measurement | |
CN101629826A (en) | Coarse alignment method for fiber optic gyro strapdown inertial navigation system based on single axis rotation | |
CN102768043B (en) | Integrated attitude determination method without external observed quantity for modulated strapdown system | |
CN105021192A (en) | Realization method of combined navigation system based on zero-speed correction | |
CN103090866B (en) | Method for restraining speed errors of single-shaft rotation optical fiber gyro strapdown inertial navigation system | |
CN103278163A (en) | Nonlinear-model-based SINS/DVL (strapdown inertial navigation system/doppler velocity log) integrated navigation method | |
CN102589546B (en) | Optical-fiber strap-down inertial measurement unit reciprocating-type two-position north finding method for inhibiting slope error influence of devices | |
CN102788598B (en) | Error suppressing method of fiber strap-down inertial navigation system based on three-axis rotation | |
CN102654406A (en) | Initial alignment method for moving bases based on combination of nonlinear prediction filtering and cubature Kalman filtering | |
CN103256943A (en) | Compensation method for scale factor error in single-axial rotating strapdown inertial navigation system | |
CN102798399A (en) | SINS error inhibiting method based on biaxial rotation scheme | |
CN103017787A (en) | Initial alignment method suitable for rocking base | |
CN103148854A (en) | Attitude measurement method of micro-electro mechanical system (MEMS) inertial navigation system based on single-shaft forward revolution and reverse revolution | |
CN103076026A (en) | Method for determining speed measurement error of Doppler velocity log (DVL) in strapdown inertial navigation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110914 Termination date: 20171120 |