[go: up one dir, main page]

CN103828036A - Methods of transferring layers of material in 3d integration processes and related structures and devices - Google Patents

Methods of transferring layers of material in 3d integration processes and related structures and devices Download PDF

Info

Publication number
CN103828036A
CN103828036A CN201280046870.1A CN201280046870A CN103828036A CN 103828036 A CN103828036 A CN 103828036A CN 201280046870 A CN201280046870 A CN 201280046870A CN 103828036 A CN103828036 A CN 103828036A
Authority
CN
China
Prior art keywords
donor structure
ions
regions
layer
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280046870.1A
Other languages
Chinese (zh)
Other versions
CN103828036B (en
Inventor
玛丽亚姆·萨达卡
约努茨·拉杜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soitec SA
Triquint Inc
Original Assignee
Soitec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/246,580 external-priority patent/US8673733B2/en
Priority claimed from FR1159358A external-priority patent/FR2981501B1/en
Application filed by Soitec SA filed Critical Soitec SA
Publication of CN103828036A publication Critical patent/CN103828036A/en
Application granted granted Critical
Publication of CN103828036B publication Critical patent/CN103828036B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D88/00Three-dimensional [3D] integrated devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Element Separation (AREA)

Abstract

Methods of transferring a layer of semiconductor material from a first donor structure to a second structure include forming a generally planar weakened zone within the first donor structure defined by implanted ions therein. At least one of a concentration of the implanted ions and an elemental composition of the implanted ions may be formed to vary laterally across the generally planar weakened zone. The first donor structure may be bonded to a second structure, and the first donor structure may be fractured along the generally planar weakened zone, leaving the layer of semiconductor material bonded to the second structure. Semiconductor devices may be fabricated by forming active device structures on the transferred layer of semiconductor material. Semiconductor structures are fabricated using the described methods.

Description

在3D集成处理中转移材料层的方法以及相关结构和装置Method for transferring material layers in 3D integrated processing and related structures and devices

技术领域technical field

本发明涉及在半导体器件制造中采用的三维(3D)集成处理中将材料从施主(donor)结构转移至受主(recipient)结构的方法。The present invention relates to a method of transferring material from a donor structure to a recipient structure in a three-dimensional (3D) integration process employed in the manufacture of semiconductor devices.

背景技术Background technique

两个或更多个半导体结构的三维(3D)集成在微电子应用中可产生多个优点。例如,微电子组件的3D集成可得到改进的电气性能和功耗,同时减小器件封装的面积。例如参见P.Garrou等人的“The Handbook of3D Integration,”Wiley VCH(2008)。通过将半导体裸晶附着至一个或多个附加半导体晶片(即,裸晶与裸晶(D2D))、将半导体裸晶附着至一个或多个半导体晶圆(即,裸晶与晶圆(D2W))以及将半导体晶圆附着至一个或多个附加半导体晶圆(即,晶圆与晶圆(W2W))或它们的组合,可以进行半导体结构的3D集成。Three-dimensional (3D) integration of two or more semiconductor structures can yield several advantages in microelectronic applications. For example, 3D integration of microelectronic components can lead to improved electrical performance and power consumption while reducing the area of device packaging. See, eg, "The Handbook of 3D Integration," by P. Garrou et al., Wiley VCH (2008). By attaching the semiconductor die to one or more additional semiconductor wafers (i.e., die-to-die (D2D)), attaching the semiconductor die to one or more semiconductor wafers (i.e., die-to-wafer (D2W) )) and attaching a semiconductor wafer to one or more additional semiconductor wafers (ie, wafer-to-wafer (W2W)) or a combination thereof allows for 3D integration of semiconductor structures.

在本领域中被称为

Figure BDA0000482345480000011
处理的处理用于单片3D集成处理中。
Figure BDA0000482345480000012
处理例如在以下有所描述:授予Bruel的美国专利No.RE39,484(2007年2月6日发布)、授予Aspar等人的美国专利No.6,303,468(2001年10月16日发布)、授予Aspar等人的美国专利No.6,335,258(2002年1月1日发布)、授予Moriceau等人的美国专利No.6,756,286(2004年6月29日发布)、授予Aspar等人的美国专利No.6,809,044(2004年10月26日发布)和授予Aspar等人的美国专利No.6,946,365(2005年9月20日发布)。known in the field as
Figure BDA0000482345480000011
Processed processing is used in monolithic 3D integrated processing.
Figure BDA0000482345480000012
The process is described, for example, in U.S. Patent No. RE39,484 issued Feb. 6, 2007 to Bruel, U.S. Patent No. 6,303,468 issued Oct. 16, 2001 to Aspar et al., Aspar U.S. Patent No. 6,335,258 to Moriceau et al. (issued January 1, 2002), U.S. Patent No. 6,756,286 to Moriceau et al. (issued June 29, 2004), U.S. Patent No. 6,809,044 to Aspar et al. (2004 issued October 26, 2005) and US Patent No. 6,946,365 issued September 20, 2005 to Aspar et al.

简单地说,

Figure BDA0000482345480000013
处理涉及沿着离子植入面将多个离子(例如,氢离子、氦离子或惰性气体离子的一种或者更多种)植入到施主结构内。沿着离子植入面植入的离子限定了施主结构内的弱化面,施主结构随后沿着该弱化面裂开或断裂。如本领域已知的,离子植入施主结构内的深度至少部分地随离子植入施主结构内的能量而变化。一般来说,低能量植入的离子将以相对较浅的深度植入,而高能量植入的离子将以相对较深的深度植入。general speaking,
Figure BDA0000482345480000013
The treatment involves implanting a plurality of ions (eg, one or more of hydrogen ions, helium ions, or noble gas ions) into the donor structure along the ion implantation plane. The ions implanted along the ion-implantation plane define a weakened plane within the donor structure along which the donor structure subsequently cleaves or fractures. As is known in the art, the depth at which ions are implanted into the donor structure varies at least in part with the energy with which the ions are implanted into the donor structure. In general, low energy implanted ions will be implanted at a relatively shallow depth, while high energy implanted ions will be implanted at a relatively deep depth.

施主结构接合至另一受主结构,然后施主结构沿着离子植入面裂开或断裂。例如,可以加热接合的施主结构和受主结构,以使得施主结构沿着离子植入面裂开或断裂。可选地,可以向施主结构施加机械力以帮助施主结构沿着离子植入面裂开。在施主结构沿着离子植入面裂开或断裂之后,施主结构的一部分保持接合至受主结构。施主结构的其余部分可以在进一步的

Figure BDA0000482345480000021
处理中再使用,以将施主结构的附加部分转移至受主结构。The donor structure is bonded to another acceptor structure, and the donor structure is then cleaved or fractured along the ion implantation plane. For example, the bonded donor and acceptor structures can be heated to cause the donor structures to cleave or fracture along the ion implantation plane. Optionally, a mechanical force can be applied to the donor structure to assist in cleaving the donor structure along the ion implantation plane. After the donor structure is cleaved or fractured along the ion implantation face, a portion of the donor structure remains bonded to the acceptor structure. The rest of the donor structure can be further
Figure BDA0000482345480000021
Re-use in processing to transfer additional portions of the donor structure to the acceptor structure.

在断裂处理之后,施主结构的断裂的表面可以包括施主结构的晶格中的离子杂质和瑕疵,在一些应用中,其可以包括单晶体半导体材料。可以对施主结构的转移至受主结构的那部分进行处理,以努力降低在施主结构的转移部分中的杂质程度并且提高晶格质量(即,减少断裂的表面所靠近的晶格中的缺陷数量)。这种处理常常涉及在例如约1000℃的高温下热退火。After the fracture process, the fractured surface of the donor structure may include ionic impurities and defects in the crystal lattice of the donor structure, which in some applications may include single crystal semiconductor material. The portion of the donor structure that is transferred to the acceptor structure can be treated in an effort to reduce the level of impurities in the transferred portion of the donor structure and improve the lattice quality (i.e., reduce the number of defects in the lattice adjacent to the fractured surface ). Such processing often involves thermal annealing at elevated temperatures, eg, about 1000°C.

发明内容Contents of the invention

提供发明内容部分以按照简单形式引入概念的选择。在以下本公开的示例实施方式的详细描述中更加详细地描述了这些概念。本发明内容部分不旨在识别出要求保护的主题内容的关键特征或重要特征,也不旨在限制要求保护的主题内容的范围。The Summary section is provided to introduce a selection of concepts in a simplified form. These concepts are described in more detail below in the detailed description of example embodiments of the present disclosure. This Summary is not intended to identify key features or important features of the claimed subject matter, nor is it intended to limit the scope of the claimed subject matter.

在一些实施方式中,本发明包括将半导体材料层从第一施主结构转移至第二结构的方法。根据所述方法,可以将离子植入第一施主结构内,以在第一施主结构内形成由植入的离子限定的大致平坦的弱化区。该大致平坦的弱化区可以将第一施主结构的所述半导体材料层与第一施主结构的其余部分分离。植入的离子的浓度和植入的离子的元素成分的至少一方可以形成为在整个大致平坦的弱化区上沿着平行于大致平坦的弱化区的至少一个方向上变化。第一施主结构可以接合至第二结构,并且第一施主结构可以沿着大致平坦的弱化区断裂,从而保留使所述半导体材料层接合至第二结构。In some embodiments, the invention includes a method of transferring a layer of semiconductor material from a first donor structure to a second structure. According to the method, ions may be implanted into the first donor structure to form a substantially planar weakened region within the first donor structure defined by the implanted ions. The substantially planar region of weakness may separate said layer of semiconductor material of the first donor structure from the remainder of the first donor structure. At least one of the concentration of the implanted ions and the elemental composition of the implanted ions may be formed to vary in at least one direction parallel to the substantially flat weakened region across the substantially flat weakened region. The first donor structure may be bonded to the second structure, and the first donor structure may be fractured along the substantially planar weakened region, thereby leaving the layer of semiconductor material bonded to the second structure.

在其它实施方式中,本发明包括制造半导体器件的方法。根据所述方法,可以将半导体材料层从第一施主结构转移至第二结构。转移所述半导体材料层的步骤可以包括:将离子植入第一施主结构内,以在第一施主结构内形成由植入的离子限定的大致平坦的弱化区;将第一施主结构接合至第二结构;以及使第一施主结构沿着大致平坦的弱化区断裂,从而留下接合至第二结构的所述半导体材料层。形成在第一施主结构内的大致平坦的弱化区可以将第一施主结构的所述半导体材料层与第一施主结构的其余部分分离。另外,大致平坦的弱化区可以形成为使得植入的离子的浓度和植入的离子的元素成分的至少一方在整个大致平坦的弱化区上沿着平行于大致平坦的弱化区的至少一个方向上变化。可以在转移的半导体材料层上制造多个有源器件结构。In other embodiments, the invention includes methods of fabricating semiconductor devices. According to the method, a layer of semiconductor material can be transferred from the first donor structure to the second structure. The step of transferring the layer of semiconductor material may include: implanting ions into the first donor structure to form a substantially planar weakened region within the first donor structure defined by the implanted ions; bonding the first donor structure to the second donor structure. a second structure; and fracturing the first donor structure along the substantially planar weakened region, thereby leaving the layer of semiconductor material bonded to the second structure. A substantially planar weakened region formed within the first donor structure may separate said layer of semiconductor material of the first donor structure from the remainder of the first donor structure. In addition, the substantially flat weakened region may be formed such that at least one of the concentration of the implanted ions and the elemental composition of the implanted ions is along at least one direction parallel to the substantially flat weakened region throughout the substantially flat weakened region Variety. Multiple active device structures can be fabricated on the transferred layer of semiconductor material.

在其它实施方式中,本发明包括利用本文公开的方法制造的半导体结构。例如,半导体结构可以包括其中具有大致平坦的弱化区的第一施主结构。大致平坦的弱化区可以由第一施主结构内沿着大致平坦的弱化区的植入的离子限定。大致平坦的弱化区可以将第一施主结构的半导体材料层与第一施主结构的其余部分分离。此外,植入的离子的浓度和植入的离子的元素成分的至少一方可以在整个大致平坦的弱化区上沿着平行于大致平坦的弱化区的至少一个方向上变化。半导体结构可以还包括接合至第一施主结构的所述半导体材料层的第二结构。In other embodiments, the present invention includes semiconductor structures fabricated using the methods disclosed herein. For example, a semiconductor structure may include a first donor structure having a substantially planar weakened region therein. The substantially planar weakened region may be defined by implanted ions within the first donor structure along the substantially planar weakened region. A substantially planar region of weakness may separate the semiconductor material layer of the first donor structure from the remainder of the first donor structure. Additionally, at least one of the concentration of the implanted ions and the elemental composition of the implanted ions may vary across the substantially planar weakened region in at least one direction parallel to the substantially planar weakened region. The semiconductor structure may further comprise a second structure bonded to said layer of semiconductor material of the first donor structure.

附图说明Description of drawings

本说明书以权利要求为结束,虽然权利要求特别指出并清楚地声称了本发明的实施方式,但是当与附图结合地阅读时,本公开的实施方式的优点从本公开的实施方式的某些示例的描述中可以更容易确定,其中:The specification concludes with the claims, and while the claims particularly point out and distinctly claim embodiments of the invention, advantages of embodiments of the disclosure emerge from certain aspects of the embodiments of the disclosure when read in conjunction with the accompanying drawings. This can be more easily determined in the description of the example, where:

图1A至图1F是简化的示意性地示出根据本公开的方法的一些实施方式的在将半导体材料层从第一施主结构转移至第二受主结构的方法中施主和/或受主结构的截面图,其中在施主结构内形成非均匀离子植入面;1A-1F are simplified schematic illustrations of donor and/or acceptor structures in a method of transferring a layer of semiconductor material from a first donor structure to a second acceptor structure according to some embodiments of the methods of the present disclosure. A cross-sectional view of where a non-uniform ion-implanted facet is formed within the donor structure;

图2A至图2G是简化的示意性地示出根据本公开的方法的其它实施方式的在将半导体材料层从第一施主结构转移至第二受主结构的方法中施主和/或受主结构的截面图,其中通过施主结构的选择的区域植入离子,所述选择的区域包括形成在施主结构中的凹部;2A to 2G are simplified schematic illustrations of donor and/or acceptor structures in a method of transferring a layer of semiconductor material from a first donor structure to a second acceptor structure according to other embodiments of the method of the present disclosure. wherein ions are implanted through selected regions of the donor structure, the selected regions including recesses formed in the donor structure;

图3A和图3B是简化的示意性地示出根据本公开的方法的一些实施方式的施主结构的处理的截面图,其中通过施主结构的选择的区域植入离子,所述选择的区域包括形成在施主结构中的凹部中的介电材料;3A and 3B are simplified schematic cross-sectional views illustrating the processing of a donor structure according to some embodiments of the methods of the present disclosure, wherein ions are implanted through selected regions of the donor structure, including the formation of a dielectric material in a recess in the donor structure;

图4A和图4B是简化的示意性地示出根据本公开的方法的一些实施方式的施主结构的处理的截面图,其中使用多重离子植入处理以在施主结构内形成非均匀离子植入面;4A and 4B are simplified schematic cross-sectional views illustrating the processing of a donor structure according to some embodiments of the methods of the present disclosure, wherein a multiple ion implantation process is used to form a non-uniform ion implantation plane within the donor structure ;

图5A和图5B是简化的示意性地示出根据本公开的方法的其它实施方式的施主结构的处理的截面图,其中使用多重离子植入处理以在施主结构内形成非均匀离子植入面;5A and 5B are simplified schematic cross-sectional views illustrating the processing of a donor structure according to other embodiments of the methods of the present disclosure, wherein multiple ion implantation processes are used to form non-uniform ion implantation planes within the donor structure ;

图6A和图6B是简化的示意性地示出根据本公开的方法的实施方式的施主结构的处理的截面图,其中施主结构包括绝缘体上半导体式结构;6A and 6B are simplified schematic cross-sectional views illustrating processing of a donor structure comprising a semiconductor-on-insulator structure according to an embodiment of the method of the present disclosure;

图7A和图7B是简化的示意性地示出根据本公开的方法的实施方式的施主结构的处理的截面图,其中施主结构包括绝缘体上半导体式结构并且在其中具有离子约束层;以及7A and 7B are simplified schematic cross-sectional views illustrating processing of a donor structure comprising a semiconductor-on-insulator type structure and having an ion confinement layer therein according to an embodiment of the method of the present disclosure; and

图8A至图8E是简化的示意性地示出根据本公开的方法的实施方式的施主结构的处理的截面图,其中在通过凹部将离子植入施主结构内之前,在凹部中形成侧壁间隔件。8A-8E are simplified schematic cross-sectional views illustrating processing of a donor structure in which sidewall spacers are formed in the recess prior to implanting ions through the recess into the donor structure according to an embodiment of the method of the present disclosure. pieces.

具体实施方式Detailed ways

本文提供的图示不意味着是任何具体半导体结构、装置、系统或方法的实际示图,而只是用于描述本公开的实施方式的理想化的表达。The illustrations provided herein are not meant to be actual illustrations of any particular semiconductor structure, device, system, or method, but are merely idealized representations used to describe embodiments of the present disclosure.

本文所用的任何标题不应理解为限制本发明的实施方式的范围,本发明的范围由权利要求及其等同物限定。在整个说明书中,任何具体标题中描述的概念通常可以应用于其它部分。Any headings used herein should not be construed as limiting the scope of embodiments of the invention, which is defined by the claims and their equivalents. Throughout the specification, concepts described in any particular heading can generally be applied to other sections.

引用的参考文献无论在本文中如何特征化,也不认为它们是相对于本文要求保护的主题内容的本发明的现有技术。None of the cited references, however characterized herein, are admitted to be prior art to the present invention with respect to the subject matter claimed herein.

根据一些实施方式,一种将材料层(诸如半导体材料层)从第一施主结构转移至第二受主结构的方法包括:将离子植入第一施主结构内,以在第一施主结构内形成由植入的离子限定的大致平坦的弱化区。大致平坦的弱化区将要从第一施主结构转移的材料层与第一施主结构的其余部分分离。在整个大致平坦的弱化区上,该大致平坦的弱化区沿着平行于大致平坦的弱化区的至少一个方向是非均匀的。例如,植入的离子的浓度和植入的离子的元素成分的至少一方在整个大致平坦的弱化区上沿着平行于大致平坦的弱化区的至少一个方向可以变化。第一施主结构可以接合至第二受主结构,然后第一施主结构可以沿着大致平坦的弱化区断裂,并保留使材料层接合至第二受主结构。本文中以下将更加详细地描述这种方法。According to some embodiments, a method of transferring a layer of material, such as a layer of semiconductor material, from a first donor structure to a second acceptor structure includes: implanting ions into the first donor structure to form in the first donor structure A generally flat region of weakness defined by implanted ions. A substantially planar region of weakness separates the layer of material to be transferred from the first donor structure from the remainder of the first donor structure. The generally planar weakened zone is non-uniform along at least one direction parallel to the generally planar weakened zone across the generally planar weakened zone. For example, at least one of the concentration of the implanted ions and the elemental composition of the implanted ions may vary across the substantially planar weakened region along at least one direction parallel to the substantially planar weakened region. The first donor structure can be bonded to the second acceptor structure, and then the first donor structure can be fractured along the substantially planar weakened region, leaving the material layer bonded to the second acceptor structure. This method is described in more detail herein below.

图1是简化的示意性地示出施主结构100的截面图。施主结构100包括块体材料102,其可以例如包括诸如硅、锗、III-V半导体材料这样的半导体材料(例如GaN、GaAs、InN、AlN、InGaN等)或者这些半导体材料的混合物。材料102可以为多晶的或可以包括单晶体材料。施主结构100可以为大致平坦的并可以具有第一主表面104A和平行于第一主表面104A取向的相对的第二主表面104B。FIG. 1 is a simplified schematic cross-sectional view illustrating a donor structure 100 . The donor structure 100 comprises a bulk material 102 which may eg comprise semiconductor materials such as silicon, germanium, III-V semiconductor materials (eg GaN, GaAs, InN, AlN, InGaN, etc.) or mixtures of these semiconductor materials. Material 102 may be polycrystalline or may include single crystal material. The donor structure 100 can be generally planar and can have a first major surface 104A and an opposing second major surface 104B oriented parallel to the first major surface 104A.

如图1A所示,离子(图1A中的方向箭头表示)可以仅通过施主结构100的选择的区域植入施主结构100中。离子可以包括例如氢离子、氦离子和惰性气体离子的一种或者更多种。离子可以沿着离子植入面106植入施主结构100中。如图1A所示,离子可以通过第一主表面104A沿着基本垂直于第一主表面104A的方向植入施主结构100中。As shown in FIG. 1A , ions (indicated by the directional arrows in FIG. 1A ) may be implanted into the donor structure 100 only through selected regions of the donor structure 100 . The ions may include, for example, one or more of hydrogen ions, helium ions, and noble gas ions. Ions may be implanted into the donor structure 100 along the ion implantation face 106 . As shown in FIG. 1A , ions may be implanted into the donor structure 100 through the first major surface 104A in a direction substantially perpendicular to the first major surface 104A.

离子植入施主结构100中的深度至少部分地随离子植入施主结构100中的能量而变化。一般来说,用低能量植入的离子将以相对较浅的深度植入,而用高能量植入的离子将以相对较深的深度植入。可以通过选择为将离子以距离第一主表面104A的期望深度植入施主结构100内的预定能量将离子植入施主结构100内。至少一些离子可以按照期望植入深度以外的深度植入,并且随施主结构100内距离第一主表面104A的深度变化的施主结构100内的离子浓度的曲线图可以呈现在限定离子植入面106的期望植入深度处具有最大值的大致钟形(对称或不对称)曲线。换句话说,离子植入面106可以包括施主结构100内的与施主结构100中的最大离子浓度面对齐(例如,以施主结构100中的最大离子浓度面为中心)的层或区域。离子植入面106限定了施主结构100中的弱化区,在后续处理中,施主结构100可以沿着所述弱化区裂开或断裂,如下面更加详细的讨论。例如,简要地参照图1B,在施主结构中存在离子可以在施主结构100的晶格中产生缺陷108。The depth to which ions are implanted into the donor structure 100 is at least partially a function of the energy with which the ions are implanted into the donor structure 100 . Generally, ions implanted with a low energy will be implanted at a relatively shallow depth, while ions implanted with a high energy will be implanted at a relatively deep depth. The ions may be implanted into the donor structure 100 with a predetermined energy selected to implant the ions into the donor structure 100 at a desired depth from the first major surface 104A. At least some ions may be implanted at a depth other than the desired implantation depth, and a graph of the concentration of ions within the donor structure 100 as a function of depth within the donor structure 100 from the first major surface 104A may be presented at the area defining the ion implantation surface 106. A roughly bell-shaped (symmetrical or asymmetrical) curve with a maximum at the desired implant depth of . In other words, ion implantation face 106 may comprise a layer or region within donor structure 100 that is aligned with (eg, centered on) the face of maximum ion concentration in donor structure 100 . The ion-implantation facet 106 defines a region of weakness in the donor structure 100 along which the donor structure 100 may cleave or fracture during subsequent processing, as discussed in more detail below. For example, referring briefly to FIG. 1B , the presence of ions in the donor structure can create defects 108 in the crystal lattice of the donor structure 100 .

图1B所示的离子植入面106可以包括单个植入面,其中大多数离子沿着施主结构100内的单个面设置。换句话说,大多数植入的离子集中于施主结构100内的单个深度处。这与其中离子的植入可以导致多重植入面的结构相反。例如,用不同植入能量的多重植入处理或通过植入非均匀施主结构内(即,非均匀植入表面地形图和/或非均匀植入材料组成)可以得到施主结构内的多重植入面。The ion implantation plane 106 shown in FIG. 1B may comprise a single implantation plane, where the majority of ions are disposed along a single plane within the donor structure 100 . In other words, most of the implanted ions are concentrated at a single depth within the donor structure 100 . This is in contrast to structures where implantation of ions can result in multiple implant planes. For example, multiple implants within the donor structure can be obtained by multiple implant treatments with different implant energies or by implanting within the donor structure non-uniformly (i.e., non-uniform implant surface topography and/or non-uniform implant material composition). noodle.

将要从施主结构100转移至另一受主结构的材料层110限定在离子植入面106的一侧,并且施主结构100的其余部分112设置在离子植入面106的与材料层110相对的侧。A material layer 110 to be transferred from the donor structure 100 to another acceptor structure is defined on one side of the ion implantation face 106, and the remaining portion 112 of the donor structure 100 is disposed on the opposite side of the ion implantation face 106 from the material layer 110 .

再次参照图1A,如前所述,在整个弱化区上沿着离子植入面106的大致平坦的弱化区沿着平行于离子植入面106的至少一个方向是非均匀的。例如,植入的离子的浓度和植入的离子的元素成分的至少一方在整个大致平坦的弱化区上可以变化。为了形成这种非均匀弱化区,在一些实施方式中,可以仅通过施主结构100的选择的区域植入离子。例如,可以通过经构图掩模118中的通孔116将离子植入施主结构100中。如图1A所示,经构图掩模118可以形成在施主结构100的主表面104A上,或者经构图掩模118可以与施主结构100分离地形成并且简单地设置在施主结构100的主表面104A上(直接设置于主表面104A上,或在主表面104A上方与主表面104A竖直地分离)。Referring again to FIG. 1A , the generally planar weakened region along the ion-implanted face 106 is non-uniform along at least one direction parallel to the ion-implanted face 106 throughout the weakened region, as previously described. For example, at least one of the concentration of the implanted ions and the elemental composition of the implanted ions may vary across the generally planar weakened region. To form such a non-uniform weakened region, ions may be implanted only through selected regions of the donor structure 100 in some embodiments. For example, ions may be implanted into donor structure 100 through vias 116 in patterned mask 118 . 1A, patterned mask 118 may be formed on major surface 104A of donor structure 100, or patterned mask 118 may be formed separately from donor structure 100 and simply disposed on major surface 104A of donor structure 100. (disposed directly on the main surface 104A, or vertically separated from the main surface 104A above the main surface 104A).

通过经构图掩模118中的通孔116将离子植入施主结构100中,仅通过材料层110的第一多个区域120而不通过材料层110的第二多个区域122植入离子。在图1A和图1B中通过竖直取向的虚线标示出第一多个区域120和第二多个区域122。掩模118的材料阻碍(例如,妨碍)了离子通过第二多个区域122植入施主结构100中。如前所述,材料层110可以包括将最终用于在受主结构(材料层110将被转移至其上)上制造有源半导体器件结构(例如,晶体管、电容器、导电通路等)的半导体材料。根据本公开的一些实施方式,通孔116可以选择性地形成在经构图掩模118中,以使得通孔设置将成为材料层110的无源区域的部分上方并与将为材料层110的无源区域的部分竖直地对齐,因此掩模118的材料遮蔽材料层110的有源区域以防离子进入。换句话说,材料层110的第一多个区域120可以包括材料层110的无源区域,并且第二多个区域122可以包括材料层110的有源区域。By implanting ions into the donor structure 100 through the vias 116 in the patterned mask 118 , ions are implanted only through the first plurality of regions 120 of the material layer 110 and not through the second plurality of regions 122 of the material layer 110 . The first plurality of regions 120 and the second plurality of regions 122 are indicated in FIGS. 1A and 1B by vertically oriented dashed lines. The material of mask 118 impedes (eg, prevents) implantation of ions into donor structure 100 through second plurality of regions 122 . As previously mentioned, material layer 110 may comprise semiconductor material that will ultimately be used to fabricate active semiconductor device structures (e.g., transistors, capacitors, conductive pathways, etc.) on the acceptor structure (to which material layer 110 will be transferred) . According to some embodiments of the present disclosure, vias 116 may be selectively formed in patterned mask 118 such that the vias are disposed over portions of what will be inactive regions of material layer 110 and in contact with what will be inactive regions of material layer 110 . Portions of the source region are vertically aligned so that the material of the mask 118 shields the active region of the material layer 110 from entry of ions. In other words, first plurality of regions 120 of material layer 110 may include inactive regions of material layer 110 , and second plurality of regions 122 may include active regions of material layer 110 .

如本文所用,术语“无源区域”当关于将要从施主结构转移至受主结构的材料层使用时,意指并包括这样的区域,在其中不包括任何有源器件结构的完工的装置中,所述区域最终在材料层中包括钝化区域。如本文所用,术语“有源区域”当关于将要从施主结构转移至受主结构的材料层使用时,意指并包括这样的区域,在其中包括一个或多个有源器件结构(诸如晶体管、电容器和导电通路的一种或者更多种)的完成制造的装置中,所述区域最终在材料层110中包括有源区域。As used herein, the term "inactive region" when used in reference to a layer of material to be transferred from a donor structure to a recipient structure means and includes a region, in a finished device that does not include any active device structures, Said regions ultimately comprise passivated regions in the material layer. As used herein, the term "active region" when used in reference to a layer of material to be transferred from a donor structure to an acceptor structure means and includes a region in which one or more active device structures (such as transistors, One or more of a capacitor and a conductive path), the region eventually includes the active region in the material layer 110 .

如上所述,可以通过材料层110的无源区域(第一多个区域120)植入离子,而不通过材料层110的有源区域(第二多个区域122)植入任何明显量的离子。因此,由于相对于邻近第一多个区域120的大致弱化区中存在的离子的浓度(可以至少基本为零),邻近第一多个区域120的大致弱化区中存在相对较高浓度的离子,因此通过离子植入面106限定的大致平坦的弱化区沿着平行于大致平坦的弱化区的至少一个方向在整个大致平坦的弱化区上是非均匀的。因此,可以使用本发明的实施方式减少可能由于离子植入处理造成的对有源区域(即,第二多个区域122)的损坏。As noted above, ions may be implanted through the inactive regions of the material layer 110 (the first plurality of regions 120 ) without implanting any appreciable amount of ions through the active regions of the material layer 110 (the second plurality of regions 122 ). . Thus, due to the presence of a relatively higher concentration of ions in the substantially weakened region adjacent to the first plurality of regions 120 relative to the concentration (which may be at least substantially zero) of ions present in the substantially weakened region adjacent to the first plurality of regions 120, The substantially planar weakened region defined by the ion-implantation face 106 is thus non-uniform across the substantially planar weakened region along at least one direction parallel to the substantially planar weakened region. Accordingly, embodiments of the present invention may be used to reduce damage to the active region (ie, the second plurality of regions 122 ) that may be caused by the ion implantation process.

参照图1C,施主结构100的第一主表面104A(包括将被转移的材料层110的表面)可以接合至受主结构130。在一些实施方式中,在如上所述将离子植入施主结构100中之后,可以将施主结构100接合至受主结构130。在其它实施方式中,在将施主结构100的第一主表面104A接合至受主结构120之后,可以通过施主结构100的相对主表面104B将离子植入施主结构100中。在将施主结构100的第一主表面104A接合至受主结构120之后,可能相对较难以执行植入处理,因为在期望深度植入离子需要更高的能量。Referring to FIG. 1C , the first major surface 104A of the donor structure 100 (including the surface of the material layer 110 to be transferred) may be bonded to a recipient structure 130 . In some embodiments, the donor structure 100 may be bonded to the acceptor structure 130 after ions are implanted into the donor structure 100 as described above. In other embodiments, ions may be implanted into the donor structure 100 through the opposing major surface 104B of the donor structure 100 after the first major surface 104A of the donor structure 100 is bonded to the acceptor structure 120 . After bonding the first major surface 104A of the donor structure 100 to the acceptor structure 120, it may be relatively difficult to perform the implantation process because of the higher energy required to implant ions at the desired depth.

在一些实施方式中,可以利用直接接合处理将施主结构100直接接合至受主结构130。所称的“直接接合法”是在两个结构之间建立直接固-固化学键以将它们接合在一起而不在它们之间使用中间接合材料的方法。研发了直接金属-金属接合方法和直接氧化物-氧化物接合方法,以将在第一结构的表面处的金属或氧化物材料接合至在第二结构的表面处的金属或氧化物材料。该方法在例如P.Garrou,et al.,“TheHandbook of3D Integration,”Wiley VCH(2008)Volume1,Chapter11中有所讨论。In some embodiments, the donor structure 100 can be bonded directly to the acceptor structure 130 using a direct bonding process. The so-called "direct bonding method" is a method of establishing a direct solid-cure chemical bond between two structures to bond them together without using an intermediate bonding material between them. Direct metal-metal bonding methods and direct oxide-oxide bonding methods have been developed to bond a metal or oxide material at the surface of a first structure to a metal or oxide material at the surface of a second structure. This approach is discussed, for example, in P. Garrou, et al., "The Handbook of 3D Integration," Wiley VCH (2008) Volume 1, Chapter 11.

因此,如果施主结构100的块体材料102和/或受主结构130的材料在其接合表面不包括用于这种直接接合处理的合适材料,则可以在施主结构100的接合表面和/或受主结构130的接合表面提供合适接合材料。例如,图1C示出了在施主结构100的接合表面(第一主表面104A)的接合材料124和在受主结构130的接合表面的接合材料132。Thus, if the bulk material 102 of the donor structure 100 and/or the material of the acceptor structure 130 does not include a suitable material for such a direct bonding process at its bonding surface, then the The bonding surface of the primary structure 130 provides a suitable bonding material. For example, FIG. 1C shows bonding material 124 at the bonding surface (first major surface 104A) of donor structure 100 and bonding material 132 at the bonding surface of acceptor structure 130 .

接合材料124和接合材料132可以具有相似成分,并可以包括例如金属材料(例如铜、铝、钛、钨、镍等或这些金属的合金)、氧化物材料(例如,氧化硅)或半导体材料(例如硅、锗、复合半导体材料等)。Bonding material 124 and bonding material 132 may have similar compositions and may include, for example, metallic materials (such as copper, aluminum, titanium, tungsten, nickel, etc., or alloys of these metals), oxide materials (such as silicon oxide), or semiconductor materials ( Such as silicon, germanium, compound semiconductor materials, etc.).

可以清洁接合材料124和接合材料132的接合表面以去除表面杂质和表面化合物(例如,天然氧化物)。另外,可以降低接合表面的表面粗糙度以在原子级增大接合表面之间紧密接触的面积。接合表面之间的紧密接触的面积通常通过以下步骤实现:抛光接合表面以将表面粗糙度至多减小至接近原子级的值;在接合表面之间施加压力导致塑性变形;或者进行抛光接合表面以及施加压力这二者,以获得这种塑性变形。The bonding surfaces of bonding material 124 and bonding material 132 may be cleaned to remove surface impurities and surface compounds (eg, native oxides). In addition, the surface roughness of the bonding surfaces can be reduced to increase the area of close contact between the bonding surfaces at the atomic level. The area of intimate contact between the joining surfaces is usually achieved by: polishing the joining surfaces to reduce the surface roughness at most to a value close to the atomic level; applying pressure between the joining surfaces to cause plastic deformation; or polishing the joining surfaces and Both pressures are applied to obtain this plastic deformation.

在制备接合表面之后,可以使它们彼此紧密接触。接合表面之间的引力足够高以引起分子粘附(待接合的两个表面的原子和/或分子之间的电子相互作用的总引力(范德华力)引起的接合)。随后可以将诸如触针这样的工具在施主结构100的露出的主表面104B(和/或受主结构130的露出的主表面)上按压,以发起接合波在施主结构100和受主结构130的接合表面之间的整个界面的传播。应用工具的点可以例如位于施主结构100和/或受主结构130的中心或靠近它们的周边边缘。这种方法在例如以Castex等人的名义公布于2011年2月24日的美国专利申请公开No.US2011/0045611A1中有所公开。After the joining surfaces are prepared, they can be brought into intimate contact with each other. The attractive force between the joining surfaces is high enough to cause molecular adhesion (joining caused by the total attractive force (van der Waals forces) of electronic interactions between atoms and/or molecules of the two surfaces to be joined). A tool such as a stylus may then be pressed against the exposed major surface 104B of the donor structure 100 (and/or the exposed major surface of the acceptor structure 130) to initiate a bonding wave between the donor structure 100 and the acceptor structure 130. Propagation across the interface between joined surfaces. The point of application of the tool may eg be located in the center of the donor structure 100 and/or the acceptor structure 130 or near their peripheral edges. Such an approach is disclosed, for example, in US Patent Application Publication No. US2011/0045611A1 published February 24, 2011 in the name of Castex et al.

可选地,可以在接合处理的过程中加热施主结构100和/或受主结构130以帮助接合处理。Optionally, the donor structure 100 and/or the acceptor structure 130 may be heated during the bonding process to aid in the bonding process.

受主结构130可以包括裸晶或晶圆,并且在一些实施方式中可以包括先前制造的有源器件结构134。图1C中示意性地示出的有源器件结构134表示晶体管,但是有源器件结构134可以包括其它类型的有源器件结构,诸如电容器、导线、迹线和/或过孔等。有源器件结构134可能包括当受到过量热能就可以受到不利影响的材料或结构。因此,在一些实施方式中,在约400℃或更低、约200℃或更低或甚至在室温的温度下可以执行接合处理。The acceptor structure 130 may include a die or wafer, and in some embodiments may include a previously fabricated active device structure 134 . Active device structures 134 schematically shown in FIG. 1C represent transistors, but active device structures 134 may include other types of active device structures, such as capacitors, wires, traces, and/or vias, and the like. Active device structures 134 may include materials or structures that may be adversely affected when exposed to excess thermal energy. Thus, in some embodiments, the bonding process may be performed at a temperature of about 400°C or less, about 200°C or less, or even at room temperature.

在将施主结构100接合至受主结构130之后,施主结构100可以沿着离子植入面106裂开或断裂,以形成图1D所示的结构,其包括受主结构130、通过之间的接合材料124和接合材料132接合至受主结构130的材料层110。例如,可以加热施主结构100(以及可选地受主结构130)以使得施主结构100沿着离子植入面106裂开或断裂。在一些实施方式中,在断裂处理中,施主结构100和受主结构130的温度可以保持在约500℃或更低,约400℃或更低,或甚至约350℃或更低。为了例如防止损坏受主结构130上的先前形成的有源器件结构,在断裂处理过程中限制温度可以是希望的。然而,在其它实施方式中,可以在高温下执行裂开处理。可选地,可以向施主结构100施加机械力以引起或帮助施主结构100沿着离子植入面106裂开或断裂。After bonding the donor structure 100 to the acceptor structure 130, the donor structure 100 can be cleaved or fractured along the ion implantation face 106 to form the structure shown in FIG. Material 124 and bonding material 132 are bonded to material layer 110 of acceptor structure 130 . For example, the donor structure 100 (and optionally the acceptor structure 130 ) may be heated to cause the donor structure 100 to cleave or fracture along the ion implantation face 106 . In some embodiments, the temperature of the donor structure 100 and the acceptor structure 130 can be maintained at about 500°C or less, about 400°C or less, or even about 350°C or less during the fracture process. Limiting the temperature during the fracture process may be desirable, eg, to prevent damage to previously formed active device structures on the acceptor structure 130 . However, in other embodiments, the cleaving process may be performed at elevated temperatures. Optionally, a mechanical force may be applied to the donor structure 100 to cause or facilitate cleaving or fracture of the donor structure 100 along the ion implantation face 106 .

在断裂处理之后,材料层110保持接合至受主结构130,并且施主结构100的其余部分可以再使用,以根据需要将附加的多层材料转移至受主结构。After the fracture process, the material layer 110 remains bonded to the acceptor structure 130, and the remainder of the donor structure 100 can be reused to transfer additional layers of material to the acceptor structure as needed.

在断裂处理之后,材料层110的露出的断裂的表面111可以包括转移的材料层110的晶格中的缺陷和杂质。另外,在材料层110的邻近第一多个区域120(图1B)的断裂的表面111(通过其植入离子)可以存在如前所述由植入的离子导致的缺陷108。因此,可以处理材料层110的断裂的表面111以去除杂质(例如,植入的离子)以及提高材料层110中靠近断裂的表面111的晶格的质量。例如,断裂的表面111可以受到化学蚀刻处理、机械抛光处理和化学机械抛光(CMP)处理的一个或多个,以形成图1E所示的结构。图1E的结构与图1D的结构基本相似,但是表面111示出为不含缺陷108,以相对于图1D的表面表现出提高质量的表面111。After the fracture process, the exposed fractured surface 111 of the material layer 110 may include defects and impurities in the crystal lattice of the transferred material layer 110 . Additionally, at the fractured surface 111 of the material layer 110 adjacent to the first plurality of regions 120 ( FIG. 1B ), through which the ions are implanted, there may be defects 108 caused by the implanted ions as previously described. Accordingly, the fractured surface 111 of the material layer 110 may be treated to remove impurities (eg, implanted ions) and to improve the quality of the crystal lattice in the material layer 110 near the fractured surface 111 . For example, fractured surface 111 may be subjected to one or more of chemical etching, mechanical polishing, and chemical mechanical polishing (CMP) to form the structure shown in FIG. 1E . The structure of FIG. 1E is substantially similar to that of FIG. 1D , but surface 111 is shown free of defects 108 to represent an improved quality of surface 111 relative to the surface of FIG. 1D .

用于提高靠近表面111的材料层110的质量的处理过程可以不使得材料层110完全不含杂质或具有完美结晶质量。然而,相对于第一多个区域120(可以包括无源区域),第二多个区域122(可以包括有源区域)的质量可以更好,这是由于通过第一多个区域120植入离子,而不通过第二多个区域122植入离子。The processing used to improve the quality of the material layer 110 near the surface 111 may not render the material layer 110 completely free of impurities or of perfect crystalline quality. However, the quality of the second plurality of regions 122 (which may include active regions) may be better relative to the first plurality of regions 120 (which may include inactive regions) due to the implantation of ions through the first plurality of regions 120. , without implanting ions through the second plurality of regions 122 .

参照图1F,可以在转移的材料层110中和/或上制造有源器件结构140。图1C中示意性地示出的有源器件结构140表示晶体管,但是所述有源器件结构140可以包括其它类型的有源器件结构,诸如电容器、导线、迹线和/或过孔等。另外,有源器件结构140可以包括CMOS型晶体管、纵向晶体管、二极管(例如,PN结)、交叉点存储器装置(例如,相变存储器或另一类型的电阻性存储器装置)的组件等的任一个。可选地,可以在有源的第二多个区域122中和/或上制造有源器件结构140,而不在无源的第一多个区域120上大量制造有源器件结构140,如图1F所示。作为制造在提高质量的材料层110的表面111上和/或中的结果,有源器件结构140的性能的可靠性可以提高。Referring to FIG. 1F , active device structures 140 may be fabricated in and/or on transferred material layer 110 . The active device structure 140 shown schematically in FIG. 1C represents a transistor, but the active device structure 140 may include other types of active device structures, such as capacitors, wires, traces and/or vias, and the like. Additionally, the active device structure 140 may include any of CMOS-type transistors, vertical transistors, diodes (eg, PN junctions), components of cross-point memory devices (eg, phase-change memory or another type of resistive memory device), and the like . Optionally, active device structures 140 may be fabricated in and/or on the active second plurality of regions 122 without mass fabrication of active device structures 140 on the inactive first plurality of regions 120, as shown in FIG. 1F shown. As a result of fabrication on and/or in the surface 111 of the improved quality material layer 110, the reliability of the performance of the active device structure 140 may be increased.

可以根据已知方法继续后续处理,以完成一个或多个半导体器件的制造。这种半导体器件可以包括例如电子信号处理器装置、存储器装置、光敏装置(例如,辐射发射装置(诸如激光器、光发射二极管等)或辐射接收装置(诸如光电检测器、太阳能电池等))、微机械装置等。Subsequent processing may continue according to known methods to complete the fabrication of one or more semiconductor devices. Such semiconductor devices may include, for example, electronic signal processor devices, memory devices, photosensitive devices (e.g., radiation emitting devices such as lasers, light emitting diodes, etc., or radiation receiving devices such as photodetectors, solar cells, etc.), micro machinery etc.

有源器件结构140中的一个或更多个可以通过以下步骤可操作地与受主结构130的有源器件结构134中的一个或更多个结合:利用一个或更多个竖直延伸的导电过孔、导电垫和横向延伸的导线在它们之间建立电接触。One or more of the active device structures 140 may be operably combined with one or more of the active device structures 134 of the acceptor structure 130 by utilizing one or more vertically extending conductive The vias, conductive pads, and laterally extending wires establish electrical contact therebetween.

图2A至图2G示出了本公开的方法的其它实施方式。图2A与图1A相似,并且示出了通过经构图掩模168中的通孔166植入离子,通过待转移的材料层160的第一多个区域170选择性地将离子植入施主结构150中,而不通过材料层160的第二多个区域172植入离子。然而,在沿着离子植入面156植入离子以形成非均匀的大致弱化区之前,在第一多个区域170中在施主结构150的第一主表面154A中可以形成多个凹部164,如图2A所示。2A-2G illustrate other embodiments of the methods of the present disclosure. 2A is similar to FIG. 1A and shows the implantation of ions through the vias 166 in the patterned mask 168, selectively implanting the ions into the donor structure 150 through the first plurality of regions 170 of the material layer 160 to be transferred. ions are implanted without passing through the second plurality of regions 172 of the material layer 160 . However, prior to implanting ions along ion implantation face 156 to form a non-uniform substantially weakened region, a plurality of recesses 164 may be formed in first major surface 154A of donor structure 150 in first plurality of regions 170, as Figure 2A.

可以通过利用例如掩模和蚀刻处理在施主结构150中形成凹部164。在一些实施方式中,在离子植入处理中使用的相同掩模168可以首先用作蚀刻掩模以形成凹部164。例如,通过将氧化物材料、氮化物材料或氧氮化物材料淀积在施主结构的表面154A上,可以形成经构图掩模168。随后可以使用光刻处理形成穿过掩模168的通孔166。例如,可以在用于形成掩模168的材料上淀积构图光掩模,并且可以使用蚀刻处理通过利用构图光掩模在掩模168中蚀刻通孔166,然后,可以去除光掩模。随后可以利用经构图掩模168来在施主结构150中形成凹部164,然后可以通过凹部164和材料层160的第一多个区域170植入离子,利用掩模168遮蔽材料层160的第二多个区域172以防离子进入。Recess 164 may be formed in donor structure 150 by using, for example, a mask and etching process. In some embodiments, the same mask 168 used in the ion implantation process may be used as an etch mask first to form the recess 164 . For example, patterned mask 168 may be formed by depositing an oxide material, a nitride material, or an oxynitride material on surface 154A of the donor structure. Vias 166 may then be formed through mask 168 using a photolithographic process. For example, a patterned photomask may be deposited over the material used to form mask 168 and an etching process may be used to etch vias 166 in mask 168 by using the patterned photomask, after which the photomask may be removed. Patterned mask 168 can then be used to form recesses 164 in donor structure 150, ions can then be implanted through recesses 164 and first plurality of regions 170 of material layer 160, mask 168 is used to mask a second plurality of regions 170 of material layer 160. A region 172 prevents ions from entering.

通过经通孔164植入离子,离子植入面156在施主结构156中距离主表面154A的深度可以增大。例如,在一些实施方式中,离子植入面156可以设置为距离施主结构150的主表面154A(通过其植入离子)大约1.5μm或更多。通过将离子植入施主结构150中使其距离主表面154A更远使得能够将相对较厚的材料层160转移至受主结构。By implanting ions through vias 164 , the depth of ion-implanted face 156 in donor structure 156 from major surface 154A may be increased. For example, in some embodiments, the ion-implantation face 156 may be disposed about 1.5 μm or more from the major surface 154A of the donor structure 150 through which ions are implanted. Implanting ions into the donor structure 150 further from the major surface 154A enables the transfer of a relatively thicker layer of material 160 to the acceptor structure.

图2B示出了在去除掩模168之后的结构,并示出了在施主结构150中邻近第一多个区域170处的由离子植入处理导致的缺陷158。如前所述,图2A所示的离子植入面156可以包括单个植入面,其中大多数离子沿着施主结构150中的单个面设置。换句话说,大多数植入的离子在施主结构150中集中于单个深度。FIG. 2B shows the structure after removal of mask 168 and shows defects 158 in donor structure 150 adjacent first plurality of regions 170 caused by the ion implantation process. As previously mentioned, the ion implantation facet 156 shown in FIG. 2A may comprise a single implantation facet, wherein the majority of ions are disposed along a single facet in the donor structure 150 . In other words, most of the implanted ions are concentrated at a single depth in the donor structure 150 .

参照图2C,可以用介电材料165填充凹部164。例如,介电材料可以毯式淀积在图2B的结构上,然后可以使用化学机械抛光(CMP)处理来去除施主结构150的主表面154A上凹部164以外的过多的介电材料。Referring to FIG. 2C , the recess 164 may be filled with a dielectric material 165 . For example, dielectric material may be blanket deposited on the structure of FIG. 2B , and then a chemical mechanical polishing (CMP) process may be used to remove excess dielectric material beyond recesses 164 on major surface 154A of donor structure 150 .

如图2D所示,施主结构150可以按照先前参照图1C描述的方式接合至受主结构180。受主结构180在一些实施方式中可以包括有源器件结构184。另外,如之前的讨论,在施主结构150的接合表面(第一主表面154A)可以设置接合材料174,并且在受主结构180的接合表面上可以设置接合材料182。接合材料174和接合材料182可以具有相似的成分,并可以包括例如金属材料(例如,铜或铜合金)或氧化物材料(例如,硅氧化物)。可以在接合材料174和接合材料182的邻接表面之间建立直接金属-金属或氧化物-氧化物接合,如之前参照图1C的描述。As shown in Figure 2D, the donor structure 150 may be bonded to the acceptor structure 180 in the manner previously described with reference to Figure 1C. The acceptor structure 180 may include an active device structure 184 in some embodiments. Additionally, as previously discussed, bonding material 174 may be disposed on the bonding surface (first major surface 154A) of donor structure 150 and bonding material 182 may be disposed on the bonding surface of acceptor structure 180 . Bonding material 174 and bonding material 182 may have similar compositions and may include, for example, metallic materials (eg, copper or copper alloys) or oxide materials (eg, silicon oxide). A direct metal-metal or oxide-oxide bond may be established between adjoining surfaces of bonding material 174 and bonding material 182, as previously described with reference to FIG. 1C.

在将施主结构150接合至受主结构180之后,可以使施主结构150沿着离子植入面156裂开或断裂,以形成图2E所示的结构,其包括受主结构180以及接合至受主结构180的材料层160。施主结构150可以沿着离子植入面156断裂,如之前参照图1D的描述。在断裂处理之后,材料层160的露出的断裂的表面161可以包括所述转移的材料层160的晶格中的缺陷和杂质。另外,如前所述由植入的离子导致的缺陷158可以存在于靠近材料层160的第一多个区域170(图2B)(通过其植入离子)的断裂的表面161处。因此,可以处理材料层160的断裂的表面161,以去除杂质(例如,植入的离子)并且提高材料层160中的靠近断裂的表面161处的晶格的质量。例如,断裂的表面161可以受到化学蚀刻处理、机械抛光处理和化学机械抛光(CMP)处理的一个或多个以形成图2F所示的结构。可选地,介电材料156可以用作蚀刻停止材料。换句话说,可以利用化学蚀刻处理、机械抛光处理和化学机械抛光(CMP)处理中的一种或者更多种来从断裂的表面161去除材料直至大量介电材料156变得露出为止。因此,在一些实施方式中,可以至少基本上去除所述转移的材料层160的无源的第一多个区域170(图2B)。在其它实施方式中,可以保留转移的材料层160的无源的第一多个区域170(图2B)的一部分。图2F的结构与图2E的结构相似,但是表面161的先前包括缺陷158(图2E)的区域被去除。After the donor structure 150 is bonded to the acceptor structure 180, the donor structure 150 can be cleaved or fractured along the ion implantation face 156 to form the structure shown in FIG. Material layer 160 of structure 180 . The donor structure 150 may be fractured along the ion implantation face 156 as previously described with reference to FIG. 1D . After the fracture process, the exposed fractured surface 161 of the material layer 160 may include defects and impurities in the crystal lattice of the transferred material layer 160 . Additionally, defects 158 caused by implanted ions as previously described may exist at fractured surfaces 161 proximate to first plurality of regions 170 ( FIG. 2B ) of material layer 160 through which ions were implanted. Accordingly, the fractured surface 161 of the material layer 160 may be treated to remove impurities (eg, implanted ions) and improve the quality of the crystal lattice in the material layer 160 near the fractured surface 161 . For example, fractured surface 161 may be subjected to one or more of chemical etching, mechanical polishing, and chemical mechanical polishing (CMP) to form the structure shown in FIG. 2F . Alternatively, dielectric material 156 may be used as an etch stop material. In other words, one or more of a chemical etching process, a mechanical polishing process, and a chemical mechanical polishing (CMP) process may be utilized to remove material from the fractured surface 161 until the bulk of the dielectric material 156 becomes exposed. Thus, in some embodiments, the inactive first plurality of regions 170 of the transferred material layer 160 may be at least substantially removed ( FIG. 2B ). In other embodiments, a portion of the inactive first plurality of regions 170 ( FIG. 2B ) of the transferred material layer 160 may remain. The structure of FIG. 2F is similar to that of FIG. 2E , but regions of surface 161 that previously included defect 158 ( FIG. 2E ) are removed.

参照图2G,可以在转移的材料层160中和/或上制造有源器件结构190。图2G中示意性地示出的有源器件结构190表示晶体管,但是有源器件结构190可以包括其它类型的有源器件结构,诸如电容器、导线、迹线和/或过孔等。另外,有源器件结构190可以包括CMOS型晶体管、纵向晶体管、二极管(例如,PN结)、交叉点存储器装置(例如,相变存储器或其它类型的电阻性存储器装置)的组件等的任一种。可选地,可以在有源的第二多个区域172中和/或上制造有源器件结构190,而不在无源的第一多个区域170上制造明显量的有源器件结构190,如图2G所示。作为制造在质量提高的材料层160的表面161上和/或中的结果,有源器件结构190的性能可靠性可以提高。Referring to FIG. 2G , active device structures 190 may be fabricated in and/or on transferred material layer 160 . Active device structures 190 schematically shown in FIG. 2G represent transistors, but active device structures 190 may include other types of active device structures, such as capacitors, wires, traces, and/or vias, and the like. Additionally, the active device structure 190 may include any of CMOS type transistors, vertical transistors, diodes (eg, PN junctions), components of cross-point memory devices (eg, phase change memory or other types of resistive memory devices), etc. . Alternatively, active device structures 190 may be fabricated in and/or on active second plurality of regions 172 without fabricating a significant amount of active device structures 190 on inactive first plurality of regions 170, as Figure 2G shows. As a result of being fabricated on and/or in the surface 161 of the improved quality material layer 160, the performance reliability of the active device structure 190 may be increased.

可以根据已知方法继续后续处理,以完成一个或多个半导体器件的制造,如前所述。Subsequent processing may continue according to known methods to complete the fabrication of one or more semiconductor devices, as previously described.

在附加实施方式中,可以执行类似于以上参照图2A至图2G描述的那些的方法,其中在施主结构中形成凹部之后而且在用介电材料填充凹部之后执行离子植入处理。例如,图3A示出了与图2A中所示的施主结构150相似的施主结构200。施主结构200包括块体材料202,并具有第一主表面204A和相对的第二主表面204B。如关于施主结构150的描述,在施主结构200的第一主表面204A中可以形成多个凹部212。In additional embodiments, methods similar to those described above with reference to FIGS. 2A-2G may be performed in which the ion implantation process is performed after forming the recesses in the donor structure and after filling the recesses with a dielectric material. For example, FIG. 3A shows a donor structure 200 similar to the donor structure 150 shown in FIG. 2A. Donor structure 200 includes bulk material 202 and has a first major surface 204A and an opposing second major surface 204B. As described with respect to donor structure 150 , a plurality of recesses 212 may be formed in first major surface 204A of donor structure 200 .

可以利用例如掩模和蚀刻处理在施主结构200中形成凹部212。例如,可以通过在施主结构200的表面204A上淀积氧化物材料、氮化物材料或氧氮化物材料来形成经构图掩模216。随后可以使用光刻处理来形成穿过掩模216的通孔218。例如,构图光掩模可以淀积在用于形成掩模216的材料上,并且可以利用构图光掩模使用蚀刻处理在掩模216中蚀刻通孔218,然后可以去除光掩模。随后可以使用经构图掩模216来在施主结构200中形成凹部212。Recess 212 may be formed in donor structure 200 using, for example, masking and etching processes. For example, patterned mask 216 may be formed by depositing an oxide material, a nitride material, or an oxynitride material on surface 204A of donor structure 200 . A photolithographic process may then be used to form via holes 218 through mask 216 . For example, a patterned photomask may be deposited over the material used to form mask 216, and vias 218 may be etched in mask 216 using an etching process using the patterned photomask, after which the photomask may be removed. Patterned mask 216 may then be used to form recesses 212 in donor structure 200 .

参照图3B,在凹部212中可以设置介电材料214,如之前关于图2C的介电材料165的描述。在将离子植入施主结构200中之前,可以将介电材料214设置在凹部212中。可以通过凹部212并且通过凹部212中的介电材料214总体沿着离子植入面206将离子植入施主结构200中,以在施主结构200中限定大致平坦的弱化区。如前所述,图3B中所示的离子植入面206可以包括单个植入面,其中大多数离子沿着施主结构200中的单个面设置。换句话说,大多数植入的离子在施主结构200中集中于单个深度。要从施主结构200转移的材料层210可以被限定在离子植入面206与第一主表面204A之间。Referring to FIG. 3B , a dielectric material 214 may be disposed in the recess 212 as previously described with respect to the dielectric material 165 of FIG. 2C . Dielectric material 214 may be disposed in recess 212 prior to implanting ions into donor structure 200 . Ions may be implanted into donor structure 200 through recess 212 and generally along ion implantation face 206 through dielectric material 214 in recess 212 to define a generally planar region of weakness in donor structure 200 . As previously mentioned, the ion implantation plane 206 shown in FIG. 3B may comprise a single implantation plane, wherein the majority of ions are disposed along a single plane in the donor structure 200 . In other words, most of the implanted ions are concentrated at a single depth in the donor structure 200 . A layer 210 of material to be transferred from the donor structure 200 may be defined between the ion implantation face 206 and the first major surface 204A.

如前所述,可以将离子植入施主结构200中的第一多个区域220中,而不将离子植入施主结构200中的第二多个区域222中。在第一多个区域220中沿着离子植入面206示出缺陷208。在一些实施方式中,第一多个区域220可以包括施主结构200的无源区域,并且第二多个区域222可以包括施主结构200中的有源区域。虽然图3B中未示出掩模216,但是在一些实施方式中,可以在离子植入处理中使用用于形成凹部212的相同掩模216,以沿着离子植入面206形成非均匀弱化区。在其它实施方式中,可以使用不同掩模。As previously described, ions may be implanted in the first plurality of regions 220 in the donor structure 200 without implanting ions in the second plurality of regions 222 in the donor structure 200 . Defects 208 are shown along ion-implanted face 206 in first plurality of regions 220 . In some implementations, the first plurality of regions 220 may include inactive regions of the donor structure 200 and the second plurality of regions 222 may include active regions in the donor structure 200 . Although mask 216 is not shown in FIG. 3B , in some embodiments, the same mask 216 used to form recess 212 can be used in the ion implantation process to form a non-uniform weakened region along ion implantation face 206. . In other embodiments, different masks may be used.

在如上所述植入离子之后,可以利用如本文先前参照图2D至2G所述的方法将材料层210转移至受主结构。After implanting ions as described above, the material layer 210 may be transferred to the acceptor structure using methods as previously described herein with reference to FIGS. 2D to 2G .

在先前描述的实施方式中,通过待转移的材料层的第一多个区域植入离子而不通过待转移的材料层的第二多个区域植入离子,使得施主结构内沿着离子植入面的大致平坦的弱化区非均匀。根据本公开的实施方式,可以使用其它方法形成非均匀弱化区。在附加实施方式中,可以通过待转移的材料层的第一多个区域和第二多个区域这二者来植入离子,但是可以使区域中的离子浓度、离子的元素成分或二者在待转移的材料层的第一多个区域和第二多个区域之间有差别。在这些附加实施方式中,通过第一多个区域和第二多个区域这二者植入的离子可以形成单个植入面,其中基本上主要的植入的离子位于植入的施主结构内。In the previously described embodiments, ions are implanted through the first plurality of regions of the layer of material to be transferred and not through the second plurality of regions of the layer of material to be transferred such that ions are implanted within the donor structure along The generally planar weakened zone of the face is non-uniform. According to embodiments of the present disclosure, other methods may be used to form the non-uniform weakened region. In additional embodiments, ions may be implanted through both the first and second plurality of regions of the layer of material to be transferred, but such that the concentration of ions in the regions, the elemental composition of the ions, or both are within There is a difference between the first plurality of regions and the second plurality of regions of the layer of material to be transferred. In these additional embodiments, ions implanted through both the first plurality of regions and the second plurality of regions may form a single implant plane, wherein a substantial majority of the implanted ions are located within the implanted donor structure.

例如,图4A示出了在第一离子植入处理中沿着离子植入面256植入施主结构250中的多个离子。如前所述,施主结构250可以包括块体材料252,并具有第一主表面254A和相对的第二主表面254B。离子可以均匀地植入施主结构250中,使得在第一多个区域270和第二多个区域272二者中,第一多个缺陷258以大致均匀的方式形成在整个离子植入面256上。For example, FIG. 4A shows a plurality of ions implanted into donor structure 250 along ion implantation plane 256 during a first ion implantation process. As previously described, the donor structure 250 can include a bulk material 252 and have a first major surface 254A and an opposing second major surface 254B. Ions can be uniformly implanted into the donor structure 250 such that in both the first plurality of regions 270 and the second plurality of regions 272, the first plurality of defects 258 are formed in a substantially uniform manner across the entire ion-implanted face 256 .

参照图4B,在第一离子植入处理之后,可以使用第二离子植入处理通过第一多个区域270植入附加的离子而不通过第二多个区域植入附加的离子。可以通过经构图掩模266中的通孔268将离子植入施主结构250中,如本文先前所述。相对于第一离子植入处理的离子,第二离子植入处理的离子可以为相同元素成分或不同元素成分。结果,在第一多个区域270中沿着离子植入面256形成附加缺陷259而不在第二多个区域272中形成附加缺陷259。Referring to FIG. 4B , after the first ion implantation process, additional ions may be implanted through the first plurality of regions 270 without implanting additional ions through the second plurality of regions using a second ion implantation process. Ions may be implanted into donor structure 250 through vias 268 in patterned mask 266, as previously described herein. The ions of the second ion implantation treatment may be of the same elemental composition or of a different elemental composition relative to the ions of the first ion implantation treatment. As a result, additional defects 259 are formed along ion-implanted facet 256 in first plurality of regions 270 without forming additional defects 259 in second plurality of regions 272 .

如图4B所示,可以如前所述利用例如掩模和蚀刻处理将多个凹部264可选地形成在施主结构250的第一主表面254A中。可以先前参照图2A描述的方式将离子通过凹部264植入第一多个区域270(如图所示4B)中。在其它实施方式中,在第二离子植入处理之前,在凹部264中可以设置介电材料,并且可以先前参照图3B描述的方式穿过凹部264内的介电材料来植入离子。As shown in FIG. 4B , a plurality of recesses 264 may optionally be formed in first major surface 254A of donor structure 250 as previously described using, for example, masking and etching processes. Ions may be implanted through the recesses 264 into the first plurality of regions 270 (shown in FIG. 4B ) in the manner previously described with reference to FIG. 2A . In other embodiments, a dielectric material may be disposed in the recess 264 prior to the second ion implantation process, and ions may be implanted through the dielectric material within the recess 264 in the manner previously described with reference to FIG. 3B .

在第二离子植入处理之后,可以执行其它处理以利用如本文先前参照图2C至图2G所述的方法将材料层260转移至受主结构。After the second ion implantation process, other processes may be performed to transfer the material layer 260 to the acceptor structure using methods as previously described herein with reference to FIGS. 2C-2G .

在其它实施方式中,第一离子植入处理可以像第二离子植入处理那样包括选择性的非均匀的离子植入处理。例如,图5A示出了在第一离子植入处理中沿着离子植入面306将离子植入施主结构300中。如前所述,施主结构300可以包括块体材料302,并具有第一主表面304A和相对的第二主表面304B。离子可以非均匀地植入施主结构300中,使得第一多个缺陷308形成在第二多个区域322(可以包括有源区域)中,而不将离子植入第一多个区域320(可以包括无源区域)中。虽然未在图5A中示出,但是可以将离子通过经构图掩模中的通孔来植入施主结构300中的第二多个区域322中,如本文先前所述。In other embodiments, the first ion implantation process may include a selective non-uniform ion implantation process like the second ion implantation process. For example, FIG. 5A illustrates the implantation of ions into donor structure 300 along ion implantation face 306 in a first ion implantation process. As previously described, the donor structure 300 can include a bulk material 302 and have a first major surface 304A and an opposing second major surface 304B. Ions may be non-uniformly implanted into the donor structure 300 such that the first plurality of defects 308 are formed in the second plurality of regions 322 (which may include active regions) without implanting ions into the first plurality of regions 320 (which may including passive regions). Although not shown in FIG. 5A , ions may be implanted into the second plurality of regions 322 in the donor structure 300 through vias in the patterned mask, as previously described herein.

参照图5B,在第一选择性的非均匀离子植入处理之后,可以使用第二选择性的非均匀离子植入处理将附加离子通过第一多个区域320植入,而不将附加离子通过第二多个区域322植入。可以将离子通过经构图掩模316中的通孔318植入施主结构300中,如本文先前所述。相对于第一离子植入处理的离子,第二离子植入处理的离子可以为相同元素成分或为不同元素成分。结果,在第一多个区域320中沿着离子植入面306形成附加缺陷309,而在第二多个区域322中不形成这种附加缺陷。相对于第一多个缺陷308,第二多个缺陷309可以更广泛和/或更显著,使得在第一多个区域320中沿着离子植入面306限定的弱化区比第二多个区域322中的相对更弱(更易断裂)。Referring to FIG. 5B , after the first selective non-uniform ion implantation process, additional ions may be implanted through the first plurality of regions 320 using a second selective non-uniform ion implantation process without injecting additional ions through A second plurality of regions 322 is implanted. Ions may be implanted into the donor structure 300 through the vias 318 in the patterned mask 316, as previously described herein. The ions of the second ion implantation treatment may be of the same elemental composition or of a different elemental composition relative to the ions of the first ion implantation treatment. As a result, additional defects 309 are formed along the ion-implanted facet 306 in the first plurality of regions 320 , while such additional defects are not formed in the second plurality of regions 322 . The second plurality of defects 309 may be more extensive and/or more pronounced relative to the first plurality of defects 308 such that a weakened region is defined along the ion-implanted face 306 in the first plurality of regions 320 than in the second plurality of regions 320 . The ones in 322 are relatively weaker (more prone to breaking).

如图5B所示,利用例如如前所述的掩模和蚀刻处理可以将多个凹部312可选地形成在施主结构300的第一主表面304A中。可以按照先前参照图2A描述的方式将离子通过凹部312植入第一多个区域320(如图5B所示)中。在其它实施方式中,在第二离子植入处理之前可以在凹部312中设置介电材料,并且可以按照先前参照图3B描述的方式通过凹部312中的介电材料植入离子。如图5B所示,第一选择性非均匀离子植入处理和第二非均匀离子植入处理可以导致离子集中于施主结构300中的单个植入面309。换句话说,第一选择性非均匀离子植入和第二非均匀离子植入可以在施主结构300中植入至基本相同的深度。As shown in Figure 5B, a plurality of recesses 312 may optionally be formed in the first major surface 304A of the donor structure 300 using, for example, a masking and etching process as previously described. Ions may be implanted through the recesses 312 into the first plurality of regions 320 (shown in FIG. 5B ) in the manner previously described with reference to FIG. 2A . In other embodiments, a dielectric material may be provided in the recess 312 prior to the second ion implantation process, and ions may be implanted through the dielectric material in the recess 312 in the manner previously described with reference to FIG. 3B . As shown in FIG. 5B , the first selective non-uniform ion implantation process and the second non-uniform ion implantation process may result in ions being concentrated at a single implant face 309 in the donor structure 300 . In other words, the first selective non-uniform ion implantation and the second non-uniform ion implantation may be implanted to substantially the same depth in the donor structure 300 .

在第二离子植入处理之后,可以利用如本文先前参照图2C至图2G所述的方法执行其它处理以将材料层310转移至受主结构。After the second ion implantation process, other processes may be performed to transfer the material layer 310 to the acceptor structure using methods as previously described herein with reference to FIGS. 2C-2G .

在本文中先前描述的任何方法中,施主结构可选地可以包括绝缘体上半导体(SeOI)型衬底(例如,绝缘体上硅(SOI)型衬底)。例如,图6A和图6B示出了与先前参照图5A和图5B描述的方法相似的方法,但是,其中施主结构包括绝缘体上半导体(SeOI)型衬底。当然,还利用绝缘体上半导体(SeOI)型衬底执行本文所述的任何其它方法,如以下参照图6A和图6B的描述。In any of the methods previously described herein, the donor structure may optionally comprise a semiconductor-on-insulator (SeOI) type substrate (eg, a silicon-on-insulator (SOI) type substrate). For example, FIGS. 6A and 6B illustrate a method similar to that previously described with reference to FIGS. 5A and 5B , however, where the donor structure comprises a semiconductor-on-insulator (SeOI) type substrate. Of course, any other method described herein is also performed using a semiconductor-on-insulator (SeOI) type substrate, as described below with reference to FIGS. 6A and 6B .

参照图6A,示出的施主结构350包括基础衬底390和半导体材料层392,其中介电材料层394介于它们之间。换句话说,所述半导体材料层392设置在介电材料层394的与基础衬底390相对的一侧。介电材料层394可以包括本领域中所称的“掩埋氧化物层”(BOL),并可以包括例如陶瓷材料,诸如氮化物(氮化硅(例如,Si3N4))或氧化物(例如,氧化硅(SiO2)或氧化铝(Al2O3))。在一些实施方式中,所述介电材料层394可以具有约一微米(1μm)或更小、约五百纳米(500nm)或更小或甚至约三百纳米(300nm)或更小的平均总厚度。所述半导体材料层392可以包括例如硅、锗、III-V半导体材料(例如,GaN、GaAs、InN、AlN、InGaN等),或这些半导体材料的混合物。所述半导体材料层392可以为多晶的,或者可以包括单晶体的材料。基础衬底390可以包括例如陶瓷材料或半导体材料。在一些实施方式中,基础衬底390可以具有至少与所述半导体材料层392的成分基本相似的成分。像先前描述的施主结构那样,施主结构350具有第一主表面354A和相对的第二主表面354B。Referring to FIG. 6A , a donor structure 350 is shown comprising a base substrate 390 and a layer of semiconductor material 392 with a layer of dielectric material 394 interposed therebetween. In other words, the semiconductor material layer 392 is disposed on a side of the dielectric material layer 394 opposite to the base substrate 390 . Dielectric material layer 394 may include what is known in the art as a "buried oxide layer" (BOL), and may include, for example, a ceramic material such as a nitride (silicon nitride (eg, Si 3 N 4 )) or an oxide ( For example, silicon oxide (SiO 2 ) or aluminum oxide (Al 2 O 3 )). In some embodiments, the dielectric material layer 394 may have an average total thickness. The semiconductor material layer 392 may include, for example, silicon, germanium, III-V semiconductor materials (eg, GaN, GaAs, InN, AlN, InGaN, etc.), or mixtures of these semiconductor materials. The layer of semiconductor material 392 may be polycrystalline, or may comprise a single crystal of material. The base substrate 390 may include, for example, a ceramic material or a semiconductor material. In some embodiments, base substrate 390 may have a composition that is at least substantially similar to that of semiconductor material layer 392 . Like the previously described donor structures, the donor structure 350 has a first major surface 354A and an opposing second major surface 354B.

图6A示出了多个离子在第一离子植入处理中沿着离子植入面306植入施主结构350中。离子可以非均匀地植入施主结构350中,使得在第二多个区域372(可以包括有源区域)中形成第一多个缺陷358,而不将离子植入第一多个区域370(可以包括无源区域)中。虽然未在图6A中示出,但是如本文先前所述,离子可以通过经构图掩模中的通孔植入施主结构350中的第二多个区域372中。FIG. 6A shows a plurality of ions implanted into the donor structure 350 along the ion implantation facet 306 in a first ion implantation process. Ions may be non-uniformly implanted into the donor structure 350 such that the first plurality of defects 358 are formed in the second plurality of regions 372 (which may include active regions) without implanting ions into the first plurality of regions 370 (which may including passive regions). Although not shown in FIG. 6A , as previously described herein, ions may be implanted into the second plurality of regions 372 in the donor structure 350 through the vias in the patterned mask.

参照图6B,在第一选择性的非均匀离子植入处理之后,可以使用第二选择性的非均匀离子植入处理将附加的离子通过第一多个区域370植入,而不将附加的离子通过第二多个区域372植入。如本文先前所述,可以将离子通过经构图掩模366中的通孔368植入施主结构350中。相对于第一离子植入处理的离子,第二离子植入处理的离子可以为相同元素成分或为不同元素成分。结果,在第一多个区域370中沿着离子植入面356形成附加缺陷359,而在第二多个区域372中不形成这种附加缺陷。相对于第一多个缺陷358,第二多个缺陷359可以更广泛和/或更显著,使得在第一多个区域370中沿着离子植入面356限定的弱化区比第二多个区域372中的相对更弱(更易断裂)。Referring to FIG. 6B, after the first selective non-uniform ion implantation process, additional ions may be implanted through the first plurality of regions 370 using a second selective non-uniform ion implantation process without adding additional ions. Ions are implanted through the second plurality of regions 372 . Ions may be implanted into donor structure 350 through vias 368 in patterned mask 366 as previously described herein. The ions of the second ion implantation treatment may be of the same elemental composition or of a different elemental composition relative to the ions of the first ion implantation treatment. As a result, additional defects 359 are formed along the ion-implanted facet 356 in the first plurality of regions 370 , while such additional defects are not formed in the second plurality of regions 372 . The second plurality of defects 359 may be more extensive and/or more pronounced relative to the first plurality of defects 358 such that a weakened region is defined along the ion-implanted face 356 in the first plurality of regions 370 than in the second plurality of regions 370 . The ones in 372 are relatively weaker (more prone to breaking).

如图6B所示,可以利用例如如前所述的掩模和蚀刻处理可选地在施主结构350的第一主表面354A中形成多个凹部362。可以先前参照参照图2A描述的方式将离子通过凹部362植入第一多个区域370(如图6B所示)中。在其它实施方式中,在第二离子植入处理之前,可以在凹部362中设置介电材料,并且可以先前参照图3B描述的方式通过凹部362中的介电材料植入离子。如先前实施方式所述,第一选择性非均匀离子植入处理和第二非均匀离子植入处理可以导致离子集中于施主结构350中的单个植入面309。换句话说,第一选择性非均匀离子植入和第二非均匀离子植入可以在施主结构350中植入至基本相同的深度。As shown in Figure 6B, a plurality of recesses 362 may optionally be formed in the first major surface 354A of the donor structure 350 using, for example, a masking and etching process as previously described. Ions may be implanted through the recesses 362 into the first plurality of regions 370 (shown in FIG. 6B ) in the manner previously described with reference to FIG. 2A . In other embodiments, a dielectric material may be disposed in the recess 362 prior to the second ion implantation process, and ions may be implanted through the dielectric material in the recess 362 in the manner previously described with reference to FIG. 3B . As described in previous embodiments, the first selective non-uniform ion implantation process and the second non-uniform ion implantation process may result in ions being concentrated at a single implant face 309 in the donor structure 350 . In other words, the first selective non-uniform ion implantation and the second non-uniform ion implantation may be implanted to substantially the same depth in the donor structure 350 .

在第二离子植入处理之后,可以利用如本文先前参照图2C至图2G所述的方法执行其它处理以将材料层360转移至受主结构。After the second ion implantation process, other processes may be performed to transfer the material layer 360 to the acceptor structure using methods as previously described herein with reference to FIGS. 2C-2G .

在本文中先前描述的任何方法中,施主结构可以在其中可选地包括至少一个离子约束层,以帮助约束离子靠近希望的离子植入面。例如,图7A和图7B示出了与先前参照图6A和图6B描述的方法相似的方法,但是,其中施主结构还包括离子约束层。当然,也可以利用包括离子约束层的施主结构执行本文所述的任何其它方法,如以下参照图7A和图7B的描述。In any of the methods previously described herein, the donor structure may optionally include at least one ion confinement layer therein to help confine ions close to the desired ion implantation facet. For example, Figures 7A and 7B illustrate a method similar to that previously described with reference to Figures 6A and 6B, however, where the donor structure also includes an ion confinement layer. Of course, any other method described herein may also be performed using a donor structure comprising an ion confinement layer, as described below with reference to FIGS. 7A and 7B .

参照图7A,示出的施主结构400包括绝缘体上半导体(SeOI)型衬底,其与图6A的衬底基本相似,并包括基础衬底440、半导体材料层442以及在基础衬底440与半导体材料层442之间的介电材料层444。施主结构400还包括设置在介电材料层444上的离子约束层446,在其一侧设置有半导体材料层442。换句话说,离子约束层446可以掩埋在半导体材料层442中,或者其可以设置在半导体材料层442和介电材料层444之间。7A, the illustrated donor structure 400 includes a semiconductor-on-insulator (SeOI) type substrate, which is substantially similar to the substrate of FIG. 6A, and includes a base substrate 440, a layer of semiconductor material 442, and A layer of dielectric material 444 between layers of material 442 . The donor structure 400 also includes an ion confinement layer 446 disposed on the dielectric material layer 444 with the semiconductor material layer 442 disposed on one side thereof. In other words, ion confinement layer 446 may be buried in semiconductor material layer 442 , or it may be disposed between semiconductor material layer 442 and dielectric material layer 444 .

离子约束层446可以包括例如半导体材料层442的部分,在用于形成沿着离子植入面406的大致弱化区的离子植入处理之前,该部分掺杂有例如硼、碳或其它元素。掺杂元素的存在可以导致在植入处理中离子约束层446相对不易被离子穿透。在其它实施方式中,离子约束层446可以包括与所述半导体材料层442不同并且与所述半导体材料层442相比相对不易被待植入的离子穿透的材料(掺杂或未掺杂的)。Ion confinement layer 446 may include, for example, a portion of semiconductor material layer 442 that is doped with, for example, boron, carbon, or other elements prior to an ion implantation process for forming a substantially weakened region along ion implantation face 406 . The presence of dopant elements may render ion confinement layer 446 relatively impenetrable to ions during the implantation process. In other embodiments, the ion confinement layer 446 may comprise a material (doped or undoped) that is different from the semiconductor material layer 442 and that is relatively impenetrable to the ions to be implanted compared to the semiconductor material layer 442. ).

图7A示出了多个离子在第一离子植入处理中沿着离子植入面406植入施主结构400中。离子可以非均匀地植入施主结构400中,使得第一多个缺陷408形成在第二多个区域422(可以包括有源区域)中,而不将离子植入第一多个区域420(可以包括无源区域)中。虽然未在图7A中示出,但是如本文先前所述,离子可以通过经构图掩模中的通孔植入施主结构400中的第二多个区域422中。FIG. 7A shows a plurality of ions implanted into the donor structure 400 along the ion implantation plane 406 in a first ion implantation process. Ions may be non-uniformly implanted into the donor structure 400 such that the first plurality of defects 408 are formed in the second plurality of regions 422 (which may include active regions) without implanting ions into the first plurality of regions 420 (which may including passive regions). Although not shown in FIG. 7A , ions may be implanted into the second plurality of regions 422 in the donor structure 400 through the vias in the patterned mask, as previously described herein.

参照图7B,在第一选择性的非均匀离子植入处理之后,可以使用第二选择性的非均匀离子植入处理将附加的离子通过第一多个区域420植入,而不将附加的离子通过第二多个区域422植入。如本文先前所述,可以将离子通过经构图掩模416中的通孔418植入施主结构400中。相对于第一离子植入处理的离子,第二离子植入处理的离子可以为相同元素成分或为不同元素成分。结果,在第一多个区域420中沿着离子植入面406形成附加缺陷409,而在第二多个区域422中不形成这种附加缺陷。相对于第一多个缺陷408,第二多个缺陷409可以更广泛和/或更显著,使得在第一多个区域420中沿着离子植入面406限定的弱化区比第二多个区域422中的相对更弱(更易断裂)。Referring to FIG. 7B, after the first selective non-uniform ion implantation process, additional ions may be implanted through the first plurality of regions 420 using a second selective non-uniform ion implantation process without adding additional ions. Ions are implanted through the second plurality of regions 422 . Ions may be implanted into donor structure 400 through vias 418 in patterned mask 416 as previously described herein. The ions of the second ion implantation treatment may be of the same elemental composition or of a different elemental composition relative to the ions of the first ion implantation treatment. As a result, additional defects 409 are formed along the ion-implanted facet 406 in the first plurality of regions 420 , while such additional defects are not formed in the second plurality of regions 422 . The second plurality of defects 409 may be more extensive and/or more pronounced relative to the first plurality of defects 408 such that a weakened region is defined along the ion-implanted face 406 in the first plurality of regions 420 than in the second plurality of regions. The ones in 422 are relatively weaker (more prone to breaking).

如图7B所示,可以利用例如如前所述的掩模和蚀刻处理可选地在施主结构400的第一主表面404A中形成将多个凹部412。可以先前参照参照图2A描述的方式将离子通过凹部412植入第一多个区域420(如图7B所示)中。在其它实施方式中,在第二离子植入处理之前可以在凹部412中设置介电材料,并且可以先前参照图3B描述的方式通过凹部412中的介电材料植入离子。如先前实施方式所述,第一选择性非均匀离子植入处理和第二非均匀离子植入处理可以导致离子集中于施主结构400中的单个植入面409。换句话说,第一选择性非均匀离子植入和第二非均匀离子植入可以在施主结构400中植入至基本相同的深度。As shown in FIG. 7B , a plurality of recesses 412 may optionally be formed in the first major surface 404A of the donor structure 400 using, for example, a masking and etching process as previously described. Ions may be implanted through the recesses 412 into the first plurality of regions 420 (shown in FIG. 7B ) in the manner previously described with reference to FIG. 2A . In other embodiments, a dielectric material may be provided in the recess 412 prior to the second ion implantation process, and ions may be implanted through the dielectric material in the recess 412 in the manner previously described with reference to FIG. 3B . As described in previous embodiments, the first selective non-uniform ion implantation process and the second non-uniform ion implantation process may result in ions being concentrated at a single implant face 409 in the donor structure 400 . In other words, the first selective non-uniform ion implantation and the second non-uniform ion implantation may be implanted to substantially the same depth in the donor structure 400 .

在第二离子植入处理之后,可以利用如本文先前参照图2C至图2G所述的方法执行其它处理以将材料层410转移至受主结构。After the second ion implantation process, other processes may be performed to transfer the material layer 410 to the acceptor structure using methods as previously described herein with reference to FIGS. 2C-2G .

在本文所述的其中离子通过凹部植入施主结构中的任何方法中,在将离子通过凹部植入施主结构内之前,可以在施主结构内的凹部中可选地设置介电侧壁间隔件,以努力防止杂散离子进入施主结构的在横向上邻近凹部的区域中。以下参照图8A至图8E描述这种方法的示例实施方式。In any of the methods described herein in which ions are implanted through the recesses into the donor structure, a dielectric sidewall spacer may optionally be provided in the recesses within the donor structure prior to implanting the ions through the recesses into the donor structure, In an effort to prevent stray ions from entering into regions of the donor structure laterally adjacent to the recess. An example embodiment of such a method is described below with reference to FIGS. 8A-8E .

参照图8A,示出了施主结构500。施主结构500与图2A的施主结构150相似,并包括已通过经构图掩模568中的通孔566而形成在施主结构500的块体材料552中的多个凹部564。经构图掩模568可以包括例如诸如氮化硅(Si3N4)的氮化物材料层。块体材料552可以具有第一主表面554A和相对的第二主表面554B。如图8A所示,凹部564可以形成在第一主表面554中。Referring to Figure 8A, a donor structure 500 is shown. Donor structure 500 is similar to donor structure 150 of FIG. 2A and includes a plurality of recesses 564 that have been formed in bulk material 552 of donor structure 500 through vias 566 in patterned mask 568 . Patterned mask 568 may include, for example, a layer of a nitride material such as silicon nitride (Si 3 N 4 ). The bulk material 552 may have a first major surface 554A and an opposing second major surface 554B. As shown in FIG. 8A , a recess 564 may be formed in first major surface 554 .

参照图8B,在形成凹部564之后,在掩模568和块体材料552的第一主表面554A(包括凹部564中的露出的横向侧壁表面和底部表面)上可以淀积一个或多个共形材料层。该一个或多个共形材料层可以包括例如一层或多层的介电材料。例如,第一共形层569A可以淀积在掩模568和凹部564中的块体材料552的露出的表面上,并且第二共形层569B可以淀积在第一共形层569A上,如图8B所示。第二共形层569B可以具有与第一共形层569A的材料组成不同的材料组成,从而允许选择性地蚀刻第二共形层569B而不蚀刻第一共形层569A,如下面的讨论。作为非限制性示例,第一共形层569A可以包括例如氧化物材料(诸如氧化硅(SiO2)),第二共形层569B可以包括例如氮化物材料(诸如氮化硅(Si3N4))。Referring to FIG. 8B , after the recess 564 is formed, one or more co- shape material layer. The one or more conformal material layers may include, for example, one or more layers of dielectric material. For example, a first conformal layer 569A may be deposited on the exposed surface of bulk material 552 in mask 568 and recess 564, and a second conformal layer 569B may be deposited on first conformal layer 569A, as Figure 8B. The second conformal layer 569B may have a different material composition than that of the first conformal layer 569A, thereby allowing the second conformal layer 569B to be selectively etched without etching the first conformal layer 569A, as discussed below. As a non-limiting example, the first conformal layer 569A may include, for example, an oxide material such as silicon oxide (SiO 2 ), and the second conformal layer 569B may include, for example, a nitride material such as silicon nitride (Si 3 N 4 )).

如图8C所示,可以使用各向异性蚀刻处理来蚀刻第二共形层569B,其可以包括氮化物,从而去除第二共形层569B的横向延伸区域而基本上不去除第二共形层569B的竖直延伸的区域。因此,如图8C所示,仅保留第二共形层569B的设置在凹部564中的横向侧壁上的区域,并且在凹部564内的底部表面和施主结构550的主表面554A上露出第一共形层569A。通过示例而非限制的方式,可以使用干法等离子体蚀刻处理(例如,反应离子蚀刻(RIE)处理)来各向异性地蚀刻第二共形层569B。As shown in FIG. 8C, the second conformal layer 569B, which may include nitride, may be etched using an anisotropic etch process, thereby removing laterally extending regions of the second conformal layer 569B without substantially removing the second conformal layer. Vertically extending area of 569B. Thus, as shown in FIG. 8C , only the regions of the second conformal layer 569B disposed on the lateral sidewalls in the recess 564 remain, and the first first conformal layer is exposed on the bottom surface within the recess 564 and on the main surface 554A of the donor structure 550. Conformal layer 569A. By way of example and not limitation, the second conformal layer 569B may be anisotropically etched using a dry plasma etch process, such as a reactive ion etch (RIE) process.

在各向异性地蚀刻第二共形层569B之后,可以使用另一蚀刻处理来去除第一共形层569A(可以包括氧化物)的在凹部564的底部表面露出的部分。例如,可以使用湿法化学蚀刻处理来蚀刻第一共形层569A的露出的区域,得到图8D所示的结构。蚀刻处理还可以去除第一共形层569A的覆盖施主结构550的第一主表面554A的区域。如图8D所示,在凹部564的底部露出块体材料552。在块体材料552在凹部564的底部露出时,如图8D所示,间隔件结构574可以保留在凹部564内的横向侧壁上。这些间隔件结构574可以包括一个或多个共形层569A、569B的部分。After the second conformal layer 569B is anisotropically etched, another etch process may be used to remove portions of the first conformal layer 569A (which may include oxide) exposed at the bottom surface of the recess 564 . For example, a wet chemical etch process may be used to etch the exposed regions of the first conformal layer 569A, resulting in the structure shown in FIG. 8D. The etch process may also remove regions of the first conformal layer 569A covering the first major surface 554A of the donor structure 550 . As shown in FIG. 8D , bulk material 552 is exposed at the bottom of recess 564 . While bulk material 552 is exposed at the bottom of recess 564 , as shown in FIG. 8D , spacer structure 574 may remain on the lateral sidewalls within recess 564 . These spacer structures 574 may include portions of one or more conformal layers 569A, 569B.

因此,在凹部564的底部露出块体材料552之后,可以将多个离子沿着离子植入面556植入施主结构550中。可以将离子非均匀地植入施主结构550中,以使得在第一多个区域570(可以包括无源区域)中形成缺陷,而不将离子植入第二多个区域572(可以包括有源区域)中。在离子植入处理中,间隔件结构574还可以防止离子通过凹部564中的侧壁进入待转移的材料层560的有源区域572中。图8D所示的离子植入面556可以包括单个植入面,其中大多数离子在施主结构550中沿着单个面设置。换句话说,大多数植入的离子在施主结构550中集中于单个深度。Accordingly, after the bulk material 552 is exposed at the bottom of the recess 564 , a plurality of ions may be implanted into the donor structure 550 along the ion implantation face 556 . Ions may be non-uniformly implanted into the donor structure 550 such that defects are formed in the first plurality of regions 570 (which may include inactive regions) while ions are not implanted in the second plurality of regions 572 (which may include active region). During an ion implantation process, the spacer structure 574 may also prevent ions from entering the active region 572 of the material layer 560 to be transferred through the sidewalls in the recess 564 . The ion implantation facet 556 shown in FIG. 8D may comprise a single implantation facet, where the majority of ions are disposed in the donor structure 550 along a single facet. In other words, most of the implanted ions are concentrated at a single depth in the donor structure 550 .

参照图8E,植入的离子可以导致在第一多个区域570中沿着离子植入面556形成缺陷558。在离子植入处理之后,可以利用例如蚀刻处理和化学机械抛光(CMP)处理中的一种或者更多种从施主结构550去除一个或多个共形层569A、569B(例如,间隔件结构574)和掩模568(图8D)的其余部分,以形成图8E所示的结构。图8E所示的结构大致类似于图2B所示的结构,并且还可以如本文先前参照图2C-2G所述地进一步处理。还可以按照本文参照图3A和图3B、图4A和图4B、图5A和图5B、图6A和图6B以及图7A和图7B所述的任何方法形成并采用间隔件结构(像图8D的间隔件结构574)。Referring to FIG. 8E , the implanted ions may result in the formation of defects 558 along the ion-implanted face 556 in the first plurality of regions 570 . Following the ion implantation process, one or more conformal layers 569A, 569B (eg, spacer structures 574 ) and mask 568 (FIG. 8D) to form the structure shown in FIG. 8E. The structure shown in Figure 8E is generally similar to the structure shown in Figure 2B, and can also be further processed as previously described herein with reference to Figures 2C-2G. Spacer structures (like the ones in FIG. spacer structure 574).

Claims (15)

1.一种将半导体材料层从第一施主结构转移至第二结构的方法,该方法包括以下步骤:1. A method of transferring a layer of semiconductor material from a first donor structure to a second structure, the method comprising the steps of: 将离子植入第一施主结构内,以在第一施主结构内形成由植入的离子限定的大致平坦的弱化区,该大致平坦的弱化区将第一施主结构的所述半导体材料层与第一施主结构的其余部分分离,其中植入的离子的浓度和植入的离子的元素成分中的至少一方在整个大致平坦的弱化区上沿着平行于所述大致平坦的弱化区的至少一个方向上变化;Implanting ions into the first donor structure to form a substantially planar weakened region within the first donor structure defined by the implanted ions, the substantially planar region of weakness separating the semiconductor material layer of the first donor structure from the second separation of the remainder of a donor structure wherein at least one of the concentration of the implanted ions and the elemental composition of the implanted ions is along at least one direction parallel to the substantially planar region of weakness across the substantially planar region of weakness up change; 将所述第一施主结构接合至所述第二结构;以及bonding the first donor structure to the second structure; and 沿着所述大致平坦的弱化区使第一施主结构断裂,并留下接合至第二结构的所述半导体材料层。The first donor structure is fractured along the substantially planar weakened region, leaving the layer of semiconductor material bonded to the second structure. 2.根据权利要求1所述的方法,其中,将离子植入第一施主结构内以形成所述大致平坦的弱化区的步骤包括:2. The method of claim 1, wherein implanting ions into the first donor structure to form the substantially planar weakened region comprises: 通过所述半导体材料层的第一多个区域将相对较高浓度的离子植入第一施主结构内;以及implanting a relatively high concentration of ions into a first donor structure through a first plurality of regions of the layer of semiconductor material; and 通过所述半导体材料层的第二多个区域将相对较低浓度的离子植入第一施主结构内。A relatively low concentration of ions is implanted into the first donor structure through the second plurality of regions of the layer of semiconductor material. 3.根据权利要求2所述的方法,所述方法还包括以下步骤:3. The method according to claim 2, further comprising the steps of: 选择所述半导体材料层的所述第一多个区域以包括所述半导体材料层的无源区域;以及selecting the first plurality of regions of the layer of semiconductor material to include inactive regions of the layer of semiconductor material; and 选择所述半导体材料层的所述第二多个区域以包括所述半导体材料层的有源区域。The second plurality of regions of the layer of semiconductor material is selected to include active regions of the layer of semiconductor material. 4.根据权利要求1所述的方法,其中将离子植入第一施主结构内以形成大致平坦的弱化区的步骤包括:4. The method of claim 1, wherein the step of implanting ions into the first donor structure to form a substantially planar weakened region comprises: 将第一元素成分的离子通过所述半导体材料层的第一多个区域植入第一施主结构内;以及implanting ions of a first elemental composition into a first donor structure through a first plurality of regions of the layer of semiconductor material; and 将不同的第二元素成分的离子通过所述半导体材料层的第二多个区域植入第一施主结构内。Ions of a second different elemental composition are implanted into the first donor structure through a second plurality of regions of the layer of semiconductor material. 5.根据权利要求4所述的方法,所述方法还包括以下步骤:5. The method according to claim 4, further comprising the steps of: 选择所述半导体材料层的所述第一多个区域以包括所述半导体材料层的无源区域;以及selecting the first plurality of regions of the layer of semiconductor material to include inactive regions of the layer of semiconductor material; and 选择所述半导体材料层的所述第二多个区域以包括所述半导体材料层的有源区域。The second plurality of regions of the layer of semiconductor material is selected to include active regions of the layer of semiconductor material. 6.根据权利要求1所述的方法,其中,将离子植入第一施主结构内的步骤包括将离子通过经构图掩模中的通孔植入第一施主结构内。6. The method of claim 1, wherein implanting ions into the first donor structure comprises implanting ions into the first donor structure through vias in a patterned mask. 7.根据权利要求1所述的方法,所述方法还包括以下步骤:7. The method of claim 1, further comprising the steps of: 在将离子植入第一施主结构内之前,在第一施主结构的主表面中形成凹部;并且forming a recess in a major surface of the first donor structure prior to implanting ions into the first donor structure; and 其中,将离子植入第一施主结构内的步骤包括将离子通过凹部中的第一施主结构的表面植入第一施主结构内,而不将离子植入第一施主结构的主表面的非凹陷区域中。Wherein, the step of implanting ions into the first donor structure comprises implanting ions into the first donor structure through the surface of the first donor structure in the recess without implanting the ions into non-recessed portions of the main surface of the first donor structure in the area. 8.根据权利要求1所述的方法,其中,将离子植入第一施主结构内的步骤包括:8. The method of claim 1, wherein the step of implanting ions into the first donor structure comprises: 执行一个离子植入处理以将第一量的离子在所述大致平坦的弱化区内在整个第一施主结构上以基本均匀的浓度植入第一施主结构内;以及performing an ion implantation process to implant a first amount of ions into the first donor structure at a substantially uniform concentration throughout the first donor structure within the substantially planar weakened region; and 执行另一离子植入处理以将第二量的离子在所述大致平坦的弱化区内在整个第一施主结构上以变化的浓度植入第一施主结构内。A further ion implantation process is performed to implant a second amount of ions into the first donor structure at varying concentrations across the first donor structure within the substantially planar weakened region. 9.根据权利要求8所述的方法,所述方法还包括以下步骤:9. The method of claim 8, further comprising the steps of: 在执行所述一个离子植入处理以将所述第一量的离子植入第一施主结构内之后,在第一施主结构的主表面中形成凹部;并且forming a recess in a major surface of the first donor structure after performing the one ion implantation process to implant the first amount of ions into the first donor structure; and 其中,执行另一离子植入处理的步骤包括将所述第二量的离子通过凹部中的第一施主结构的表面植入第一施主结构内,而不将所述第二量的离子植入第一施主结构的主表面的非凹陷区域中。Wherein, the step of performing another ion implantation process includes implanting the second amount of ions into the first donor structure through the surface of the first donor structure in the recess without implanting the second amount of ions into the first donor structure. In the non-recessed region of the major surface of the first donor structure. 10.一种半导体结构,该半导体结构包括:10. A semiconductor structure comprising: 第一施主结构,该第一施主结构中具有大致平坦的弱化区,所述大致平坦的弱化区由通过在该第一施主结构内沿着所述大致平坦的弱化区植入的离子限定,该大致平坦的弱化区将第一施主结构的半导体材料层与第一施主结构的其余部分分离,植入的离子的浓度和植入的离子的元素成分中的至少一方在整个所述大致平坦的弱化区沿着平行于所述大致平坦的弱化区的至少一个方向上变化;以及a first donor structure having therein a substantially planar region of weakness defined by ions implanted within the first donor structure along the substantially planar region of weakness, the substantially planar region of weakness defined by a substantially planar weakened region separating the semiconductor material layer of the first donor structure from the remainder of the first donor structure, at least one of the concentration of the implanted ions and the elemental composition of the implanted ions being maintained throughout the substantially planar weakened region the zone varies along at least one direction parallel to said generally planar zone of weakness; and 第二结构,该第二结构接合至第一施主结构的所述半导体材料层。A second structure bonded to the layer of semiconductor material of the first donor structure. 11.根据权利要求10所述的半导体结构,其中,所述大致平坦的弱化区包括其中具有第一浓度的植入的离子的第一多个区域和其中具有第二浓度的植入的离子的第二多个区域,第二浓度比第一浓度高。11. The semiconductor structure of claim 10 , wherein the substantially planar weakened region comprises a first plurality of regions having a first concentration of implanted ions therein and regions having a second concentration of implanted ions therein. In the second plurality of regions, the second concentration is higher than the first concentration. 12.根据权利要求10所述的半导体结构,其中,所述大致平坦的弱化区包括:第一多个区域,其中植入的离子具有第一元素成分;以及第二多个区域,其中植入的离子具有与所述第一元素成分不同的第二元素成分。12. The semiconductor structure of claim 10, wherein the substantially planar weakened region comprises: a first plurality of regions in which implanted ions have a first elemental composition; and a second plurality of regions in which implanted The ions of have a second elemental composition different from said first elemental composition. 13.根据权利要求10所述的半导体结构,该半导体结构还包括:第一施主结构内的凹部,其中,在所述大致平坦的弱化区内的沿竖直方向在所述凹部上方的区域中,相对于在所述大致平坦的弱化区内的沿竖直方向在第一施主结构内的横向地位于所述凹部之间的空间上方的区域,植入的离子的浓度和植入的离子的元素成分中的至少一方不同。13. The semiconductor structure of claim 10, further comprising: a recess in the first donor structure, wherein in a region within the generally planar weakened region vertically above the recess , the concentration of the implanted ions and the concentration of the implanted ions relative to the region within the first donor structure in the vertical direction within the substantially planar weakened region laterally above the spaces between the recesses At least one of the elemental components is different. 14.根据权利要求13所述的半导体结构,所述半导体结构还包括:位于所述凹部内的横向侧壁上的间隔件结构。14. The semiconductor structure of claim 13, further comprising spacer structures on lateral sidewalls within the recess. 15.根据权利要求10所述的半导体结构,所述半导体结构还包括:位于第一施主结构内的大致平行于所述大致平坦的弱化区延伸的至少一个离子约束层。15. The semiconductor structure of claim 10, further comprising at least one ion confinement layer within the first donor structure extending substantially parallel to the substantially planar weakened region.
CN201280046870.1A 2011-09-27 2012-08-13 Methods of transferring layers of material in 3d integration processes and related structures and devices Active CN103828036B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US13/246,580 US8673733B2 (en) 2011-09-27 2011-09-27 Methods of transferring layers of material in 3D integration processes and related structures and devices
US13/246,580 2011-09-27
FR1159358A FR2981501B1 (en) 2011-10-17 2011-10-17 METHOD FOR TRANSFERRING MATERIAL LAYERS IN 3D INTEGRATION PROCESSES AND RELATED STRUCTURES AND DEVICES
FR1159358 2011-10-17
PCT/IB2012/001578 WO2013045985A1 (en) 2011-09-27 2012-08-13 Methods of transferring layers of material in 3d integration processes and related structures and devices

Publications (2)

Publication Number Publication Date
CN103828036A true CN103828036A (en) 2014-05-28
CN103828036B CN103828036B (en) 2017-02-15

Family

ID=46889374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280046870.1A Active CN103828036B (en) 2011-09-27 2012-08-13 Methods of transferring layers of material in 3d integration processes and related structures and devices

Country Status (6)

Country Link
JP (1) JP6141853B2 (en)
KR (1) KR101955375B1 (en)
CN (1) CN103828036B (en)
DE (1) DE112012004024T5 (en)
TW (1) TWI573198B (en)
WO (1) WO2013045985A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058288A (en) * 2015-04-02 2016-10-26 索泰克公司 Advanced solid electrolyte and method of fabrication
CN108028222A (en) * 2015-09-18 2018-05-11 索泰克公司 Method for shifting single crystal ingot

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9064077B2 (en) 2012-11-28 2015-06-23 Qualcomm Incorporated 3D floorplanning using 2D and 3D blocks
US9098666B2 (en) 2012-11-28 2015-08-04 Qualcomm Incorporated Clock distribution network for 3D integrated circuit
US9536840B2 (en) 2013-02-12 2017-01-03 Qualcomm Incorporated Three-dimensional (3-D) integrated circuits (3DICS) with graphene shield, and related components and methods
US20140225218A1 (en) * 2013-02-12 2014-08-14 Qualcomm Incorporated Ion reduced, ion cut-formed three-dimensional (3d) integrated circuits (ic) (3dics), and related methods and systems
US9041448B2 (en) 2013-03-05 2015-05-26 Qualcomm Incorporated Flip-flops in a monolithic three-dimensional (3D) integrated circuit (IC) (3DIC) and related methods
US9177890B2 (en) 2013-03-07 2015-11-03 Qualcomm Incorporated Monolithic three dimensional integration of semiconductor integrated circuits
US9171608B2 (en) 2013-03-15 2015-10-27 Qualcomm Incorporated Three-dimensional (3D) memory cell separation among 3D integrated circuit (IC) tiers, and related 3D integrated circuits (3DICS), 3DIC processor cores, and methods
FR3073083B1 (en) * 2017-10-31 2019-10-11 Soitec METHOD FOR MANUFACTURING A FILM ON A FLEXIBLE SHEET
FR3079659B1 (en) * 2018-03-29 2020-03-13 Soitec METHOD FOR MANUFACTURING A DONOR SUBSTRATE FOR THE PRODUCTION OF AN INTEGRATED THREE-DIMENSIONAL STRUCTURE AND METHOD FOR MANUFACTURING SUCH AN INTEGRATED STRUCTURE
FR3094559B1 (en) 2019-03-29 2024-06-21 Soitec Silicon On Insulator METHOD FOR TRANSFERRING PAVELS FROM A DONOR SUBSTRATE TO A RECEIVING SUBSTRATE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020252A (en) * 1996-05-15 2000-02-01 Commissariat A L'energie Atomique Method of producing a thin layer of semiconductor material
US6103597A (en) * 1996-04-11 2000-08-15 Commissariat A L'energie Atomique Method of obtaining a thin film of semiconductor material
US6335258B1 (en) * 1996-11-05 2002-01-01 Commissariat A L'energie Atomique Method for making a thin film on a support and resulting structure including an additional thinning stage before heat treatment causes micro-cavities to separate substrate element
CN1708844A (en) * 2002-11-07 2005-12-14 原子能委员会 Method for forming a weakened zone in a substrate by co-implantation

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681472B1 (en) 1991-09-18 1993-10-29 Commissariat Energie Atomique PROCESS FOR PRODUCING THIN FILMS OF SEMICONDUCTOR MATERIAL.
JPH10135147A (en) * 1996-11-01 1998-05-22 Nippon Telegr & Teleph Corp <Ntt> Method for producing crystalline thin film and method for producing solar cell
FR2758907B1 (en) * 1997-01-27 1999-05-07 Commissariat Energie Atomique METHOD FOR OBTAINING A THIN FILM, PARTICULARLY A SEMICONDUCTOR, WITH A PROTECTED AREA OF IONS, AND INVOLVING AN ION IMPLANTATION STEP
FR2767416B1 (en) 1997-08-12 1999-10-01 Commissariat Energie Atomique PROCESS FOR PRODUCING A THIN FILM OF SOLID MATERIAL
JPH1174208A (en) * 1997-08-27 1999-03-16 Denso Corp Manufacture of semiconductor substrate
FR2773261B1 (en) 1997-12-30 2000-01-28 Commissariat Energie Atomique METHOD FOR THE TRANSFER OF A THIN FILM COMPRISING A STEP OF CREATING INCLUSIONS
FR2774510B1 (en) * 1998-02-02 2001-10-26 Soitec Silicon On Insulator PROCESS FOR TREATING SUBSTRATES, ESPECIALLY SEMICONDUCTORS
JP2000012864A (en) * 1998-06-22 2000-01-14 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
FR2795865B1 (en) 1999-06-30 2001-08-17 Commissariat Energie Atomique METHOD FOR MAKING A THIN FILM USING PRESSURIZATION
FR2818010B1 (en) 2000-12-08 2003-09-05 Commissariat Energie Atomique METHOD OF MAKING A THIN LAYER INVOLVING THE INTRODUCTION OF GAS SPECIES
FR2830983B1 (en) * 2001-10-11 2004-05-14 Commissariat Energie Atomique METHOD FOR MANUFACTURING THIN FILMS CONTAINING MICROCOMPONENTS
JP4814498B2 (en) * 2004-06-18 2011-11-16 シャープ株式会社 Manufacturing method of semiconductor substrate
US7202124B2 (en) * 2004-10-01 2007-04-10 Massachusetts Institute Of Technology Strained gettering layers for semiconductor processes
WO2007017763A2 (en) * 2005-07-08 2007-02-15 S.O.I. Tec Silicon On Insulator Technologies Method of production of a film
FR2935537B1 (en) 2008-08-28 2010-10-22 Soitec Silicon On Insulator MOLECULAR ADHESION INITIATION METHOD
US7816225B2 (en) * 2008-10-30 2010-10-19 Corning Incorporated Methods and apparatus for producing semiconductor on insulator structures using directed exfoliation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103597A (en) * 1996-04-11 2000-08-15 Commissariat A L'energie Atomique Method of obtaining a thin film of semiconductor material
US6020252A (en) * 1996-05-15 2000-02-01 Commissariat A L'energie Atomique Method of producing a thin layer of semiconductor material
US6335258B1 (en) * 1996-11-05 2002-01-01 Commissariat A L'energie Atomique Method for making a thin film on a support and resulting structure including an additional thinning stage before heat treatment causes micro-cavities to separate substrate element
CN1708844A (en) * 2002-11-07 2005-12-14 原子能委员会 Method for forming a weakened zone in a substrate by co-implantation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058288A (en) * 2015-04-02 2016-10-26 索泰克公司 Advanced solid electrolyte and method of fabrication
CN112768738A (en) * 2015-04-02 2021-05-07 索泰克公司 Advanced solid electrolyte and method of manufacture
CN106058288B (en) * 2015-04-02 2021-06-15 索泰克公司 Advanced solid electrolyte and method of manufacture
CN112768738B (en) * 2015-04-02 2024-06-21 索泰克公司 Advanced solid electrolyte and method of manufacture
CN108028222A (en) * 2015-09-18 2018-05-11 索泰克公司 Method for shifting single crystal ingot
CN108028222B (en) * 2015-09-18 2022-04-29 索泰克公司 Method for transferring single crystal block

Also Published As

Publication number Publication date
DE112012004024T5 (en) 2014-07-24
KR20140065435A (en) 2014-05-29
WO2013045985A1 (en) 2013-04-04
CN103828036B (en) 2017-02-15
JP2014531768A (en) 2014-11-27
JP6141853B2 (en) 2017-06-07
TW201330117A (en) 2013-07-16
KR101955375B1 (en) 2019-03-07
TWI573198B (en) 2017-03-01

Similar Documents

Publication Publication Date Title
CN103828036B (en) Methods of transferring layers of material in 3d integration processes and related structures and devices
US10553562B2 (en) Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods
US9922956B2 (en) Microelectromechanical system (MEMS) bond release structure and method of wafer transfer for three-dimensional integrated circuit (3D IC) integration
JP5208626B2 (en) Semiconductor circuit structure manufacturing method
JP5976738B2 (en) Method for manufacturing a microtechnology structure
US8673733B2 (en) Methods of transferring layers of material in 3D integration processes and related structures and devices
KR101426362B1 (en) Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods
KR101372018B1 (en) Methods of forming integrated circuits and resulting structures
TWI626713B (en) SOI wafer with buried dielectric layer to prevent copper diffusion
US8841742B2 (en) Low temperature layer transfer process using donor structure with material in recesses in transfer layer, semiconductor structures fabricated using such methods
JP6193271B2 (en) Method for providing a thin layer of crystalline semiconductor material, and related structures and devices
US20130217206A1 (en) Methods of providing thin layers of crystalline semiconductor material, and related structures and devices
TWI846688B (en) Process for fabricating a donor substrate for the production of a three-dimensional integrated structure and process for fabricating such an integrated structure
FR2987936A1 (en) Fabrication of semiconductor device used as e.g. photocell, involves providing crystalline silicon layer on recipient structure, forming metal silicide in crystalline silicon portion, and arid etching metal silicide to metal silicide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant