[go: up one dir, main page]

CN103824896A - High-throughput printing of semiconductor precursor layers from intermetallic nanoflake particles - Google Patents

High-throughput printing of semiconductor precursor layers from intermetallic nanoflake particles Download PDF

Info

Publication number
CN103824896A
CN103824896A CN201410025475.6A CN201410025475A CN103824896A CN 103824896 A CN103824896 A CN 103824896A CN 201410025475 A CN201410025475 A CN 201410025475A CN 103824896 A CN103824896 A CN 103824896A
Authority
CN
China
Prior art keywords
particles
nanoflakes
layer
group
iiia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410025475.6A
Other languages
Chinese (zh)
Inventor
耶罗恩·K·J·范杜伦
克雷格·R·莱德赫尔姆
马修·R·鲁滨逊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/361,433 external-priority patent/US7700464B2/en
Priority claimed from US11/361,521 external-priority patent/US20070163383A1/en
Priority claimed from US11/361,103 external-priority patent/US20070169809A1/en
Priority claimed from US11/361,522 external-priority patent/US20070166453A1/en
Priority claimed from US11/361,497 external-priority patent/US20070163638A1/en
Priority claimed from US11/361,515 external-priority patent/US20070163640A1/en
Priority claimed from US11/395,668 external-priority patent/US8309163B2/en
Priority claimed from US11/395,438 external-priority patent/US20070163643A1/en
Priority claimed from US11/394,849 external-priority patent/US20070163641A1/en
Application filed by Individual filed Critical Individual
Publication of CN103824896A publication Critical patent/CN103824896A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/16Photovoltaic cells having only PN heterojunction potential barriers
    • H10F10/167Photovoltaic cells having only PN heterojunction potential barriers comprising Group I-III-VI materials, e.g. CdS/CuInSe2 [CIS] heterojunction photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/12Active materials
    • H10F77/126Active materials comprising only Group I-III-VI chalcopyrite materials, e.g. CuInSe2, CuGaSe2 or CuInGaSe2 [CIGS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The present invention relates to high-throughput printing of semiconductor precursor layers from intermetallic nanoplatelet particles, in particular to the following method and apparatus: which transforms a non-planar or planar precursor material in a suitable carrier under suitable conditions, resulting in a dispersion of planar particles with an elemental stoichiometric ratio equal to that in the feed or precursor material, even after selective forced settling. In particular, planar particles are more easily dispersed, form a much denser coating (or form a coating with a greater interparticle contact area), and anneal to a molten dense film at a lower temperature and/or for a shorter time than coatings made with their spherical nanoparticles. These planar particles may be nanoflakes with high aspect ratios. The resulting dense films formed from nanoflakes are particularly useful in forming photovoltaic devices. In one embodiment, at least one set of particles in the ink may be intermetallic flake particles (microflakes or nanoflakes) containing at least one group IB-IIIA intermetallic alloy phase.

Description

从金属间纳米薄片颗粒的半导体前体层的高生产量印刷High-throughput printing of semiconductor precursor layers from intermetallic nanoflake particles

本发明是优先权是为2006年2月23日、发明名称为“从金属间纳米薄片颗粒的半导体前体层的高生产量印刷”的中国发明专利申请第200780014617.7号(国际专利申请号PCT/US2007/062766)的分案申请。The present invention is the priority of the Chinese Invention Patent Application No. 200780014617.7 (International Patent Application No. PCT/US2007) dated February 23, 2006, entitled "High-throughput Printing of Semiconductor Precursor Layer from Intermetallic Nanoflake Particles" /062766) divisional application.

技术领域technical field

本发明一般地涉及半导体膜,更具体地涉及使用基于IB-IIIA-VIA化合物的半导体膜的太阳能电池的制造。The present invention relates generally to semiconductor films, and more particularly to the fabrication of solar cells using semiconductor films based on IB-IIIA-VIA compounds.

背景技术Background technique

太阳能电池和太阳能模块将日光转换为电。这些电子器件传统上使用硅(Si)作为光吸收半导体材料以相对昂贵的生产工艺制造。为使太阳能电池更加经济可行,已开发出如下的太阳能电池器件结构:该结构可以廉价地利用薄膜,光吸收半导体材料例如铜铟镓硫代二硒化物,Cu(In,Ga)(S,Se)2,也称为CI(G)S(S)。这类太阳能电池通常具有夹在背面电极层和n型结配对层之间的p型吸收层。背面电极层常常是Mo,而结配对常常是CdS。在结配对层上形成透明导电氧化物(TCO)例如氧化锌(ZnOx),通常将其用作透明电极。CIS基太阳能电池已经证明具有超过19%的功率转换效率。Solar cells and solar modules convert sunlight into electricity. These electronic devices have traditionally been fabricated in relatively expensive production processes using silicon (Si) as the light-absorbing semiconductor material. To make solar cells more economically viable, solar cell device structures have been developed that can inexpensively utilize thin-film, light-absorbing semiconductor materials such as copper indium gallium sulfide diselenide, Cu(In,Ga)(S,Se ) 2 , also known as CI(G)S(S). Such solar cells typically have a p-type absorber layer sandwiched between a back electrode layer and an n-type junction pair. The back electrode layer is often Mo and the junction pair is often CdS. A transparent conductive oxide (TCO) such as zinc oxide (ZnO x ) is formed on the junction pair layer, which is often used as a transparent electrode. CIS-based solar cells have demonstrated power conversion efficiencies exceeding 19%.

成本有效地构建大面积CIGS基太阳能电池或模块中的中心挑战是,CIGS层的元素必须在所有三个维度的纳米、介观和宏观长度尺度上处在窄的化学计量比之内,以便产生的电池或模块具有高效率。然而使用传统的真空基沉积工艺难以在相对较大的衬底面积上实现精确的化学计量组成。例如,通过溅射或蒸发难以沉积含有多于一种元素的化合物和/或合金。这两种技术依赖于受视线和有限面积源限制的沉积方法,趋向于产生不良的表面覆盖率。视线轨迹和有限面积源能够在所有三个维度上产生元素的非均匀三维分布和/或在大面积上产生不良的膜厚度均匀性。这些非均匀性可以在纳米、介观和/或宏观尺度上发生。此类非均匀性也改变吸收层的局部化学计量比,降低完整电池或模块的潜在功率转换效率。A central challenge in the cost-effective construction of large-area CIGS-based solar cells or modules is that the elements of the CIGS layer must be within narrow stoichiometric ratios at nano-, meso-, and macro-length scales in all three dimensions in order to produce The battery or module has high efficiency. However, it is difficult to achieve precise stoichiometric composition over relatively large substrate areas using conventional vacuum-based deposition processes. For example, it is difficult to deposit compounds and/or alloys containing more than one element by sputtering or evaporation. Both techniques rely on deposition methods limited by line-of-sight and limited-area sources, which tend to yield poor surface coverage. Line-of-sight trajectories and finite area sources can produce non-uniform three-dimensional distribution of elements in all three dimensions and/or poor film thickness uniformity over large areas. These inhomogeneities can occur on nano, meso and/or macro scales. Such non-uniformities also alter the local stoichiometry of the absorber layer, reducing the potential power conversion efficiency of the complete cell or module.

已经开发出传统真空基沉积技术的替代方法。特别是,使用非真空的半导体印刷技术在柔性衬底上制备太阳能电池提供了常规真空沉积太阳能电池的高度成本有效的替代。例如,T.Arita及其同事[20th IEEE PV Specialists Conference,1988,第1650页]描述了非真空丝网印刷技术,该技术包括以1:1:2的组成比将纯Cu、In和Se粉末混合及研磨并且形成可丝网印刷的糊料,在衬底上丝网印刷该糊料,而且烧结该膜以形成化合物层。他们报道说,虽然他们以单质Cu、In和Se粉末开始,但是在研磨步骤之后,糊料含有Cu-In-Se2相。然而,由烧结层制造的太阳能电池具有非常低的效率,因为这些吸收剂的结构和电子性质差。Alternatives to conventional vacuum-based deposition techniques have been developed. In particular, the fabrication of solar cells on flexible substrates using non-vacuum semiconductor printing techniques offers a highly cost-effective alternative to conventional vacuum-deposited solar cells. For example, T. Arita and co-workers [20th IEEE PV Specialists Conference, 1988, p. 1650] describe a non-vacuum screen-printing technique consisting of pure Cu, In and Se powders in a composition ratio of 1:1:2 Mix and grind and form a screen printable paste, screen print the paste on a substrate, and sinter the film to form the compound layer. They reported that although they started with elemental Cu, In, and Se powders, after the milling step, the paste contained a Cu-In- Se2 phase. However, solar cells fabricated from sintered layers have very low efficiencies due to the poor structural and electronic properties of these absorbers.

A.Vervaet等亦报道了沉积成薄膜的丝网印刷Cu-In-Se2[9thEuropean Communities PV Solar Energy Conference,1989,第480页],其中将微米尺寸的Cu-In-Se2粉末与微米尺寸的Se粉末一起使用来制备可丝网印刷的糊料。在高温下烧结非真空丝网印刷所形成的层。这种方法的困难是寻找适于致密Cu-In-Se2膜形成的助熔剂。虽然如此制成的太阳能电池具有不良的转换效率,但是使用印刷和其它非真空技术来制造太阳能电池仍然是有前景的。A.Vervaet et al also reported the deposition of thin film screen printing Cu-In-Se 2 [9thEuropean Communities PV Solar Energy Conference, 1989, p. 480], in which micron-sized Cu-In-Se 2 powder and micron-sized used with Se powder to prepare a screen-printable paste. The layer formed by non-vacuum screen printing is sintered at high temperature. The difficulty of this approach is to find suitable flux for dense Cu-In- Se2 film formation. Although the solar cells thus produced have poor conversion efficiencies, the use of printing and other non-vacuum techniques to fabricate solar cells remains promising.

在所述领域中以及当然在CIGS非真空前体领域中存在一种普遍观念,即最佳的分散体和涂料含有球形颗粒而且就分散体稳定性和膜填充而言、特别是当涉及纳米颗粒时,任何其它形状是不那么合意的。因此,分散体化学家和涂料工程师针对的工艺和理论涉及球形颗粒。由于在CIGS非真空前体、尤其是包含纯金属的那些前体中所用金属的高密度,球形颗粒的使用要求非常小的尺寸以便获得充分分散的介质。这于是要求每种组分具有相似的尺寸以便保持期望的化学计量比,因为否则的话大的颗粒会首先沉降。另外,球形体被认为可用于实现高的基于填充单元/体积的堆积密度,但是即使在高密度下,球体也仅在切点接触,这代表非常小的颗粒间表面积的分数。此外,如果在所产生的膜中期望良好的原子混合的话,期望最少程度的絮凝以减少聚集。There is a general notion in said field, and certainly in the field of CIGS non-vacuum precursors, that the optimal dispersions and coatings contain spherical particles and that in terms of dispersion stability and film filling, especially when nanoparticles are involved , any other shape is less desirable. Therefore, the processes and theories that dispersion chemists and coatings engineers are targeting involve spherical particles. Due to the high density of metals used in CIGS non-vacuum precursors, especially those containing pure metals, the use of spherical particles requires very small sizes in order to obtain a well dispersed medium. This then requires that each component be of a similar size in order to maintain the desired stoichiometric ratio, since otherwise the larger particles would settle first. Additionally, spheroids are thought to be useful for achieving high packed unit/volume based packing densities, but even at high densities, spheroids touch only at tangent points, representing a very small fraction of interparticle surface area. Furthermore, minimal flocculation is desired to reduce aggregation if good atomic mixing is desired in the resulting film.

由于上述问题,非真空前体CIGS界的许多专家期望尺寸为他们能够达到的那样小的球形纳米颗粒。尽管传统球形纳米颗粒的使用仍然是有前景的,但是留下许多基础性挑战,例如以高收率和低成本(尤其是由CIGS前体材料)获得足够小的球形纳米颗粒方面的困难或者可再现地获得高品质膜方面的困难。此外,球形颗粒之间接触点处的较小颗粒间表面积可能会阻碍这些颗粒的快速处理,因为反应动力学在许多方面取决于颗粒间的表面积接触量。Because of the above problems, many experts in the non-vacuum precursor CIGS community desire spherical nanoparticles as small in size as they can achieve. Although the use of conventional spherical nanoparticles remains promising, many fundamental challenges remain, such as the difficulty or availability of sufficiently small spherical nanoparticles in high yield and low cost, especially from CIGS precursor materials. Difficulties in obtaining high quality membranes reproducibly. Furthermore, the small interparticle surface area at the contact points between spherical particles may hinder the rapid processing of these particles, since the reaction kinetics depend in many ways on the amount of surface area contact between particles.

发明内容Contents of the invention

本发明的实施方案解决至少一些上述的缺点。本发明提供非球形颗粒在处理成致密膜的高品质前体层的形成中的使用。所产生的致密膜可以在多种工业和应用中有用,其中包括但是不限于光伏器件和太阳能电池的制造。更具体地,本发明特别应用于薄膜太阳能电池用前体层的形成。本发明提供更有效和简化的分散体及其所产生的涂层的制备。应当理解本发明可一般应用于涉及从分散体沉积材料的任何工艺。本文所述的这些和其它目的中的至少一些将由本发明的各个实施方案来满足。Embodiments of the present invention address at least some of the above-mentioned disadvantages. The present invention provides for the use of non-spherical particles in the formation of high quality precursor layers processed into dense films. The resulting dense films can be useful in a variety of industries and applications including, but not limited to, the fabrication of photovoltaic devices and solar cells. More specifically, the invention finds particular application in the formation of precursor layers for thin-film solar cells. The present invention provides more efficient and simplified preparation of dispersions and resulting coatings. It should be understood that the present invention is generally applicable to any process involving the deposition of material from dispersion. At least some of these and other objects described herein will be met by various embodiments of the present invention.

在本发明的一种实施方案中,提供一种在适当条件下在适当载体中转变非平面和/或平面前体金属的方法,以产生即使在选择性沉降之后元素化学计量比也与进料或前体金属中相等的平面颗粒的分散体。特别地,已经发现本文所述的平面颗粒易于分散,形成致密得多的涂层并且在与它们具有基本上相似组成但是不同形态的球形纳米颗粒所制成的涂层相比较低的温度和/或较少时间下退火成膜。在本发明的一种实施方案中,稳定分散体是保持分散持续足以使衬底得到涂覆的一段时间的分散体。在一种实施方案中,这可能涉及使用搅拌来保持颗粒分散在分散体中。在另外的实施方案中,这可能涉及沉降但是在使用时刻到来时能够通过搅拌和/或其它方法再分散的分散体。In one embodiment of the present invention, a method is provided for transforming non-planar and/or planar precursor metals in suitable supports under suitable conditions to produce elemental stoichiometric ratios identical to those of the feedstock even after selective precipitation. Or a dispersion of equal planar particles in the precursor metal. In particular, it has been found that the planar particles described herein are readily dispersed, form much denser coatings and at lower temperatures and/or Or less time to anneal to form a film. In one embodiment of the invention, a stable dispersion is a dispersion that remains dispersed for a period of time sufficient to allow the substrate to be coated. In one embodiment, this may involve the use of agitation to keep the particles dispersed in the dispersion. In other embodiments, this may involve a dispersion that settles but can be redispersed by stirring and/or other means when the time of use comes.

在本发明的另一实施方案中,提供一种包括配制颗粒油墨的方法,其中基本上所有的颗粒均是纳米薄片(nanoflake)。在一种实施方案中,所有颗粒中的至少约95%(以所有颗粒的总重量计)是纳米薄片。在一种实施方案中,所有颗粒中的至少约99%(以所有颗粒的总重量计)是纳米薄片。在一种实施方案中,所有颗粒是纳米薄片。在另一实施方案中,所有颗粒是微米薄片和/或纳米薄片。基本上每个纳米薄片含有至少一种来自IB、IIIA和/或VIA族的元素,其中所述油墨中包含的IB、IIIA和/或VIA族元素的总量使得该油墨至少对于IB和IIIA族元素具有期望的或者接近期望的元素化学计量比。所述方法包括用该油墨涂覆衬底以形成前体层并且在合适气氛中处理该前体层以形成致密膜。所述致密膜可以用于光伏器件的半导体吸收体的形成。该膜可以由包含多个非熔含的单个颗粒的前体层的熔化形式构成。In another embodiment of the invention there is provided a method comprising formulating a particle ink wherein substantially all of the particles are nanoflakes. In one embodiment, at least about 95% of all particles (based on the total weight of all particles) are nanoflakes. In one embodiment, at least about 99% of all particles (based on the total weight of all particles) are nanoflakes. In one embodiment, all particles are nanoflakes. In another embodiment, all particles are microflakes and/or nanoflakes. Substantially each nanoflake contains at least one element from groups IB, IIIA and/or VIA, wherein the total amount of group IB, IIIA and/or VIA elements contained in the ink is such that the ink is at least for groups IB and IIIA The elements have desired or near-desired stoichiometric ratios of elements. The method includes coating a substrate with the ink to form a precursor layer and treating the precursor layer in a suitable atmosphere to form a dense film. The dense film can be used in the formation of semiconductor absorbers for photovoltaic devices. The film may consist of a molten form of a precursor layer comprising a plurality of non-fused individual particles.

在本发明的另一实施方案中,提供一种包含多个纳米薄片的材料,所述多个纳米薄片的材料组成含有至少一种来自IB、IIIA和/或VIA族的元素。通过研磨或粉碎以前体组成为特征的前体颗粒制备所述纳米薄片,该前体组成提供足够的延性(更好的延展性,见专利下文)以在进行研磨或粉碎时从非平面和/或平面的起始形状形成平面形状,并且其中在合并的前体颗粒中包含的IB、IIIA和/或VIA族元素的总量至少对于IB和IIIA族元素处在期望的或者接近期望的元素化学计量比下。在一种实施方案中,平面的包括在两个维度上宽在所有其它维度上薄的颗粒的那些情况。研磨可以使基本上所有的前体颗粒转变成纳米薄片。作为选择,研磨使至少50%的前体颗粒转变成纳米薄片。研磨可以在无氧气氛中进行以制备无氧纳米薄片。研磨可以在惰性气体环境中进行以制备无氧纳米薄片。这些非球形颗粒可以是最大尺寸(厚度和/或长度和/或宽度)大于约20nm的纳米薄片,因为比这更小的尺寸倾向于产生效率较低的太阳能电池。研磨还可以经过冷淬并且在低于室温的温度下进行以容许研磨由低熔点材料构成的颗粒。在另外的实施方案中,研磨可以在室温下进行。作为选择,研磨可以在高于室温的温度下进行以获得期望的材料延展性。在本发明的一种实施方案中,进料颗粒的材料组成优选显示出使得非平面的进料颗粒在适当温度下成形为基本上平面的纳米薄片的延展性。在一种实施方案中,所述纳米薄片具有至少一个基本上平坦的表面。In another embodiment of the present invention there is provided a material comprising a plurality of nanoflakes whose material composition comprises at least one element from groups IB, IIIA and/or VIA. The nanoflakes are prepared by grinding or comminuting precursor particles characterized by a precursor composition that provides sufficient ductility (better ductility, see patent below) to dissociate from non-planar and/or or a planar starting shape forming a planar shape, and wherein the total amount of group IB, IIIA and/or VIA elements contained in the combined precursor particles is at or near the desired elemental chemistry for at least the group IB and IIIA elements Under the measurement ratio. In one embodiment, planar includes those instances of particles that are broad in two dimensions and thin in all other dimensions. Milling can convert substantially all of the precursor particles into nanoflakes. Alternatively, milling converts at least 50% of the precursor particles into nanoflakes. Milling can be performed in an oxygen-free atmosphere to produce oxygen-free nanoflakes. Milling can be performed in an inert gas environment to produce oxygen-free nanoflakes. These non-spherical particles may be nanoflakes with a largest dimension (thickness and/or length and/or width) greater than about 20 nm, as sizes smaller than this tend to produce less efficient solar cells. Grinding may also be quenched and performed at temperatures below room temperature to allow grinding of particles composed of low melting point materials. In other embodiments, milling may be performed at room temperature. Alternatively, grinding may be performed at temperatures above room temperature to obtain the desired ductility of the material. In one embodiment of the present invention, the material composition of the feed particles preferably exhibits ductility such that non-planar feed particles are shaped into substantially planar nanoflakes at appropriate temperatures. In one embodiment, the nanoflakes have at least one substantially planar surface.

在本发明的另一实施方案中,提供一种太阳能电池,其包含衬底、在所述衬底上形成的背面电极、在所述背面电极上形成的p型半导体薄膜、形成以便与所述p型半导体薄膜一起构成pn结的n型半导体薄膜、以及在所述n型半导体薄膜上形成的透明电极。所述p型半导体薄膜通过处理由多个纳米薄片所形成的致密膜而产生,所述纳米薄片的材料组成含有至少一种来自IB、IIIA和/或VIA族的元素,其中所产生的膜具有26%或更小的空隙体积。在一种实施方案中,该数值可以基于不同直径填充球体的自由体积以使空隙体积减到最小。在本发明的另一实施方案中,所述致密膜具有约30%或更小的空隙体积。在另外的实施方案中,空隙体积是约20%或更小。在另外的实施方案中,空隙体积是约10%或更小。In another embodiment of the present invention, there is provided a solar cell comprising a substrate, a back electrode formed on the substrate, a p-type semiconductor thin film formed on the back electrode, formed so as to communicate with the The p-type semiconductor thin film together constitutes the n-type semiconductor thin film of the pn junction, and the transparent electrode formed on the n-type semiconductor thin film. The p-type semiconductor thin film is produced by processing a dense film formed of a plurality of nanoflakes whose material composition contains at least one element from groups IB, IIIA and/or VIA, wherein the produced film has 26% or less void volume. In one embodiment, this value can be based on the free volume of spheres packed with different diameters to minimize void volume. In another embodiment of the invention, the dense membrane has a void volume of about 30% or less. In other embodiments, the void volume is about 20% or less. In other embodiments, the void volume is about 10% or less.

在本发明的另一实施方案中,提供一种通过使用具有特定性质的颗粒形成膜的方法。所述性质可以基于颗粒间尺寸、形状、组成和形态分布。作为非限制性实例,所述颗粒可以是期望尺寸范围内的纳米薄片。在纳米薄片中,形态可以包括无定形的颗粒、结晶颗粒、比无定形更结晶态的颗粒以及比结晶态更无定形的颗粒。所述性质还可以基于颗粒间组成和形态分布。在本发明的一种实施方案中,应当理解所产生的薄片具有的形态为所述薄片与形成该薄片的进料材料相比较少的结晶态。薄片是具有至少一个基本上平坦表面的颗粒而且可以包括纳米薄片和/或微米薄片。In another embodiment of the present invention, a method of forming a film by using particles having specific properties is provided. The properties may be based on interparticle size, shape, composition and morphology distribution. As a non-limiting example, the particles may be nanoflakes in a desired size range. In nanoflakes, the morphology can include amorphous particles, crystalline particles, particles that are more crystalline than amorphous, and particles that are more amorphous than crystalline. The properties can also be based on interparticle composition and morphological distribution. In one embodiment of the invention, it is understood that the flakes produced have a morphology in which the flakes are less crystalline than the feed material from which they were formed. Flakes are particles having at least one substantially planar surface and may include nanoflakes and/or microflakes.

在本发明的另一实施方案中,所述方法包含配制颗粒油墨,其中约50%或更多的颗粒(以所有颗粒的总重量计)是各自含有至少一种来自IB、IIIA和/或VIA族的元素而且具有非球形的平面形状的薄片,其中所述油墨中包含的IB、IIIA和/或VIA族元素的总量使得该油墨具有期望的元素化学计量比。在另一实施方案中,术语“50%或更多”可以基于相对所述油墨中颗粒总数的颗粒数目。在另一实施方案中,至少约75%或更多的颗粒(按重量计或按数目计)是纳米薄片。所述方法包括用该油墨涂覆衬底以形成前体层并且在合适处理条件下处理该前体层以形成膜。所述膜可以用于光伏器件的半导体吸收体的形成。应当理解合适的处理条件可以包括但是不限于气氛组成、压力和/或温度。在一种实施方案中,基本上所有的颗粒是具有非球形的平面形状的薄片。在一种实施方案中,所有颗粒中的至少约95%(以合并的所有颗粒重量计)是薄片。在另一实施方案中,所有颗粒中的至少99%(以合并的所有颗粒重量计)是薄片。所述薄片可以由纳米薄片组成。在另外的实施方案中,所述薄片可以由微米薄片和纳米薄片组成。In another embodiment of the present invention, the method comprises formulating a particle ink wherein about 50% or more of the particles (based on the total weight of all particles) are each containing at least one compound from IB, IIIA and/or VIA Group IB, IIIA and/or VIA elements are included in the ink in an amount such that the ink has a desired stoichiometric ratio of the elements. In another embodiment, the term "50% or more" may be based on the number of particles relative to the total number of particles in the ink. In another embodiment, at least about 75% or more of the particles (by weight or number) are nanoflakes. The method includes coating a substrate with the ink to form a precursor layer and treating the precursor layer under suitable processing conditions to form a film. The films can be used in the formation of semiconductor absorbers for photovoltaic devices. It should be understood that suitable processing conditions may include, but are not limited to, atmosphere composition, pressure and/or temperature. In one embodiment, substantially all of the particles are flakes having a non-spherical planar shape. In one embodiment, at least about 95% of all particles (by weight of all particles combined) are flakes. In another embodiment, at least 99% of all particles (by weight of all particles combined) are flakes. The flakes may consist of nanoflakes. In other embodiments, the flakes may consist of microflakes and nanoflakes.

应当理解所述纳米薄片的平面形状可以提供许多优点。作为非限制性实例,平面形状可以在相邻的纳米薄片之间产生更大的表面积接触,这使得与使用球形纳米颗粒的油墨的前体层所制成的膜相比,其中该纳米颗粒具有基本上相似的材料组成而且该油墨其它方面基本上与本发明的油墨相同,致密膜在较低温度和/或较短时间下形成。所述纳米薄片的平面形状也可以在相邻的纳米薄片之间产生更大的表面积接触,这使得与使用其它方面基本上与本发明油墨相同的球形纳米颗粒油墨的前体层所制成的膜相比,该致密膜在低至少50℃的退火温度下形成。It should be appreciated that the planar shape of the nanoflakes can provide a number of advantages. As a non-limiting example, the planar shape can create greater surface area contact between adjacent nanoflakes, which enables films compared to films made using precursor layers of inks with spherical nanoparticles having With substantially similar material composition and otherwise substantially the same as the inks of the present invention, dense films are formed at lower temperatures and/or shorter times. The planar shape of the nanoflakes can also create greater surface area contact between adjacent nanoflakes, which allows for the use of spherical nanoparticle ink precursor layers that are otherwise substantially the same as the inks of the present invention. The dense film is formed at an annealing temperature at least 50° C. lower than that of the thin film.

所述纳米薄片的平面形状可以相对于相邻的球形纳米颗粒在相邻的纳米薄片之间产生更大的表面积接触,并且由此与本发明油墨形成的前体层所制得的膜相比促进提高的原子混合。与使用其它方面基本上与本发明油墨相同的同样组成的球形纳米颗粒油墨形成的前体层所制得的膜相比,所述纳米薄片的平面形状在致密膜中产生更高的堆积密度。The planar shape of the nanoflakes can result in greater surface area contact between adjacent nanoflakes relative to adjacent spherical nanoparticles, and thus compared to films made from precursor layers formed from inks of the present invention Promotes enhanced atomic mixing. The planar shape of the nanoflakes produces a higher packing density in a dense film compared to a film made using a precursor layer formed from a spherical nanoparticle ink of the same composition that is otherwise substantially the same as the ink of the invention.

所述纳米薄片的平面形状还可以在前体层中产生至少约76%的堆积密度。该纳米薄片的平面形状可以在前体层中产生至少80%的堆积密度。该纳米薄片的平面形状可以在前体层中产生至少90%的堆积密度。该纳米薄片的平面形状可以在前体层中产生至少95%的堆积密度。堆积密度可以是质量/体积、固体/体积或非空隙/体积。The planar shape of the nanoflakes can also result in a packing density of at least about 76% in the precursor layer. The planar shape of the nanoflakes can result in a packing density of at least 80% in the precursor layer. The planar shape of the nanoflakes can produce a packing density of at least 90% in the precursor layer. The planar shape of the nanoflakes can produce a packing density of at least 95% in the precursor layer. Bulk density can be mass/volume, solids/volume or non-voided/volume.

所述纳米薄片的平面形状在光伏器件的半导体吸收体中产生至少约1μm的晶粒尺寸。该纳米薄片的平面形状可以在光伏器件的半导体吸收体中产生至少一个维度上至少约2.0μm的晶粒尺寸。在另外的实施方案中,所述纳米薄片在光伏器件的半导体吸收体中产生至少一个维度上至少约1.0μm的晶粒尺寸。在另外的实施方案中,所述纳米薄片在光伏器件的半导体吸收体中产生至少一个维度上至少约0.5μm的晶粒尺寸。该纳米薄片的平面形状可以在光伏器件的半导体吸收体中产生至少约0.3μm宽的晶粒尺寸。在另外的实施方案中,当所述纳米薄片由下列硒化铜、硒化铟或硒化镓中的一种或多种形成时,纳米薄片的平面形状可以在光伏器件的半导体吸收体中产生至少约0.3μm宽的晶粒尺寸。The planar shape of the nanoflakes produces a grain size of at least about 1 μm in the semiconductor absorber of the photovoltaic device. The planar shape of the nanoflakes can produce a grain size of at least about 2.0 μm in at least one dimension in a semiconductor absorber of a photovoltaic device. In additional embodiments, the nanoflakes produce a grain size of at least about 1.0 μm in at least one dimension in a semiconductor absorber of a photovoltaic device. In additional embodiments, the nanoflakes produce a grain size of at least about 0.5 μm in at least one dimension in a semiconductor absorber of a photovoltaic device. The planar shape of the nanoflakes can produce a grain size of at least about 0.3 μm wide in a semiconductor absorber of a photovoltaic device. In additional embodiments, the planar shape of the nanoflakes can be produced in a semiconductor absorber of a photovoltaic device when the nanoflakes are formed from one or more of copper selenide, indium selenide, or gallium selenide A grain size of at least about 0.3 μm wide.

所述纳米薄片的平面形状提供在形成前体层时避免颗粒快速和/或优先沉降的材料性质。该纳米薄片的平面形状提供在形成前体层时避免具有不同材料组成的纳米薄片快速和/或优先沉降的材料性质。该纳米薄片的平面形状提供在形成前体层时避免具有不同颗粒尺寸的纳米薄片快速和/或优先沉降的材料性质。该纳米薄片的平面形状提供在油墨中避免纳米薄片聚集的材料性质并且由此使得纳米薄片的微细分散溶液成为可能。The planar shape of the nanoflakes provides material properties that avoid rapid and/or preferential settling of particles when forming the precursor layer. The planar shape of the nanoflakes provides a material property that avoids rapid and/or preferential settling of nanoflakes with different material compositions when forming the precursor layer. The planar shape of the nanoflakes provides a material property that avoids rapid and/or preferential settling of nanoflakes with different particle sizes when forming the precursor layer. The planar shape of the nanoflakes provides a material property that avoids aggregation of the nanoflakes in the ink and thus enables a finely dispersed solution of the nanoflakes.

所述纳米薄片的平面形状提供在油墨中避免特定种类的纳米薄片不期望的聚集的材料性质并且由此使纳米薄片的均匀分散溶液成为可能。该纳米薄片的平面形状提供在油墨中避免特定材料组成的纳米薄片不期望的聚集的材料性质并且由此使纳米薄片的均匀分散溶液成为可能。该纳米薄片的平面形状提供在油墨所产生的前体层中避免特定相分离的纳米薄片聚集的材料性质。该纳米薄片具有降低油墨中的纳米薄片与载液之间界面上的表面张力的材料性质以改善分散体品质。The planar shape of the nanoflakes provides a material property that avoids undesired aggregation of certain kinds of nanoflakes in the ink and thus enables a homogeneously dispersed solution of the nanoflakes. The planar shape of the nanoflakes provides a material property that avoids undesired aggregation of nanoflakes of a particular material composition in the ink and thus enables a homogeneously dispersed solution of the nanoflakes. The planar shape of the nanoflakes provides a material property that avoids aggregation of specific phase-separated nanoflakes in the ink-generated precursor layer. The nanoflakes have the material property of reducing the surface tension at the interface between the nanoflakes in the ink and the carrier liquid to improve dispersion quality.

在本发明的一种实施方案中,可以通过利用低分子量分散剂来配制油墨,由于该分散剂与纳米薄片的平面形状的有利相互作用,它的包含是有效的。可以通过利用载液而不用分散剂配制油墨。所述纳米薄片的平面形状提供与其它方面基本上与本发明油墨相同的球形纳米颗粒油墨形成的前体层所制得的膜相比容许IIIA族材料在整个致密膜中更均匀分散的材料性质。在另一实施方案中,所述纳米薄片可以具有无规的平面形状和/或无规的尺寸分布。In one embodiment of the invention, the ink can be formulated by utilizing a low molecular weight dispersant whose inclusion is effective due to its favorable interaction with the planar shape of the nanoflakes. Inks can be formulated by using a carrier liquid without a dispersant. The planar shape of the nanoflakes provides a material property that allows for a more uniform dispersion of the Group IIIA material throughout the dense film compared to films made from precursor layers of spherical nanoparticle inks that are otherwise substantially the same as the inks of the invention . In another embodiment, the nanoflakes may have a random planar shape and/or a random size distribution.

所述纳米薄片可以具有非无规的平面形状和/或非无规的尺寸分布。该纳米薄片可以各自具有小于约500nm而且大于约20nm的长度和/或最大横向尺寸。该纳米薄片可以各自具有约300nm-约50nm的长度和/或最大横向尺寸。所述纳米薄片可以各自具有约100nm或更小的厚度。在另外的实施方案中,平坦纳米薄片的长度是约500nm-约1nm。作为一种非限制性实例,纳米薄片可以具有约300nm-约10nm的长度和/或最大横向尺寸。在另外的实施方案中,纳米薄片可以具有约200nm-约20nm的厚度。在另一实施方案中,这些纳米薄片可以具有约100nm-约10nm的厚度。在一种实施方案中,这些纳米薄片可以具有约200nm-约20nm的厚度。纳米薄片可以各自具有小于约50nm的厚度。纳米薄片可以具有小于约20nm的厚度。纳米薄片可以具有至少约5或更大的纵横比。纳米薄片可以具有至少约10或更大的纵横比。纳米薄片具有至少约15或更大的纵横比。The nanoflakes may have a non-random planar shape and/or a non-random size distribution. The nanoflakes can each have a length and/or largest lateral dimension of less than about 500 nm and greater than about 20 nm. The nanoflakes can each have a length and/or largest lateral dimension of from about 300 nm to about 50 nm. The nanoflakes may each have a thickness of about 100 nm or less. In other embodiments, the planar nanoflakes are about 500 nm to about 1 nm in length. As a non-limiting example, the nanoflakes can have a length and/or largest lateral dimension of about 300 nm to about 10 nm. In other embodiments, the nanoflakes may have a thickness of from about 200 nm to about 20 nm. In another embodiment, the nanoflakes may have a thickness from about 100 nm to about 10 nm. In one embodiment, the nanoflakes may have a thickness from about 200 nm to about 20 nm. The nanoflakes can each have a thickness of less than about 50 nm. The nanoflakes can have a thickness of less than about 20 nm. The nanoflakes can have an aspect ratio of at least about 5 or greater. The nanoflakes can have an aspect ratio of at least about 10 or greater. The nanoflakes have an aspect ratio of at least about 15 or greater.

所述纳米薄片可以不含氧。该纳米薄片可以是单一金属。该纳米薄片可以是IB、IIIA族元素的合金。该纳米薄片可以是IB、IIIA族元素的二元合金。该纳米薄片可以是IB、IIIA族元素的三元合金。该纳米薄片可以是IB、IIIA和/或VIA族元素的四元合金。该纳米薄片可以是IB族-硫属元素化物颗粒和/或IIIA族-硫属元素化物颗粒。此外,所述颗粒可以是基本上不含氧的颗粒,其可以包括含有少于约1wt%氧的那些颗粒。另外的实施方案可以使用具有少于约5wt%氧的材料。另外的实施方案可以使用具有少于约3wt%氧的材料。另外的实施方案可以使用具有少于约2wt%氧的材料。另外的实施方案可以使用具有少于约0.5wt%氧的材料。另外的实施方案可以使用具有少于约0.1wt%氧的材料。The nanoflakes may be free of oxygen. The nanoflakes can be a single metal. The nano flakes may be alloys of group IB and IIIA elements. The nano flakes may be binary alloys of group IB and IIIA elements. The nano flakes may be ternary alloys of group IB and IIIA elements. The nanoflakes may be quaternary alloys of group IB, IIIA and/or VIA elements. The nanoflakes may be Group IB-chalcogenide particles and/or Group IIIA-chalcogenide particles. Additionally, the particles may be substantially oxygen-free particles, which may include those containing less than about 1 wt% oxygen. Additional embodiments may use materials having less than about 5 wt% oxygen. Additional embodiments may use materials having less than about 3 wt% oxygen. Additional embodiments may use materials having less than about 2 wt% oxygen. Additional embodiments may use materials having less than about 0.5 wt% oxygen. Additional embodiments may use materials having less than about 0.1 wt% oxygen.

在本发明的一种实施方案中,所述涂覆步骤在室温下进行。该涂覆步骤可以在大气压力下进行。所述方法可以进一步包括将硒膜沉积到致密膜上。该处理步骤可以通过使用下列至少一种的热处理技术来促进:脉冲热处理、暴露于激光束、或通过IR灯加热、和/或类似的或相关的方法。所述处理可以包含将前体层加热至大于约375℃但是小于衬底熔化温度的温度持续少于15分钟的时间。该处理可以包含将前体层加热至大于约375℃但是小于衬底熔化温度的温度持续1分钟或更少的时间。In one embodiment of the invention, said coating step is performed at room temperature. This coating step can be performed at atmospheric pressure. The method may further include depositing a selenium film on the dense film. This treatment step may be facilitated by heat treatment techniques using at least one of the following: pulsed heat treatment, exposure to a laser beam, or heating by IR lamps, and/or similar or related methods. The processing may comprise heating the precursor layer to a temperature greater than about 375°C but less than the melting temperature of the substrate for a time of less than 15 minutes. The processing may comprise heating the precursor layer to a temperature greater than about 375°C but less than the melting temperature of the substrate for a period of 1 minute or less.

在本发明的另一实施方案中,处理可以包含将前体层加热至退火温度但是小于衬底熔化温度持续1分钟或更少的时间。所述合适气氛可以包含氢气氛。在本发明的另一实施方案中,所述合适气氛包含氮气氛。在另一实施方案中,所述合适气氛包含一氧化碳气氛。该合适气氛可以由具有少于约10%氢气的气氛组成。该合适气氛可以由含硒的气氛组成。该合适气氛可以由非氧硫属元素的气氛组成。在本发明的一种实施方案中,所述合适气氛可以由硒气氛组成,该硒气氛提供大于或等于前体层中的硒蒸气压的分压。在另一实施方案中,所述合适气氛可以由含有硫属元素蒸气的非氧气氛组成,该硫属元素蒸气在大于或等于处理温度和处理压力下的硫属元素蒸气压的硫属元素分压下以使前体层硫属元素的损失减到最少,其中该处理压力是非真空压力。在另一实施方案中,硫属元素气氛可以与一种或多种二元硫属元素化物(任意形状或形式)一起使用,其处在大于或等于处理温度和处理压力下的硫属元素蒸气压的硫属元素分压下以使前体层硫属元素的损失减到最少,其中任选地该处理压力是非真空压力。In another embodiment of the invention, the processing may comprise heating the precursor layer to an annealing temperature but less than the substrate melting temperature for a time of 1 minute or less. The suitable atmosphere may include a hydrogen atmosphere. In another embodiment of the present invention, said suitable atmosphere comprises a nitrogen atmosphere. In another embodiment, the suitable atmosphere comprises a carbon monoxide atmosphere. The suitable atmosphere may consist of an atmosphere having less than about 10% hydrogen. The suitable atmosphere may consist of a selenium-containing atmosphere. The suitable atmosphere may consist of a non-oxygen chalcogen atmosphere. In one embodiment of the invention, said suitable atmosphere may consist of a selenium atmosphere providing a partial pressure greater than or equal to the selenium vapor pressure in the precursor layer. In another embodiment, the suitable atmosphere may consist of a non-oxygen atmosphere containing a chalcogen vapor at a concentration of the chalcogen component greater than or equal to the chalcogen vapor pressure at the process temperature and process pressure. Press down to minimize loss of chalcogen from the precursor layer, wherein the process pressure is a non-vacuum pressure. In another embodiment, a chalcogen atmosphere may be used with one or more binary chalcogenides (in any shape or form) at greater than or equal to the chalcogen vapor at process temperature and process pressure The partial pressure of the chalcogen to minimize the loss of the precursor layer chalcogen, wherein optionally the process pressure is a non-vacuum pressure.

在本发明的另一实施方案中,在配制油墨的步骤之前,包括制造纳米薄片的步骤。所述制造步骤包含提供含有至少一种IB、IIIA和/或VIA族元素的进料颗粒,其中基本上每个进料颗粒具有足够延展性的组成以从非平面起始形状形成平面形状,并且研磨该进料颗粒以至少使每个颗粒的厚度减少到小于100nm。研磨步骤可以在无氧气氛中进行以制造基本上无氧的纳米薄片。所述衬底可以是刚性衬底。所述衬底可以是柔性衬底。该衬底可以是铝箔衬底或聚合物衬底,它是使用市售网涂系统的卷到卷(roll-to-roll)方法(连续的或分段的)中的柔性衬底。刚性衬底可以由选自以下的至少一种材料组成:玻璃、太阳能玻璃、低铁玻璃、绿玻璃、钠钙玻璃、钢、不锈钢、铝、聚合物、陶瓷、金属板、金属化陶瓷板、金属化聚合物板、金属化玻璃板、和/或上述材料的任何单一或多重的组合。所述衬底在处理过程中可以与前体层处在不同温度下。这可以使得衬底能够使用在前体层的处理温度下会熔化或变得不稳定的材料。任选地,这可以涉及在处理过程中积极冷却该衬底。In another embodiment of the present invention, prior to the step of formulating the ink, a step of producing nanoflakes is included. The manufacturing step comprises providing feed particles comprising at least one Group IB, IIIA, and/or VIA element, wherein substantially each feed particle has a sufficiently ductile composition to form a planar shape from a non-planar starting shape, and The feed particles are ground to at least reduce the thickness of each particle to less than 100 nm. The milling step can be performed in an oxygen-free atmosphere to produce substantially oxygen-free nanoflakes. The substrate may be a rigid substrate. The substrate may be a flexible substrate. The substrate can be an aluminum foil substrate or a polymer substrate, which is a flexible substrate in a roll-to-roll process (continuous or segmented) using a commercially available screen coating system. The rigid substrate may consist of at least one material selected from the group consisting of glass, solar glass, low iron glass, green glass, soda lime glass, steel, stainless steel, aluminum, polymer, ceramic, metal plate, metallized ceramic plate, Metallized polymer panels, metallized glass panels, and/or any single or multiple combinations of the foregoing. The substrate may be at a different temperature than the precursor layer during processing. This may enable the substrate to use materials that would melt or become unstable at the processing temperature of the precursor layer. Optionally, this may involve actively cooling the substrate during processing.

在本发明的另一实施方案中,提供一种配制颗粒油墨的方法,其中大部分颗粒是各自含有至少一种来自IB、IIIA和/或VIA族的元素而且具有非球形的平面形状的纳米薄片,其中所述油墨中包含的IB、IIIA和/或VIA族元素的总量使得该油墨具有期望的元素化学计量比。所述方法可以包括用该油墨涂覆衬底以形成前体层并且处理该前体层以形成用于光伏器件的半导体吸收体生长的致密膜。在一种实施方案中,至少60%的颗粒(按重量计或按数目计)是纳米薄片。在另一实施方案中,至少70%的颗粒(按重量计或按数目计)是纳米薄片。在另一实施方案中,至少80%的颗粒(按重量计或按数目计)是纳米薄片。在另一实施方案中,至少90%的颗粒(按重量计或按数目计)是纳米薄片。在另一实施方案中,至少95%的颗粒(按重量计或按数目计)是纳米薄片。In another embodiment of the present invention there is provided a method of formulating a particle ink wherein the majority of the particles are nanoflakes each containing at least one element from groups IB, IIIA and/or VIA and having a non-spherical planar shape , wherein the total amount of group IB, IIIA and/or VIA elements contained in the ink is such that the ink has a desired stoichiometric ratio of the elements. The method may include coating a substrate with the ink to form a precursor layer and processing the precursor layer to form a dense film for semiconductor absorber growth for a photovoltaic device. In one embodiment, at least 60% of the particles (by weight or by number) are nanoflakes. In another embodiment, at least 70% of the particles (by weight or by number) are nanoflakes. In another embodiment, at least 80% of the particles (by weight or by number) are nanoflakes. In another embodiment, at least 90% of the particles (by weight or by number) are nanoflakes. In another embodiment, at least 95% of the particles (by weight or by number) are nanoflakes.

在另一实施方案中,液体油墨可以用一种或多种液态金属制造。例如,油墨可以由镓和/或铟的液态和/或熔融混合物起始来制造。然后可以将铜纳米颗粒加入到混合物中,该混合物然后可以用作油墨/糊料。铜纳米颗粒可购得。作为选择,可以调节Cu-Ga-In混合物的温度(例如冷却)直至固体形成。可以在该温度下将固体研磨直至存在小的纳米颗粒(例如小于5nm)。可以通过例如在退火之前、期间或之后暴露于硒蒸气下而将硒加入到油墨和/或该油墨所形成的膜中。In another embodiment, liquid inks can be made from one or more liquid metals. For example, inks can be manufactured starting from liquid and/or molten mixtures of gallium and/or indium. Copper nanoparticles can then be added to the mixture, which can then be used as an ink/paste. Copper nanoparticles are commercially available. Alternatively, the temperature of the Cu-Ga-In mixture can be adjusted (eg, cooled) until a solid forms. The solid can be ground at this temperature until small nanoparticles (eg less than 5 nm) are present. Selenium may be added to the ink and/or the film formed from the ink, for example, by exposure to selenium vapor before, during or after annealing.

在本发明的另一实施方案中,描述一种包含配制固态和/或液态颗粒的分散体的工艺,该颗粒包含IB和/或IIIA族元素以及任选地至少一种VIA族元素。所述工艺包括沉积该分散体至衬底上以在衬底上形成层并且在合适气氛中使该层反应以形成膜。在该工艺中,至少一组颗粒是含有至少一种IB-IIIA族金属间相的金属间化合颗粒。任何上述实施方案可以使用如本文所述含有金属间相的薄片(微米薄片或纳米薄片)。In another embodiment of the present invention, a process is described comprising formulating a dispersion of solid and/or liquid particles comprising a group IB and/or IIIA element and optionally at least one group VIA element. The process includes depositing the dispersion onto a substrate to form a layer on the substrate and reacting the layer in a suitable atmosphere to form a film. In the process, at least one set of particles are intermetallic particles comprising at least one Group IB-IIIA intermetallic phase. Any of the above embodiments may use flakes (microflakes or nanoflakes) containing intermetallic phases as described herein.

在本发明的另一实施方案中,提供一种组合物,其包含多个含有IB和/或IIIA族元素以及任选地至少一种VIA族元素的颗粒。至少一组颗粒含有至少一种IB-IIIA族金属间相。In another embodiment of the present invention there is provided a composition comprising a plurality of particles comprising a group IB and/or IIIA element and optionally at least one group VIA element. At least one set of particles contains at least one Group IB-IIIA intermetallic phase.

在本发明的另一实施方案中,所述方法可以包括配制包含IB和/或IIIA族元素以及任选地至少一种VIA族元素的颗粒的分散体。该方法可以包括沉积该分散体至衬底上以在衬底上形成层并且在合适气氛中使该层反应以形成膜。至少一组颗粒含有贫IB族的IB-IIIA族合金相。在一些实施方案中,贫IB族的颗粒贡献少于约50mol%的在所有颗粒中存在的IB族元素。所述贫IB族的IB-IIIA族合金相颗粒可以是IIIA族元素中的一种的唯一来源。所述贫IB族的IB-IIIA族合金相颗粒可以含有金属间相而且可以是IIIA族元素中的一种的唯一来源。所述贫IB族的IB-IIIA族合金相颗粒可以含有金属间相而且是IIIA族元素中的一种的唯一来源。所述贫IB族的IB-IIIA族合金相颗粒可以是Cu1In2颗粒而且是材料中的铟的唯一来源。In another embodiment of the present invention, the method may comprise formulating a dispersion of particles comprising a Group IB and/or IIIA element and optionally at least one Group VIA element. The method may include depositing the dispersion onto a substrate to form a layer on the substrate and reacting the layer in a suitable atmosphere to form a film. At least one set of particles contains a Group IB-IIIA alloy phase depleted in Group IB. In some embodiments, Group IB-depleted particles contribute less than about 50 mol % of the Group IB elements present in all particles. The Group IB-depleted Group IB-IIIA alloy phase particles may be the sole source of one of the Group IIIA elements. The Group IB-depleted Group IB-IIIA alloy phase particles may contain an intermetallic phase and may be the sole source of one of the Group IIIA elements. The Group IB-depleted Group IB-IIIA alloy phase particles may contain an intermetallic phase and be the sole source of one of the Group IIIA elements. The Group IB-depleted Group IB-IIIA alloy phase particles may be Cu 1 In 2 particles and be the only source of indium in the material.

应当理解前述膜和/或最终化合物中的任一种可以包括IB-IIIA-VIA族化合物。所述反应步骤可以包含在合适气氛中加热所述层。所述沉积步骤可以包括用分散体涂覆衬底。该分散体中的至少一组颗粒可以是纳米小球形式。该分散体中的至少一组颗粒可以是纳米小球形式而且含有至少一种IIIA族元素。该分散体中的至少一组颗粒可以是包含单质形式的IIIA族元素的纳米小球形式。在本发明的一些实施方案中,所述金属间相不是端际固溶体相。在本发明的一些实施方案中,所述金属间相不是固溶体相。所述金属间化合颗粒可以贡献少于约50mol%的在所有颗粒中存在的IB族元素。所述金属间化合颗粒可以贡献少于约50mol%的在所有颗粒中存在的IIIA族元素。所述金属间化合颗粒可以在沉积于衬底上的分散体中贡献少于约50mol%的IB族元素和少于约50mol%的IIIA族元素。所述金属间化合颗粒可以在沉积于衬底上的分散体中贡献少于约50mol%的IB族元素和多于约50mol%的IIIA族元素。所述金属间化合颗粒可以在沉积于衬底上的分散体中贡献多于约50mol%的IB族元素和少于约50mol%的IIIA族元素。前述任一种的摩尔百分比可以基于所述分散体中存在的所有颗粒中的元素的总摩尔量。在一些实施方案中,至少一些颗粒具有片晶(platelet)状。在一些实施方案中,大部分颗粒具有片晶状。在其它实施方案中,基本上所有的颗粒具有片晶状。It should be understood that any of the foregoing films and/or final compounds may include Group IB-IIIA-VIA compounds. The reacting step may comprise heating the layer in a suitable atmosphere. The depositing step may include coating the substrate with the dispersion. At least one set of particles in the dispersion may be in the form of nanospheres. At least one set of particles in the dispersion may be in the form of nanospheres and contain at least one Group IIIA element. At least one set of particles in the dispersion may be in the form of nanoglobules comprising a Group IIIA element in elemental form. In some embodiments of the invention, the intermetallic phase is not a terminal solid solution phase. In some embodiments of the invention, the intermetallic phase is not a solid solution phase. The intermetallic particles may contribute less than about 50 mol % of Group IB elements present in all particles. The intermetallic particles may contribute less than about 50 mol % of the Group IIIA element present in all particles. The intermetallic particles may contribute less than about 50 mol % of the Group IB element and less than about 50 mol % of the Group IIIA element in the dispersion deposited on the substrate. The intermetallic particles may contribute less than about 50 mol % of the Group IB element and more than about 50 mol % of the Group IIIA element in the dispersion deposited on the substrate. The intermetallic particles may contribute more than about 50 mol % of the Group IB element and less than about 50 mol % of the Group IIIA element in the dispersion deposited on the substrate. The mole percentages for any of the foregoing may be based on the total molar amount of the element in all particles present in the dispersion. In some embodiments, at least some of the particles have a platelet shape. In some embodiments, a majority of the particles have a platelet shape. In other embodiments, substantially all of the particles have a platelet shape.

对于前述实施方案中的任一种,在本发明下使用的金属间材料是二元材料。该金属间材料可以是三元材料。该金属间材料可以包含Cu1In2。该金属间材料可以包含Cu1In2的δ相的组成。该金属间材料可以包含Cu1In2的δ相与Cu16In9限定的相之间的组成。该金属间材料可以包含Cu1Ga2。该金属间材料可以包含Cu1Ga2的中间固溶体。该金属间材料可以包含Cu68Ga38。该金属间材料可以包含Cu70Ga30。该金属间材料可以包含Cu75Ga25。该金属间材料可以包含端际固溶体与仅次于它的中间固溶体之间的相的Cu-Ga组成。该金属间材料可以包含γ1相的Cu-Ga组成(约31.8-约39.8wt%Ga)。该金属间材料可以包含γ2相的Cu-Ga组成(约36.0-约39.9wt%Ga)。该金属间材料可以包含γ3相的Cu-Ga组成(约39.7-约44.9wt%Ga)。该金属间材料可以包含γ2与γ3之间的相的Cu-Ga组成。该金属间材料可以包含端际固溶体与γ1之间的相的Cu-Ga组成。该金属间材料可以包含θ相的Cu-Ga组成(约66.7-约68.7wt%Ga)。该金属间材料可以包含富Cu的Cu-Ga。镓可以作为IIIA族元素以纳米小球的悬浮液形式引入。镓纳米小球可以通过在溶液中产生液态镓的乳液来形成。镓纳米小球可以通过在室温以下骤冷来产生。For any of the preceding embodiments, the intermetallic material used under the present invention is a binary material. The intermetallic material may be a ternary material. The intermetallic material may contain Cu 1 In 2 . The intermetallic material may comprise a delta phase composition of Cu 1 In 2 . The intermetallic material may comprise a composition between the delta phase of Cu1In2 and the phase defined by Cu16In9. The intermetallic material may contain Cu 1 Ga 2 . The intermetallic material may comprise an intermediate solid solution of Cu 1 Ga 2 . The intermetallic material may contain Cu 68 Ga 38 . The intermetallic material may contain Cu 70 Ga 30 . The intermetallic material may contain Cu 75 Ga 25 . The intermetallic material may comprise a Cu-Ga composition of the phase between the terminal solid solution and the intermediate solid solution next to it. The intermetallic material may comprise a Cu-Ga composition (about 31.8 to about 39.8 wt% Ga) of the γ1 phase. The intermetallic material may comprise a Cu—Ga composition (about 36.0 to about 39.9 wt% Ga) in the γ2 phase. The intermetallic material may comprise a Cu-Ga composition (about 39.7 to about 44.9 wt% Ga) of the γ3 phase. The intermetallic material may comprise a Cu-Ga composition of a phase between γ2 and γ3. The intermetallic material may comprise a Cu-Ga composition of the phase between the terminal solid solution and γ1. The intermetallic material may comprise a theta phase Cu—Ga composition (about 66.7 to about 68.7 wt% Ga). The intermetallic material may include Cu-rich Cu—Ga. Gallium can be introduced as a Group IIIA element in a suspension of nanospheres. Gallium nanospheres can be formed by creating an emulsion of liquid gallium in solution. Gallium nanospheres can be produced by quenching below room temperature.

按照本发明前述实施方案中的任一种的工艺可以包括通过搅拌、机械装置、电磁装置、超声装置和/或添加分散剂和/或乳化剂来保持或提高液态镓在溶液中的分散。该工艺可以包括添加一种或多种选自以下的单质颗粒的混合物:铝、碲、或硫。所述合适气氛可以含有硒、硫、碲、H2、CO、H2Se、H2S、Ar、N2或其组合或混合物。该合适气氛可以含有以下的至少一种:H2、CO、Ar和N2。一类或多类颗粒可以掺杂有一种或多种无机材料。任选地,一类或多类颗粒掺杂有一种或多种选自铝(Al)、硫(S)、钠(Na)、钾(K)或锂(Li)的无机材料。The process according to any of the preceding embodiments of the invention may include maintaining or enhancing the dispersion of liquid gallium in solution by stirring, mechanical means, electromagnetic means, ultrasonic means and/or addition of dispersants and/or emulsifiers. The process may include adding a mixture of one or more elemental particles selected from the group consisting of aluminum, tellurium, or sulfur. The suitable atmosphere may contain selenium, sulfur, tellurium, H2 , CO, H2Se , H2S , Ar, N2, or combinations or mixtures thereof. The suitable atmosphere may contain at least one of the following: H2 , CO, Ar and N2 . One or more types of particles may be doped with one or more inorganic materials. Optionally, one or more types of particles are doped with one or more inorganic materials selected from aluminum (Al), sulfur (S), sodium (Na), potassium (K) or lithium (Li).

任选地,本发明的实施方案可以包括具有不会立即与In和/或Ga形成合金的铜源。一种选择会是使用(略微)氧化的铜。另一种选择会是使用CuxSey。注意对于(略微)氧化的铜途径,可能需要还原步骤。基本上,如果在液态In和/或Ga中使用单质铜,油墨制备与涂覆之间的过程的速度应当足够以便颗粒没有生长到将产生厚度不均匀的涂层的尺寸。Optionally, embodiments of the present invention may include having a copper source that does not immediately alloy with In and/or Ga. One option would be to use (slightly) oxidized copper. Another option would be to use CuxSey. Note that for (slightly) oxidized copper pathways, a reduction step may be required. Basically, if elemental copper is used in liquid In and/or Ga, the speed of the process between ink preparation and coating should be sufficient so that the particles do not grow to a size that would produce a coating of uneven thickness.

应当理解温度范围可以只是衬底的温度范围,因为衬底通常是不应在其熔点以上进行加热的唯一一个。这适用衬底中最低熔点的材料,即Al以及其它合适的衬底。It should be understood that the temperature range may only be that of the substrate, since the substrate is usually the only one that should not be heated above its melting point. This applies to the lowest melting material in the substrate, ie Al, and other suitable substrates.

参照说明书的其余部分和附图,对本发明特性和优点的更多了解会变得明显。Further understanding of the nature and advantages of the present invention will become apparent by reference to the remaining portions of the specification and drawings.

附图说明Description of drawings

图1A-1D是说明按照本发明一种实施方案的膜制造的示意性截面图。Figures 1A-1D are schematic cross-sectional views illustrating membrane fabrication according to one embodiment of the present invention.

图2A和2B是按照本发明一种实施方案的纳米薄片的放大侧视图和放大俯视图。2A and 2B are enlarged side and top views of nanoflakes according to one embodiment of the present invention.

图2C是按照本发明一种实施方案的微米薄片的放大俯视图。Figure 2C is an enlarged top view of a microflake according to one embodiment of the present invention.

图3显示按照本发明一种实施方案的研磨系统的示意图。Figure 3 shows a schematic diagram of a milling system according to one embodiment of the present invention.

图4显示按照本发明一种实施方案的卷到卷制造系统的示意图。Figure 4 shows a schematic diagram of a roll-to-roll manufacturing system according to one embodiment of the present invention.

图5显示按照本发明一种实施方案的光伏器件的截面图。Figure 5 shows a cross-sectional view of a photovoltaic device according to one embodiment of the present invention.

图6显示按照本发明一种实施方案的方法的流程图。Figure 6 shows a flow diagram of a method according to one embodiment of the present invention.

图7显示按照本发明一种实施方案的具有多个光伏器件的模块。Figure 7 shows a module with a plurality of photovoltaic devices according to one embodiment of the invention.

图8A-8C显示按照本发明一种实施方案与球形颗粒一起使用的平面颗粒的示意图。8A-8C show schematic representations of planar particles for use with spherical particles according to one embodiment of the invention.

图9A-9D显示按照本发明一种实施方案与平面颗粒一起使用的硫属元素源的不连续印刷层的示意图。9A-9D show schematic diagrams of discrete printed layers of a chalcogen source used with planar particles according to one embodiment of the present invention.

图9E显示按照本发明一种实施方案的具有硫属元素壳的颗粒。Figure 9E shows a particle having a chalcogen shell according to one embodiment of the invention.

图10A-10C显示按照本发明一种实施方案的硫属元素化物平面颗粒的使用。10A-10C illustrate the use of chalcogenide planar particles according to one embodiment of the present invention.

图11A-11C显示按照本发明一种实施方案的成核层。11A-11C show a nucleation layer according to one embodiment of the invention.

图12A-12C显示可以用来通过热梯度制备成核层的装置的示意图。12A-12C show schematic diagrams of apparatus that can be used to prepare nucleation layers via thermal gradients.

图13A-13F显示按照本发明一种实施方案的化学梯度的使用。Figures 13A-13F illustrate the use of chemical gradients according to one embodiment of the invention.

图14显示按照本发明的卷到卷系统。Figure 14 shows a roll-to-roll system according to the present invention.

图15A显示按照本发明一种实施方案使用硫属元素蒸气环境的系统的示意图。Figure 15A shows a schematic diagram of a system using a chalcogen vapor environment according to one embodiment of the invention.

图15B显示按照本发明一种实施方案使用硫属元素蒸气环境的系统的示意图。Figure 15B shows a schematic diagram of a system using a chalcogen vapor environment according to one embodiment of the invention.

图15C显示按照本发明一种实施方案使用硫属元素蒸气环境的系统的示意图。Figure 15C shows a schematic diagram of a system using a chalcogen vapor environment according to one embodiment of the invention.

图16A显示按照本发明一种实施方案与刚性衬底一起使用的系统的一种实施方案。Figure 16A shows an embodiment of a system for use with a rigid substrate according to an embodiment of the present invention.

图16B显示按照本发明一种实施方案与刚性衬底一起使用的系统的一种实施方案。Figure 16B shows an embodiment of a system for use with a rigid substrate according to an embodiment of the present invention.

图17-19显示按照本发明的实施方案使用金属间材料来形成膜。17-19 illustrate the use of intermetallic materials to form films according to embodiments of the present invention.

图20是显示按照本发明的实施方案使用多个层来形成膜的截面图。Figure 20 is a cross-sectional view showing the use of multiple layers to form a film according to an embodiment of the present invention.

图21显示按照本发明的实施方案处理的进料材料。Figure 21 shows feed material treated in accordance with an embodiment of the invention.

图22A和22B显示按照本发明的实施方案的薄片的特征。22A and 22B show features of flakes according to embodiments of the invention.

图23A和23B显示片晶的特征。Figures 23A and 23B show the characteristics of lamellar crystals.

具体实施方式Detailed ways

应当理解前面的概括说明和后面的详细说明都只是示例性和说明性的并且不是对要求保护的发明的限制。可以注意到,用于说明书和所附权利要求书中时,单数形式“一”、“一种”和“该”包括复数对象,除非上下文明确地另作指示。因此,例如,提及“一种材料”可以包括材料的混合物,提及“一种化合物”可以包括多种化合物,等等。本文引用的参考文献因此通过引用全部并入,除非达到它们与本说明书中明确阐述的教导冲突的程度。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the claimed invention. It may be noted that, as used in the specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a material" may include mixtures of materials, reference to "a compound" may include compounds, and so forth. References cited herein are hereby incorporated by reference in their entirety, except to the extent they conflict with the teachings expressly set forth in this specification.

在本说明书和后面的权利要求书中,将会参照若干术语,其应当定义成具有下列含义:In this specification and the following claims, reference will be made to several terms which shall be defined to have the following meanings:

“任选的”或“任选地”意味着之后所描述的情形可以发生或者可以不发生,因此该描述包括该情形发生的情况以及该情形不发生的情况。例如,如果装置任选地包含阻挡膜的特征,这意味着该阻挡膜特征可以存在或可以不存在,并且,因此,该描述既包括其中装置具有阻挡膜特征的结构又包括其中阻挡膜特征不存在的结构。"Optional" or "optionally" means that the subsequently described circumstance may or may not occur, and thus the description includes instances where it occurs and instances where it does not. For example, if a device optionally includes a barrier film feature, this means that the barrier film feature may or may not be present, and, thus, the description includes both structures in which the device has a barrier film feature and structures in which the barrier film feature does not. the structure that exists.

根据本发明的实施方案,通过首先配制各自含有至少一种来自IB、IIIA和/或VIA族元素的非球形颗粒的油墨,用该油墨涂覆衬底以形成前体层,并且加热该前体层以形成致密膜,可以制造光伏器件的活性层。任选地,应当理解在一些实施方案中,可能不需要前体层的致密化,特别是如果前体材料是无氧的和/或基本上无氧的。因此,如果所述颗粒无空气进行处理并且无氧的话,可以任选地略过加热步骤。在一种优选的实施方案中,所述非球形颗粒是形状基本上平面的纳米薄片。可以在合适气氛中处理致密膜以形成IB-IIIA-VIA族化合物。所产生的IB-IIIA-VIA族化合物优选是式CuIn(1-x)GaxS2(1-y)Se2y的Cu、In、Ga和硒(Se)或硫S的化合物,其中0≤x≤1和0≤y≤1。另外应当理解所产生的IB-IIIA-VIA族化合物可以是式CuzIn(1-x)GaxS2(1-y)Se2y的Cu、In、Ga和硒(Se)或硫S的化合物,其中0.5≤z≤1.5,0≤x≤1.0和0≤y≤1.0。According to an embodiment of the present invention, a precursor layer is formed by first formulating inks each containing at least one non-spherical particle of an element from groups IB, IIIA and/or VIA, coating a substrate with the ink, and heating the precursor layer to form a dense film that can be used to fabricate the active layers of photovoltaic devices. Optionally, it should be understood that in some embodiments, densification of the precursor layer may not be required, especially if the precursor material is oxygen-free and/or substantially oxygen-free. Thus, the heating step may optionally be skipped if the particles are processed in the absence of air and oxygen. In a preferred embodiment, the non-spherical particles are nanoflakes that are substantially planar in shape. Dense films can be treated in a suitable atmosphere to form Group IB-IIIA-VIA compounds. The resulting group IB-IIIA-VIA compound is preferably a compound of Cu, In, Ga and selenium (Se) or sulfur S of the formula CuIn (1-x) GaxS2(1-y) Se2y , where 0≤ x≤1 and 0≤y≤1. It should also be understood that the resulting Group IB-IIIA-VIA compound may be Cu, In, Ga, and selenium (Se) or sulfur S of the formula Cu z In (1-x) Ga x S 2 (1-y) Se 2y Compounds where 0.5≤z≤1.5, 0≤x≤1.0 and 0≤y≤1.0.

应当理解Cu、In、Ga、Se和S以外的IB、IIIA和VIA族元素也可以包括在本文所述的IB-IIIA-VIA材料的说明中,而且连字符(“-”例如,在Cu-Se或Cu-In-Se中)的使用并不表示化合物,而是表明由该连字符连接的元素的共存混合物。还应理解IB族有时被称为11族,IIIA族有时被称为13族,而VIA族有时被称为16族。此外,VIA(16)族元素有时被称为硫属元素。在本发明的实施方案中,在若干元素可以彼此组合或彼此取代的情况下,例如In和Ga,或Se,和S,本领域中常见的是在一组括号内包括那些可以组合或互换的元素,例如(In,Ga)或(Se,S)。本说明书中的描述有时采用这种便利措施。最后,也为了方便起见,以其通常接受的化学符号来讨论这些元素。适用于本发明方法的IB族元素包括铜(Cu),银(Ag)和金(Au)。优选IB族元素是铜(Cu)。适用于本发明方法的IIIA族元素包括镓(Ga),铟(In),铝(Al)和铊(Tl)。优选IIIA族元素是镓(Ga)或铟(In)。关注的VIA族元素包括硒(Se),硫(S)和碲(Te),优选VIA族元素是Se和/或S。应当理解还可以使用上述任一种的混合物,例如但是不限于合金、固溶体和化合物。It should be understood that Group IB, IIIA, and VIA elements other than Cu, In, Ga, Se, and S may also be included in the descriptions of IB-IIIA-VIA materials described herein, and that hyphens ("-" for example, in Cu- The use of Se or Cu-In-Se) does not denote a compound, but rather a coexisting mixture of elements linked by this hyphen. It is also understood that Group IB is sometimes referred to as Group 11, Group IIIA is sometimes referred to as Group 13, and Group VIA is sometimes referred to as Group 16. Additionally, Group VIA(16) elements are sometimes referred to as chalcogens. In an embodiment of the invention, where several elements may be combined or substituted for each other, such as In and Ga, or Se, and S, it is common in the art to include within a set of parentheses those elements that may be combined or interchanged elements such as (In,Ga) or (Se,S). The descriptions in this specification sometimes employ this convenience. Finally, and also for convenience, the elements are discussed in terms of their commonly accepted chemical symbols. Group IB elements suitable for use in the method of the present invention include copper (Cu), silver (Ag) and gold (Au). Preferably, the Group IB element is copper (Cu). Group IIIA elements suitable for use in the method of the present invention include gallium (Ga), indium (In), aluminum (Al) and thallium (Tl). Preferably, the group IIIA element is gallium (Ga) or indium (In). Group VIA elements of interest include selenium (Se), sulfur (S) and tellurium (Te), preferably the group VIA elements are Se and/or S. It should be understood that mixtures of any of the foregoing may also be used, such as, but not limited to, alloys, solid solutions, and compounds.

形成膜的方法film forming method

现在参照图1,将要描述一种按照本发明形成半导体膜的方法。应当理解发明的本实施方案使用非真空技术来形成半导体膜。然而,其它实施方案可以在真空环境下形成该膜,而且使用非球形颗粒的本发明并非仅限于非真空的涂覆技术。Referring now to FIG. 1, a method of forming a semiconductor film according to the present invention will be described. It should be understood that this embodiment of the invention uses non-vacuum techniques to form the semiconductor film. However, other embodiments can form the film in a vacuum environment, and the invention using non-spherical particles is not limited to non-vacuum coating techniques.

如同在图1A中看到的那样,提供衬底102,将会在其上形成前体层106(见图1B)。作为非限制性的实例,衬底102可以由金属例如铝制成。在另外的实施方案中,可以将金属例如但是不限于不锈钢、钼、钛、铜、金属化的塑料膜、或前述的组合用作衬底102。作为替代的衬底包括但是不限于陶瓷、玻璃等。任何这些衬底可以是箔、片材、卷等或其组合的形式。根据衬底102的材料,可能有用的是用接触层104覆盖衬底102的表面,从而促进衬底102与有待形成于其上的吸收层之间的电接触,和/或从而限制衬底102在后继步骤中的反应性,和/或用以促进更高品质的吸收体生长。作为非限制性实例,当衬底102由铝制成时,接触层104可以是但不限于钼层。就当前的论述而言,可以将接触层104看作衬底的一部分。因此,如果使用接触层104的话,任何在衬底102上形成或布置一种材料或材料层的论述包括在接触层104上布置或形成所述材料或层。任选地,为了绝缘或其它目的还可以将其它材料层与接触层104一起使用并且仍然看作衬底102的一部分。应当理解接触层104可以包含多于一种类型或多于一个的不连续材料层。任选地,一些实施方案可以将下列的任意一种和/或组合用于接触层:铜、铝、铬、钼、钒等和/或铁-钴合金。任选地,可以包括扩散阻挡层103(用虚影显示)而且层103可以是导电的或不导电的。作为非限制性实例,层103可以由多种材料中的任何组成,这些材料包括但是不限于铬、钒、钨、或者化合物例如氮化物(包括氮化钽、氮化钨、氮化钛、氮化硅、氮化锆和/或氮化铪)、氧化物(包括Al2O3或SiO2)、碳化物(包括SiC)和/或前述的任何单一或多重组合。任选地,扩散阻挡层105(用虚影显示)可以处在衬底102的下侧并且由诸如但是不限于以下的材料组成:铬、钒、钨、或者化合物例如氮化物(包括氮化钽、氮化钨、氮化钛、氮化硅、氮化锆和/或氮化铪)、氧化物(包括Al2O3或SiO2)、碳化物(包括SiC)和/或前述的任何单一或多重组合。可以使层103和/或105适合与本文所述实施方案的任一种一起使用。As seen in FIG. 1A , a substrate 102 is provided on which a precursor layer 106 will be formed (see FIG. 1B ). As a non-limiting example, substrate 102 may be made of a metal such as aluminum. In other embodiments, metals such as, but not limited to, stainless steel, molybdenum, titanium, copper, metalized plastic films, or combinations of the foregoing may be used as the substrate 102 . Alternative substrates include, but are not limited to, ceramics, glass, and the like. Any of these substrates may be in the form of foils, sheets, rolls, etc. or combinations thereof. Depending on the material of substrate 102, it may be useful to cover the surface of substrate 102 with a contact layer 104, thereby facilitating electrical contact between substrate 102 and an absorber layer to be formed thereon, and/or thereby confining substrate 102 reactivity in subsequent steps, and/or to promote higher quality absorber growth. As a non-limiting example, when the substrate 102 is made of aluminum, the contact layer 104 may be, but is not limited to, a molybdenum layer. For the purposes of the present discussion, the contact layer 104 may be considered part of the substrate. Thus, any discussion of forming or disposing a material or layer of material on substrate 102 includes disposing or forming said material or layer on contact layer 104 if contact layer 104 is used. Optionally, other material layers may also be used with the contact layer 104 for insulation or other purposes and still be considered part of the substrate 102 . It should be understood that the contact layer 104 may comprise more than one type or more than one discrete layer of material. Optionally, some embodiments may use any one and/or combination of the following for the contact layer: copper, aluminum, chromium, molybdenum, vanadium, etc. and/or iron-cobalt alloys. Optionally, a diffusion barrier layer 103 (shown in phantom) may be included and layer 103 may be conductive or non-conductive. As non-limiting examples, layer 103 may be composed of any of a variety of materials including, but not limited to, chromium, vanadium, tungsten, or compounds such as nitrides (including tantalum nitride, tungsten nitride, titanium nitride, nitrogen silicon nitride, zirconium nitride and/or hafnium nitride), oxides (including Al2O3 or SiO2), carbides (including SiC) and/or any single or multiple combinations of the foregoing. Optionally, a diffusion barrier layer 105 (shown in phantom) may be on the underside of the substrate 102 and be composed of materials such as, but not limited to, chromium, vanadium, tungsten, or compounds such as nitrides (including tantalum nitride , tungsten nitride, titanium nitride, silicon nitride, zirconium nitride and/or hafnium nitride), oxides (including Al2O3 or SiO2), carbides (including SiC) and/or any single or multiple combinations of the foregoing. Layers 103 and/or 105 may be adapted for use with any of the embodiments described herein.

现在参照图1B,通过用诸如但是不限于油墨的分散体涂覆衬底102来在衬底102上形成前体层106。作为一种非限制性实例,所述油墨可以包含与纳米薄片108混合的载液并且具有使油墨在衬底102上可涂覆的流变性。在一种实施方案中,本发明可以使用与载体混合并且在涂覆之前声波处理的干燥粉末。任选地,油墨可以已经配制直接来自研磨机。在混合多个薄片组合物的情况下,产物可以由各种研磨机混合。这种混合可以进行声波处理,但是可以使用其它形式的搅拌和/或另外的研磨机。用来形成前体层106的油墨可以含有非球形颗粒108例如但是不限于纳米薄片。另外应当理解该油墨可以任选地以各种相对比例中的任一种同时使用非球形的和球形的颗粒。Referring now to FIG. 1B , precursor layer 106 is formed on substrate 102 by coating substrate 102 with a dispersion such as, but not limited to, ink. As a non-limiting example, the ink may comprise a carrier liquid mixed with the nanoflakes 108 and have a rheology that renders the ink coatable on the substrate 102 . In one embodiment, the invention may use a dry powder that is mixed with a carrier and sonicated prior to coating. Optionally, the ink may have been formulated directly from the mill. In the case of mixing multiple flake compositions, the product can be mixed by various mills. This mixing can be sonicated, but other forms of agitation and/or additional mills can be used. The ink used to form precursor layer 106 may contain non-spherical particles 108 such as, but not limited to, nanoflakes. It should also be understood that the ink may optionally employ both non-spherical and spherical particles in any of various relative proportions.

图1B包括前体层106中的纳米薄片108的特写图,如同在放大图象中看到的那样。纳米薄片具有非球形状并且在至少一面上基本上平坦。纳米薄片108的一种实施方案的更详细视图可以在图2A和2B中找到。纳米薄片可以定义成长度和/或最大横向尺寸为约500nm或更小的具有至少一个基本上平坦表面的颗粒,而且该颗粒具有约2或更大的纵横比。在一种实施方案中,该长度和/或最大横向尺寸为约400nm-约1nm。在另一实施方案中,该长度和/或最大横向尺寸为约300nm-约10nm。在另一实施方案中,该长度和/或最大横向尺寸为约200nm-约20nm。在另一实施方案中,该长度和/或最大横向尺寸为约500nm-约200nm。在另外的实施方案中,纳米薄片是厚度为约10-约100nm以及长度为约20nm-约500nm的基本上平面的结构。Figure IB includes a close-up view of nanoflakes 108 in precursor layer 106, as seen in the enlarged image. The nanoflakes have a non-spherical shape and are substantially flat on at least one side. A more detailed view of one embodiment of nanoflakes 108 can be found in Figures 2A and 2B. Nanoflakes can be defined as particles having at least one substantially planar surface having a length and/or largest lateral dimension of about 500 nm or less, and the particles have an aspect ratio of about 2 or greater. In one embodiment, the length and/or largest lateral dimension is from about 400 nm to about 1 nm. In another embodiment, the length and/or largest lateral dimension is from about 300 nm to about 10 nm. In another embodiment, the length and/or largest lateral dimension is from about 200 nm to about 20 nm. In another embodiment, the length and/or largest lateral dimension is from about 500 nm to about 200 nm. In other embodiments, the nanoflakes are substantially planar structures having a thickness of about 10 to about 100 nm and a length of about 20 nm to about 500 nm.

应当理解不同种类的纳米薄片108可以用来形成前体层106。在一个非限制性实例中,该纳米薄片是单质纳米薄片,也就是只有单一原子种类的纳米薄片。纳米薄片可以是Cu、Ga、In或Se的单一金属颗粒。一些油墨可以只有一种纳米薄片。其它油墨可以具有两种或多种在以下方面可以不同的纳米薄片:材料组成和/或其它性质例如但是不限于形状、尺寸、内部结构(例如由一个或多个壳层包围的中心核)、外部涂层(这时是更说明性的,可以使用例如核-壳的措辞)等等。在一种实施方案中,用于前体层106的油墨可以含有包含一种或多种IB族元素的纳米薄片和包含一种或多种不同的IIIA族元素的纳米薄片。优选地,前体层(106)含铜、铟和镓。在另一实施方案中,前体层106可以是无氧的含铜、铟和镓的层。任选地,前体层中的元素比率可以使得该层在处理时形成CuInxGa1-x的化合物,其中0≤x≤1。本领域技术人员将认识到其它IB族元素可以取代Cu以及其它IIIA族元素可以取代In和Ga。任选地,前体可以也含有Se,例如但是不限于Cu-In-Ga-Se片。如果前体不含氧而且不需要致密化的话这是可行的。在另外的实施方案中,前体材料可以含有IB、IIIA和VIA族元素的纳米薄片。在一个非限制性实例中,前体可以含有Cu-In-Ga-Se纳米薄片,如果无空气形成该纳米薄片而且不需要成膜之前的致密化的话这会是特别有利的。It should be understood that different types of nanoflakes 108 may be used to form precursor layer 106 . In a non-limiting example, the nanoflakes are elemental nanoflakes, ie nanoflakes having only a single atomic species. The nanoflakes can be single metallic particles of Cu, Ga, In or Se. Some inks can have only one type of nanoflakes. Other inks may have two or more nanoflakes that may differ in material composition and/or other properties such as, but not limited to, shape, size, internal structure (e.g., a central core surrounded by one or more shells), Exterior coatings (to be more descriptive at this point, wording such as core-shell could be used), etc. In one embodiment, the ink used in precursor layer 106 may contain nanoflakes comprising one or more Group IB elements and nanoflakes comprising one or more different Group IIIA elements. Preferably, the precursor layer (106) contains copper, indium and gallium. In another embodiment, precursor layer 106 may be an oxygen-free copper, indium, and gallium-containing layer. Optionally, the ratio of elements in the precursor layer may be such that the layer forms a compound of CuInxGai -x , where 0≤x≤1, when processed. Those skilled in the art will recognize that other Group IB elements may be substituted for Cu and other Group IIIA elements may be substituted for In and Ga. Optionally, the precursor may also contain Se, such as but not limited to Cu-In-Ga-Se flakes. This is feasible if the precursor is oxygen-free and does not require densification. In additional embodiments, the precursor material may contain nanoflakes of group IB, IIIA and VIA elements. In one non-limiting example, the precursor may contain Cu-In-Ga-Se nanoflakes, which would be particularly advantageous if the nanoflakes were formed without air and without densification prior to film formation.

任选地,油墨中的纳米薄片108可以是合金纳米薄片。在一个非限制性实例中,该纳米薄片可以是二元合金纳米薄片例如Cu-In、In-Ga或Cu-Ga。作为替代,该纳米薄片可以是IB、IIIA族元素的二元合金、IB、VIA族元素的二元合金和/或IIIA、VIA族元素的二元合金。在另外的实施方案中,该颗粒可以是IB、IIIA和/或VIA族元素的三元合金。例如,该颗粒可以是任何上述元素的三元合金颗粒诸如但是不限于Cu-In-Ga。在另外的实施方案中,油墨可以含有作为IB、IIIA和/或VIA族元素的四元合金的颗粒。一些实施方案可以具有四元或多元纳米薄片。该油墨还可以组合不同种类的纳米薄片例如但是不限于单质纳米薄片与合金纳米薄片等。在一种实施方案中,用于形成前体层106的纳米薄片优选除了那些作为杂质不可避免地存在的量以外不含氧。任选地,该纳米薄片含有少于约0.1wt%的氧。在另外的实施方案中,纳米薄片含有少于约0.5wt%的氧。在另外的实施方案中,纳米薄片含有少于约1.0wt%的氧。在另一实施方案中,纳米薄片含有少于约3.0wt%的氧。在另外的实施方案中,纳米薄片含有少于约5.0wt%的氧。Optionally, the nanoflakes 108 in the ink may be alloy nanoflakes. In a non-limiting example, the nanoflakes may be binary alloy nanoflakes such as Cu-In, In-Ga, or Cu-Ga. Alternatively, the nanoflakes may be binary alloys of elements from groups IB, IIIA, binary alloys of elements from groups IB, VIA and/or binary alloys of elements from groups IIIA, VIA. In other embodiments, the particles may be ternary alloys of Group IB, IIIA and/or VIA elements. For example, the particles may be ternary alloy particles of any of the above elements such as but not limited to Cu-In-Ga. In further embodiments, the ink may contain particles that are quaternary alloys of Group IB, IIIA and/or VIA elements. Some embodiments may have quaternary or multicomponent nanoflakes. The ink can also combine different kinds of nanoflakes such as but not limited to simple nanoflakes and alloy nanoflakes. In one embodiment, the nanoflakes used to form precursor layer 106 are preferably free of oxygen other than those amounts that are unavoidably present as impurities. Optionally, the nanoflakes contain less than about 0.1 wt% oxygen. In other embodiments, the nanoflakes contain less than about 0.5 wt% oxygen. In other embodiments, the nanoflakes contain less than about 1.0 wt% oxygen. In another embodiment, the nanoflakes contain less than about 3.0 wt% oxygen. In other embodiments, the nanoflakes contain less than about 5.0 wt% oxygen.

任选地,油墨中的纳米薄片108可以是硫属元素化物颗粒,例如但是不限于IB族或IIIA族硒化物。在一个非限制性实例中,该纳米薄片可以是与一种或多种IB族(新体例:11族)元素例如铜(Cu)、银(Ag)和金(Au)形成的IB族硫属元素化物。实例包括但是不限于CuxSey,其中x为约1-10以及y为约1-10。在本发明的一些实施方案中,x<y。作为选择,一些实施方案可以具有更富硒的硒化物,例如但是不限于Cu1Sex(其中x>1)。这可以提供增加的硒来源,如同在2006年2月23日提交并且全部通过引用并入本文的共同转让的、共同待审的美国专利申请11/243,522(律师案卷号NSL-046)中论述的那样。在另一非限制性实例中,纳米薄片可以是与一种或多种IIIA族(新体例:16族)元素例如铝(Al)、铟(In)、镓(Ga)和铊(Tl)形成的IIIA族硫属元素化物。实例包括InxSey和GaxSey,其中x为约1-10以及y为约1-10。更进一步地,纳米薄片可以是一种或多种IB族元素、一种或多种IIIA族元素和一种或多种硫属元素的IB-IIIA族-硫属元素化物化合物。实例包括CuInGa-Se2。另外的实施方案可以用另一VIA族元素例如但是不限于硫、或者多种VIA族元素的组合例如硫和硒二者代替硒化物成分。Optionally, the nanoflakes 108 in the ink may be chalcogenide particles such as, but not limited to, Group IB or Group IIIA selenides. In a non-limiting example, the nanoflakes may be Group IB chalcogenides formed with one or more Group IB (new style: Group 11) elements such as copper (Cu), silver (Ag), and gold (Au). elemental compounds. Examples include, but are not limited to , CuxSey , where x is about 1-10 and y is about 1-10. In some embodiments of the invention, x<y. Alternatively, some embodiments may have more selenium-rich selenides, such as but not limited to Cu 1 Se x (where x > 1). This may provide an increased source of selenium, as discussed in commonly assigned, co-pending U.S. Patent Application 11/243,522 (Attorney Docket No. NSL-046), filed February 23, 2006 and incorporated herein by reference in its entirety like that. In another non-limiting example, the nanoflakes can be formed with one or more group IIIA (new style: group 16) elements such as aluminum (Al), indium (In), gallium (Ga) and thallium (Tl) Group IIIA chalcogenides. Examples include In x Se y and Ga x Se y , where x is about 1-10 and y is about 1-10. Still further, the nanoflakes may be Group IB-IIIA-chalcogenide compounds of one or more Group IB elements, one or more Group IIIA elements, and one or more chalcogen elements. Examples include CuInGa-Se 2 . Additional embodiments may replace the selenide component with another Group VIA element such as, but not limited to, sulfur, or a combination of Group VIA elements such as both sulfur and selenium.

应当理解用于本发明的油墨可以包括多于一种类型的硫属元素化物纳米薄片。例如,一些可以包括来自IB族-硫属元素化物和IIIA族-硫属元素化物的纳米薄片。另外的可以包括来自具有不同化学计量比的不同IB族-硫属元素化物的纳米薄片。另外的可以包括来自具有不同化学计量比的不同IIIA族-硫属元素化物的纳米薄片。It should be understood that inks useful in the present invention may include more than one type of chalcogenide nanoflakes. For example, some may include nanoflakes from Group IB-chalcogenides and Group IIIA-chalcogenides. Additional ones may include nanoflakes from different Group IB-chalcogenides with different stoichiometric ratios. Additional ones may include nanoflakes from different Group IIIA-chalcogenides with different stoichiometric ratios.

任选地,油墨中的纳米薄片108还可以是至少一种固溶体的颗粒。在一个非限制性实例中,该纳米粉末可以含有铜-镓固溶体颗粒,以及铟颗粒、铟-镓固溶体颗粒、铜-铟固溶体颗粒和铜颗粒中的至少一种。作为选择,该纳米粉末可以含有铜颗粒和铟-镓固溶体颗粒。Optionally, the nanoflakes 108 in the ink may also be particles of at least one solid solution. In a non-limiting example, the nanopowder may contain copper-gallium solid solution particles, and at least one of indium particles, indium-gallium solid solution particles, copper-indium solid solution particles, and copper particles. Alternatively, the nanopowder may contain copper particles and indium-gallium solid solution particles.

使用纳米薄片基分散体的优点之一在于,通过按合并时形成前体层的较薄子层的顺序构成前体层,可以从上到下地改变前体层106中的元素浓度。可以沉积材料以形成第一、第二层或随后的子层,并且在至少一种合适气氛中反应以形成活性层的相应成分。在另一实施方案中,可以在沉积子层时使该子层反应。构成每一子层用油墨的纳米薄片的相对元素浓度可以变化。因此,例如,吸收层内的镓浓度可以随吸收层内的深度而变化。前体层106(或者选定成分子层,如果有的话)可以用具有期望化学计量比的受控整体组成配置的前体材料沉积。关于按子层顺序构成层的一种方法的更多详情可以在2005年10月3日提交并且为了所有目的全部通过引用并入本文的共同转让的、共同待审的美国专利申请11/243,492(律师案卷号NSL-040)中找到。One of the advantages of using nanoflake-based dispersions is that the concentration of elements in the precursor layer 106 can be varied from top to bottom by forming the precursor layers in the order of the thinner sublayers that, when combined, form the precursor layer. Materials may be deposited to form the first, second or subsequent sub-layers and reacted in at least one suitable atmosphere to form the corresponding components of the active layer. In another embodiment, the sublayer can be reacted as it is deposited. The relative elemental concentrations of the nanoflakes making up the ink for each sublayer can vary. Thus, for example, the gallium concentration within the absorber layer may vary with depth within the absorber layer. Precursor layer 106 (or selected molecular layers, if any) may be deposited from precursor materials having a controlled bulk composition configuration of a desired stoichiometry. More details on one method of composing layers in sublayer order can be found in commonly assigned, co-pending U.S. Patent Application 11/243,492, filed October 3, 2005 and incorporated herein by reference in its entirety for all purposes ( Attorney Docket No. NSL-040).

应当理解所述膜可以是由分散体、例如但是不限于油墨、糊料或涂料所制成的层。可以将分散体的层涂布至衬底上并且退火以形成前体层106。例如可以通过形成含有IB族、IIIA族元素的无氧纳米薄片及混合这些纳米薄片并将它们加入到载体中制备分散体,该载体可以包含载液(例如但是不限于溶剂)及任何添加剂。It should be understood that the film may be a layer made from a dispersion such as but not limited to ink, paste or paint. A layer of the dispersion may be coated onto a substrate and annealed to form precursor layer 106 . For example, the dispersion can be prepared by forming oxygen-free nanoflakes containing group IB, group IIIA elements, mixing these nanoflakes and adding them to a carrier, which may contain a carrier liquid (such as but not limited to a solvent) and any additives.

通常,可以通过将纳米薄片连同(任选地)其它常用于制备油墨的成分的某些组合一起分散在含有分散剂(例如表面活性剂或聚合物)的载体中而形成油墨。在本发明的一些上述方案中,不用分散剂或其它添加剂配制油墨。载液可以是水性(水基)或非水性(有机)溶剂。其它成分不限制地包括分散剂、粘结剂、乳化剂、消泡剂、干燥剂、溶剂、填料、补充剂、增稠剂、膜调整剂、抗氧化剂、流动和均平剂、增塑剂和防腐剂。可以在各种组合下添加这些成分以改善膜质量并且优化该纳米薄片分散体的涂覆性能。混合纳米薄片并且随后由这些混合的纳米薄片制备分散体的替代方法会是,制备每一单独类型的纳米薄片的独立分散体而且随后将这些分散体混合。应当理解,由于所述纳米薄片的平面形状与载液的有利相互作用,所述油墨的一些实施方案可以通过利用载液以及不用分散剂来配制。In general, inks can be formed by dispersing the nanoflakes, along with (optionally) some combination of other ingredients commonly used to make inks, in a vehicle containing a dispersant such as a surfactant or a polymer. In some of the above aspects of the invention, the inks are formulated without dispersants or other additives. Carrier fluids can be aqueous (water-based) or non-aqueous (organic) solvents. Other ingredients include without limitation dispersants, binders, emulsifiers, defoamers, desiccants, solvents, fillers, extenders, thickeners, film regulators, antioxidants, flow and leveling agents, plasticizers and preservatives. These ingredients can be added in various combinations to improve film quality and optimize the coating performance of the nanoflake dispersion. An alternative method of mixing nanoflakes and then preparing dispersions from these mixed nanoflakes would be to prepare separate dispersions of each individual type of nanoflakes and then mix these dispersions. It should be appreciated that some embodiments of the ink can be formulated by using a carrier liquid and without a dispersing agent due to the favorable interaction of the planar shape of the nanoflakes with the carrier liquid.

可以通过各种基于溶液的涂覆技术中的任一种在衬底102上由分散体形成前体层106,这些技术包括但是不限于湿涂、喷涂、旋涂、刮刀涂覆、接触印刷、顶端进料反转印刷、底部进料反转印刷、喷嘴进料反转印刷、凹版印刷、微凹印刷、反转微凹印刷、逗号直接印刷(comma direct printing)、辊涂、狭缝模压涂覆、Meyer棒式涂覆、压边直接涂覆(lip direct coating)、双压边直接涂覆、毛细管涂覆、喷墨印刷、射流沉积、喷射沉积等,以及上述和/或相关技术的组合。不管颗粒尺寸或尺寸如何,前述内容可以适用于本文的任何实施方案。Precursor layer 106 may be formed from a dispersion on substrate 102 by any of a variety of solution-based coating techniques including, but not limited to, wet coating, spray coating, spin coating, doctor blade coating, contact printing, Top-fed reverse printing, bottom-fed reverse printing, nozzle-fed reverse printing, gravure printing, micro-gravure printing, reverse micro-gravure printing, comma direct printing, roll coating, slot die coating Coating, Meyer rod coating, lip direct coating, double-bed direct coating, capillary coating, inkjet printing, jet deposition, spray deposition, etc., and combinations of the above and/or related technologies . Regardless of particle size or dimensions, the foregoing may apply to any of the embodiments herein.

在一些实施方案中,可以将额外的硫属元素、合金颗粒或单质颗粒例如微米或亚微米尺寸的硫属元素粉末混入含有纳米薄片的分散体中以便使纳米薄片与额外的硫属元素同时沉积。作为替代可以在沉积含纳米薄片的分散体之前或之后在独立的基于溶液的涂覆步骤中将硫属元素粉末沉积在衬底上。在另一实施方案中,可以将IIIA族元素材料例如但是不限于镓液滴与薄片混合。这在2006年2月23日提交并且全部通过引用并入本文的共同转让的、共同待审的美国专利申请11/243,522(律师案卷号NSL-046)中更充分地得到描述。这可以产生附加层107(在图1C中用虚影显示)。任选地,可以通过以下的任意组合加入额外的硫属元素:(1)能够溶液沉积的任何硫属元素源,例如混入前体层中或作为独立的层沉积的Se或S纳米或微米尺寸粉末,(2)硫属元素(例如Se或S)蒸发,(3)H2Se(H2S)气氛,(4)硫属元素(例如Se或S)气氛,(5)H2气氛,(6)有机硒气氛,例如二乙基硒或另外的有机金属材料,(7)另外的还原性气氛,例如CO,和(8)热处理。作为Se/(Cu+In+Ga+Se)给出的纳米薄片与额外硫属元素的化学计量比可以是约0-约1000。In some embodiments, additional chalcogen, alloy particles, or elemental particles such as micron or submicron sized chalcogen powders can be mixed into the nanoflake-containing dispersion so that the nanoflakes are deposited simultaneously with the additional chalcogen . Alternatively the chalcogen powder may be deposited on the substrate in a separate solution-based coating step before or after deposition of the nanoflake-containing dispersion. In another embodiment, droplets of a Group IIIA elemental material such as but not limited to gallium may be mixed with the flakes. This is more fully described in commonly assigned, co-pending US Patent Application 11/243,522 (Attorney Docket No. NSL-046), filed February 23, 2006 and incorporated herein by reference in its entirety. This can result in an additional layer 107 (shown in phantom in Figure 1C). Optionally, additional chalcogens can be added by any combination of: (1) any source of chalcogens capable of solution deposition, such as Se or S nanometer or micrometer size mixed into the precursor layer or deposited as a separate layer powder, (2) chalcogen (such as Se or S) evaporation, (3) H2Se ( H2S ) atmosphere, (4) chalcogen (such as Se or S) atmosphere, (5) H2 atmosphere, (6) an organic selenium atmosphere, such as diethyl selenium or another organometallic material, (7) another reducing atmosphere, such as CO, and (8) heat treatment. The stoichiometric ratio of nanoflakes to additional chalcogen given as Se/(Cu+In+Ga+Se) can be from about 0 to about 1000.

注意所提出的纳米薄片混合物的溶液基沉积不一定必须通过在单一步骤中沉积这些混合物来进行。在本发明的一些实施方案中,可以通过依次在两个或多个步骤中沉积具有不同组成的IB-、IIIA-和硫属元素基微粒的纳米薄片分散体来进行涂覆步骤。例如,该方法可以首先沉积含有硒化铟纳米薄片(例如具有约1的In/Se之比)的分散体,并随后沉积硒化铜纳米薄片(例如具有约1的Cu/Se之比)和硒化镓纳米薄片(例如具有约1的Ga/Se之比)的分散体,接着任选地沉积Se的分散体。这会产生三个溶液基沉积层的叠层,可以将它们烧结在一起。作为选择,可以在沉积下一层之前加热或烧结每个层。许多不同的顺序是可能的。例如,可以如上所述在其中w≥0(大于或等于零),x≥0(大于或等于零)且y≥0(大于或等于零)的CuwInxGay的均匀、致密层上方形成InxGaySez层,其中x≥0(大于或等于零),y≥0(大于或等于零)且z≥0(大于或等于零),并随后将这两层转变(烧结)成CIGS。作为选择,CuwInxGay层可以在InxGaySez的均匀、致密层上方形成并随后将这两层转变(烧结)成CIGS。Note that solution-based deposition of the proposed nanoflake mixtures does not necessarily have to be performed by depositing these mixtures in a single step. In some embodiments of the invention, the coating step may be performed by depositing nanoflake dispersions of IB-, IIIA- and chalcogen-based microparticles with different compositions sequentially in two or more steps. For example, the method may first deposit a dispersion containing indium selenide nanoflakes (e.g., having an In/Se ratio of about 1), and subsequently deposit copper selenide nanoflakes (e.g., having a Cu/Se ratio of about 1) and A dispersion of gallium selenide nanoflakes (eg, having a Ga/Se ratio of about 1), followed by optionally depositing a dispersion of Se. This produces a stack of three solution-based deposited layers, which can be sintered together. Alternatively, each layer may be heated or sintered before the next layer is deposited. Many different sequences are possible. For example, In x can be formed above a uniform, dense layer of Cu w In x Ga y where w ≥ 0 (greater than or equal to zero), x ≥ 0 (greater than or equal to zero), and y ≥ 0 (greater than or equal to zero), as described above Ga y Se z layer, where x ≥ 0 (greater than or equal to zero), y ≥ 0 (greater than or equal to zero) and z ≥ 0 (greater than or equal to zero), and subsequently convert (sinter) these two layers into CIGS. Alternatively, a layer of CuwInxGay can be formed over a uniform , dense layer of InxGaySez and the two layers subsequently converted (sintered) into CIGS.

在替代性的实施方案中,如上所述的纳米薄片基分散体可以进一步包含单质IB和/或IIIA纳米颗粒(例如金属形式)。这些纳米颗粒可以呈纳米薄片形式,或者任选地采取其它形状例如但是不限于球形、椭球形、椭圆形、立方形、或其它非平面形状。这些颗粒除了固体以外还可以包括乳液、熔融材料、混合物等。例如CuxInyGazSeu材料,其中u>0(大于零),x≥0(大于或等于零),y≥0(大于或等于零)且z≥0(大于或等于零),可以与额外的硒源(或其它硫属元素)以及金属镓合并成分散体,该分散体通过烧结在衬底上形成膜。可以例如通过最初在溶液中产生液体镓的乳液来形成金属镓纳米颗粒和/或纳米小球和/或纳米液滴。可以将镓金属或在具有或没有乳化剂的溶剂中的镓金属加热以液化该金属,然后将它声波处理和/或另外在溶剂的存在下机械搅拌。可以在具有或没有表面活性剂、分散剂和/或乳化剂的溶剂的存在下以机械、电磁或声学方式进行搅拌。镓纳米小球和/或纳米液滴然后可以按固体微粒形式操作,通过在等于或低于室温的环境中骤冷以便将液体镓纳米小球转变为固体镓纳米颗粒。Matthew R.Robinson和Martin R.Roscheisen的题为“Metallic Dispersion”的共同转让美国专利申请11/081,163中详细描述了这种技术,通过引用将其全部公开内容并入本文。In alternative embodiments, nanoflake-based dispersions as described above may further comprise elemental IB and/or IIIA nanoparticles (eg, in metallic form). These nanoparticles may be in the form of nanoflakes, or optionally take other shapes such as, but not limited to, spherical, spheroidal, elliptical, cubic, or other non-planar shapes. These particles may include emulsions, molten materials, mixtures, etc. in addition to solids. For example Cu x In y Ga z Se u material, where u>0 (greater than zero), x≥0 (greater than or equal to zero), y≥0 (greater than or equal to zero) and z≥0 (greater than or equal to zero), can be combined with additional A source of selenium (or other chalcogens) and gallium metal are combined into a dispersion that is sintered to form a film on a substrate. Gallium metal nanoparticles and/or nanoglobules and/or nanodroplets may be formed, for example, by initially creating an emulsion of liquid gallium in solution. Gallium metal or gallium metal in a solvent with or without an emulsifier can be heated to liquefy the metal, which is then sonicated and/or otherwise mechanically stirred in the presence of the solvent. Agitation can be performed mechanically, electromagnetically or acoustically in the presence of solvents with or without surfactants, dispersants and/or emulsifiers. The gallium nanoglobules and/or nanoliquid droplets can then be manipulated as solid particles by quenching in an environment at or below room temperature to convert the liquid gallium nanoglobules into solid gallium nanoparticles. This technique is described in detail in commonly assigned US patent application Ser. No. 11/081,163, entitled "Metallic Dispersion," by Matthew R. Robinson and Martin R. Roscheisen, the entire disclosure of which is incorporated herein by reference.

注意可以通过在溶液沉积和/或一个或多个前体层烧结之前、期间或之后使用以下的任意组合来优化该方法:(1)能够溶液沉积的任何硫属元素源,例如混入前体层中或作为独立的层沉积的Se或S纳米粉末,(2)硫属元素(例如Se或S)蒸发,(3)H2Se(H2S)气氛,(4)硫属元素(例如Se或S)气氛,(5)含有机硒的气氛,例如二乙基硒,(6)H2气氛,(7)另外的还原气氛,例如CO,(8)湿化学还原步骤,以及(9)热处理。Note that this method can be optimized by using any combination of the following before, during, or after solution deposition and/or sintering of one or more precursor layers: (1) any chalcogen source capable of solution deposition, e.g. Se or S nanopowder deposited in or as a separate layer, (2) chalcogen (e.g. Se or S) evaporation, (3) H2Se ( H2S ) atmosphere, (4) chalcogen (e.g. Se or S) atmosphere, (5) an atmosphere containing organoselenium, such as diethylselenium, (6) an atmosphere of H2 , (7) an additional reducing atmosphere, such as CO, (8) a wet chemical reduction step, and (9) heat treatment.

现在参照图1C,接着可以在合适气氛中处理前体层106以形成膜。该膜可以是致密膜。在一种实施方案中,这包括将前体层106加热到足以将油墨(沉积的油墨)转变的温度。注意溶剂和可能的分散剂已经通过干燥除去。该温度可以是约375℃-约525℃(用于在铝箔或高温聚合物衬底上处理的安全温度范围)。处理可以在该范围内的各种温度下进行,例如但是不限于450℃。在另外的实施方案中,衬底处的温度在前体层水平上可以是约400℃-约600℃,但是在衬底上温度较低。如果去掉某些步骤的话,还可以将处理的持续时间减少至少约20%。加热可以在约4分钟-约10分钟的范围内进行。在一种实施方案中,处理包含将前体层加热至大于约375℃但是小于衬底熔化温度的温度持续少于约15分钟的时间。在另一实施方案中,处理包含将前体层加热至大于约375℃但是小于衬底熔化温度的温度持续1分钟或更少的时间。在另一实施方案中,处理包含将前体层加热至退火温度但是小于衬底熔化温度持续约1分钟或更少的时间。处理步骤还可以通过使用至少一种下列工艺的热处理技术来促进:脉冲热处理、暴露于激光束、或通过IR灯加热、和/或类似的或相关的工艺。Referring now to FIG. 1C , precursor layer 106 may then be processed in a suitable atmosphere to form a film. The membrane may be a dense membrane. In one embodiment, this includes heating precursor layer 106 to a temperature sufficient to convert the ink (deposited ink). Note that solvent and possible dispersants have been removed by drying. The temperature may be from about 375°C to about 525°C (safe temperature range for processing on aluminum foil or high temperature polymer substrates). Treatment can be performed at various temperatures within this range, such as but not limited to 450°C. In other embodiments, the temperature at the substrate may be from about 400°C to about 600°C at the level of the precursor layer, but at a lower temperature on the substrate. The duration of the process can also be reduced by at least about 20% if certain steps are eliminated. Heating can be performed in the range of about 4 minutes to about 10 minutes. In one embodiment, treating comprises heating the precursor layer to a temperature greater than about 375°C but less than the melting temperature of the substrate for a time of less than about 15 minutes. In another embodiment, the processing comprises heating the precursor layer to a temperature greater than about 375° C. but less than the melting temperature of the substrate for a period of 1 minute or less. In another embodiment, the processing comprises heating the precursor layer to an annealing temperature but less than the substrate melting temperature for a time of about 1 minute or less. The processing step may also be facilitated by heat treatment techniques using at least one of the following processes: pulsed heat treatment, exposure to a laser beam, or heating by IR lamps, and/or similar or related processes.

与图1C中的退火步骤有关的气氛也可以变化。在一种实施方案中,合适气氛包括含有超过约10%氢气的气氛。在另一实施方案中合适气氛包含一氧化碳气氛。然而,在所述颗粒中存在的氧含量非常低或没有氧的另外的实施方案中,合适气氛可以是氮气氛、氩气氛或具有少于约10%氢气的气氛。这些其它气氛可以是有利的以使制备期间的材料处理成为可能和得到改进。The atmosphere associated with the annealing step in Figure 1C can also be varied. In one embodiment, suitable atmospheres include atmospheres containing greater than about 10% hydrogen. In another embodiment the suitable atmosphere comprises a carbon monoxide atmosphere. However, in other embodiments where very low or no oxygen is present in the particles, a suitable atmosphere may be a nitrogen atmosphere, an argon atmosphere, or an atmosphere having less than about 10% hydrogen. These other atmospheres may be advantageous to enable and improve material handling during fabrication.

尽管脉冲热处理通常仍然是有前景的,但是某些脉冲热处理仪器例如定向等离子弧系统面临众多挑战。在该具体实例中,足以提供脉冲热处理的定向等离子弧系统是操作成本高的固有笨重的系统。该定向等离子弧系统要求一定水平的功率,该功率使整个系统在能量上高花费并且对制造过程增加相当大成本。定向等离子弧也显示出脉冲之间长的滞后时间并且因此使该系统难以与连续的卷到卷系统配合和同步。这种系统在脉冲之间再充电花费的时间也产生非常慢的系统或使用更多定向等离子弧的系统,这使系统成本迅速增加。While pulsed heat treatment generally remains promising, certain pulsed heat treatment instruments, such as directional plasma arc systems, face a number of challenges. In this particular example, a directional plasma arc system sufficient to provide pulsed heat treatment is an inherently cumbersome system that is costly to operate. The directional plasma arc system requires a level of power that makes the overall system energy costly and adds considerable cost to the manufacturing process. Directional plasma arcs also exhibit long lag times between pulses and thus make the system difficult to coordinate and synchronize with continuous roll-to-roll systems. The time such a system takes to recharge between pulses also results in a very slow system or a system using a more directional plasma arc, which adds up rapidly in system cost.

在本发明的一些实施方案中,可以使用其它适合快速热处理的装置,它们包括用于退火的在绝热模式下使用的脉冲层(Shtyrokov EI,Sov.Phys. Semicond.91309),连续波激光(通常10-30W)(Ferris S D1979Laser-Solid Interactions and LaserProcessing(New York:AIP)),脉冲电子束装置(Kamins T I1979Appl.Phys.Leti.35282-5),扫描电子束系统(McMahon R A1979J.Vac.Sci.Techno.161840-2)(Regolini J L1979Appl.Phys.Lett.34410),其它射束系统(Hodgson R T1980Appl.Phys.Lett.37187-9),石墨板加热器(Fan J C C1983Mater.Res.Soc.Proc.4751-8)(M W Geis1980Appl.Phys.Lett.37454),灯系统(Cohen R L1978Appl.Phys.Lett.33751-3),以及扫描氢焰系统(Downey D F1982Solid State Technol.2587-93)。在本发明的一些实施方案中,可以使用非定向的低密度系统。作为选择,其它已知的脉冲加热工艺也在美国专利4,350,537和4,356,384中得到描述。另外,应当理解如过期美国专利3,950,187(“Method andapparatus involving pulsed electron beam processing ofsemiconductor devices”)和4,082,958(“Apparatus involvingpulsed electron beam processing of semiconductor devices”)中所述的涉及太阳能电池的脉冲电子束处理和快速热处理的方法和设备处于公用领域并且是公知的。美国专利4,729,962也描述用于太阳能电池的快速热处理的另一种已知方法。上述可以单独地或者与上述或其它类似处理技术与本发明的各种实施方案单一或多重组合应用。In some embodiments of the invention, other devices suitable for rapid thermal processing can be used, including pulsed layers used in adiabatic mode for annealing (Shtyrokov EI, Sov. Phys. Semicond. 91309), continuous wave lasers (usually 10-30W) (Ferris S D1979Laser-Solid Interactions and LaserProcessing (New York: AIP)), pulsed electron beam device (Kamins T I1979Appl.Phys.Leti.35282-5), scanning electron beam system (McMahon R A1979J.Vac. Sci.Techno.161840-2) (Regolini J L1979Appl.Phys.Lett.34410), other beam systems (Hodgson R T1980Appl.Phys.Lett.37187-9), graphite plate heaters (Fan J C C1983Mater.Res. Soc.Proc.4751-8) (M W Geis1980Appl.Phys.Lett.37454), lamp system (Cohen R L1978Appl.Phys.Lett.33751-3), and scanning hydrogen flame system (Downey D F1982Solid State Technol.2587- 93). In some embodiments of the invention, non-directional low density systems may be used. Alternatively, other known pulsed heating processes are also described in US Pat. Nos. 4,350,537 and 4,356,384. Additionally, it should be understood that references to solar cell processing and fast electron beam pulsing as described in expired U.S. Patents 3,950,187 (“Method and apparatus involving pulsed electron beam processing of semiconductor devices”) and 4,082,958 (“Apparatus involving pulsed electron beam processing of semiconductor devices”) Methods and equipment for heat treatment are in the public domain and are well known. US Patent 4,729,962 also describes another known method for rapid thermal processing of solar cells. The above may be applied alone or in single or multiple combinations with the above or other similar processing techniques and various embodiments of the present invention.

应当注意使用纳米薄片通常产生在比球形纳米颗粒相应的层低达50℃的温度下烧结成固体层的前体层。这部分是由于颗粒之间更大的表面积接触。It should be noted that the use of nanoflakes generally results in precursor layers that sinter into solid layers at temperatures up to 50 °C lower than corresponding layers of spherical nanoparticles. This is partly due to the greater surface area contact between the particles.

在本发明的某些实施方案中,前体层106(或其子层中的任一个)可以顺序或同时退火。所述退火可以通过衬底102和前体层106从环境温度快速加热至约200℃-约600℃的平稳温度范围来完成。处理包括用1-5℃/sec、优选超过5℃/sec的升温速率至约200℃-约600℃的温度进行退火。将温度保持在平稳范围持续约几分之一秒至约60分钟的时间,随后降温。任选地,处理进一步包含在Se蒸气中用1-5℃/sec、优选超过5℃/sec的升温速率至约225℃-约575℃的温度持续约60秒-约10分钟的时间使该退火层硒化,其中平稳温度不一定及时保持恒定,从而形成包含一种或多种含有Cu、In、Ga和Se的硫属元素化物的薄膜。任选地,处理包含无需在含有氢气的气氛中独立退火步骤的硒化,而是可以在含有H2Se或H2与Se蒸气的混合物的气氛中用1-5℃/sec、优选超过5℃/sec的升温速率至约225℃-约575℃的温度持续约120秒-约20分钟的时间在一步中致密化和硒化。In certain embodiments of the invention, precursor layer 106 (or any of its sublayers) may be annealed sequentially or simultaneously. The annealing may be accomplished by rapid heating of the substrate 102 and precursor layer 106 from ambient temperature to a plateau temperature range of about 200°C to about 600°C. Treatment includes annealing with a ramp rate of 1-5°C/sec, preferably more than 5°C/sec, to a temperature of about 200°C to about 600°C. The temperature is maintained at a plateau for a period of time ranging from about a fraction of a second to about 60 minutes, followed by cooling down. Optionally, the treatment further comprises subjecting the Se vapor to a temperature of about 225°C to about 575°C for a period of about 60 seconds to about 10 minutes at a ramp rate of 1-5°C/sec, preferably greater than 5°C/sec. Annealing layer selenization, where the plateau temperature does not necessarily remain constant in time, to form a thin film comprising one or more chalcogenides containing Cu, In, Ga and Se. Optionally, the treatment comprises selenization without a separate annealing step in an atmosphere containing hydrogen, but can be performed in an atmosphere containing H2Se or a mixture of H2 and Se vapor at 1-5 °C/sec, preferably more than 5 The ramp rate of °C/sec to a temperature of about 225°C to about 575°C for a period of about 120 seconds to about 20 minutes densifies and selenizes in one step.

作为选择,可以调整退火温度以在一定温度范围内摆动而不是保持在特定平稳温度。这种技术(在本文中称为快速热处理或RTA)特别适合在金属箔衬底例如但是不限于铝箔上形成光伏活性层(有时称为“吸收体”层)。其它合适衬底包括但是不限于其它金属例如不锈钢、铜、钛或钼、金属化的塑料箔、玻璃、陶瓷膜以及这些和类似或相关材料的混合物、合金和共混物。衬底可以是柔性的,例如箔形式,或是刚性的,例如板形式,或者这些形式的组合。这种技术的另外详情在美国专利申请10/943,685中得到描述,通过引用将该申请并入本文。Alternatively, the annealing temperature can be adjusted to swing over a range of temperatures rather than remain at a particular plateau temperature. This technique (referred to herein as rapid thermal processing or RTA) is particularly suitable for forming photovoltaically active layers (sometimes referred to as "absorber" layers) on metal foil substrates such as, but not limited to, aluminum foil. Other suitable substrates include, but are not limited to, other metals such as stainless steel, copper, titanium or molybdenum, metallized plastic foils, glass, ceramic films, and mixtures, alloys, and blends of these and similar or related materials. The substrate can be flexible, such as in the form of a foil, or rigid, such as in the form of a plate, or a combination of these. Additional details of this technique are described in US Patent Application 10/943,685, which is incorporated herein by reference.

与退火步骤有关的气氛也可以变化。在一种实施方案中,合适气氛包含氢气氛。然而,在所述纳米薄片中存在的氧含量非常低或没有氧的另外的实施方案中,合适气氛可以是氮气氛、氩气氛、一氧化碳气氛或具有少于约10%氢气的气氛。这些其它气氛会是有利的以使制备期间的材料处理成为可能和得到改进。The atmosphere associated with the annealing step can also vary. In one embodiment, the suitable atmosphere comprises a hydrogen atmosphere. However, in other embodiments where very low or no oxygen is present in the nanoflakes, a suitable atmosphere may be a nitrogen atmosphere, an argon atmosphere, a carbon monoxide atmosphere, or an atmosphere with less than about 10% hydrogen. These other atmospheres would be advantageous to enable and improve material handling during fabrication.

现在参照图1D,处理前体层106以形成致密膜110。致密膜110可以实际上具有与湿前体层106的厚度相比减小的厚度,因为处理过程中已经除去载液和其它材料。在一种实施方案中,膜110可以具有约0.5μm-约2.5μm的厚度。在另外的实施方案中,膜110的厚度可以是约1.5μm-约2.25μm。在一种实施方案中,所产生的致密膜110可以是基本上无空隙的。在一些实施方案中,致密膜110具有约5%或更小的空隙体积。在另外的实施方案中,空隙体积为约10%或更小。在另一实施方案中,空隙体积为约20%或更小。在另一实施方案中,空隙体积为约24%或更小。在另一实施方案中,空隙体积为约30%或更小。前体层106的处理会使纳米薄片熔合在一起并且在大多数情形下除去空隙空间以及由此减小所产生的致密膜的厚度。Referring now to FIG. 1D , precursor layer 106 is processed to form dense film 110 . The dense film 110 may actually have a reduced thickness compared to the thickness of the wet precursor layer 106 because the carrier fluid and other materials have been removed during processing. In one embodiment, membrane 110 may have a thickness of about 0.5 μm to about 2.5 μm. In other embodiments, the thickness of the membrane 110 may be from about 1.5 μm to about 2.25 μm. In one embodiment, the resulting dense film 110 can be substantially void-free. In some embodiments, dense membrane 110 has a void volume of about 5% or less. In other embodiments, the void volume is about 10% or less. In another embodiment, the void volume is about 20% or less. In another embodiment, the void volume is about 24% or less. In another embodiment, the void volume is about 30% or less. Treatment of the precursor layer 106 fuses the nanoflakes together and in most cases removes void spaces and thereby reduces the thickness of the resulting dense film.

根据用来形成膜110的材料的类型,膜110可以适合用作吸收层或进一步处理以变成吸收层。更特别地,膜110可以是一步工艺产生的膜,或者是用在使它成为两步工艺的另一个随后的一步工艺中的膜,或者是用在多步工艺中的膜。在一步工艺中,形成膜110以包括IB-IIIA-VIA族化合物而且膜110可以是适合用于光伏器件中的吸收体膜。在两步工艺中,膜110可以是固体和/或致密化的膜,它会具有进一步处理以适合用作在光伏器件中使用的吸收体膜。作为一种非限制性实例,两步工艺中的膜110可以不含任何和/或足够量的VIA族元素来充当吸收层。添加VIA族元素或其它材料可以是该两步工艺的第二步。可以使用两种或多种VIA元素的混合物,或者如同用于第二步中那样可以使用另一种VIA元素增加第三步。多种添加该材料的方法包括VIA族元素的印刷、使用VIA元素蒸气和/或其它技术。另外应当理解在两步工艺中,工艺气氛可以不同。作为非限制性实例,一种气氛可以任选地是VIA族基气氛。作为另一非限制性实例,一种气氛可以是如本文所述的惰性气氛。用于多步工艺的其它处理步骤可以是湿化学表面处理以改善IB-IIIA-VIA薄膜表面,和/或另外的快速热处理以改善IB-IIIA-VIA薄膜的体积和表面性能。Depending on the type of material used to form film 110, film 110 may be suitable for use as an absorbent layer or further processed to become an absorbent layer. More particularly, the membrane 110 may be a membrane produced in a one-step process, or a membrane used in another subsequent one-step process making it a two-step process, or a membrane used in a multi-step process. In a one-step process, film 110 is formed to include Group IB-IIIA-VIA compounds and may be an absorber film suitable for use in photovoltaic devices. In a two-step process, the film 110 may be a solid and/or densified film that will have further processing to be suitable for use as an absorber film for use in photovoltaic devices. As a non-limiting example, the film 110 in the two-step process may not contain any and/or a sufficient amount of Group VIA elements to act as an absorber layer. Adding Group VIA elements or other materials can be the second step of this two-step process. A mixture of two or more VIA elements can be used, or a third step can be added using another VIA element as used in the second step. Various methods of adding this material include printing of Group VIA elements, use of VIA element vapor, and/or other techniques. It should also be understood that the process atmospheres may be different in the two-step process. As a non-limiting example, one atmosphere may optionally be a Group VIA-based atmosphere. As another non-limiting example, an atmosphere can be an inert atmosphere as described herein. Additional processing steps for the multi-step process may be wet chemical surface treatments to improve the IB-IIIA-VIA film surface, and/or additional rapid thermal treatments to improve the volume and surface properties of the IB-IIIA-VIA film.

纳米薄片nanoflakes

现在参照图2A和2B,将会更详细描述本发明的纳米薄片108的实施方案。纳米薄片108可以具有各种形状和尺寸。在一种实施方案中,纳米薄片108可以具有大的就颗粒厚度与颗粒长度而言的纵横比。图2A显示颗粒堆积密度。图2A显示一些纳米薄片具有约20-约100nm的厚度。一些可以具有约500nm或更小的长度。在一些实施方案中纳米薄片的纵横比可以是约10:1或更大(颗粒的最长尺寸与最短尺寸之比)。另外的实施方案可以具有约30:1或更大的纵横比。另外可以具有约50:1或更大的纵横比。纵横比的增加表明最长的尺寸相对最短的尺寸增大或者最短的尺寸相对于最长的尺寸减小。因此,此处的纵横比涉及最长的横向尺寸(其长度或宽度)相对通常是薄片厚度的最短尺寸。沿着边缘或者沿着长轴测量这些尺寸以提供尺寸例如但是不限于长度、宽度、深度和/或直径的测量结果。当提及多个具有规定纵横比的纳米薄片时,指的是组合物的所有纳米薄片总体上具有所规定的平均纵横比。应当理解可以存在围绕平均纵横比的颗粒纵横比分布。Referring now to Figures 2A and 2B, an embodiment of the nanoflakes 108 of the present invention will be described in more detail. Nanoflakes 108 can have various shapes and sizes. In one embodiment, the nanoflakes 108 can have a large aspect ratio in terms of particle thickness to particle length. Figure 2A shows particle packing density. Figure 2A shows that some nanoflakes have a thickness of about 20 to about 100 nm. Some may have a length of about 500 nm or less. In some embodiments the aspect ratio of the nanoflakes may be about 10:1 or greater (the ratio of the longest dimension to the shortest dimension of the particle). Additional embodiments may have aspect ratios of about 30:1 or greater. Additionally may have an aspect ratio of about 50:1 or greater. An increase in aspect ratio indicates that the longest dimension increases relative to the shortest dimension or the shortest dimension decreases relative to the longest dimension. Thus, the aspect ratio here relates to the longest transverse dimension (its length or width) relative to the shortest dimension which is usually the thickness of the sheet. These dimensions are measured along the edge or along the long axis to provide measurements of dimensions such as, but not limited to, length, width, depth and/or diameter. When referring to a plurality of nanoflakes having a specified aspect ratio, it is meant that all nanoflakes of the composition collectively have the specified average aspect ratio. It should be understood that there may be a particle aspect ratio distribution around an average aspect ratio.

如图2A中看到的那样,尽管纳米薄片108的尺寸和形状可以变化,但是大多数包括至少一个基本上平坦的表面120。该至少一个平坦表面120容许相邻纳米薄片108之间更大的表面接触。该更大的表面接触提供多种益处。更大的接触容许相邻颗粒之间改善的原子混合。对于含有多于一种元素的纳米薄片,即使对于颗粒可能已经存在适当地原子混合,但是膜中的紧密接触允许容易的随后扩散。因此,如果颗粒略微富含一种元素的话,增加的接触有利于在产生的致密膜中元素更均匀的分布。此外,更大的颗粒间界面面积导致更快的反应速率。颗粒的平面形状使颗粒间接触面积最大化。颗粒间接触面积使化学反应(例如基于原子扩散的反应)得以引发、催化和/或相对快速地以及在大面积上同时进行。因此,不仅该形状改善混合,而且更大的界面面积和颗粒间接触面积也提高反应速率。As seen in FIG. 2A , although the size and shape of the nanoflakes 108 can vary, most include at least one substantially planar surface 120 . The at least one planar surface 120 allows for greater surface contact between adjacent nanoflakes 108 . This greater surface contact provides several benefits. Greater contact allows for improved atomic mixing between adjacent particles. For nanoflakes containing more than one element, the intimate contact in the film allows easy subsequent diffusion even though there may already be a proper atomic mixing for the particles. Thus, increased contact favors a more uniform distribution of the element in the resulting dense film if the particles are slightly enriched in one element. In addition, larger interparticle interfacial areas lead to faster reaction rates. The planar shape of the particles maximizes the interparticle contact area. The interparticle contact area allows chemical reactions (such as those based on atomic diffusion) to be initiated, catalyzed, and/or performed relatively quickly and simultaneously over a large area. Thus, not only does the shape improve mixing, but the larger interfacial area and interparticle contact area also increases the reaction rate.

仍然参照图2A,平面形状还容许提高的堆积密度。如图2A中看到的那样,纳米薄片108可以基本上平行于衬底102的表面取向并且一个堆叠在另一个之上以形成前体层106。固有地,纳米薄片的几何形状容许在前体层中比球形颗粒或纳米颗粒更密切的接触。事实上,可能的是纳米薄片100%的平坦表面与另一纳米薄片接触。因此,与使用其它方面基本上相同的同样组成的球形纳米颗粒油墨的前体层所制得的膜相比,纳米薄片的平坦形状在致密膜中产生更高的堆积密度。在一些实施方案中,纳米薄片的平面形状在前体层中产生至少约70%的堆积密度。在另外的实施方案中,该纳米薄片在前体层中产生至少约80%的堆积密度。在另外的实施方案中,该纳米薄片在前体层中产生至少约90%的堆积密度。在另外的实施方案中,该纳米薄片在前体层中产生至少约95%的堆积密度。Still referring to FIG. 2A , the planar shape also allows for increased packing density. As seen in FIG. 2A , nanoflakes 108 may be oriented substantially parallel to the surface of substrate 102 and stacked one above the other to form precursor layer 106 . Inherently, the geometry of the nanoflakes allows for more intimate contact in the precursor layer than spherical particles or nanoparticles. In fact, it is possible that 100% of the flat surfaces of a nanoflake are in contact with another nanoflake. Thus, the planar shape of the nanoflakes produces a higher packing density in a dense film than a film made using an otherwise substantially identical precursor layer of spherical nanoparticle ink of the same composition. In some embodiments, the planar shape of the nanoflakes produces a packing density of at least about 70% in the precursor layer. In other embodiments, the nanoflakes create a packing density of at least about 80% in the precursor layer. In other embodiments, the nanoflakes create a packing density of at least about 90% in the precursor layer. In other embodiments, the nanoflakes produce a packing density of at least about 95% in the precursor layer.

如图2B中看到的那样,纳米薄片108可以具有各种形状。在一些实施方案中,油墨中的纳米薄片可以包括具有无规尺寸和/或无规形状的那些。相反,颗粒尺寸对于标准球形纳米颗粒极其重要,不同尺寸和组成的那些球形纳米颗粒将产生具有不稳定原子组成的分散体。纳米薄片的平坦表面120容许更易于悬浮在载液中的颗粒。因此,即使纳米薄片在尺寸上可能不是单分散的,但是使组成金属具有片状提供一种使颗粒悬浮在载液中而无任何组成元素的快速和/或优先沉降的方法。另外,图2C是按照本发明一种实施方案的微米薄片121的放大俯视图。As seen in Figure 2B, the nanoflakes 108 can have various shapes. In some embodiments, the nanoflakes in the ink can include those of random size and/or random shape. Conversely, particle size is extremely important for standard spherical nanoparticles, and those of different sizes and compositions will produce dispersions with unstable atomic compositions. The flat surface 120 of the nanoflakes allows for easier suspension of the particles in the carrier liquid. Thus, even though the nanoflakes may not be monodisperse in size, having the constituent metals flake-like provides a means of suspending particles in a carrier liquid without rapid and/or preferential settling of any constituent elements. Additionally, Figure 2C is an enlarged top view of a microflake 121 according to one embodiment of the present invention.

应当理解可以形成本发明的纳米薄片108和/或对其进行尺寸判定以提供更有控制的尺寸和形状分布。纳米薄片的尺寸分布可以是使得偏离纳米薄片平均长度和/或宽度的一种标准偏差小于约250nm。在另一实施方案中,纳米薄片的尺寸分布可以是使得偏离纳米薄片平均长度和/或宽度的一种标准偏差小于约200nm。在另一实施方案中,纳米薄片的尺寸分布可以是使得偏离纳米薄片平均长度和/或宽度的一种标准偏差小于约150nm。在另一实施方案中,纳米薄片的尺寸分布可以是使得偏离纳米薄片平均长度和/或宽度的一种标准偏差小于约100nm。在另一实施方案中,偏离纳米薄片平均长度的一种标准偏差小于约50nm。在另一实施方案中,偏离纳米薄片平均厚度的一种标准偏差小于约10nm。在本发明的另一实施方案中,偏离纳米薄片平均厚度的一种标准偏差小于约5nm。纳米薄片各自具有小于约250nm的厚度。在另一实施方案中,纳米薄片各自具有小于约100nm的厚度。在另一实施方案中,纳米薄片各自具有小于约50nm的厚度。在另一实施方案中,纳米薄片各自具有小于约20nm的厚度。就其形状而言,纳米薄片可以具有至少约10或更大的纵横比。在另一实施方案中,纳米薄片具有至少约15或更大的纵横比。纳米薄片具有无规的平面形状和/或无规的尺寸分布。在其它实施方案中,纳米薄片具有非无规的平面形状和/或非无规的尺寸分布。It should be appreciated that the nanoflakes 108 of the present invention may be formed and/or sized to provide a more controlled size and shape distribution. The size distribution of the nanoflakes can be such that one standard deviation from the mean length and/or width of the nanoflakes is less than about 250 nm. In another embodiment, the size distribution of the nanoflakes can be such that one standard deviation from the mean length and/or width of the nanoflakes is less than about 200 nm. In another embodiment, the size distribution of the nanoflakes can be such that one standard deviation from the mean length and/or width of the nanoflakes is less than about 150 nm. In another embodiment, the size distribution of the nanoflakes can be such that one standard deviation from the mean length and/or width of the nanoflakes is less than about 100 nm. In another embodiment, one standard deviation from the mean length of the nanoflakes is less than about 50 nm. In another embodiment, one standard deviation from the average thickness of the nanoflakes is less than about 10 nm. In another embodiment of the invention, one standard deviation from the mean thickness of the nanoflakes is less than about 5 nm. The nanoflakes each have a thickness of less than about 250 nm. In another embodiment, the nanoflakes each have a thickness of less than about 100 nm. In another embodiment, the nanoflakes each have a thickness of less than about 50 nm. In another embodiment, the nanoflakes each have a thickness of less than about 20 nm. In terms of their shape, the nanoflakes can have an aspect ratio of at least about 10 or greater. In another embodiment, the nanoflakes have an aspect ratio of at least about 15 or greater. The nanoflakes have a random planar shape and/or a random size distribution. In other embodiments, the nanoflakes have a non-random planar shape and/or a non-random size distribution.

元素的化学计量比在单个的纳米薄片之间可以改变,只要所有合并的颗粒中的总量处在前体层和/或所得致密膜的期望化学计量比下或者接近该期望化学计量比。按照该工艺的一种优选实施方案,所产生的膜中的元素总量具有约0.7-约1.0的Cu/(In+Ga)组成范围以及约0.05-约0.30的Ga/(In+Ga)组成范围。任选地,Se/(In+Ga)组成范围可以是约0.00-约4.00以至于可以需要或者可以不需要随后的涉及使用另外的Se源的步骤。The stoichiometric ratio of the elements can vary between individual nanoflakes so long as the total amount in all combined particles is at or close to the desired stoichiometric ratio of the precursor layer and/or resulting dense film. According to a preferred embodiment of the process, the total amount of elements in the resulting film has a Cu/(In+Ga) composition ranging from about 0.7 to about 1.0 and a Ga/(In+Ga) composition ranging from about 0.05 to about 0.30 scope. Optionally, the Se/(In+Ga) composition may range from about 0.00 to about 4.00 such that a subsequent step involving the use of an additional Se source may or may not be required.

纳米薄片形成nanoflake formation

现在参照图3,将要描述用于形成纳米薄片108的装置的一种实施方案。可以通过单独或以任意组合对期望的单质、二元、三元或多元材料的市售进料施加下面的多种技术获得纳米薄片108,这些技术包括但是不限于粉碎技术例如球磨、珠磨、小介质研磨、搅拌器球磨、行星式研磨、卧式球磨、砾磨、磨碎、锤磨、干式研磨、湿式研磨、喷射研磨、或者其它类型的研磨。图3显示研磨系统130的一种实施方案,其使用含有球或珠或用于研磨工艺中的其它材料的研磨机132。系统130可以是封闭系统以便为进料材料的处理提供无氧环境。可以将惰性气体源134与该封闭系统连接以保持无氧环境。还可以通过提供液氮或其它冷却源136(用虚影显示)来配置研磨系统130以容许低温研磨。作为选择,也可以配置研磨系统130以在研磨工艺期间提供加热。还可以在研磨工艺期间进行加热和/或冷却的循环。任选地,研磨还可以包括将载液和/或分散剂与进行处理的粉末或进料混合。在本发明的一种实施方案中,通过研磨产生的纳米薄片108可以具有各种尺寸例如但是不限于厚约20nm-约500nm。在另一实施方案中,纳米薄片可以厚约75nm-100nm。Referring now to FIG. 3, one embodiment of an apparatus for forming nanoflakes 108 will be described. Nanoflakes 108 can be obtained by applying the following various techniques, including but not limited to comminution techniques such as ball milling, bead milling, Small media milling, agitator ball milling, planetary milling, horizontal ball milling, pebble milling, attrition, hammer milling, dry milling, wet milling, jet milling, or other types of milling. Figure 3 shows one embodiment of a milling system 130 using a mill 132 containing balls or beads or other material used in the milling process. System 130 may be a closed system to provide an oxygen-free environment for processing of feed materials. A source of inert gas 134 can be connected to the closed system to maintain an oxygen-free environment. The milling system 130 may also be configured to allow cryogenic milling by providing liquid nitrogen or other cooling source 136 (shown in phantom). Alternatively, grinding system 130 may also be configured to provide heating during the grinding process. It is also possible to perform heating and/or cooling cycles during the milling process. Optionally, milling may also include mixing a carrier liquid and/or dispersant with the powder or feed to be processed. In one embodiment of the invention, the nanoflakes 108 produced by milling can have various dimensions such as, but not limited to, about 20 nm to about 500 nm thick. In another embodiment, the nanoflakes may be about 75nm-100nm thick.

应当理解研磨可以使用比进料颗粒更硬和/或具有更高质量密度的材料所制成的珠或微珠以使进料颗粒转变成合适尺寸和形状。在一种实施方案中,这些珠是玻璃、陶瓷、氧化铝、瓷、碳化硅、或碳化钨珠、具有陶瓷壳的不锈钢球、具有陶瓷壳的铁球等等,从而使纳米薄片的污染风险减到最少。研磨机本身或研磨机的部件也可以具有陶瓷内衬或另外的惰性材料的内衬,或者研磨机的部件可以完全是陶瓷或者用化学和机械方法变成惰性以使含有纳米薄片的浆料的污染减到最少。还可以在工艺期间定期筛分该珠。It should be understood that milling may use beads or microbeads made of a harder and/or higher mass density material than the feed particles to convert the feed particles to a suitable size and shape. In one embodiment, the beads are glass, ceramic, alumina, porcelain, silicon carbide, or tungsten carbide beads, stainless steel balls with ceramic shells, iron balls with ceramic shells, etc., thereby reducing the risk of contamination of the nanoflakes Minimize. The grinder itself or components of the grinder may also have a ceramic lining or be lined with another inert material, or components of the grinder may be entirely ceramic or rendered inert chemically and mechanically so that the slurry containing the nanoflakes Pollution is minimized. The beads can also be sieved periodically during the process.

球磨可以在无氧环境中进行。这可以涉及使用与外部环境封闭而且清除空气的研磨机。研磨于是可以在惰性气氛或其它无氧环境下进行。一些实施方案可以涉及将研磨机放在为无氧环境提供密封的罩子或腔室中。该工艺可以包括将载体干燥并脱气或者选择无水的无氧溶剂来开始和加料而不接触空气。无氧研磨可以产生无氧纳米薄片,其进而减少对颗粒除氧步骤的需要。这可以显著减少与纳米薄片前体层变成致密膜有关的退火时间。在一些实施方案中,退火时间在约30秒范围内。关于无空气纳米薄片制造(粉碎),应当理解本发明还可以包括无空气的分散体制造以及无空气的涂覆、储存和/或处理。Ball milling can be performed in an oxygen-free environment. This may involve using a grinder that is closed from the outside environment and purged of air. Grinding may then be performed under an inert atmosphere or other oxygen-free environment. Some embodiments may involve placing the grinder in an enclosure or chamber that provides a seal for an oxygen-free environment. The process can include drying and degassing the support or choosing an anhydrous, oxygen-free solvent to start and feed without exposure to air. Oxygen-free milling can produce oxygen-free nanoflakes, which in turn reduces the need for particle oxygen removal steps. This can significantly reduce the annealing time associated with the transformation of the nanoflake precursor layer into a dense film. In some embodiments, the annealing time is in the range of about 30 seconds. With respect to air-free nanoflake fabrication (shredding), it should be understood that the present invention may also include air-free dispersion fabrication as well as air-free coating, storage and/or handling.

研磨可以在多种温度下进行。在本发明的一种实施方案中,研磨在室温下进行。在另一实施方案中,研磨在低温例如但是不限于≤-175℃下进行。这可以使研磨对室温下可能是液体或不够脆的颗粒起作用以便粉碎。研磨也可以在期望的研磨温度下进行,其中所有前体颗粒都是固体而且前体颗粒在该研磨温度下具有足够的延展性以从非平面或平面的起始形状形成平面形状。该期望温度可以是室温、在室温以上或在室温以下和/或不同温度之间的循环。在一种实施方案中,研磨温度可以低于约15℃。在另一实施方案中,该温度低于约-175℃。在另一实施方案中,研磨可以通过80K、即-193℃的液氮冷却。研磨期间的温度控制可以控制溶剂、分散剂、进料材料和/或研磨机部件之间可能的化学反应。应当理解除了上述以外,温度还可以在研磨工艺的不同时期内变化。作为一种非限制性实例,在研磨过程中研磨可以在最初的研磨时间段内在第一温度下进行并且对于随后的时间段进行至另外的温度。Grinding can be performed at various temperatures. In one embodiment of the invention, grinding is performed at room temperature. In another embodiment, milling is performed at low temperature such as but not limited to ≤ -175°C. This allows the grind to work on particles that may be liquid at room temperature or not brittle enough to pulverize. Milling can also be performed at a desired milling temperature where all of the precursor particles are solid and at which the precursor particles are sufficiently ductile to form a planar shape from a non-planar or planar starting shape. The desired temperature may be room temperature, above or below room temperature and/or cycling between different temperatures. In one embodiment, the milling temperature may be less than about 15°C. In another embodiment, the temperature is less than about -175°C. In another embodiment, the grinding can be cooled by liquid nitrogen at 80K, ie -193°C. Temperature control during milling can control possible chemical reactions between solvents, dispersants, feed materials and/or mill components. It should be understood that in addition to the above, the temperature may also be varied during different periods of the milling process. As a non-limiting example, grinding may be performed at a first temperature for an initial grinding period and to an additional temperature for subsequent periods during grinding.

研磨可以使基本上所有的前体颗粒转变成纳米薄片。在一些实施方案中,研磨使至少约50%(以所有前体颗粒的重量计)的前体颗粒转变成纳米薄片。在另外的实施方案中,所有前体颗粒的至少50体积%转变成纳米薄片。另外,应当理解研磨期间温度可以恒定或变化。这对调整进料材料或部分研磨材料的材料性质以产生期望形状、尺寸和/或组成的颗粒会是有用的。Milling can convert substantially all of the precursor particles into nanoflakes. In some embodiments, milling converts at least about 50% (by weight of all precursor particles) of the precursor particles into nanoflakes. In additional embodiments, at least 50% by volume of all precursor particles are converted into nanoflakes. Additionally, it should be understood that the temperature may be constant or varied during milling. This can be useful to adjust the material properties of the feed material or part of the ground material to produce particles of desired shape, size and/or composition.

尽管本发明公开了形成纳米薄片的“自上至下(top down)”方法,但是应当理解也可以使用其它技术。例如,在表面例如液体冷却浴上将材料从熔体骤冷。铟(以及可能的镓和硒)纳米薄片可以通过乳化熔融的铟同时搅拌并在冷却浴表面骤冷来形成。应当理解任何制备薄片的湿式化学、干式化学、干式物理和/或湿式物理技术可以与本发明一起使用(除了干式或湿式粉碎以外)。因此,本发明不限于湿式物理的自上至下方法(研磨),而是可以还包括干式/湿式自下至上(bottom-up)的方法。另外应当注意粉碎可以任选地是多步工艺。在一种非限制性实例中,这可以首先包括采用毫米尺寸的大块/片,它们被干磨至<100μm,接着在一个、两个、三个或更多步骤中研磨,且随后减小珠粒尺寸至纳米薄片。Although the present invention discloses a "top down" method of forming nanoflakes, it should be understood that other techniques may also be used. For example, the material is quenched from the melt on a surface such as a liquid cooling bath. Indium (and possibly gallium and selenium) nanoflakes can be formed by emulsifying molten indium while stirring and quenching on the surface of a cooling bath. It should be understood that any wet chemical, dry chemical, dry physical and/or wet physical technique for making flakes may be used with the present invention (other than dry or wet comminution). Thus, the invention is not limited to wet physical top-down methods (grinding), but may also include dry/wet bottom-up methods. It should also be noted that comminution can optionally be a multi-step process. In one non-limiting example, this may first involve taking millimeter-sized chunks/pieces which are dry ground to <100 μm, followed by grinding in one, two, three or more steps, and subsequently reducing Bead size to nanoflakes.

应当理解用于本发明的进料颗粒可以通过多种方法制备。例如并且非限制性地,B.M.Basol等人的美国专利5,985,691描述一种基于颗粒的方法来形成IB-IIIA-VIA族化合物膜。Eberspacher和Pauls在美国专利6,821,559中描述一种制造细颗粒形式的相稳定前体的工艺,例如亚微米多元金属颗粒,和包含至少一种金属氧化物的多相混合金属颗粒。Bulent Basol在美国出版专利申请20040219730中描述一种形成化合物膜的工艺,其包括配制具有受控的总组成并且具有单一固溶体颗粒的纳米粉末材料。使用固溶体方法,可以使镓以非氧化物的形式混入金属分散体中——但是只具有至多约18的相对原子百分比(Subramanian,P.R.,Laughlin,D.E.,Binary AlloyPhase Diagrams.第二版,Massalski编辑,T.B.1990.ASMinternational,Materials Park,OH,第1410-1412页;Hansen,M.,Constitution of Binary Alloys.1958.第二版,McGraw Hill,第582-584页)。美国专利申请11/081,163描述一种通过配制由IB、IIIA和任选的VIA族元素构成的单质纳米颗粒的混合物来形成化合物膜的工艺,所述混合物具有受控的总组成。关于硫属元素化物粉末的论述也可以在以下中找到:[(1)Vervaet,A.等,E.C.Photovoltaic Sol.Energy Conf.,Proc.Int.Conf.,10th(1991),900-3.;(2)Journal of Electronic Materials,Vol.27,No.5,1998,第433页;Ginley等;(3)WO99,378,32;Ginley等;(4)US6,126,740]。这些方法可以用来制成有待粉碎的进料。另外的方法可以形成准备好进行溶液沉积的前体亚微米尺寸的颗粒。上面列出的所有文献都为了所有目的全部通过引用并入本文。It should be understood that the feed particles for use in the present invention can be prepared by a variety of methods. For example and without limitation, US Patent No. 5,985,691 to B.M. Basol et al. describes a particle-based method to form Group IB-IIIA-VIA compound films. Eberspacher and Pauls in US Pat. No. 6,821,559 describe a process for making phase stable precursors in the form of fine particles, such as submicron multinary metal particles, and heterogeneous mixed metal particles comprising at least one metal oxide. Bulent Basol describes in US Published Patent Application 20040219730 a process for forming a compound film that involves formulating a nanopowder material with a controlled overall composition and a single solid solution particle. Using the solid solution approach, gallium can be incorporated into metal dispersions in non-oxide form—but only with relative atomic percents up to about 18 (Subramanian, P.R., Laughlin, D.E., Binary AlloyPhase Diagrams. Second Edition, edited by Massalski, T.B. 1990. ASM international, Materials Park, OH, pp. 1410-1412; Hansen, M., Constitution of Binary Alloys. 1958. Second edition, McGraw Hill, pp. 582-584). US Patent Application 11/081,163 describes a process for forming compound films by formulating a mixture of elemental nanoparticles composed of Group IB, IIIA, and optionally Group VIA elements, the mixture having a controlled overall composition. A discussion of chalcogenide powders can also be found in: [(1) Vervaet, A. et al., E.C. Photovoltaic Sol. Energy Conf., Proc. Int. Conf., 10th(1991), 900-3.; (2) Journal of Electronic Materials, Vol.27, No.5, 1998, p. 433; Ginley et al; (3) WO99,378,32; Ginley et al; (4) US6,126,740]. These methods can be used to make feed to be comminuted. Additional methods can form precursor submicron sized particles ready for solution deposition. All documents listed above are hereby incorporated by reference in their entirety for all purposes.

油墨制备ink preparation

为了配制用于前体层106中的分散体,将纳米薄片108混合在一起以及与一种或多种化学制剂混合,该化学制剂包括但是不限于分散剂、表面活性剂、聚合物、粘结剂、交联剂、乳化剂、消泡剂、干燥剂、溶剂、填料、补充剂、增稠剂、膜调整剂、抗氧化剂、流动剂、均平剂、和防腐剂。To formulate the dispersion for use in precursor layer 106, nanoflakes 108 are mixed together and mixed with one or more chemicals including, but not limited to, dispersants, surfactants, polymers, binders Agents, crosslinking agents, emulsifiers, defoamers, desiccants, solvents, fillers, extenders, thickeners, film regulators, antioxidants, flow agents, leveling agents, and preservatives.

用本发明制成的油墨可以任选地包括分散剂。一些实施方案可以不包括任何分散剂。分散剂(也称为润湿剂)是用来防止颗粒聚集或絮凝的表面活性物质,因此促进固体材料在液体介质中的悬浮并且稳定由此制成的分散体。如果颗粒表面相互吸引,则出现絮凝,其往往造成聚集并且降低稳定性和/或均匀性。如果颗粒表面相互排斥,则出现稳定化作用,其中颗粒不会聚集并且不趋向于很快从溶液中沉降出来。Inks made with the present invention may optionally include a dispersant. Some embodiments may not include any dispersants. Dispersants (also known as wetting agents) are surface active substances used to prevent particle aggregation or flocculation, thus facilitating the suspension of solid materials in a liquid medium and stabilizing the dispersions thus produced. If particle surfaces attract each other, flocculation occurs, which tends to cause aggregation and reduce stability and/or uniformity. If the particle surfaces repel each other, stabilization occurs where the particles do not aggregate and tend not to settle out of solution very quickly.

有效的分散剂通常能够进行颜料润湿、分散和稳定。分散剂根据油墨/涂料的性质而不同。多磷酸盐、苯乙烯-马来酸盐和聚丙烯酸盐往往用于水性配制剂,而脂肪酸衍生物和低分子量改性醇酸树脂和聚酯树脂往往用于有机配制剂。Effective dispersants are generally capable of pigment wetting, dispersion and stabilization. Dispersants vary according to the nature of the ink/coating. Polyphosphates, styrene-maleates and polyacrylates are often used in aqueous formulations, while fatty acid derivatives and low molecular weight modified alkyd and polyester resins are often used in organic formulations.

表面活性剂是降低它们溶解在其中的溶剂表面张力的表面活性试剂,其充当润湿剂,并且将(水性)介质的表面张力保持在低水平以便油墨与衬底表面相互作用。某些类型的表面活性剂也用作分散剂。表面活性剂通常含有疏水性碳链和亲水性极性基团。该极性基团可以是非离子的。如果极性基团是离子性的,电荷可以是正或负,产生阳离子或阴离子表面活性剂。两性离子表面活性剂在同一分子内同时含有正电荷和负电荷;一种实例是N-正十二烷基-N,N-二甲基甜菜碱。某些表面活性剂往往用作水溶液的分散剂。代表性的种类包括乙炔二醇、脂肪酸衍生物、磷酸酯、聚丙烯酸钠盐、聚丙烯酸、大豆卵磷脂、三辛基膦(TOP)和氧化三辛基膦(TOPO)。Surfactants are surface active agents that lower the surface tension of the solvent in which they are dissolved, act as wetting agents, and keep the surface tension of the (aqueous) medium low for the ink to interact with the substrate surface. Certain types of surfactants are also used as dispersants. Surfactants usually contain hydrophobic carbon chains and hydrophilic polar groups. The polar group may be nonionic. If the polar group is ionic, the charge can be positive or negative, resulting in a cationic or anionic surfactant. Zwitterionic surfactants contain both positive and negative charges within the same molecule; an example is N-n-dodecyl-N,N-dimethylbetaine. Certain surfactants are often used as dispersants in aqueous solutions. Representative classes include acetylene glycols, fatty acid derivatives, phosphate esters, polyacrylic acid sodium salt, polyacrylic acid, soybean lecithin, trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO).

粘结剂和树脂往往用来在初生的或者形成的分散体中将紧临的颗粒保持在一起。通常的粘结剂的实例包括丙烯酸类单体(作为单官能稀释剂和多官能反应性试剂)、丙烯酸类树脂(例如丙烯酸类多元醇、胺协合剂(amine synergists)、环氧丙烯酸类、聚酯丙烯酸类、聚醚丙烯酸类、苯乙烯/丙烯酸类、氨基甲酸酯丙烯酸类或乙烯基丙烯酸类)、醇酸树脂(例如长油、中油、短油或妥尔油),粘合促进剂例如但是不限于聚乙烯基吡咯烷酮(PVP)、酰胺树脂、氨基树脂(例如但是不限于三聚氰胺基或脲基化合物)、柏油/沥青、丁二烯丙烯腈、纤维素树脂(例如但是不限于乙酸丁酸纤维素(CAB)、乙酸丙酸纤维素(CAP)、乙基纤维素(EC)、硝基纤维素(NC)或有机纤维素酯)、氯化橡胶、二聚物脂肪酸、环氧树脂(例如丙烯酸酯、双酚-A基树脂、环氧UV固化树脂、酯、苯酚和甲酚(酚醛清漆)或基于苯氧基的化合物)、乙烯共-三元聚合物例如乙烯丙烯酸/甲基丙烯酸、E/AA、E/M/AA或乙烯乙酸乙烯酯(EVA)、含氟聚合物、明胶(例如来自Florham Park,NJ的BASF Corporation的PluronicF-68)、二元醇单体、烃树脂(例如脂族、芳族或古马隆基例如茚)、马来树脂、改性脲、天然橡胶、天然树脂和树胶、松香、改性酚醛树脂、甲阶酚醛树脂、聚酰胺、聚丁二烯(液体羟基封端)、聚酯(饱和的和不饱和的)、聚烯烃、聚氨酯(PU)异氰酸酯(例如六亚甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)、脂环族化合物、二苯基甲烷二异氰酸酯(MDI)、甲苯二异氰酸酯(TDI)或三甲基六亚甲基二异氰酸酯(TMDI))、聚氨酯(PU)多元醇(例如己内酯、二聚物基聚酯、聚酯、或聚醚)、聚氨酯(PU)分散体(PUDs)例如基于聚酯或聚醚的那些、聚氨酯预聚物(例如己内酯、二聚物基聚酯、聚酯、聚醚和基于氨基甲酸酯丙烯酸酯的化合物)、聚氨酯热塑性材料(TPU)例如聚酯或聚醚、硅酸盐(例如烷基硅酸盐或水玻璃基化合物)、有机硅(胺官能的、环氧官能的、乙氧基官能的、羟基官能的、甲氧基官能的、硅醇官能的、或乙烯基(cinyl)官能的)、苯乙烯类(例如苯乙烯-丁二烯乳液、苯乙烯/乙烯基甲苯聚合物和共聚物)或乙烯基化合物(例如聚烯烃和聚烯烃衍生物、聚苯乙烯和苯乙烯共聚物、或聚乙酸乙烯酯(PVAC))。Binders and resins are often used to hold adjacent particles together in nascent or formed dispersions. Examples of common binders include acrylic monomers (as monofunctional diluents and polyfunctional reactive agents), acrylic resins (e.g., acrylic polyols, amine synergists, epoxy acrylics, poly ester acrylic, polyether acrylic, styrene/acrylic, urethane acrylic or vinyl acrylic), alkyds (such as long oil, medium oil, short oil or tall oil), adhesion promoters Such as but not limited to polyvinylpyrrolidone (PVP), amide resins, amino resins (such as but not limited to melamine-based or urea-based compounds), asphalt/bitumen, butadiene acrylonitrile, cellulose resins (such as but not limited to butyl acetate cellulose acetate (CAB), cellulose acetate propionate (CAP), ethyl cellulose (EC), nitrocellulose (NC) or organic cellulose esters), chlorinated rubber, dimer fatty acid, epoxy resin (e.g. acrylates, bisphenol-A based resins, epoxy UV curable resins, esters, phenols and cresols (novolaks) or phenoxy based compounds), ethylene co-terpolymers such as ethylene acrylic acid/methyl Acrylic, E/AA, E/M/AA, or ethylene vinyl acetate (EVA), fluoropolymers, gelatin (such as Pluronic F-68 from BASF Corporation of Florham Park, NJ), glycol monomers, hydrocarbon resins (e.g. aliphatic, aromatic or coumaronyl such as indene), maleic resins, modified ureas, natural rubber, natural resins and gums, rosins, modified phenolic resins, resole resins, polyamides, polybutadiene (liquid hydroxyl terminated), polyesters (saturated and unsaturated), polyolefins, polyurethane (PU) isocyanates (e.g. hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), alicyclic diphenylmethane diisocyanate (MDI), toluene diisocyanate (TDI) or trimethylhexamethylene diisocyanate (TMDI)), polyurethane (PU) polyols (e.g. caprolactone, dimer-based polyester, polyester, or polyether), polyurethane (PU) dispersions (PUDs) such as those based on polyester or polyether, polyurethane prepolymers (e.g. caprolactone, dimer-based polyester, polyester, polyethers and urethane acrylate based compounds), polyurethane thermoplastics (TPU) such as polyesters or polyethers, silicates (e.g. alkyl silicates or water glass based compounds), silicones (amine functional , epoxy-functional, ethoxy-functional, hydroxyl-functional, methoxy-functional, silanol-functional, or vinyl (cinyl)-functional), styrenes (such as styrene-butadiene emulsions, styrene/vinyltoluene polymers and copolymers) or vinyl compounds such as polyolefins and polyolefin derivatives, polystyrene and styrene copolymers, or polyvinyl acetate (PVAC)).

乳化剂是通过促进聚集材料破裂成小液滴使液体与其它液体共混并且因此稳定在溶液中的悬浮的分散剂。例如,脱水山梨糖醇酯用作油包水(w/o)乳液制备用的乳化剂、用于吸油底物(w/o)的制备、用于w/o型润发油的制备、用作再吸收剂以及用作无毒防沫剂。乳化剂的实例为脱水山梨糖醇酯例如脱水山梨糖醇倍半油酸酯(Arlacel60)、脱水山梨糖醇倍半油酸酯(Arlacel83)、脱水山梨糖醇单月桂酸酯(Span20)、脱水山梨糖醇单棕榈酸酯(Span40)、脱水山梨糖醇单硬脂酸酯(Span60)、脱水山梨糖醇三硬脂酸酯(Span65)、脱水山梨糖醇单油酸酯(Span80)和脱水山梨糖醇三油酸酯(Span85),它们全都例如可从New Castle,Delaware的Uniqema购得。其它聚合物乳化剂包括聚氧乙烯单硬脂酸酯(Myrj45)、聚氧乙烯单硬脂酸酯(Myrj49)、硬脂酸聚烃氧(40)酯(Myrj52)、聚氧乙烯单月桂酸酯(PEG400)、聚氧乙烯单油酸酯(PEG400单油酸酯)和聚氧乙烯单硬脂酸酯(PEG400单硬脂酸酯)以及Tween系列的表面活性剂,其包括但是不限于聚氧乙烯脱水山梨糖醇单月桂酸酯(Tween20)、聚氧乙烯脱水山梨糖醇单月桂酸酯(Tween21)、聚氧乙烯脱水山梨糖醇单棕榈酸酯(Tween40)、聚氧乙烯脱水山梨糖醇单硬脂酸酯(Tween60)、聚氧乙烯脱水山梨糖醇三硬脂酸酯(Tween61)、聚氧乙烯脱水山梨糖醇单油酸酯(Tween80)、聚氧乙烯脱水山梨糖醇单油酸酯(Tween81)、和聚氧乙烯脱水山梨糖醇三油酸酯(Tween85),它们全都例如可从New Castle,Delaware的Uniqema购得。Arlacel、Myrj和Tween是Wilmington,Delaware的ICI Americans Inc.的注册商标。Emulsifiers are dispersants that allow a liquid to blend with other liquids by facilitating the breakup of aggregated material into small droplets and thus stabilize the suspension in solution. For example, sorbitan esters are used as emulsifiers in the preparation of water-in-oil (w/o) emulsions, in the preparation of oil-absorbing substrates (w/o), in the preparation of w/o pomades, in As a reabsorbent and as a non-toxic anti-foaming agent. Examples of emulsifiers are sorbitan esters such as sorbitan sesquioleate (Arlacel 60), sorbitan sesquioleate (Arlacel 83), sorbitan monolaurate (Span 20), dehydrated Sorbitan monopalmitate (Span40), sorbitan monostearate (Span60), sorbitan tristearate (Span65), sorbitan monooleate (Span80) and anhydrous Sorbitan trioleate (Span 85), all of which are commercially available, for example, from Uniqema of New Castle, Delaware. Other polymeric emulsifiers include polyoxyethylene monostearate (Myrj45), polyoxyethylene monostearate (Myrj49), polyoxyl (40) stearate (Myrj52), polyoxyethylene monolaurate ester (PEG400), polyoxyethylene monooleate (PEG400 monooleate) and polyoxyethylene monostearate (PEG400 monostearate), and Tween series surfactants, including but not limited to poly Oxyethylene sorbitan monolaurate (Tween20), polyoxyethylene sorbitan monolaurate (Tween21), polyoxyethylene sorbitan monopalmitate (Tween40), polyoxyethylene sorbitan Alcohol monostearate (Tween60), polyoxyethylene sorbitan tristearate (Tween61), polyoxyethylene sorbitan monooleate (Tween80), polyoxyethylene sorbitan mono-oil (Tween 81), and polyoxyethylene sorbitan trioleate (Tween 85), all of which are commercially available, for example, from Uniqema of New Castle, Delaware. Arlacel, Myrj and Tween are registered trademarks of ICI Americans Inc. of Wilmington, Delaware.

涂覆/印刷工艺期间可能由各种Ga-Ses的释放形成泡沫,尤其是印刷工艺高速进行的话。表面活性剂可能在液体-空气界面上吸附并使它稳定,促进泡沫形成。防沫剂防止开始起泡沫,而消泡剂使事先形成的泡沫减到最少或将其除去。防沫剂包括疏水性固体、脂肪油、和某些表面活性剂,它们全都渗入液体-空气界面以使泡沫形成放慢。防沫剂还包括硅酸盐、有机硅和不含有机硅的材料。不含有机硅的材料包括微晶蜡、矿物油、聚合物材料以及二氧化硅基和表面活性剂基材料。Foaming may be formed by the release of various Ga-Ses during the coating/printing process, especially if the printing process is performed at high speed. Surfactants may adsorb and stabilize the liquid-air interface, promoting foam formation. Anti-foaming agents prevent foam from starting, while anti-foaming agents minimize or remove pre-formed foam. Antifoam agents include hydrophobic solids, fatty oils, and certain surfactants, all of which penetrate the liquid-air interface to slow down foam formation. Antifoams also include silicates, silicones, and silicone-free materials. Silicone-free materials include microcrystalline waxes, mineral oils, polymeric materials, and silica- and surfactant-based materials.

溶剂可以是水性的(水基)或非水性的(有机)。然而环境上友好的水基溶液具有比有机溶剂相对更高的表面张力的缺点,使得它更难润湿衬底,尤其是塑料衬底。为了改善使用聚合物衬底时的衬底润湿,可以加入表面活性剂以降低油墨表面张力(同时使表面活性剂稳定的发泡减到最少),同时将衬底表面改性以提高其表面能(例如通过电晕处理)。通常的有机溶剂包括乙酸酯、丙烯酸酯、醇(丁醇、乙醇、异丙醇或甲醇)、醛、苯、二溴甲烷、氯仿、二氯甲烷、二氯乙烷、三氯乙烷、环状化合物(例如环戊酮或环己酮)、酯(例如乙酸丁酯或乙酸乙酯)、醚、二醇(例如乙二醇或丙二醇)、己烷、庚烷、脂族烃、芳烃、酮(例如丙酮、甲乙酮或甲基异丁基酮)、天然油、萜烯、萜品油、甲苯。Solvents can be aqueous (water-based) or non-aqueous (organic). However, environmentally friendly water-based solutions have the disadvantage of relatively higher surface tension than organic solvents, making it more difficult to wet substrates, especially plastic substrates. To improve substrate wetting when using polymeric substrates, surfactants can be added to lower ink surface tension (while minimizing surfactant-stabilized foaming), while the substrate surface is modified to increase its surface energy (e.g. by corona treatment). Common organic solvents include acetates, acrylates, alcohols (butanol, ethanol, isopropanol, or methanol), aldehydes, benzene, methylene bromide, chloroform, methylene chloride, dichloroethane, trichloroethane, cyclic compounds such as cyclopentanone or cyclohexanone, esters such as butyl acetate or ethyl acetate, ethers, glycols such as ethylene glycol or propylene glycol, hexane, heptane, aliphatic hydrocarbons, aromatic hydrocarbons, Ketones (such as acetone, methyl ethyl ketone or methyl isobutyl ketone), natural oils, terpenes, terpineol, toluene.

另外的组分可以包括填料/补充剂、增稠剂、流变学改性剂、表面调整剂(包括粘合促进剂/粘结)、抗胶凝剂、抗粘连剂、抗静电剂、螯合/配合剂、腐蚀抑制剂、防焰剂/防锈剂、阻燃剂、湿润剂、热稳定剂、光稳定剂/UV吸收剂、润滑剂、pH稳定剂、滑动控制材料、抗氧化剂、流动和均平剂。应当理解所有组分都可以单独地或者与其它组分组合添加。Additional components may include fillers/extenders, thickeners, rheology modifiers, surface modifiers (including adhesion promoters/bonding), anti-gelling agents, anti-blocking agents, antistatic agents, chelating agents Compounding/compounding agent, corrosion inhibitor, flame retardant/rust inhibitor, flame retardant, wetting agent, heat stabilizer, light stabilizer/UV absorber, lubricant, pH stabilizer, slip control material, antioxidant, Flow and leveling agent. It should be understood that all components may be added alone or in combination with other components.

卷到卷制造roll-to-roll manufacturing

现在参照图4,将要描述按照本发明的卷到卷制造工艺。使用纳米薄片的本发明实施方案非常适合用于卷到卷制造。具体地,在卷到卷制造系统200中,柔性衬底201、例如铝箔从供给卷202行进至缠绕卷204。在供给卷与缠绕卷之间,衬底201经过若干涂布器206A、206B、206C、微凹辊(microgravure rollers)和加热装置208A、208B、208C。每个涂布器沉积前体层的不同层或子层,例如上述的那些层。加热装置用来使不同的层和/或子层退火以形成致密膜。在图4描绘的实例中,涂布器206A和206B可以涂布前体层(例如前体层106)的不同子层。加热装置208A和208B可以在沉积下一个子层之前使每个子层退火。作为选择,可以同时退火两个子层。涂布器206C可以任选地涂布额外的如上所述含有硫属元素或合金或单质颗粒的材料层。加热装置208C加热该任选层和上述前体层。注意也可以沉积前体层(或子层)然后沉积任何额外的层并且接着将全部三层一起加热以形成用于光伏吸收层的IB-IIIA-硫属元素化物化合物膜。所述卷到卷系统可以是连续卷到卷和/或分段卷到卷和/或分批模式处理的卷到卷系统。Referring now to FIG. 4, a roll-to-roll manufacturing process in accordance with the present invention will be described. Embodiments of the invention using nanoflakes are well suited for roll-to-roll manufacturing. Specifically, in roll-to-roll manufacturing system 200 , a flexible substrate 201 , such as aluminum foil, travels from a supply roll 202 to a take-up roll 204 . Between the supply roll and the take-up roll, the substrate 201 passes through several coaters 206A, 206B, 206C, microgravure rollers and heating means 208A, 208B, 208C. Each applicator deposits a different layer or sublayer of the precursor layer, such as those described above. A heating device is used to anneal the various layers and/or sublayers to form a dense film. In the example depicted in FIG. 4 , coaters 206A and 206B can coat different sublayers of a precursor layer (eg, precursor layer 106 ). Heating devices 208A and 208B may anneal each sublayer before depositing the next sublayer. Alternatively, both sublayers can be annealed simultaneously. Applicator 206C may optionally apply additional layers of material containing chalcogen or alloy or elemental particles as described above. The heating device 208C heats the optional layer and the aforementioned precursor layer. Note that it is also possible to deposit the precursor layer (or sub-layers) followed by any additional layers and then heat all three layers together to form the IB-IIIA-chalcogenide compound film for the photovoltaic absorber layer. The roll-to-roll system may be a continuous roll-to-roll and/or a segmented roll-to-roll and/or a batch-mode processed roll-to-roll system.

光伏器件Photovoltaic device

现在参照图5,如上所述制成的膜可以充当光伏器件、模块或太阳能电池板中的吸收层。所述光伏器件300的一种实例示于图4中。该器件300包括基础衬底302、任选的粘附层303、基极或背面电极304、包括上述类型的膜的p型吸收层306、n型半导体薄膜308和透明电极310。例如,基础衬底302可以由金属箔,聚合物诸如聚酰亚胺(PI)、聚酰胺、聚醚醚酮(PEEK)、聚醚砜(PES)、聚醚酰亚胺(PEI)、聚萘二甲酸乙二醇酯(PEN)、聚酯(PET)、相关的聚合物,或金属化的塑料制成。作为非限制性的实例,相关的聚合物包括具有类似结构和/或功能性质和/或材料属性的那些聚合物。基极304由导电材料制成。例如,基极304可以是厚度可以选自约0.1μm-约25μm的金属层。可以将任选的中间层303引入电极304与衬底302之间。任选地,层303可以是扩散阻挡层以防止衬底302与电极304之间的材料扩散。扩散阻挡层303可以是导电层或者它可以是不导电的层。作为非限制性的实例,层303可以由多种材料中的任何构成,该材料包括但是不限于铬、钒、钨和玻璃,或化合物例如氮化物(包括氮化钽、氮化钨、氮化钛、氮化硅、氮化锆和/或氮化铪)、氧化物、碳化物和/或前述材料的任何单一或多重组合。尽管不限于以下内容,但是该层的厚度可以是100nm-500nm。在一些实施方案中,该层可以是100nm-300nm。任选地,厚度可以是约150nm-约250nm。任选地,厚度可以是约200nm。在一些实施方案中,可以使用两个阻挡层,衬底302每侧一个。任选地,可以将界面层设置在电极304之上并且由诸如包括但是不限于以下的材料构成:铬、钒、钨和玻璃,或化合物例如氮化物(包括氮化钽、氮化钨、氮化钛、氮化硅、氮化锆和/或氮化铪)、氧化物、碳化物和/或前述材料的任何单一或多重组合。Referring now to Figure 5, films made as described above can serve as absorber layers in photovoltaic devices, modules, or solar panels. An example of the photovoltaic device 300 is shown in FIG. 4 . The device 300 comprises a base substrate 302, an optional adhesion layer 303, a base or back electrode 304, a p-type absorber layer 306 comprising films of the type described above, an n-type semiconductor thin film 308 and a transparent electrode 310. For example, base substrate 302 may be made of metal foil, polymers such as polyimide (PI), polyamide, polyetheretherketone (PEEK), polyethersulfone (PES), polyetherimide (PEI), poly Polyethylene naphthalate (PEN), polyester (PET), related polymers, or metallized plastics. Related polymers include, by way of non-limiting example, those polymers having similar structural and/or functional properties and/or material properties. The base 304 is made of a conductive material. For example, base 304 may be a metal layer having a thickness selected from about 0.1 μm to about 25 μm. An optional intermediate layer 303 may be introduced between the electrode 304 and the substrate 302 . Optionally, layer 303 may be a diffusion barrier layer to prevent diffusion of material between substrate 302 and electrode 304 . Diffusion barrier layer 303 may be a conductive layer or it may be a non-conductive layer. As non-limiting examples, layer 303 may be composed of any of a variety of materials including, but not limited to, chromium, vanadium, tungsten, and glass, or compounds such as nitrides (including tantalum nitride, tungsten nitride, titanium, silicon nitride, zirconium nitride and/or hafnium nitride), oxides, carbides and/or any single or multiple combinations of the foregoing. Although not limited to the following, the thickness of this layer may be 100 nm to 500 nm. In some embodiments, this layer may be 100nm-300nm. Optionally, the thickness may be from about 150 nm to about 250 nm. Optionally, the thickness may be about 200 nm. In some embodiments, two barrier layers may be used, one on each side of the substrate 302 . Optionally, an interfacial layer may be disposed over electrode 304 and be composed of materials such as including but not limited to chromium, vanadium, tungsten, and glass, or compounds such as nitrides (including tantalum nitride, tungsten nitride, nitrogen titanium nitride, silicon nitride, zirconium nitride and/or hafnium nitride), oxides, carbides and/or any single or multiple combinations of the foregoing.

透明电极310可以包括透明导电层309和金属(例如Al、Ag、Cu或Ni)指状物层311以降低薄层电阻。The transparent electrode 310 may include a transparent conductive layer 309 and a metal (eg, Al, Ag, Cu, or Ni) finger layer 311 to reduce sheet resistance.

n-型半导体薄膜308在化合物膜与透明导电层309之间充当结配对。例如,n-型半导体薄膜308(有时称为结配对层)可以包括无机材料例如硫化镉(CdS)、硫化锌(ZnS)、氢氧化锌、硒化锌(ZnSe)、n型有机材料、或者这些或类似材料的两种或多种的某些组合,或者有机材料例如n型聚合物和/或小分子。这些材料的层可以例如通过化学浴沉积(CBD)和/或化学表面沉积(和/或相关方法)沉积至约2nm-约1000nm的厚度,更优选约5nm-约500nm且最优选约10nm-约300nm。这还可以进行配置以便用于连续卷到卷和/或分段卷到卷和/或分批模式系统中。The n-type semiconductor thin film 308 serves as a junction pair between the compound film and the transparent conductive layer 309 . For example, n-type semiconductor thin film 308 (sometimes referred to as a junction pair layer) may include inorganic materials such as cadmium sulfide (CdS), zinc sulfide (ZnS), zinc hydroxide, zinc selenide (ZnSe), n-type organic materials, or Some combination of two or more of these or similar materials, or organic materials such as n-type polymers and/or small molecules. Layers of these materials can be deposited, for example, by chemical bath deposition (CBD) and/or chemical surface deposition (and/or related methods) to a thickness of from about 2 nm to about 1000 nm, more preferably from about 5 nm to about 500 nm and most preferably from about 10 nm to about 300nm. This can also be configured for continuous roll-to-roll and/or staging roll-to-roll and/or batch mode systems.

透明导电层309可以是无机的,例如透明导电氧化物(TCO)例如但是不限于氧化铟锡(ITO)、氟化的氧化铟锡、氧化锌(ZnO)或铝掺杂的氧化锌或相关材料,其可以用包括但是不限于以下的各种方法中的任一种沉积:溅射、蒸发、CBD、电镀、溶胶-凝胶基涂覆、喷涂、化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)、等等。作为选择,透明导电层可以单独或组合地包括透明导电聚合物层例如掺杂PEDOT(聚-3,4-亚乙二氧基噻吩)、碳纳米管或相关结构、或其它透明有机材料的透明层,其可以用旋涂、浸涂或喷涂等或者用各种气相沉积技术中的任何沉积。任选地,应当理解在CdS和Al掺杂的ZnO之间可以使用本征(不导电)i-ZnO。任选地,在层308和透明导电层309之间可以包括绝缘层。无机和有机材料的组合也可以用来形成杂合透明导电层。因此,层309可以任选地是有机的(聚合物或混合聚合物分子)或是杂合的(有机-无机)。上述透明导电层的实例在例如共同转让的美国专利申请公布20040187917中得到描述,其通过引用并入本文。The transparent conductive layer 309 may be inorganic such as a transparent conductive oxide (TCO) such as but not limited to indium tin oxide (ITO), fluorinated indium tin oxide, zinc oxide (ZnO) or aluminum doped zinc oxide or related materials , which can be deposited by any of a variety of methods including but not limited to: sputtering, evaporation, CBD, electroplating, sol-gel based coating, spray coating, chemical vapor deposition (CVD), physical vapor deposition ( PVD), atomic layer deposition (ALD), etc. Alternatively, the transparent conductive layer may comprise a transparent conductive polymer layer such as doped PEDOT (poly-3,4-ethylenedioxythiophene), carbon nanotubes or related structures, or other transparent organic materials, alone or in combination. layer, which may be deposited by spin-coating, dip-coating, or spray-coating, etc., or by any of a variety of vapor deposition techniques. Optionally, it should be understood that intrinsic (non-conductive) i-ZnO can be used between CdS and Al doped ZnO. Optionally, an insulating layer may be included between layer 308 and transparent conductive layer 309 . Combinations of inorganic and organic materials can also be used to form hybrid transparent conductive layers. Thus, layer 309 may optionally be organic (polymer or hybrid polymer molecules) or hybrid (organic-inorganic). Examples of such transparent conductive layers are described, for example, in commonly assigned US Patent Application Publication 20040187917, which is incorporated herein by reference.

本领域技术人员将能够基于上述实施方案设计在这些教导范围内的变型。例如,注意在本发明的实施方案中,部分IB-IIIA前体层(或前体层的某些子层或叠层中的其它层)可以使用除纳米薄片基油墨以外的技术沉积。例如前体层或构成子层可以用多种可供选择的沉积技术中的任何沉积,这些技术包括但是不限于球形纳米粉末基油墨的溶液沉积、气相沉积技术例如ALD、蒸发、溅射、CVD、PVD、电镀等等。Those skilled in the art will be able to devise modifications within the scope of these teachings based on the above described embodiments. For example, note that in embodiments of the invention, portions of the IB-IIIA precursor layer (or certain sublayers of the precursor layer or other layers in the stack) may be deposited using techniques other than nanoflake-based inks. For example, precursor layers or constituent sublayers can be deposited using any of a number of alternative deposition techniques including, but not limited to, solution deposition of spherical nanopowder based inks, vapor deposition techniques such as ALD, evaporation, sputtering, CVD , PVD, electroplating and so on.

现在参照图6,将要描述显示本发明方法的一种实施方案的流程图。图6显示在步骤350,可以用本文所述的工艺之一制造纳米薄片108。任选地,可以存在洗涤步骤351以除去任何不期望的残余物。一旦制成纳米薄片108,步骤352显示可以用纳米薄片和至少一种其它组分例如但是不限于载液配制油墨。任选地,应当理解如果制造步骤产生可涂覆的配制剂的话,本发明的一些实施方案可以将步骤350和352合并成一个工艺步骤,如框353(用虚影显示)所示。作为一种非限制性实例,如果成型期间所用的分散剂和/或溶剂也可以用来形成良好涂层的话会是这种情况。在步骤354,可以用油墨涂覆衬底102以形成前体层106。任选地,可以存在通过诸如但是不限于加热、洗涤等的方法除去刚涂覆的层106的分散剂和/或其它残余物的步骤355。任选地,步骤355可以包括通过使用诸如但是不限于烘道/烘炉的干燥装置在油墨沉积后除去溶剂的步骤。步骤356显示处理前体层以形成致密膜,该致密膜可以接着在步骤358进一步处理以形成吸收层。任选地,应当理解如果致密膜是吸收层而且不需要该膜的进一步处理的话,本发明的一些实施方案可以将步骤356和358合并成一个工艺步骤。步骤360显示可以在吸收层之上和/或与其接触形成N型结。步骤362显示可以在N型结层之上形成透明电极以产生能够用作太阳能电池的叠层。Referring now to Figure 6, a flow chart showing one embodiment of the method of the present invention will be described. Figure 6 shows that at step 350, nanoflakes 108 may be fabricated using one of the processes described herein. Optionally, there may be a washing step 351 to remove any undesired residues. Once the nanoflakes 108 are made, step 352 shows that an ink can be formulated with the nanoflakes and at least one other component such as, but not limited to, a carrier liquid. Optionally, it should be understood that some embodiments of the invention may combine steps 350 and 352 into one process step, as indicated by block 353 (shown in phantom), if the manufacturing steps result in a coatable formulation. As a non-limiting example, this would be the case if the dispersants and/or solvents used during forming could also be used to form a good coating. At step 354 , substrate 102 may be coated with ink to form precursor layer 106 . Optionally, there may be a step 355 of removing dispersants and/or other residues of the freshly applied layer 106 by methods such as, but not limited to, heating, washing, and the like. Optionally, step 355 may include a step of removing solvent after ink deposition by using a drying device such as, but not limited to, a drying tunnel/oven. Step 356 shows processing the precursor layer to form a dense film, which can then be further processed at step 358 to form an absorber layer. Optionally, it is understood that some embodiments of the invention may combine steps 356 and 358 into one process step if the dense film is the absorbing layer and no further processing of the film is required. Step 360 shows that an N-type junction may be formed on and/or in contact with the absorber layer. Step 362 shows that a transparent electrode can be formed over the N-type junction layer to produce a stack capable of functioning as a solar cell.

现在参照图7,另外应当理解可以将多个器件300并入模块400中以形成太阳能模块,其包括多种包装、持久性和环境保护特征以使得能够将器件300安装在户外环境中。在一种实施方案中,模块400可以包括支撑衬底404的框架402,在衬底404上可以安装器件300。该模块400通过容许多个器件300一次进行安装而简化安装工艺。作为选择,也可以采用灵活的形状因子。另外应当理解包封器件和/或层可以用来保护免受环境影响。作为一种非限制性实例,包封器件和/或层可以阻挡湿气和/或氧气和/或酸雨进入器件,尤其是在持久的环境暴露期间。Referring now to FIG. 7 , it should additionally be appreciated that multiple devices 300 may be incorporated into a module 400 to form a solar module that includes various packaging, durability, and environmental protection features to enable installation of devices 300 in outdoor environments. In one embodiment, the module 400 may include a frame 402 that supports a substrate 404 on which the device 300 may be mounted. The module 400 simplifies the mounting process by allowing multiple devices 300 to be mounted at one time. Alternatively, flexible form factors are also available. It should also be understood that encapsulating devices and/or layers may serve to protect from the environment. As a non-limiting example, encapsulating the device and/or layer can block the ingress of moisture and/or oxygen and/or acid rain into the device, especially during prolonged environmental exposure.

额外的硫属元素源Additional sources of chalcogen

应当理解使用纳米薄片的本发明还可以用共同待审的美国专利申请11/290,633(律师案卷号NSL-045)中所述方式的类似方式使用额外的硫属元素源,其中前体材料含有1)硫属元素化物例如但是不限于硒化铜、和/或硒化铟和/或硒化镓和/或2)额外硫属元素的源,例如但是不限于,尺寸小于约200nm的Se或S纳米颗粒。在一种非限制性实例中,硫属元素化物和/或额外的硫属元素可以是纳米薄片和/或纳米薄片形式,而额外的硫属元素源可以是薄片和/或非薄片。该硫属元素化物纳米薄片可以是一种或多种二元合金硫属元素化物例如但是不限于IB族二元硫属元素化物纳米颗粒(例如IB族非氧化物硫属元素化物,例如Cu-Se、CuS或CuTe)和/或IIIA族硫属元素化物纳米颗粒(例如IIIA族非氧化物硫属元素化物,例如Ga(Se、S、Te)、In(Se、S、Te)和Al(Se、S、Te))。在另外的实施方案中,纳米薄片可以是非硫属元素化物例如但是不限于IB和/或IIIA族材料例如CuIn、CuGa和/或InGa。如果硫属元素在相对较低的温度(例如,对于Se为220℃,对于S为120℃)熔化,则硫属元素已经处于液态而且与纳米薄片产生良好接触。如果接着充分加热(例如,在约375℃)纳米薄片和硫属元素,则硫属元素与硫属元素化物反应以形成期望的IB-IIIA-硫属元素化物材料。现在参照图8A-8C,可以在衬底501上承载硫属元素化物纳米薄片502以及例如为含有硫属元素颗粒的粉末形式的额外硫属元素的源504。作为一种非限制性实例,该硫属元素颗粒可以是微米和/或亚微米尺寸的非氧硫属元素(例如Se、S或Te)颗粒,例如尺寸数百纳米或更小至数微米。将硫属元素化物纳米薄片502和硫属元素颗粒504的混合物置于衬底501上并且加热到足以熔化额外的硫属元素颗粒504的温度以形成如图8B所示的液体硫属元素506。将液体硫属元素506和硫属元素化物502加热到足以使液体硫属元素506与硫属元素化物502反应的温度以形成如图1C所示的IB-IIIA族-硫属元素化物化合物的致密膜508。然后使IB-IIIA族-硫属元素化物化合物的致密膜冷却。It should be understood that the present invention using nanoflakes may also employ an additional source of chalcogen in a manner similar to that described in co-pending U.S. Patent Application 11/290,633 (Attorney Docket No. NSL-045), wherein the precursor material contains 1 ) chalcogenides such as but not limited to copper selenide, and/or indium selenide and/or gallium selenide and/or 2) sources of additional chalcogens, such as but not limited to, Se or S having a size of less than about 200 nm nanoparticles. In one non-limiting example, the chalcogenide and/or additional chalcogen can be in the form of nanoflakes and/or nanoflakes, while the additional source of chalcogen can be flakes and/or non-flakes. The chalcogenide nanoflakes may be one or more binary alloy chalcogenides such as but not limited to Group IB binary chalcogenide nanoparticles (e.g. Group IB non-oxide chalcogenides such as Cu- Se, CuS, or CuTe) and/or group IIIA chalcogenide nanoparticles (e.g., group IIIA non-oxide chalcogenides such as Ga(Se,S,Te), In(Se,S,Te) and Al( Se, S, Te)). In further embodiments, the nanoflakes may be non-chalcogenides such as, but not limited to, Group IB and/or IIIA materials such as CuIn, CuGa, and/or InGa. If the chalcogen melts at a relatively low temperature (eg, 220°C for Se, 120°C for S), the chalcogen is already in a liquid state and makes good contact with the nanoflakes. If the nanoflakes and chalcogen are then heated sufficiently (eg, at about 375° C.), the chalcogen reacts with the chalcogenide to form the desired IB-IIIA-chalcogenide material. Referring now to FIGS. 8A-8C , chalcogenide nanoflakes 502 and a source 504 of additional chalcogen, for example in the form of a powder containing chalcogen particles, may be supported on a substrate 501 . As a non-limiting example, the chalcogen particles may be micron and/or submicron sized non-oxychalcogen (eg Se, S or Te) particles, for example hundreds of nanometers or smaller down to microns in size. A mixture of chalcogenide nanoflakes 502 and chalcogen particles 504 is placed on a substrate 501 and heated to a temperature sufficient to melt the additional chalcogen particles 504 to form liquid chalcogen 506 as shown in FIG. 8B . The liquid chalcogen 506 and the chalcogenide 502 are heated to a temperature sufficient for the liquid chalcogen 506 to react with the chalcogenide 502 to form a dense group IB-IIIA-chalcogenide compound as shown in FIG. 1C Film 508. The dense film of the Group IB-IIIA-chalcogenide compound is then allowed to cool.

尽管不限于以下内容,但是硫属元素化物颗粒502可以由二元硫属元素化物进料材料开始获得,例如微米尺寸的颗粒或更大的颗粒。下表1中表出了市售硫属元素化物材料的实例。Although not limited to the following, the chalcogenide particles 502 may be obtained starting from a binary chalcogenide feed material, such as micron-sized particles or larger. Examples of commercially available chalcogenide materials are listed in Table 1 below.

表ITable I

化学组成chemical components 化学式chemical formula 典型纯度%Typical purity% 硒化铝Aluminum selenide Al2Se3 Al 2 Se 3 99.599.5 硫化铝Aluminum sulfide Al2S3 Al 2 S 3 9898 硫化铝Aluminum sulfide Al2S3 Al 2 S 3 99.999.9 碲化铝aluminum telluride Al2Te3 Al 2 Te 3 99.599.5 硒化铜copper selenide Cu-SeCu-Se 99.599.5 硒化铜copper selenide Cu2SeCu 2 Se 99.599.5 硒化镓gallium selenide Ga2Se3 Ga 2 Se 3 99.99999.999 硫化铜copper sulfide Cu2S(可为Cu1.8-2S)Cu 2 S (can be Cu1.8-2S) 99.599.5 硫化铜copper sulfide CuSCuS 99.599.5 硫化铜copper sulfide CuSCuS 99.9999.99 碲化铜copper telluride CuTe(典型Cu1.4Te)CuTe (typically Cu 1.4 Te) 99.599.5 碲化铜copper telluride Cu2TeCu 2 Te 99.599.5 硫化镓gallium sulfide Ga2S3 Ga 2 S 3 99.9599.95 硫化镓gallium sulfide GaSGaS 99.9599.95 碲化镓gallium telluride GaTeGaTe 99.99999.999 碲化镓gallium telluride Ga2Te3 Ga 2 Te 3 99.99999.999 硒化铟indium selenide In2Se3 In 2 Se 3 99.99999.999 硒化铟indium selenide In2Se3 In 2 Se 3 99.99%99.99% 硒化铟indium selenide In2Se3 In 2 Se 3 99.999.9 硒化铟indium selenide In2Se3 In 2 Se 3 99.999.9 硫化铟indium sulfide InSInS 99.99999.999 硫化铟indium sulfide In2S3 In 2 S 3 99.9999.99 碲化铟indium telluride In2Te3 In 2 Te 3 99.99999.999 碲化铟indium telluride In2Te3 In 2 Te 3 99.99999.999

硫属元素粉末和其它市售进料的实例在下表II中列出。Examples of chalcogen powders and other commercially available feeds are listed in Table II below.

表IITable II

化学组成chemical components 化学式chemical formula 典型纯度%Typical purity % 硒金属selenium metal SeSe 99.9999.99 硒金属selenium metal SeSe 99.699.6 硒金属selenium metal SeSe 99.699.6 硒金属selenium metal SeSe 99.99999.999 硒金属selenium metal SeSe 99.99999.999 sulfur SS 99.99999.999 碲金属tellurium metal TeTe 99.9599.95 碲金属tellurium metal TeTe 99.599.5 碲金属tellurium metal TeTe 99.599.5 碲金属tellurium metal TeTe 99.999999.9999 碲金属tellurium metal TeTe 99.9999.99 碲金属tellurium metal TeTe 99.99999.999 碲金属tellurium metal TeTe 99.99999.999 碲金属tellurium metal TeTe 99.9599.95 碲金属tellurium metal TeTe 99.599.5

印刷额外的硫属元素源的层Printing additional layers of chalcogen source

现在参照图9A-9E,将要描述使用纳米薄片的本发明的另一实施方案。图9A显示具有在其上形成纳米薄片前体层606的接触层604的衬底602。可以在纳米薄片前体层606上提供额外的硫属元素源,其作为含有额外的硫属元素源例如但是不限于单质硫属元素颗粒607的分立层608。例如,而且不丧失一般性地,该硫属元素颗粒可以是硒、硫或碲的颗粒。如图9B所示,对纳米薄片前体层606和含有硫属元素颗粒的层608施加热量609以将它们加热到足以熔化该硫属元素颗粒607并且使硫属元素颗粒607与前体层606中的元素反应的温度。应当理解纳米薄片可以由包括但是不限于IB族元素、IIIA族元素和/或VIA族元素的多种材料制成。硫属元素颗粒607与前体层606的元素的反应形成如图9C所示的IB-IIIA硫属元素化物化合物的化合物膜610。优选地,该IB-IIIA-硫属元素化物化合物具有CuIn1-xGaxSe2(1-y)S2y的形式,其中0≤x≤1和0≤y≤1。应当理解在一些实施方案中,在具有额外的硫属元素源的层108的施加之前可以烧结前体层106。在另外的实施方案中,并不预先加热前体层106而是将层106和108一起加热。Referring now to Figures 9A-9E, another embodiment of the present invention using nanoflakes will be described. Figure 9A shows a substrate 602 with a contact layer 604 on which a nanoflake precursor layer 606 is formed. The additional source of chalcogen may be provided on the nanoflake precursor layer 606 as a discrete layer 608 containing the additional source of chalcogen such as, but not limited to, elemental chalcogen particles 607 . For example, and without loss of generality, the chalcogen particles may be particles of selenium, sulfur or tellurium. As shown in FIG. 9B, heat 609 is applied to the nanoflake precursor layer 606 and the layer 608 containing chalcogen particles to heat them sufficiently to melt the chalcogen particles 607 and separate the chalcogen particles 607 from the precursor layer 606. The temperature at which the elements in the reaction react. It should be understood that the nanoflakes may be made from a variety of materials including, but not limited to, Group IB elements, Group IIIA elements, and/or Group VIA elements. The reaction of the chalcogen particles 607 with the elements of the precursor layer 606 forms a compound film 610 of an IB-IIIA chalcogenide compound as shown in FIG. 9C . Preferably, the IB-IIIA-chalcogenide compound has the form CuIn 1-x Ga x Se 2(1-y) S 2y , where 0≤x≤1 and 0≤y≤1. It should be understood that in some embodiments, the precursor layer 106 may be sintered prior to the application of the layer 108 with the additional chalcogen source. In other embodiments, precursor layer 106 is not preheated but layers 106 and 108 are heated together.

在本发明的一种实施方案中,前体层606可以是约4.0-约0.5μm厚。含有硫属元素颗粒607的层608可以具有约4.0μm-约0.5μm的厚度。层608中的硫属元素颗粒607尺寸可以是约1nm-约25μm,优选尺寸是约25nm-约300nm。注意硫属元素颗粒607可以最初大于IB-IIIA-VIA化合物膜610的最终厚度。可以将硫属元素颗粒607与溶剂、载体、分散剂等混合从而制备适合在前体层606上湿沉积以形成层608的油墨或糊料。作为选择,可以预备硫属元素颗粒607以便通过干法在衬底上沉积以形成层608。另外注意可以通过例如上述的RTA工艺进行含有硫属元素颗粒607的层608的加热。In one embodiment of the invention, precursor layer 606 may be about 4.0 to about 0.5 μm thick. Layer 608 containing chalcogen particles 607 may have a thickness of about 4.0 μm to about 0.5 μm. The chalcogen particles 607 in layer 608 may range in size from about 1 nm to about 25 μm, with a preferred size ranging from about 25 nm to about 300 nm. Note that the chalcogen particles 607 may initially be larger than the final thickness of the IB-IIIA-VIA compound film 610 . Chalcogen particles 607 may be mixed with solvents, carriers, dispersants, etc. to prepare an ink or paste suitable for wet deposition on precursor layer 606 to form layer 608 . Alternatively, chalcogen particles 607 may be prepared for dry deposition on the substrate to form layer 608 . Note also that the heating of the layer 608 containing the chalcogen particles 607 may be performed by, for example, the RTA process described above.

可以用若干不同的方法形成硫属元素颗粒607(例如Se或S)。例如,可以用市售细目粉末(例如200目/75μm)起始并且将粉末球磨至期望尺寸来形成Se或S颗粒。通常的球磨工艺可以使用填充有在液体介质中的研磨陶瓷球和可以是粉末形式的进料材料的陶瓷研磨罐。当旋转或摇动该罐时,所述球在液体介质中振动并研磨粉末以减小进料材料的颗粒尺寸。任选地,该工艺可以包括干式(预先)研磨较大块的材料例如但是不限于Se。干磨可以使用2-6mm和更小的块,但是也会能够处理更大的块。注意这适用于所有的粉碎,其中工艺可以用较大的进料材料起始,干磨,随后开始湿磨(例如但是不限于球磨)。研磨机本身可以从小型介质研磨机到卧式旋转陶瓷罐。Chalcogen particles 607 (eg, Se or S) can be formed in a number of different ways. For example, Se or S particles can be formed starting from a commercially available fine-mesh powder (eg, 200 mesh/75 μm) and ball milling the powder to the desired size. A typical ball milling process may use a ceramic grinding jar filled with ground ceramic balls in a liquid medium and a feed material which may be in powder form. When the tank is rotated or shaken, the balls vibrate in the liquid medium and grind the powder to reduce the particle size of the feed material. Optionally, the process may include dry (pre)grinding larger pieces of material such as but not limited to Se. Dry grinding can use 2-6mm and smaller pieces, but will also be able to handle larger pieces. Note that this applies to all comminutions where the process may start with a larger feed material, dry mill, followed by wet milling (such as but not limited to ball milling). The grinders themselves can range from small media grinders to horizontal rotary ceramic jars.

现在参照图9D,另外应当理解在一些实施方案中,可以在前体层606下方形成硫属元素颗粒的层608。层608的这种位置仍然容许硫属元素颗粒向前体层606提供足够过剩的硫属元素从而与层606中的IB族和IIIA族元素完全反应。另外,由于层608中释放出的硫属元素可以上升通过层606,层608在层606下方的这种位置可以有益于在元素之间产生更大的混合。层608的厚度可以是约4.0μm-约0.5μm。在另外的实施方案中,层608的厚度可以是约500nm-约50nm。在一种非限制性实例中,约100nm或更大的单独的Se层会是足够的。硫属元素的涂覆可以包括(单独或组合使用的)利用粉末涂覆、Se蒸发或其它Se沉积方法例如但是不限于化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)、电镀、和/或类似或相关方法。其它类型的材料沉积技术可以用来获得厚度小于0.5μm或小于1.0μm的Se层。另外应当理解在一些实施方案中,额外的硫属元素源不限于仅仅单质硫属元素,而是在一些实施方案中可以是一种或多种硫属元素的合金和/或溶体。Referring now to FIG. 9D , it should additionally be understood that in some embodiments, a layer 608 of chalcogen particles may be formed below the precursor layer 606 . This location of layer 608 still allows the chalcogen particles to provide sufficient excess chalcogen to precursor layer 606 to fully react with the group IB and group IIIA elements in layer 606 . Additionally, such a location of layer 608 below layer 606 may be beneficial in creating greater mixing between the elements since the chalcogen elements liberated in layer 608 may rise through layer 606 . The thickness of layer 608 may be from about 4.0 μm to about 0.5 μm. In other embodiments, the thickness of layer 608 may be from about 500 nm to about 50 nm. In one non-limiting example, a single Se layer of about 100 nm or larger would be sufficient. Coating of chalcogens may include (alone or in combination) the use of powder coating, Se evaporation or other Se deposition methods such as but not limited to chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD ), electroplating, and/or similar or related methods. Other types of material deposition techniques can be used to obtain Se layers with a thickness of less than 0.5 μm or less than 1.0 μm. It should also be understood that in some embodiments, the additional source of chalcogen is not limited to only elemental chalcogen, but may be alloys and/or solutions of one or more chalcogens in some embodiments.

任选地,应当理解额外的硫属元素源可以与前体层混合和/或沉积于其中,而不是作为分立的层。在本发明的一种实施方案中,可以使用硫属元素的无氧颗粒或基本上无氧的颗粒。如果将硫属元素与纳米薄片和/或片状前体材料一起使用,致密化可能不会终结通过使用平面颗粒而达到的较高密度的问题,因此没有理由排除与分立层相反在前体层内印刷Se和/或其它硫属元素源。这可能涉及不必将前体层加热到先前的处理温度。在一些实施方案中,这可能涉及不用在约400℃以上加热形成膜。在一些实施方案中,这可能涉及不必在约300℃以上加热。Optionally, it should be understood that additional sources of chalcogen may be mixed with and/or deposited in the precursor layer rather than as a separate layer. In one embodiment of the invention, oxygen-free or substantially oxygen-free particles of chalcogen may be used. If chalcogens are used with nanoflakes and/or sheet-like precursor materials, densification may not end the problem of higher densities achieved by using planar particles, so there is no reason to rule out discrete layers as opposed to discrete layers in the precursor layer Se and/or other chalcogen sources are internally printed. This may involve not having to heat the precursor layer to a previous processing temperature. In some embodiments, this may involve forming the film without heating above about 400°C. In some embodiments, this may involve not necessarily heating above about 300°C.

在本发明另外的实施方案中,可以印刷多重材料层并且在下一层沉积之前与硫属元素反应。一种非限制性实例会是沉积Cu-In-Ga层,将它退火,然后沉积Se层,接着用RTA处理,之后沉积富含Ga的另一前体层,接着又一次沉积Se,最后第二次RTA处理。更一般地,这可以包括形成前体层(加热或不加热),然后涂覆额外的硫属元素源层(然后加热或不加热),接着形成另一层的更多前体(加热或不加热),然后是另一层的额外的硫属元素源(然后加热或不加热),并且重复期望的次数以使组成渐次变化或使期望的晶体尺寸成核。在一种非限制性实例中,这可以用来使镓浓度渐次变化。在另一实施方案中,这可以用来使铜浓度渐次变化。在另一实施方案中,这可以用来使铟浓度渐次变化。在另一实施方案中,这可以用来使硒浓度渐次变化。在另一实施方案中,这可以用来使硒浓度渐次变化。另一理由是首先生长富铜的膜以获得大的晶体然后开始加入贫铜的层以恢复化学计量。当然这种实施方案可以组合以容许硫属元素沉积在关于任一个所涉及步骤的前体层中。In additional embodiments of the invention, multiple layers of material may be printed and reacted with chalcogen before the next layer is deposited. A non-limiting example would be to deposit a Cu-In-Ga layer, anneal it, then deposit a Se layer, then treat with RTA, then deposit another Ga-rich precursor layer, then deposit Se again, and finally the first Secondary RTA treatment. More generally, this can involve forming a precursor layer (with or without heat), then applying an additional chalcogen source layer (with or without heat), followed by forming another layer of more precursor (with or without heat). heated), followed by another layer of additional chalcogen source (then heated or not), and repeated as many times as desired to either step the composition or nucleate the desired crystal size. In one non-limiting example, this can be used to grade the gallium concentration. In another embodiment, this can be used to gradually vary the copper concentration. In another embodiment, this can be used to gradually vary the indium concentration. In another embodiment, this can be used to gradually vary the selenium concentration. In another embodiment, this can be used to vary the selenium concentration gradually. Another reason is to grow the copper-rich film first to obtain large crystals and then start adding copper-poor layers to restore stoichiometry. Of course such embodiments can be combined to allow chalcogen deposition in the precursor layer for either of the steps involved.

现在参照图9E,利用硫属元素例如但是不限于Se和S的低熔点的替代方法是形成核-壳纳米薄片,其中核是纳米薄片607而壳620是硫属元素涂层。硫属元素620熔化并且与核纳米薄片607的材料快速反应。作为一种非限制性实例,核可以是IB族(例如,Cu)和/或IIIA族(例如,Ga和In)的单质颗粒的混合物,其可以通过将单质进料球磨到期望的尺寸来获得。可用的单质进料材料的实例列于下表III中。所述核还可以是硫属元素化物核或本文所述的其它材料。Referring now to FIG. 9E , an alternative approach to exploit the low melting point of chalcogens such as but not limited to Se and S is to form core-shell nanoflakes where the core is the nanoflake 607 and the shell 620 is the chalcogen coating. The chalcogens 620 melt and react rapidly with the material of the core nanoflakes 607 . As a non-limiting example, the core may be a mixture of elemental particles of Group IB (e.g., Cu) and/or Group IIIA (e.g., Ga and In), which may be obtained by ball milling elemental feedstock to the desired size . Examples of useful elemental feed materials are listed in Table III below. The core may also be a chalcogenide core or other materials described herein.

表IIITable III

Figure BDA0000459337610000481
Figure BDA0000459337610000481

富硫属元素的硫属元素化物颗粒Chalcogen-rich chalcogenide particles

现在参照图10A-10C,应当理解本发明的另一实施方案包括其中纳米薄片颗粒可以是富硫属元素的硫属元素化物颗粒(无论它们是IB族硫属元素化物、IIIA族硫属元素化物还是其它硫属元素化物)的实施方案。在这些实施方案中,由于硫属元素化物颗粒本身内含有过量硫属元素,因此可能不需要使用单独的硫属元素源。在IB族硫属元素化物的一种非限制性实例中,该硫属元素化物可以是硒化铜,其中材料包含CuxSey,其中x<y。因此,这是富硫属元素的硫属元素化物,当处理前体材料的颗粒时它会提供过量的硒。Referring now to Figures 10A-10C, it should be understood that another embodiment of the present invention includes wherein the nanoflake particles may be chalcogen-rich chalcogenide particles (whether they are Group IB chalcogenides, Group IIIA chalcogenides) or other chalcogenides) embodiments. In these embodiments, it may not be necessary to use a separate source of chalcogen due to the excess chalcogen contained within the chalcogenide particles themselves. In one non-limiting example of a Group IB chalcogenide, the chalcogenide may be copper selenide, wherein the material comprises Cu x Se y , where x<y. So this is a chalcogen-rich chalcogenide, which provides an excess of selenium when processing the particles of the precursor material.

提供额外的硫属元素源的目的在于首先产生液体以扩大初始固体颗粒(薄片)与液体之间的接触面积。其次,当与贫硫属元素的膜合作时,该额外的源添加硫属元素以达到化学计量期望的硫属元素量。第三,硫属元素例如Se是挥发性的而且在处理期间不可避免地损失若干。因此,主要目的是产生液体。也有多种其它路线以在处理前体层时增加液体的量。这些路线包括但是不限于:1)比Cu2-xSe更富Se的Cu-Se(>377℃,在>523℃以上更多液体);2)与Cu2Se相等或当添加额外的Se时比它更富Se的Cu-Se(>220℃);3)组成In4Se3,或在In4Se3与In1Se1之间的In-Se(>550℃);4)与In4Se3相等或当添加额外的Se时比它更富Se的In-Se(>220℃);5)In与In4Se3之间的In-Se(>156℃,由于产生In而优选在无氧环境中);6)Ga乳液(>29℃,优选不含氧);和极少是(但是可能)Ga-Se。即使当与Se蒸气合作时,使用上述方法之一或通过相当的方法在前体层本身中产生额外的液体也仍然会是非常有利的。The purpose of providing an additional source of chalcogen is to create a liquid first to expand the contact area between the initial solid particles (flakes) and the liquid. Second, when working with chalcogen-depleted membranes, this additional source adds chalcogen to achieve the stoichiometrically desired amount of chalcogen. Third, chalcogens such as Se are volatile and inevitably lose some during processing. Therefore, the main purpose is to generate liquid. There are also various other routes to increase the amount of liquid when processing the precursor layer. These routes include but are not limited to: 1) Cu-Se that is more Se-rich than Cu 2-x Se (>377 °C, more liquid above >523 °C); 2) equal to Cu 2 Se or when additional Se Cu-Se (>220℃) which is more Se-rich than it; 3) composition In 4 Se 3 , or In-Se between In 4 Se 3 and In 1 Se 1 (>550℃); 4) and In-Se that is equal to In 4 Se 3 or richer than it when additional Se is added (>220°C); 5) In-Se between In and In 4 Se 3 (>156°C due to the generation of In preferably in an oxygen-free environment); 6) Ga emulsions (>29°C, preferably without oxygen); and rarely (but possible) Ga-Se. Even when cooperating with Se vapor, it can still be very advantageous to generate additional liquid in the precursor layer itself using one of the above methods or by an equivalent method.

现在参照图10A,应当理解油墨可以含有多种类型的颗粒。在图10A中,颗粒704是第一类颗粒而颗粒706是第二类颗粒。在一种非限制性实例中,油墨可以具有多种类型的颗粒,其中只有一种类型的颗粒是硫属元素化物而且还是富硫属元素的。在另外的实施方案中,油墨可以具有这样的颗粒,其中至少两种类型的油墨中的硫属元素化物是富硫属元素的。作为一种非限制性实例,油墨可以具有CuxSey(其中x<y)和InaSeb(其中a<b)。在另外的实施方案中,油墨可以具有颗粒704、706和708(用虚影显示),其中至少三种类型的硫属元素化物颗粒处于油墨中。作为非限制性实例,富硫属元素的硫属元素化物颗粒可以是Cu-Se、In-Se和/或Ga-Se。所有三种可以都富硫属元素。各种组合是可能的以获得期望的过量硫属元素。如果油墨具有三种类型的颗粒,应当理解不是所有的颗粒都需要是硫属元素化物或者富硫属元素。即使在只有一种类型的颗粒、例如Cu-Se的油墨内,也可以存在富硫属元素颗粒例如其中x<y的CuxSey和并不富硫属元素的颗粒例如其中x>y的CuxSey的混合物。作为一种非限制性实例,混合物可以含有硒化铜颗粒,其可以具有下列组成:Cu1Se1和Cu1Se2Referring now to FIG. 1OA, it should be understood that inks may contain various types of particles. In FIG. 1OA, particle 704 is a first type of particle and particle 706 is a second type of particle. In one non-limiting example, an ink may have multiple types of particles where only one type of particle is chalcogenide and also chalcogen-rich. In further embodiments, the ink may have particles wherein at least two types of chalcogenides in the ink are chalcogen-rich. As a non-limiting example, an ink may have Cux Se y (where x<y) and In a Se b (where a<b). In further embodiments, the ink may have particles 704, 706, and 708 (shown in phantom) with at least three types of chalcogenide particles in the ink. As non-limiting examples, the chalcogen-rich chalcogenide particles may be Cu-Se, In-Se, and/or Ga-Se. All three can be rich in chalcogen. Various combinations are possible to obtain the desired excess of chalcogen. If the ink has three types of particles, it should be understood that not all particles need be chalcogenide or chalcogen-rich. Even in inks with only one type of particle, such as Cu-Se, there can be chalcogen-rich particles such as Cu x Se y where x<y and particles that are not rich in chalcogen such as where x>y Mixture of Cu x Se y . As a non-limiting example, the mixture may contain copper selenide particles, which may have the following composition: Cu 1 Se 1 and Cu 1 Se 2 .

仍然参照图10A,另外应当理解即使在富硫属元素的颗粒的情况下,也可以另外将附加层710(用虚影显示)印刷或涂覆到油墨上从而如前所述提供额外的硫属元素源。该层中的材料可以是纯硫属元素、硫属元素化物或含有硫属元素的化合物。如图10C所示,如果希望用硫属元素进一步处理的话,还可以将附加层710(用虚影显示)印刷到所产生的膜上。Still referring to FIG. 10A , it should additionally be understood that even in the case of chalcogen-rich particles, an additional layer 710 (shown in phantom) may additionally be printed or coated onto the ink to provide additional chalcogen element source. The material in this layer may be pure chalcogen, a chalcogenide, or a chalcogen-containing compound. As shown in Figure 10C, an additional layer 710 (shown in phantom) can also be printed onto the resulting film if further treatment with chalcogen is desired.

现在参照图10B,可以向颗粒704和706施加热量以开始将它们转变。由于颗粒中的材料的不同熔化温度,一些材料可以比另外的材料更快地开始呈现液体形式。在本发明中,如果呈现液体形式的颗粒也释放作为液体712的过量硫属元素,该液体可以围绕该层中的其它材料和/或元素例如714和716,则这是特别有利的。图10B包括具有液体712与材料和/或元素714和716的放大图的视图。Referring now to FIG. 10B, heat may be applied to particles 704 and 706 to begin transforming them. Due to the different melting temperatures of the materials in the particles, some materials may begin to assume liquid form sooner than others. In the present invention it is particularly advantageous if the particles in liquid form also release excess chalcogen as liquid 712 which may surround other materials and/or elements in the layer such as 714 and 716 . FIG. 10B includes a view with an enlarged view of liquid 712 and materials and/or elements 714 and 716 .

由全部颗粒整体提供的额外硫属元素的量处在与处理之后化合物中存在的化学计量水平相等或其上的水平。在本发明的一种实施方案中,硫属元素的过量包含比以下之和更大的量:1)最终的IB-IIIA硫属元素化物膜中存在的化学计量量和2)形成具有期望的化学计量比的最终IB-IIIA-硫属元素化物的处理期间由于损失所必需的硫属元素的最小量。尽管不限于以下内容,但是过量的硫属元素可以充当熔剂,其将会在处理温度下液化并且促进由液化的过量硫属元素所提供的颗粒的更大原子混合。液化的过量硫属元素还可以确保存在足够的硫属元素以与IB和IIIA族元素反应。过量的硫属元素帮助“消化”或“溶解”颗粒或薄片。过量硫属元素将会在完全形成期望的膜之前从层中脱出。The amount of additional chalcogen provided by all particles collectively is at a level equal to or above the stoichiometric level present in the compound after treatment. In one embodiment of the invention, the excess of chalcogen comprises an amount greater than the sum of: 1) the stoichiometric amount present in the final IB-IIIA chalcogenide film and 2) formed with the desired The minimum amount of chalcogen necessary due to loss during processing of the stoichiometric final IB-IIIA-chalcogenide. Although not limited to the following, the excess chalcogen may act as a flux that will liquefy at processing temperatures and promote greater atomic mixing of the particles provided by the liquefied excess chalcogen. The liquefied excess chalcogen also ensures that enough chalcogen is present to react with the group IB and IIIA elements. Excess chalcogen helps to "digest" or "dissolve" the particles or flakes. Excess chalcogen will strip out of the layer before the desired film is fully formed.

现在参照图10C,可以继续施加热量直至形成IB-IIIA族硫属元素化物膜720为止。如果希望特定的特征,可以施加另一层722(用虚影显示)以便膜720的进一步处理。作为一种非限制性实例,可以向顶层添加额外的镓源并且与膜720进一步反应。其它源可以提供额外的硒以改善膜720顶面上的硒化。Referring now to FIG. 10C , application of heat may continue until Group IB-IIIA chalcogenide film 720 is formed. Another layer 722 (shown in phantom) can be applied for further processing of the film 720 if specific features are desired. As a non-limiting example, an additional source of gallium can be added to the top layer and further reacted with film 720 . Other sources can provide additional selenium to improve selenization on the top surface of membrane 720 .

应当理解还可以将多种硫属元素化物颗粒与非硫属元素化物颗粒组合以达到前体层中期望的硫属元素过量供应。下表(表IV)提供了在行中列举的硫属元素化物颗粒与列中列举的非硫属元素化物颗粒之间一些可能组合的非限制性的阵列。It should be understood that various chalcogenide particles may also be combined with non-chalcogenide particles to achieve the desired oversupply of chalcogen in the precursor layer. The following table (Table IV) provides a non-limiting array of some possible combinations between chalcogenide particles listed in rows and non-chalcogenide particles listed in columns.

表IVTable IV

Figure BDA0000459337610000511
Figure BDA0000459337610000511

在另一实施方案中,本发明可以将多种硫属元素化物颗粒与其它硫属元素化物颗粒组合。下表(表V)提供在行中列举的硫属元素化物颗粒与列中列举的硫属元素化物颗粒之间一些可能组合非限制性的的阵列。In another embodiment, the present invention may combine various chalcogenide particles with other chalcogenide particles. The following table (Table V) provides a non-limiting array of some possible combinations between the chalcogenide particles listed in the rows and the chalcogenide particles listed in the columns.

表VTable V

Figure BDA0000459337610000521
Figure BDA0000459337610000521

成核层nucleation layer

现在参照图11A-11C,将要描述使用薄片例如但是不限于纳米薄片的本发明的另一实施方案。该实施方案提供一种方法,其用于通过在衬底上沉积IB-IIIA族硫属元素化物薄层以充当在该IB-IIIA族硫属元素化物薄层之上形成的前体层膜生长的成核平面来改善衬底上的晶体生长。可以在形成前体层之前沉积、涂覆或形成该IB-IIIA族硫属元素化物的成核层。可以用真空或非真空技术形成该成核层。在成核层之上形成的前体层可以通过包括但是不限于使用含有本申请所述的多个纳米薄片的油墨的多种技术形成。Referring now to Figures 11A-11C, another embodiment of the invention using flakes such as but not limited to nanoflakes will be described. This embodiment provides a method for film growth by depositing a thin layer of a Group IB-IIIA chalcogenide on a substrate to serve as a precursor layer formed over the thin layer of a Group IB-IIIA chalcogenide nucleation plane to improve crystal growth on the substrate. The Group IB-IIIA chalcogenide nucleation layer may be deposited, coated, or formed prior to forming the precursor layer. The nucleation layer can be formed using vacuum or non-vacuum techniques. The precursor layer formed over the nucleation layer can be formed by a variety of techniques including, but not limited to, using an ink containing a plurality of nanoflakes as described herein.

图11A显示可以在衬底812上形成吸收层,如图11A所示。衬底812的表面可以用接触层814涂覆以促进衬底812与形成于其上的吸收层之间的电接触。例如,铝衬底812可以涂覆有钼接触层814。如本文论述的那样,如果使用接触层的话,在衬底812上形成或布置材料或材料层包括在接触层814上布置或形成这样的材料或层。FIG. 11A shows that an absorber layer may be formed on a substrate 812, as shown in FIG. 11A. The surface of the substrate 812 may be coated with a contact layer 814 to facilitate electrical contact between the substrate 812 and an absorber layer formed thereon. For example, an aluminum substrate 812 may be coated with a molybdenum contact layer 814 . As discussed herein, forming or arranging a material or layer of material on substrate 812 includes arranging or forming such a material or layer on contact layer 814 if a contact layer is used.

如图11B所示,在衬底812上形成成核层816。该成核层可以包含IB-IIIA族硫属元素化物而且可以在形成前体层之前沉积、涂覆或形成。作为一种非限制性实例,这可以是CIGS层、Ga-Se层、任何其它的高熔点IB-IIIA族硫属元素化物层、或甚至镓的薄层。As shown in FIG. 11B , a nucleation layer 816 is formed on a substrate 812 . The nucleation layer may comprise a Group IB-IIIA chalcogenide and may be deposited, coated or formed prior to forming the precursor layer. As a non-limiting example, this could be a CIGS layer, a Ga-Se layer, any other high melting point IB-IIIA chalcogenide layer, or even a thin layer of gallium.

现在参照图11C,一旦形成该成核层,可以在成核层之上形成前体层818。在一些实施方案中,成核层和前体层可以同时形成。前体层818可以含有一种或多种IB族元素和一种或多种IIIA族元素。优选地,该一种或多种IB族元素包括铜。该一种或多种IIIA族元素可以包括铟和/或镓。前体层可以由膜形成,例如用上述技术中的任何技术形成。Referring now to FIG. 11C, once the nucleation layer is formed, a precursor layer 818 may be formed over the nucleation layer. In some embodiments, the nucleation layer and precursor layer can be formed simultaneously. Precursor layer 818 may contain one or more Group IB elements and one or more Group IIIA elements. Preferably, the one or more Group IB elements include copper. The one or more group IIIA elements may include indium and/or gallium. The precursor layer may be formed from a film, for example by any of the techniques described above.

仍然参照图11C,另外应当理解可以在叠层中重复交替的成核层与前体层的结构。图11C显示任选地可以在前体层818上形成另一个成核层820(用虚影显示)以继续交替的成核层与前体层的结构。然后可以在成核层820上形成另一个前体层822以继续层叠,这可以根据需要进行重复。尽管不限于以下内容,但可以存在2、3、4、5、6、7、8、9、10或更多组的交替的成核层与前体层以建立期望的特性。每一组与叠层中的其它组相比可以具有不同的材料或材料量。交替层可以是溶液沉积的、真空沉积的等等。可以通过不同的技术沉积不同的层。在一种实施方案中,这可以包括溶液沉积(或真空沉积)前体层(任选地具有期望的Cu与In与Ga的比率),随后添加硫属元素(溶液基、真空基、或者另外例如但是不限于蒸气或H2Se等),任选地热处理该叠层(在引入硫属元素源期间或之后),随后沉积另外的前体层(任选地具有期望的Cu与In与Ga的比率),以及最后热处理该最终的叠层(在引入另外的硫属元素期间或之后)。目标在于产生平面成核以便不存在其中衬底未被随后的膜形成和/或晶体生长所覆盖的孔洞或区域。任选地,也可以在添加第一个含有Cu+In+Ga的前体层之前引入硫属元素源。另外应当理解在一些其它实施方案中,层820可以是含硫属元素的层,例如但是不限于硒层,并且与各个前体层一起(或者最终在形成所有前体层之后)加热。Still referring to FIG. 11C , it should additionally be understood that the structure of alternating nucleation and precursor layers may be repeated in the stack. Figure 11C shows that optionally another nucleation layer 820 (shown in phantom) can be formed on the precursor layer 818 to continue the structure of alternating nucleation and precursor layers. Another precursor layer 822 can then be formed on the nucleation layer 820 to continue the stack, which can be repeated as desired. Although not limited to the following, there may be 2, 3, 4, 5, 6, 7, 8, 9, 10 or more sets of alternating nucleation and precursor layers to establish the desired properties. Each group may have a different material or amount of material than the other groups in the stack. Alternating layers may be solution deposited, vacuum deposited, etc. The different layers can be deposited by different techniques. In one embodiment, this may involve solution deposition (or vacuum deposition) of a precursor layer (optionally with a desired ratio of Cu to In to Ga), followed by addition of the chalcogen (solution-based, vacuum-based, or otherwise such as but not limited to steam or H2Se , etc.), optionally thermally treating the stack (during or after introduction of the chalcogen source), followed by deposition of additional precursor layers (optionally with desired Cu and In and Ga ratio), and a final heat treatment of the final stack (during or after the introduction of additional chalcogen). The goal is to produce planar nucleation so that there are no holes or regions where the substrate is not covered by subsequent film formation and/or crystal growth. Optionally, the chalcogen source can also be introduced before adding the first Cu+In+Ga containing precursor layer. It should also be understood that in some other embodiments, layer 820 may be a chalcogen-containing layer, such as but not limited to a selenium layer, and be heated with each precursor layer (or eventually after all precursor layers are formed).

借助于热梯度的成核层Nucleation layer by means of thermal gradient

现在参照图12A-12B,应当理解还可以通过在前体层850中产生热梯度形成与纳米薄片基前体材料一起使用的成核层。作为一种非限制性实例,成核层852可以从前体层的上部开始形成,或者任选地通过从前体层的下部形成成核层854。在本发明的一种实施方案中,成核层可以看作是其中最初的IB-IIIA-VIA化合物晶体生长优先于前体层和/或前体层叠层的另一位置上的晶体生长的层。通过在前体层中产生热梯度使得该层的一部分达到足以开始晶体生长的温度来形成成核层852或854。成核层可以是具有基本上平面结构的成核平面的形式以促进跨衬底的更均匀的晶体生长同时使小孔和其它不规则的形成减到最少。Referring now to FIGS. 12A-12B , it should be understood that the nucleation layer used with the nanoflake-based precursor material can also be formed by creating a thermal gradient in the precursor layer 850 . As a non-limiting example, nucleation layer 852 may be formed from the upper portion of the precursor layer, or optionally by forming nucleation layer 854 from the lower portion of the precursor layer. In one embodiment of the invention, the nucleation layer can be considered as the layer in which the initial IB-IIIA-VIA compound crystal growth is preferential to crystal growth at another location in the precursor layer and/or precursor layer stack . Nucleation layer 852 or 854 is formed by creating a thermal gradient in the precursor layer such that a portion of the layer reaches a temperature sufficient to initiate crystal growth. The nucleation layer may be in the form of a nucleation plane having a substantially planar structure to promote more uniform crystal growth across the substrate while minimizing the formation of pinholes and other irregularities.

从图12A中可见,在本发明的一种实施方案中,可以通过用激光856来仅仅将前体层850的上部提高到处理温度而产生用来形成成核层852的热梯度。激光856可以是脉冲的或者另外受控的从而不会将前体层的整个厚度加热到处理温度。前体层的背面858和支撑它的衬底860可以与冷却辊862、冷却的平坦接触表面或冷却转鼓接触,它们提供外部冷却源以防止所述层的下部达到处理温度。另外可以在衬底的一侧和前体层相邻部分上提供冷却气体864以便将前体层的温度降低至最终的IB-IIIA硫属元素化物化合物的成核开始时的处理温度以下。应当理解可以将其它装置用来加热前体层的上部,例如但是不限于脉冲热处理、等离子体加热、或经由IR灯加热。As can be seen in Figure 12A, in one embodiment of the invention, the thermal gradient used to form the nucleation layer 852 can be created by using a laser 856 to raise only the upper portion of the precursor layer 850 to the processing temperature. Laser 856 may be pulsed or otherwise controlled so as not to heat the entire thickness of the precursor layer to processing temperatures. The backside 858 of the precursor layer and the substrate 860 supporting it may be in contact with a chill roll 862, a cooled flat contact surface, or a cooling drum that provides an external source of cooling to prevent the lower portion of the layer from reaching processing temperatures. A cooling gas 864 may additionally be provided on one side of the substrate and adjacent portions of the precursor layer to reduce the temperature of the precursor layer below the processing temperature at which nucleation of the final IB-IIIA chalcogenide compound begins. It should be understood that other means may be used to heat the upper portion of the precursor layer, such as, but not limited to, pulsed heat treatment, plasma heating, or heating via IR lamps.

从图12B中可见,在本发明的另一实施方案中,可以用类似于上述那些的技术在前体层850的下部形成成核层854。由于可以选择用于本发明的衬底860是导热的,因此衬底的下侧加热也会导致前体层下部的加热。成核平面于是会沿着沿着下部的底部形成。前体层的上部可以通过多种技术冷却,例如但是不限于冷却气体、冷却辊或其它冷却装置。As can be seen in Figure 12B, in another embodiment of the invention, a nucleation layer 854 may be formed in the lower portion of the precursor layer 850 using techniques similar to those described above. Since the substrate 860, which may optionally be used in the present invention, is thermally conductive, heating of the underside of the substrate will also result in heating of the lower portion of the precursor layer. A nucleation plane would then form along the bottom of the lower part. The upper portion of the precursor layer can be cooled by various techniques such as, but not limited to, cooling gas, chilled rolls, or other cooling devices.

在成核层形成之后,其优选由等同于或接近最终的IB-IIIA硫属元素化物化合物的材料组成,整个前体层、或者任选地只有前体层仍然或多或少未处理过的那些部分将被加热到处理温度,使得余下的材料将开始转化为与成核层接触的最终的IB-IIIA硫属元素化物化合物。成核层引导晶体形成并且使由于不均匀的晶体生长而形成小孔或具有其它不规则的衬底区域的可能性减到最小。After formation of the nucleation layer, which preferably consists of a material identical to or close to the final IB-IIIA chalcogenide compound, the entire precursor layer, or optionally only the precursor layer, remains more or less untreated Those parts will be heated to the processing temperature so that the remaining material will start to convert to the final IB-IIIA chalcogenide compound in contact with the nucleation layer. The nucleation layer guides crystal formation and minimizes the possibility of forming pinholes or having other irregular substrate regions due to non-uniform crystal growth.

应当理解除了上述以外,温度还可以在前体层处理的不同时间段内变化。作为一种非限制性实例,加热可以在最初的处理时间段内在第一温度下进行并且对于随后的处理时间段进行至另外的温度。任选地,该方法可以包括有意产生一个或多个温度下降以至于作为一种非限制性实例,该方法包含加热、冷却、加热随后冷却。在本发明的一种实施方案中,这可以涉及将温度从最初时间段内的温度降低约50℃-约200℃。It should be understood that in addition to the above, the temperature may also be varied during different periods of precursor layer processing. As a non-limiting example, heating may be at a first temperature for an initial treatment period and to an additional temperature for subsequent treatment periods. Optionally, the method may include intentionally producing one or more temperature drops such that, as a non-limiting example, the method comprises heating, cooling, heating followed by cooling. In one embodiment of the invention, this may involve reducing the temperature by about 50°C to about 200°C from the temperature in the initial period of time.

借助于化学梯度的成核层nucleation layer via chemical gradient

现在参照图13A-13F,将会更详细描述用本发明的纳米薄片前体材料形成成核层的另一种方法。在本发明的该实施方案中,可以选择前体材料层的组成使得在一些层中晶体形成比另外的层中更快开始。应当理解可以将形成成核层的不同方法组合在一起以促进层形成。作为一种非限制性实例,可以组合热梯度和化学梯度方法以促进成核层形成。想象得出可以组合使用热梯度、化学梯度和/或薄膜成核层的单一或多重组合。Referring now to Figures 13A-13F, another method of forming a nucleation layer using the nanoflake precursor material of the present invention will be described in more detail. In this embodiment of the invention, the composition of the layers of precursor material may be chosen such that crystal formation begins sooner in some layers than in others. It should be understood that different methods of forming a nucleation layer may be combined to facilitate layer formation. As a non-limiting example, thermal gradient and chemical gradient methods can be combined to promote nucleation layer formation. It is conceivable that single or multiple combinations of thermal gradients, chemical gradients and/or thin film nucleation layers could be used in combination.

现在参照图13A,可以在衬底912上形成吸收层,如图13A所示。衬底912的一个表面可以用接触层914涂覆以促进衬底912与形成于其上的吸收层之间的电接触。例如,铝衬底912可以涂覆有钼接触层914。如本文论述的那样,如果使用接触层的话,在衬底912上形成或布置材料或材料层包括在接触层914上布置或形成这样的材料或层。任选地,另外应当理解还可以在接触层914之上和/或直接在衬底912上形成层915。该层可以是溶液涂覆的、蒸发的和/或用真空基技术沉积的。尽管不限于以下内容,但是层915可以具有小于前体层916的厚度。在一种非限制性实例中,该层可以厚约1-约100nm。层915可以由包括但是不限于以下至少一种的多种材料组成:IB族元素、IIIA族元素、VIA族元素、IA族元素(新体例:1族)、任何前述元素的二元和/或多元合金、任何前述元素的固溶体、铜、铟、镓、硒、铜铟、铜镓、铟镓、钠、钠化合物、氟化钠、硫化铟钠、硒化铜、硫化铜、硒化铟、硫化铟、硒化镓、硫化镓、硒化铟铜、硫化铟铜、硒化镓铜、硫化镓铜、硒化镓铟、硫化镓铟、硒化镓铟铜和/或硫化镓铟铜。Referring now to FIG. 13A, an absorber layer may be formed on a substrate 912, as shown in FIG. 13A. One surface of the substrate 912 may be coated with a contact layer 914 to facilitate electrical contact between the substrate 912 and an absorber layer formed thereon. For example, an aluminum substrate 912 may be coated with a molybdenum contact layer 914 . As discussed herein, forming or arranging a material or layer of material on substrate 912 includes arranging or forming such a material or layer on contact layer 914 if a contact layer is used. Optionally, it is additionally understood that layer 915 may also be formed over contact layer 914 and/or directly on substrate 912 . This layer can be solution coated, evaporated and/or deposited using vacuum based techniques. Although not limited to the following, layer 915 may have a thickness that is less than precursor layer 916 . In one non-limiting example, the layer may be about 1 to about 100 nm thick. Layer 915 may be composed of a variety of materials including but not limited to at least one of the following: Group IB elements, Group IIIA elements, Group VIA elements, Group IA elements (new style: Group 1), binary and/or Multicomponent alloys, solid solutions of any of the foregoing elements, copper, indium, gallium, selenium, copper indium, copper gallium, indium gallium, sodium, sodium compounds, sodium fluoride, sodium indium sulfide, copper selenide, copper sulfide, indium selenide, Indium sulfide, gallium selenide, gallium sulfide, copper indium selenide, copper indium sulfide, copper gallium selenide, copper gallium sulfide, indium gallium selenide, indium gallium sulfide, copper gallium indium selenide, and/or copper gallium indium sulfide.

如图13B所示,在衬底上形成前体层916。前体层916含有一种或多种IB族元素和一种或多种IIIA族元素。优选地,该一种或多种IB族元素包括铜。该一种或多种IIIA族元素可以包括铟和/或镓。前体层可以用上述技术中的任何技术形成。在一种实施方案中,除了不可避免地作为杂质存在或者偶然存在于纳米薄片本身以外的膜组分中的那些氧之外,前体层不含氧。尽管优选用非真空方法形成前体层916,但是应当理解它可以任选地通过其它方法形成,例如蒸发、溅射、ALD等。例如,前体层916可以是含有铜、铟和镓的无氧化合物。在一种实施方案中,非真空系统在约3.2kPa(24托)以上的压力下工作。任选地,另外应当理解还可以在前体层916之上形成层917。应当理解叠层可以同时具有层915和917、仅有其中之一、或没有这两层。尽管不限于以下内容,但是层917可以具有小于前体层916的厚度。在一种非限制性实例中,该层可以厚约1-约100nm。层917可以由包括但是不限于以下至少一种的多种材料组成:IB族元素、IIIA族元素、VIA族元素、IA族元素(新体例:1族)、任何前述元素的二元和/或多元合金、任何前述元素的固溶体、铜、铟、镓、硒、铜铟、铜镓、铟镓、钠、钠化合物、氟化钠、硫化铟钠、硒化铜、硫化铜、硒化铟、硫化铟、硒化镓、硫化镓、硒化铟铜、硫化铟铜、硒化镓铜、硫化镓铜、硒化镓铟、硫化镓铟、硒化镓铟铜和/或硫化镓铟铜。As shown in Figure 13B, a precursor layer 916 is formed on the substrate. Precursor layer 916 contains one or more Group IB elements and one or more Group IIIA elements. Preferably, the one or more Group IB elements include copper. The one or more group IIIA elements may include indium and/or gallium. The precursor layer can be formed using any of the techniques described above. In one embodiment, the precursor layer is free of oxygen other than those oxygens that are unavoidably present as impurities or incidentally present in film components other than the nanoflakes themselves. While non-vacuum methods are preferred for forming precursor layer 916, it should be understood that it may optionally be formed by other methods such as evaporation, sputtering, ALD, and the like. For example, precursor layer 916 may be an oxygen-free compound containing copper, indium, and gallium. In one embodiment, the non-vacuum system operates at a pressure above about 3.2 kPa (24 Torr). Optionally, it is additionally understood that layer 917 may also be formed over precursor layer 916 . It should be understood that the stack can have both layers 915 and 917, only one of them, or neither. Although not limited to the following, layer 917 may have a thickness that is less than precursor layer 916 . In one non-limiting example, the layer may be about 1 to about 100 nm thick. Layer 917 may be composed of a variety of materials including, but not limited to, at least one of the following: Group IB elements, Group IIIA elements, Group VIA elements, Group IA elements (new style: Group 1), binary and/or Multicomponent alloys, solid solutions of any of the foregoing elements, copper, indium, gallium, selenium, copper indium, copper gallium, indium gallium, sodium, sodium compounds, sodium fluoride, sodium indium sulfide, copper selenide, copper sulfide, indium selenide, Indium sulfide, gallium selenide, gallium sulfide, copper indium selenide, copper indium sulfide, copper gallium selenide, copper gallium sulfide, indium gallium selenide, indium gallium sulfide, copper gallium indium selenide, and/or copper gallium indium sulfide.

现在参照图13C,可以任选地在前体层之上施加第二前体材料的第二前体层918。第二前体材料可以具有与前体层916中的第一前体材料相比更富硫属元素的总组成。作为一种非限制性实例,通过产生两个涂层(优选在沉积两个前体层涂层之后叠层只有一次加热过程),其中第一涂层含有与第二涂层相比其中具有相对较少硒(但是仍然足够)的硒化物,这容许产生可用Se的梯度。例如,第一涂层的前体可以含有CuxSey,其中x大于第二涂层中的。或者它可以含有CuxSey颗粒的混合物,其中存在更大浓度(按重量计)的x大的硒化物颗粒。在当前实施方案中,每一层优选具有目标化学计量,因为C/I/G比率对每一前体层保持相同。同样,尽管该第二前体层918优选用非真空方法形成,但是应当理解它可以任选地通过其它方法例如蒸发、溅射、ALD等等形成。Referring now to FIG. 13C, a second precursor layer 918 of a second precursor material may optionally be applied over the precursor layer. The second precursor material may have an overall composition that is richer in chalcogen than the first precursor material in precursor layer 916 . As a non-limiting example, by creating two coatings (preferably with only one heating process in the stack after deposition of the two precursor coatings), wherein the first coating contains relatively Selenide with less selenium (but still enough), which allows a gradient of available Se to be produced. For example, the precursor to the first coating may contain Cu x Se y , where x is greater than in the second coating. Or it can contain a mixture of Cu x Se y particles in which there is a greater concentration (by weight) of x-large selenide particles. In the current embodiment, each layer preferably has a target stoichiometry since the C/I/G ratio remains the same for each precursor layer. Also, while the second precursor layer 918 is preferably formed using a non-vacuum method, it should be understood that it can optionally be formed by other methods such as evaporation, sputtering, ALD, and the like.

使用硫属元素渐次变化、或者更一般的自下至上熔化温度的渐次变化的基本原理在于,深入控制结晶的相对速率以及使结晶例如在前体层叠层底部比在前体层叠层顶部更快发生。另外的基本原理是,通常有效的溶液沉积CIGS单元中的普遍颗粒结构仍然具有可观的能量变换效率,其中该单元在光活性膜的顶部具有大晶粒而在背面具有小晶粒,该光活性膜是主要光活性的光活性膜的一部分。应当理解在另外的实施方案中,许多不同前体材料层中的多个可以用来建立期望的硫属元素梯度,或者更一般的在熔化温度和/或随后凝固成最终的IB-IIIA-硫属元素化物化合物中的期望梯度,或者更一般的由于在所产生的膜中产生化学(组成)梯度和/或热梯度,在熔化和/或随后凝固成最终的IB-IIIA-硫属元素化物化合物中的期望梯度。作为非限制性实例,本发明可以使用具有不同熔点的颗粒和/或微米薄片和/或纳米薄片,例如但是不限于与较高熔点材料In2Se3、Cu2Se相比的较低熔点材料Se、In4Se3、Ga和Cu1Se1The rationale for using a chalcogen step change, or more generally a bottom-up step change in melting temperature, is to deeply control the relative rates of crystallization and to have crystallization occur more quickly, for example, at the bottom of the precursor layer stack than at the top of the precursor layer stack. . An additional rationale is that the pervasive grain structure in a generally efficient solution-deposited CIGS cell with large grains on top of the photoactive film and small grains on the backside still has appreciable energy conversion efficiencies. The membrane is the part of the photoactive membrane that is primarily photoactive. It should be understood that in alternative embodiments, multiples of a number of different precursor material layers may be used to establish the desired chalcogen gradient, or more generally at the melting temperature and/or subsequent solidification into the final IB-IIIA-sulfur Desired gradients in the chalcogenide compound, or more generally due to the creation of chemical (compositional) and/or thermal gradients in the resulting film, upon melting and/or subsequent solidification to the final IB-IIIA-chalcogenide The desired gradient in the compound. As a non-limiting example, the present invention may use particles and/or microflakes and/or nanoflakes with different melting points, such as but not limited to lower melting point materials compared to higher melting point materials In2Se3 , Cu2Se Se, In 4 Se 3 , Ga, and Cu 1 Se 1 .

现在参照图13C,施加热量920以将第一前体层916和第二前体层918烧结成IB-IIIA族化合物膜922。可以在例如上述的快速热退火处理中供应热量920。具体地,可以将衬底912和前体层916和/或918从环境温度加热至约200℃-约600℃的平稳温度范围。将温度保持在该平稳范围内持续约几分之一秒至约60分钟的时间,随后降温。Referring now to FIG. 13C , heat 920 is applied to sinter the first precursor layer 916 and the second precursor layer 918 into a Group IB-IIIA compound film 922 . Heat 920 may be supplied, for example, in a rapid thermal annealing process as described above. Specifically, substrate 912 and precursor layers 916 and/or 918 may be heated from ambient temperature to a plateau temperature range of about 200°C to about 600°C. The temperature is maintained in this plateau range for a period of about a fraction of a second to about 60 minutes, followed by cooling down.

任选地,如图13D所示,应当理解可以在加热之前将含有单质硫属元素颗粒的层924施加在前体层916和/或918上。当然,如果材料叠层不包括第二前体层的话,层924形成在前体层916上。例如,并且不丧失一般性地,该硫属元素颗粒可以是硒、硫或碲的颗粒。可以如上所述制造这些颗粒。层924中的硫属元素颗粒尺寸可以是约1nm-约25μm,优选50nm-500nm。可以将硫属元素颗粒与溶剂、载体、分散剂等混合从而制备适合在前体层916和/或918上湿沉积以形成层924的油墨或糊料。作为选择,可以制备硫属元素颗粒用于通过干法沉积在衬底上以形成层924。Optionally, as shown in Figure 13D, it is understood that a layer 924 containing elemental chalcogen particles may be applied to the precursor layers 916 and/or 918 prior to heating. Of course, layer 924 is formed on precursor layer 916 if the material stack does not include a second precursor layer. For example, and without loss of generality, the chalcogen particles may be particles of selenium, sulfur or tellurium. These particles can be produced as described above. The chalcogen particle size in layer 924 may be from about 1 nm to about 25 μm, preferably from 50 nm to 500 nm. Chalcogen particles may be mixed with solvents, carriers, dispersants, etc. to prepare an ink or paste suitable for wet deposition on precursor layers 916 and/or 918 to form layer 924 . Alternatively, chalcogen particles may be prepared for dry deposition on the substrate to form layer 924 .

任选地,如图13E所示,可以向层922任选地施加含有额外的硫属元素源的层926和/或含有硫属元素源的气氛,特别是如果在图13D中没有施加层924的话。可以任选地对层922以及层926和/或含有硫属元素源的气氛施加热量928从而加热它们到足以熔化硫属元素源并且使硫属元素源与前体层922中的IB族元素和IIIA族元素反应的温度。可以在例如上述的快速热退火处理中施加热量928。硫属元素源与IB和IIIA族元素的反应形成如图13F所示的IB-IIIA族硫属元素化物化合物的化合物膜930。优选地,该IB-IIIA族硫属元素化物化合物具有式CuzIn1-xGaxSe2(1-y)S2y,其中0≤x≤1,0≤y≤1和0.5≤y≤1.5。Optionally, as shown in FIG. 13E , a layer 926 containing an additional source of chalcogen and/or an atmosphere containing a source of chalcogen may optionally be applied to layer 922, especially if layer 924 is not applied in FIG. 13D if. Heat 928 may optionally be applied to layer 922 and layer 926 and/or the atmosphere containing the chalcogen source to heat them sufficiently to melt the chalcogen source and to combine the chalcogen source with the Group IB elements in precursor layer 922 and The temperature at which group IIIA elements react. Heat 928 may be applied during a rapid thermal annealing process such as described above. The reaction of the chalcogen source with the Group IB and IIIA elements forms a compound film 930 of Group IB-IIIA chalcogenide compounds as shown in FIG. 13F . Preferably, the Group IB-IIIA chalcogenide compound has the formula Cu z In 1-x Ga x Se 2(1-y) S 2y , where 0≤x≤1, 0≤y≤1 and 0.5≤y≤ 1.5.

仍然参照图13A-13F,应当理解也可以与前体材料一起使用钠以改善所产生的膜的性质。在第一种方法中,如同就图13A和13B论述的那样,可以在前体层916上方和/或下方形成一个或多个含钠材料的层。该形成可以通过溶液涂覆和/或其它技术进行,例如但是不限于溅射、蒸发、CBD、电镀、溶胶-凝胶基涂覆、喷涂、化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)等等。Still referring to FIGS. 13A-13F , it should be understood that sodium can also be used with the precursor material to improve the properties of the resulting film. In a first approach, one or more layers of sodium-containing material may be formed above and/or below precursor layer 916 as discussed with respect to FIGS. 13A and 13B . The formation may be by solution coating and/or other techniques such as but not limited to sputtering, evaporation, CBD, electroplating, sol-gel based coating, spray coating, chemical vapor deposition (CVD), physical vapor deposition (PVD) , atomic layer deposition (ALD), etc.

任选地,在第二种方法中,也可以通过对前体层916中的纳米薄片和/或颗粒进行的掺杂将钠引入叠层中。作为一种非限制性实例,前体层916中的纳米薄片和/或其它颗粒可以是含钠材料,例如但是不限于Cu-Na、In-Na、Ga-Na、Cu-In-Na、Cu-Ga-Na、In-Ga-Na、Na-Se、Cu-Se-Na、In-Se-Na、Ga-Se-Na、Cu-In-Se-Na、Cu-Ga-Se-Na、In-Ga-Se-Na、Cu-In-Ga-Se-Na、Na-S、Cu-S-Na、In-S-Na、Ga-S-Na、Cu-In-S-Na、Cu-Ga-S-Na、In-Ga-S-Na和/或Cu-In-Ga-S-Na。在本发明的一种实施方案中,该纳米薄片和/或其它颗粒中的钠含量可以是小于约1原子%或更少。在另一实施方案中,钠含量可以是约0.5原子%或更少。在另一实施方案中,钠含量可以是约0.1原子%或更少。应当理解可以通过多种方法制成该掺杂的颗粒和/或薄片,该方法包括将进料材料与含钠材料和/或单质钠一起研磨。Optionally, in the second approach, sodium can also be introduced into the stack by doping the nanoflakes and/or particles in the precursor layer 916 . As a non-limiting example, the nanoflakes and/or other particles in the precursor layer 916 may be a sodium-containing material such as, but not limited to, Cu-Na, In-Na, Ga-Na, Cu-In-Na, Cu -Ga-Na, In-Ga-Na, Na-Se, Cu-Se-Na, In-Se-Na, Ga-Se-Na, Cu-In-Se-Na, Cu-Ga-Se-Na, In -Ga-Se-Na, Cu-In-Ga-Se-Na, Na-S, Cu-S-Na, In-S-Na, Ga-S-Na, Cu-In-S-Na, Cu-Ga - S-Na, In-Ga-S-Na and/or Cu-In-Ga-S-Na. In one embodiment of the invention, the sodium content of the nanoflakes and/or other particles may be less than about 1 atomic % or less. In another embodiment, the sodium content may be about 0.5 atomic percent or less. In another embodiment, the sodium content may be about 0.1 atomic percent or less. It should be understood that the doped particles and/or flakes can be made by a variety of methods including milling the feed material with sodium-containing material and/or elemental sodium.

任选地,在第三种方法中,可以将钠引入油墨本身,不管该油墨中分散的颗粒、纳米颗粒、微米薄片和/或纳米薄片的种类如何。作为一种非限制性实例,油墨可以包括纳米薄片(Na掺杂的或未掺杂的)以及具有有机抗衡离子的钠化合物(例如但是不限于乙酸钠)和/或具有无机抗衡离子的钠化合物(例如但是不限于硫化钠)。应当理解加入到油墨中(作为单独的化合物)的钠化合物可能作为颗粒(例如纳米颗粒)存在或者溶解。钠可以是钠化合物(例如分散颗粒)的“聚集体”形式以及“分子水平溶解”形式。Optionally, in the third method, sodium can be incorporated into the ink itself, regardless of the type of particles, nanoparticles, microflakes and/or nanoflakes dispersed in the ink. As a non-limiting example, the ink may include nanoflakes (Na-doped or undoped) and a sodium compound with an organic counterion (such as but not limited to sodium acetate) and/or a sodium compound with an inorganic counterion (such as but not limited to sodium sulfide). It should be understood that the sodium compound added to the ink (as a separate compound) may be present as particles (eg nanoparticles) or dissolved. Sodium can be in "aggregate" form of sodium compounds (eg dispersed particles) as well as in "molecularly dissolved" form.

上述三种方法无一是相互排斥的而且可以单独地或者以任何单一或多重组合应用从而向含有前体材料的叠层提供期望量的钠。另外,还可以将钠和/或含钠化合物添加到衬底中(例如添加到钼靶中)。此外,如果使用多个前体层(采用相同或不同材料)的话,可以在一个或多个前体层之间形成含钠的层。另外应当理解钠源不限于前面列举的那些材料。作为一种非限制性实例,基本上,其中质子被钠代替的任何去质子化的醇,任何去质子化的有机和无机酸,(去质子化)酸的钠盐,氢氧化钠,乙酸钠,以及下列酸的钠盐:丁酸、己酸、辛酸、癸酸、十二烷酸、十四烷酸、十六烷酸、9-十六碳烯酸、十八烷酸、9-十八碳烯酸、11-十八碳烯酸、9,12-十八碳二烯酸、9,12,15-十八碳三烯酸和/或6,9,12-十八碳三烯酸。None of the above three methods are mutually exclusive and may be applied alone or in any single or multiple combination to provide the desired amount of sodium to the stack containing the precursor material. In addition, sodium and/or sodium-containing compounds may also be added to the substrate (eg, to the molybdenum target). Additionally, if multiple precursor layers (using the same or different materials) are used, a sodium-containing layer may be formed between one or more precursor layers. It should also be understood that the source of sodium is not limited to those previously listed materials. As a non-limiting example, basically, any deprotonated alcohol in which the protons are replaced by sodium, any deprotonated organic and inorganic acids, sodium salts of (deprotonated) acids, sodium hydroxide, sodium acetate , and the sodium salts of the following acids: butyric acid, caproic acid, caprylic acid, capric acid, dodecanoic acid, myristic acid, hexadecanoic acid, 9-hexadecenoic acid, octadecanoic acid, 9-decanoic acid Octadecenoic acid, 11-octadecenoic acid, 9,12-octadecadienoic acid, 9,12,15-octadecatrienoic acid and/or 6,9,12-octadecatriene acid.

任选地,如图13F中看到的那样,另外应当理解可以在前体层已经烧结或其它处理之后将钠和/或钠化合物加入到处理过的硫属元素化物膜中。本发明的这种实施方案因此在CIGS形成后使膜改性。钠存在时,与晶界有关的载流子陷阱能级降低,在膜中容许改善的电子性质。可以将多种含钠材料例如上面列举的那些作为层932沉积到处理过的膜上然后退火来处理CIGS膜。Optionally, as seen in Figure 13F, it is additionally understood that sodium and/or sodium compounds may be added to the treated chalcogenide film after the precursor layer has been sintered or otherwise processed. This embodiment of the invention thus modifies the membrane after CIGS formation. In the presence of sodium, the carrier trap levels associated with the grain boundaries are lowered, allowing improved electronic properties in the film. CIGS films can be treated by depositing various sodium-containing materials such as those listed above as layer 932 onto the treated film followed by annealing.

另外,可以将钠材料与能够提供带隙展宽效果的其它元素组合。可以实现这种效果的两种元素包括镓和硫。除了钠以外,一种或多种这些元素的使用可以进一步改善吸收层的性质。钠化合物例如但是不限于Na2S、NaInS2等的使用向膜同时提供Na和S而且可以用退火例如但是不限于RTA步骤推进从而提供带隙与未改性CIGS层或膜的带隙不同的层。In addition, the sodium material may be combined with other elements capable of providing a bandgap broadening effect. Two elements that can achieve this effect include gallium and sulfur. The use of one or more of these elements in addition to sodium can further improve the properties of the absorbent layer. The use of sodium compounds such as but not limited to Na2S , NaInS2 , etc. provides both Na and S to the membrane and can be advanced with annealing such as but not limited to an RTA step to provide a different bandgap than that of the unmodified CIGS layer or membrane. layer.

现在参照图14,本发明的实施方案可以与卷到卷制造相容。具体地,在卷到卷制造系统1000中,柔性衬底1001、例如铝箔从供给卷1002行进至缠绕卷1004。在供给卷与缠绕卷中间,衬底1001经过若干涂布器1006A、1006B、1006C,例如微凹辊(microgravurerollers)和加热装置1008A、1008B、1008C。每个涂布器沉积光伏器件活性层的不同层或子层,例如上述的那些层。加热装置用来使不同子层退火。在图14描绘的实例中,涂布器1006A和1006B可以涂布前体层(例如前体层106、前体层916、或前体层918)的不同子层。加热装置1008A和1008B可以在沉积下一个子层之前使每个子层退火。作为选择,可以同时退火两个子层。涂布器1006C可以涂布如上所述含有硫属元素颗粒的材料层。加热装置1008C加热该硫属元素层和上述前体层。注意也可以沉积前体层(或子层)然后沉积含硫属元素的层并且接着将全部三层一起加热以形成用于光伏吸收层的IB-IIIA-硫属元素化物化合物膜。Referring now to FIG. 14, embodiments of the present invention may be compatible with roll-to-roll manufacturing. Specifically, in roll-to-roll manufacturing system 1000 , a flexible substrate 1001 , such as aluminum foil, travels from a supply roll 1002 to a take-up roll 1004 . Between the supply roll and the take-up roll, the substrate 1001 passes through several coaters 1006A, 1006B, 1006C, such as microgravure rollers, and heating means 1008A, 1008B, 1008C. Each coater deposits a different layer or sublayer of the active layer of the photovoltaic device, such as those described above. The heating means are used to anneal the different sublayers. In the example depicted in FIG. 14 , coaters 1006A and 1006B can coat different sub-layers of a precursor layer (eg, precursor layer 106 , precursor layer 916 , or precursor layer 918 ). Heating devices 1008A and 1008B may anneal each sublayer before depositing the next sublayer. Alternatively, both sublayers can be annealed simultaneously. Applicator 1006C may apply a layer of material containing chalcogen particles as described above. The heating device 1008C heats the chalcogen layer and the aforementioned precursor layer. Note that it is also possible to deposit a precursor layer (or sub-layer) followed by a chalcogen-containing layer and then heat all three layers together to form an IB-IIIA-chalcogenide compound film for the photovoltaic absorber layer.

可以改变印刷步骤的总数以构造具有不同等级带隙的吸收层。例如,可以印刷(以及任选地在印刷步骤之间进行退火)另外的层(4层、5层、6层等等)从而在吸收层内产生更细分级的带隙。作为选择,也可以印刷较少的膜(例如双层印刷)以产生细分级较少的带隙。对于上述实施方案的任一种,可以在每一层中也具有不同量的硫属元素以改变可能受存在的硫属元素量影响的晶体生长。The total number of printing steps can be varied to construct absorbing layers with different orders of bandgaps. For example, additional layers (4 layers, 5 layers, 6 layers, etc.) can be printed (and optionally annealed between printing steps) to create a more finely graded bandgap within the absorbing layer. Alternatively, fewer films can be printed (eg double-layer printing) to produce a less subdivided bandgap. For any of the above embodiments, it is also possible to have different amounts of chalcogen in each layer to alter crystal growth which may be affected by the amount of chalcogen present.

另外,应当理解在不同层中可以按照本发明使用薄片和非薄片颗粒的许多组合。作为一种非限制性实例,该组合可以包括但是不限于以下:Additionally, it should be understood that many combinations of flake and non-flake particles in different layers may be used in accordance with the present invention. As a non-limiting example, the combination may include but is not limited to the following:

表VITable VI

Figure BDA0000459337610000611
Figure BDA0000459337610000611

尽管不限于以下内容,但是这些硫属元素化物和非硫属元素化物材料可以选自表IV和V中列出的那些中的任何材料。Although not limited to the following, these chalcogenide and non-chalcogenide materials may be selected from any of those listed in Tables IV and V.

降低的熔化温度reduced melting temperature

在本发明的另一实施方案中,可以改变颗粒或薄片内的元素比率以产生更期望的材料性质。在一种非限制性实例中,该实施方案包括使用期望化学计量比的元素以使油墨中所用的颗粒具有降低的熔化温度。作为非限制性的实例,对于IB族硫属元素化物,控制IB族元素的量和硫属元素的量以使产生的材料移动到相图中具有降低的熔化温度的部分。因此对于CuxSey,选择x和y的值以产生具有降低的熔化温度的材料,如参照该材料的相图测定的那样。下列材料的相图可以在为了所有目的全部通过引用并入本文的ASM International的ASM Handbook,Volume3Alloy Phase Diagrams(1992)中找到。一些具体实例可以在第2-168、2-170、2-176、2-178、2-208、2-214、2-257和/或2-259页找到。In another embodiment of the invention, the ratios of elements within the particles or flakes can be altered to produce more desirable material properties. In one non-limiting example, this embodiment includes using a desired stoichiometric ratio of elements so that the particles used in the ink have a reduced melting temperature. As a non-limiting example, for Group IB chalcogenides, the amount of Group IB element and the amount of chalcogen are controlled to shift the resulting material to a portion of the phase diagram with a reduced melting temperature. Thus for CuxSey , the values of x and y are chosen to produce a material with a reduced melting temperature, as determined with reference to the phase diagram of the material. Phase diagrams for the following materials can be found in ASM Handbook, Volume 3 Alloy Phase Diagrams (1992), ASM International, incorporated herein by reference in its entirety for all purposes. Some specific examples can be found on pages 2-168, 2-170, 2-176, 2-178, 2-208, 2-214, 2-257 and/or 2-259.

作为一种非限制性实例,硒化铜根据材料中铜与硒的比率具有多种熔化温度。固溶体Cu2-xSe更富Se的一切组成(也就是纯Cu在左边而纯Se在右边的二元相图上的右侧)会产生液体硒。根据组成,熔化温度可以低至221℃(比Cu1Se2更富Se)、低至332℃(对于Cu1Se1与Cu1Se2之间的组成)以及低至377℃(对于Cu2-xSe与Cu1Se1之间的组成)。在523℃和以上,对于比共晶(~57.9wt%Se)更富Se的Cu-Se,该材料都是液体。对于固溶体Cu2-xSe与共晶(~57.9wt%Se)之间的组成,将会在523℃和刚好其以上产生固态固溶体Cu2-xSe和液体共晶(~57.9wt%Se)。As a non-limiting example, copper selenide has various melting temperatures depending on the ratio of copper to selenium in the material. Everything composed of solid solution Cu 2-x Se richer in Se (that is, pure Cu on the left and pure Se on the right side of the binary phase diagram) would yield liquid selenium. Depending on the composition, melting temperatures can be as low as 221°C (more Se-rich than Cu 1 Se 2 ), as low as 332°C (for compositions between Cu 1 Se 1 and Cu 1 Se 2 ), and as low as 377°C (for Cu 2 -x Se and Cu 1 Se 1 composition). At 523 °C and above, the material is all liquid for Cu-Se, which is more Se-rich than the eutectic (∼57.9 wt% Se). For compositions between solid solution Cu 2-x Se and eutectic (˜57.9 wt% Se), solid solid solution Cu 2-x Se and liquid eutectic (˜57.9 wt% Se) will result at 523 °C and just above.

另一非限制性实例包括硒化镓,其根据材料中镓与硒的比率可以具有多种熔化温度。主要是纯Se的比Ga2Se3更富Se的一切组成(也就是纯Ga在左边而纯Se在右边的二元相图上的右侧)会在220℃以上产生液体。通过制备例如化合物Ga2Se3(或者比Ga1Se1更富Se的任何化合物)可以制备比Ga1Se1更富Se的Ga-Se,但是只有当添加其它硒源时,与在Ga1Se1和Ga2Se3之间或与它们相同的组成(其为额外的硒源或富Se的Cu-Se)合作时,将会在处理温度下液化Ga-Se。因此,可以提供额外的Se源以促进包括硒化镓的液体的产生。Another non-limiting example includes gallium selenide, which can have various melting temperatures depending on the ratio of gallium to selenium in the material. Everything composed primarily of pure Se that is more Se-rich than Ga2Se3 (that is, pure Ga on the left and pure Se on the right side of the binary phase diagram) will produce a liquid above 220°C. Ga-Se richer in Se than Ga 1 Se 1 can be prepared by preparing e.g. the compound Ga 2 Se 3 (or any compound richer in Se than Ga 1 Se 1 ), but only when other selenium sources are added, as in Ga 1 Cooperation between Se 1 and Ga 2 Se 3 or with their same composition, which is an additional source of selenium or Se-rich Cu-Se, will liquefy Ga-Se at processing temperatures. Therefore, an additional source of Se can be provided to facilitate the production of liquids comprising gallium selenide.

另一非限制性实例包括硒化铟,其根据材料中铟与硒的比率可以具有多种熔化温度。主要是纯Se的比In2Se3更富Se的一切组成(也就是纯In在左边而纯Se在右边的二元相图上的右侧)会在220℃以上产生液体。制备比In1Se1更富Se的In-Se会产生In2Se3还有In6Se7的液体(或者在In1Se1和Se之间的总体组成),但是当处理在In1Se1和In2Se3之间或与它们相同的组成时,只有通过添加其它Se源(其为额外的硒源或富Se的Cu-Se),该In-Se会在处理温度下液化。任选地对于In-Se,存在另一种通过在“另一”方向上进行以及使用较少富Se(也就是在二元相图的左侧)的组成产生更多液体的方法。通过使用纯In与In4Se3之间(或者根据温度在In与In1Se1之间或In与In6Se7之间)的材料组成,可以在156℃产生纯液体In以及在520℃(或者当从~24.0wt%Se的共晶点进行更富Se的移动直至In1Se1时在更高温度下)产生更多液体。基本上,对于比In-Se共晶(~24.0wt%Se)较少富Se的总体组成,所有In-Se会在520℃变成液体。当然,对于这些类型的贫Se材料,将会需要其它颗粒中的一种(例如但是不限于Cu1Se2和/或Se)或者另一Se源来提高Se含量。Another non-limiting example includes indium selenide, which can have various melting temperatures depending on the ratio of indium to selenium in the material. Everything composed primarily of pure Se that is more Se-rich than In2Se3 (that is , pure In on the left and pure Se on the right side of a binary phase diagram) will produce a liquid above 220°C. Making In-Se richer in Se than In 1 Se 1 would yield a liquid of In 2 Se 3 as well as In 6 Se 7 (or an overall composition between In 1 Se 1 and Se), but when treated at In 1 Se 1 and In 2 Se 3 or at the same composition as them, only by adding other Se sources, either additional Se sources or Se-enriched Cu-Se, the In-Se will liquefy at the processing temperature. Optionally for In-Se, there is another way to produce more liquid by going in the "other" direction and using a composition that is less Se rich (ie on the left side of the binary phase diagram). By using a material composition between pure In and In 4 Se 3 (or between In and In 1 Se 1 or In and In 6 Se 7 depending on temperature), it is possible to produce pure liquid In at 156 °C as well as at 520 °C ( Or at higher temperatures when a more Se-rich shift is performed from the eutectic point of ~24.0 wt% Se to In 1 Se 1 ) yields more liquid. Basically, for an overall composition less Se-rich than the In-Se eutectic (~24.0 wt% Se), all In-Se would become liquid at 520°C. Of course, for these types of Se-poor materials, one of the other particles (such as but not limited to Cu 1 Se 2 and/or Se) or another Se source will be required to increase the Se content.

因此,通过以下可以在我们的处理温度下产生液体:1)添加独立的硒源,2)使用比Cu2-xSe更富Se的Cu-Se,3)使用Ga-乳液(或In-Ga乳液)或In(在无空气环境中),或4)使用比In1Se1较少富Se的In-Se,虽然这也可能要求无空气的环境。当使用硒化铜时,组成可以是CuxSey,其中x为约2-约1以及y为约1-约2。当使用硒化铟时,组成可以是InxSey,其中x为约1-约6以及y为约0-约7。当使用硒化镓时,组成可以是GaxSey,其中x为约1-约2以及y为约1-约3。Therefore, liquids can be generated at our processing temperature by: 1) adding an independent source of selenium, 2) using Cu-Se which is more Se-rich than Cu 2-x Se, 3) using Ga-emulsion (or In-Ga emulsion) or In (in an air-free environment), or 4) use In-Se that is less Se-rich than In 1 Se 1 , although this may also require an air-free environment. When copper selenide is used, the composition may be Cu x Se y , where x is from about 2 to about 1 and y is from about 1 to about 2. When indium selenide is used, the composition may be In x Se y , where x is from about 1 to about 6 and y is from about 0 to about 7. When gallium selenide is used, the composition may be Ga x Se y , where x is from about 1 to about 2 and y is from about 1 to about 3.

应当理解添加独立的硒源会使组合物在处理温度下在硒化物颗粒与液体硒的界面上最初表现为更富Se。It will be appreciated that addition of a separate source of selenium will cause the composition to initially appear more Se-rich at the interface of the selenide particles and liquid selenium at the processing temperature.

硫属元素蒸气环境Chalcogen Vapor Environment

现在参照图15A,将要描述本发明的另一实施方案。在与纳米薄片前体材料一起使用的该实施方案中,应当理解将来自硫属元素蒸气的超压用来提供硫属元素气氛以改善膜处理和晶体生长。图15A显示了室1050连同具有接触层1054和前体层1056的衬底1052。在该室内包括额外的硫属元素源1058并且使其达到产生由线条1060表示的硫属元素蒸气的温度。在本发明的一种实施方案中,提供硫属元素蒸气以使存在于气氛中的硫属元素的分压大于或等于如下的蒸气压:在处理温度和处理压力下保持硫属元素分压以使前体层的硫属元素的损失减到最少以及希望的话提供具有额外硫属元素的前体层所需的硫属元素蒸气压。部分基于室1050或前体层1056所处的温度决定该分压。另外应当理解在室1050中在非真空压力下使用硫属元素蒸气。在一种实施方案中,室内的压力约为大气压。按照理想气体定律PV=nRT,应当理解温度影响蒸气压。在一种实施方案中,可以通过使用具有在其中或与该室连接的硫属元素源1062的部分或完全封闭的室提供硫属元素蒸气。在使用更敞开的室的另一实施方案中,可以通过供给产生硫属元素蒸气的源提供硫属元素气氛。硫属元素蒸气可以用来帮助保持膜中的硫属元素或者提供硫属元素以使前体层转化。因此,可以使用或可以不用硫属元素蒸气来提供过量的硫属元素。在一些实施方案中,与提供更多硫属元素至膜中相比,这可以更多地用于保持膜中存在的硫属元素。任选地,这可以用作引入到另外不含硫属元素或者不含硒的前体层中的硫属元素。暴露于硫属元素蒸气可以在大气压下发生。这些条件可以适用于本文所述的任何实施方案。可以将硫属元素通过载气带入室内。载气可以是惰性气体例如氮气、氩气等。该硫属元素气氛系统可以适合用于卷到卷系统。Referring now to Figure 15A, another embodiment of the present invention will be described. In this embodiment used with nanoflake precursor materials, it is understood that the overpressure from the chalcogen vapor is used to provide a chalcogen atmosphere to improve film handling and crystal growth. FIG. 15A shows a chamber 1050 together with a substrate 1052 having a contact layer 1054 and a precursor layer 1056 . An additional chalcogen source 1058 is included within the chamber and brought to a temperature that produces chalcogen vapor represented by line 1060 . In one embodiment of the invention, the chalcogen vapor is provided such that the partial pressure of the chalcogen present in the atmosphere is greater than or equal to the vapor pressure at which the partial pressure of the chalcogen is maintained at the process temperature and process pressure to Minimizing the loss of chalcogen from the precursor layer and, if desired, providing the chalcogen vapor pressure required for the precursor layer with additional chalcogen. This partial pressure is determined based in part on the temperature at which chamber 1050 or precursor layer 1056 is located. It should also be understood that chalcogen vapor is used in chamber 1050 at non-vacuum pressures. In one embodiment, the pressure in the chamber is about atmospheric pressure. From the ideal gas law PV=nRT, it should be understood that temperature affects vapor pressure. In one embodiment, the chalcogen vapor may be provided by using a partially or fully enclosed chamber having a chalcogen source 1062 therein or connected to the chamber. In another embodiment using a more open chamber, the chalcogen atmosphere may be provided by supplying a source that produces chalcogen vapor. Chalcogen vapor can be used to help maintain chalcogen in the film or to provide chalcogen to convert the precursor layer. Thus, chalcogen vapor may or may not be used to provide excess chalcogen. In some embodiments, this may serve more to maintain the chalcogen present in the membrane than to provide more chalcogen into the membrane. Optionally, this can be used as chalcogen to be introduced into an otherwise chalcogen-free or selenium-free precursor layer. Exposure to chalcogen vapors can occur at atmospheric pressure. These conditions may apply to any of the embodiments described herein. Chalcogen can be brought into the chamber via the carrier gas. The carrier gas may be an inert gas such as nitrogen, argon, or the like. The chalcogen atmosphere system can be adapted for roll-to-roll systems.

现在参照图15B,显示出本发明可以适合与卷到卷系统一起使用,其中带有前体层的衬底1070可以是柔性的而且配置为卷1072和1074。室1076可以处在真空或非真空压力下。可以将室1076设计成包括差动阀设计以使卷到卷衬底1070的室入口和室出口点处硫属元素蒸气的损失减到最少。Referring now to FIG. 15B , it is shown that the present invention may be adapted for use with a roll-to-roll system, wherein a substrate 1070 with precursor layers may be flexible and configured as rolls 1072 and 1074 . Chamber 1076 may be under vacuum or non-vacuum pressure. The chamber 1076 can be designed to include a differential valve design to minimize the loss of chalcogen vapor at the chamber entry and chamber exit points of the roll-to-roll substrate 1070 .

现在参照图15C,本发明的另一实施方案使用足够尺寸的室1090以容纳整个衬底,包括与使用卷到卷构造有关的任何卷1072或1074。Referring now to FIG. 15C, another embodiment of the present invention uses a chamber 1090 of sufficient size to contain the entire substrate, including any rolls 1072 or 1074 associated with using a roll-to-roll configuration.

现在参照图16A,另外应当理解本发明的实施方案还可以在刚性衬底1100上使用。作为非限制性实例,刚性衬底1100可以是玻璃、太阳能玻璃、低铁玻璃、绿玻璃、钠钙玻璃、钢、不锈钢、铝、聚合物、陶瓷、涂覆聚合物、或者适合用作太阳能电池或太阳能模块衬底的其它刚性材料。可以用高速拾放机器人1102来将刚性衬底1100从堆叠或其它储存区域移动到处理区域上。在图16A中,将衬底1100放在传送带上,该传送带然后使它们移动通过不同的处理室。任选地,衬底1100此时可能已经经历过一些处理而且可能已经在衬底1100上包括前体层。本发明的其它实施方案可以在衬底1100穿过室1106时形成前体层。Referring now to FIG. 16A , it should additionally be understood that embodiments of the present invention may also be used on rigid substrates 1100 . As non-limiting examples, rigid substrate 1100 may be glass, solar glass, low-iron glass, green glass, soda lime glass, steel, stainless steel, aluminum, polymer, ceramic, coated polymer, or suitable for use as a solar cell Or other rigid materials for solar module substrates. A high speed pick and place robot 1102 may be used to move the rigid substrate 1100 from a stack or other storage area onto a processing area. In Figure 16A, substrates 1100 are placed on a conveyor belt which then moves them through the different processing chambers. Optionally, the substrate 1100 may have undergone some processing at this point and may already include a precursor layer on the substrate 1100 . Other embodiments of the invention may form the precursor layer as the substrate 1100 passes through the chamber 1106 .

图16B显示本系统的另一实施方案,其中用拾放机器人1110来将多个刚性衬底放置在运输装置1112上,该装置可以接着如箭头1114所示移动到处理区域。这容许装载多个衬底1100然后使它们全都一起移动以经受处理。FIG. 16B shows another embodiment of the present system in which a pick-and-place robot 1110 is used to place a plurality of rigid substrates on a transport device 1112 which can then be moved as indicated by arrow 1114 to the processing area. This allows multiple substrates 1100 to be loaded and then moved all together to undergo processing.

现在参照图17,将要描述本发明的另一实施方案。在一种实施方案中,用来形成前体层1500的颗粒可以包括作为金属间化合颗粒1502的颗粒。在一种实施方案中,金属间材料是含有至少两种元素的材料,其中该金属间材料中的一种元素的量少于金属间材料总摩尔量和/或前体材料中的那一种元素的总摩尔量的约50mol%。第二种元素的量是可变的而且可以从该金属间材料的和/或前体材料中的那一种元素的总摩尔量的少于约50mol%到约50mol%或更大。作为选择,金属间相材料可以由两种或多种金属组成,其中以端际固溶体的上限与包含约50%金属间材料中的元素之一的合金之间的比率混合材料。在图10的放大图中显示的颗粒分布是纯粹示例性的以及是非限制性的。应当理解一些实施方案可以具有全都含有金属间材料、金属材料和金属间材料的混合物、金属颗粒和金属间化合颗粒、或其组合的颗粒。Referring now to Figure 17, another embodiment of the present invention will be described. In one embodiment, the particles used to form precursor layer 1500 may include particles that are intermetallic particles 1502 . In one embodiment, the intermetallic material is a material containing at least two elements, wherein the amount of one element in the intermetallic material is less than that of the total molar amount of the intermetallic material and/or the precursor material About 50 mol% of the total molar amount of elements. The amount of the second element is variable and can range from less than about 50 mole percent to about 50 mole percent or more of the total molar amount of that element in the intermetallic material and/or precursor material. Alternatively, the intermetallic phase material may consist of two or more metals in which the materials are mixed in a ratio between the upper limit of the terminal solid solution and an alloy comprising about 50% of one of the elements in the intermetallic material. The particle distribution shown in the enlarged view of Figure 10 is purely exemplary and non-limiting. It should be understood that some embodiments may have particles that all contain intermetallic materials, mixtures of metallic materials and intermetallic materials, metallic particles and intermetallic particles, or combinations thereof.

应当理解金属间相材料是含有两种或多种金属的化合物和/或中间固溶体,其具有与纯金属或端际固溶体不同的特性和晶体结构。金属间相材料是由一种材料经由晶格空位进入另一种材料的扩散引起的,所述晶格空位因缺陷、污染、杂质、晶界和机械应力而变成可用。在两种或多种金属扩散进入彼此中后,产生作为两种材料组合的中间金属物种。金属间化合物的子类包括电子化合物和间隙化合物。It should be understood that intermetallic phase materials are compounds and/or intermediate solid solutions containing two or more metals that have different properties and crystal structures than pure metals or terminal solid solutions. Intermetallic phase materials are caused by the diffusion of one material into another via lattice vacancies made available by defects, contamination, impurities, grain boundaries and mechanical stress. After the two or more metals diffuse into each other, an intermediate metal species is created that is a combination of the two materials. Subclasses of intermetallic compounds include electron compounds and interstitial compounds.

如果两种或多种混合的金属相对于彼此具有不同的晶体结构、价态或正电性,则产生电子化合物,实例包括但是不限于硒化铜、硒化镓、硒化铟、碲化铜、碲化镓、碲化铟、以及类似和/或相关的材料和/或这些材料的共混物或混合物。Electronic compounds are created if two or more mixed metals have different crystal structures, valence states, or electropositivity relative to each other, examples include but are not limited to copper selenide, gallium selenide, indium selenide, copper telluride , gallium telluride, indium telluride, and similar and/or related materials and/or blends or mixtures of these materials.

间隙化合物从具有原子尺寸的足够相似以容许形成间隙晶体结构的金属或金属与非金属元素的混合物产生,该结构中一种材料的原子适合另一种材料的原子之间的空隙。对于其中每种材料具有单晶相的金属间材料,两种材料通常显示出叠加至同一波谱上的两个衍射峰,各自表示每种独立的材料。因此金属间化合物通常含有在同一体积内包含的两种材料的晶体结构。实例包括但是不限于Cu-Ga、Cu-In、以及类似和/或相关的材料和/或这些材料的共混物或混合物,其中每种元素与其它元素的组成比率使该材料处于其相图除端际固溶体区域以外的区域中。Interstitial compounds arise from metals or mixtures of metals and nonmetallic elements with atomic dimensions similar enough to allow the formation of an interstitial crystal structure in which atoms of one material fit into the spaces between atoms of another material. For intermetallic materials where each material has a single crystal phase, the two materials typically show two diffraction peaks superimposed on the same spectrum, each representing each individual material. Intermetallics therefore generally contain the crystal structure of the two materials contained within the same volume. Examples include, but are not limited to, Cu-Ga, Cu-In, and similar and/or related materials and/or blends or mixtures of these materials where the compositional ratios of each element to the other elements place the material in its phase diagram In regions other than the terminal solid solution region.

金属间材料可用于CIGS光伏器件的前体材料的形成,其中金属以高度均匀和一致的方式散布在彼此之中,并且其中每种材料相对于其它材料以基本上相似的量存在,由此容许快速的反应动力学,这产生在所有三个维度以及在纳米、微米和介观尺度上基本上均匀的高质量吸收体膜。Intermetallic materials are useful in the formation of precursor materials for CIGS photovoltaic devices in which metals are interspersed among each other in a highly uniform and consistent manner, and where each material is present in substantially similar amounts relative to the other, thereby allowing Fast reaction kinetics, which result in high-quality absorber films that are substantially homogeneous in all three dimensions and on the nano, micro and meso scales.

缺少难以合成和处理的铟纳米颗粒的添加时,端际固溶体不易容许足够大范围的前体材料以正确的比率(例如Cu/(In+Ga)=0.85)并入前体膜中使得可供形成高度吸收光的光活性吸收层。此外,端际固溶体可以具有与金属间材料和/或中间固溶体(端际固溶体和/或单质之间的固溶体)不同的机械性质。作为一种非限制性实例,一些端际固溶体的脆性不够用于进行粉碎用研磨。另外的实施方案可能是太硬以至于不能进行研磨。金属间材料和/或中间固溶体的使用可以解决这些缺点中的一些。Absent the addition of indium nanoparticles, which are difficult to synthesize and process, terminal solid solutions do not readily allow a sufficiently large range of precursor materials to be incorporated into the precursor film in the correct ratio (e.g. Cu/(In+Ga) = 0.85) to allow available Forms a photoactive absorber layer that is highly light absorbing. Furthermore, terminal solid solutions may have different mechanical properties than intermetallic materials and/or intermediate solid solutions (terminal solid solutions and/or solid solutions between elements). As a non-limiting example, some terminal solid solutions are not brittle enough to be ground for comminution. Other embodiments may be too hard to grind. The use of intermetallic materials and/or intermediate solid solutions can address some of these disadvantages.

具有金属间相的颗粒1502的优点是多方面的。作为一种非限制性实例,适合用于薄膜太阳能电池中的前体材料可以含有IB族和IIIA族元素,其分别例如是铜和铟。如果使用Cu-In的金属间相例如Cu1In2的话,则铟是富In的Cu材料的一部分并且不作为纯铟添加。由于在高收率、小且窄的纳米颗粒尺寸分布下实现In颗粒合成方面的困难以及需要增加更多成本的颗粒尺寸判定,因此添加纯铟作为金属颗粒是挑战性的。使用金属间富In的Cu颗粒避免纯单质In作为前体材料。另外,由于该金属间材料贫Cu,这也有利地容许单独添加Cu从而精确地达到前体材料中期望的Cu量。Cu不依赖能够由Cu和In产生的合金或固溶体中固定的比率。可以根据需要精细金属间材料和Cu量以达到期望的化学计量比。这些颗粒的球磨导致不需要颗粒尺寸判定,这降低成本而且提高材料制备工艺的生产量。The advantages of particles 1502 having an intermetallic phase are numerous. As a non-limiting example, precursor materials suitable for use in thin film solar cells may contain Group IB and Group IIIA elements such as copper and indium, respectively. If an intermetallic phase of Cu—In such as Cu 1 In 2 is used, the indium is part of the In-rich Cu material and is not added as pure indium. Adding pure indium as metal particles is challenging due to the difficulty in achieving In particle synthesis in high yield, small and narrow nanoparticle size distribution, and the need for particle size determination that adds more cost. The use of intermetallic In-rich Cu particles avoids pure elemental In as a precursor material. In addition, since the intermetallic material is Cu-depleted, this also advantageously allows the addition of Cu alone to precisely achieve the desired amount of Cu in the precursor material. Cu does not depend on a fixed ratio in alloys or solid solutions that can be produced from Cu and In. The amount of intermetallic material and Cu can be refined as needed to achieve the desired stoichiometric ratio. Ball milling of these particles results in no need for particle size determination, which reduces cost and increases throughput of the material preparation process.

在本发明的一些特定实施方案中,具有金属间材料提供更宽范围的灵活性。由于经济地制造单质铟颗粒是困难的,具有在经济上更引起关注的铟源会是有利的。另外,如果该铟源还容许彼此独立地改变层中的Cu/(In+Ga)和Ga/(In+Ga)的话会是有利的。作为一种非限制性实例,可以在Cu11In9和Cu1In2之间用金属间相进行区分。如果只用一层前体材料的话特别是如此。对于这种特定实例,如果仅由Cu11In9提供铟的话,在最终的IB-IIIA-VIA族化合物中能够产生的化学计量比存在更多限制。然而,在作为唯一铟源的Cu1In2下,在最终的IB-IIIA-VIA族化合物中能够产生大得多的比率范围。Cu1In2容许在宽范围内独立地改变Cu/(In+Ga)和Ga/(In+Ga),而Cu11In9不能。例如,Cu11In9仅容许在Cu/(In+Ga)>0.92下Ga/(In+Ga)=0.25。作为另一实例,Cu11In9仅容许在Cu/(In+Ga)>0.98下Ga/(In+Ga)=0.20。作为另一实例,Cu11In9仅容许在Cu/(In+Ga)>1.04下Ga/(In+Ga)=0.15。因此对于金属间材料,特别是当该金属间材料为最终化合物中的元素之一的唯一来源时,可以按化学计量比产生最终化合物:该化学计量比更宽地探究组成范围约0.7-约1.0的Cu/(In+Ga)的界限和组成范围约0.05-约0.3的Ga/(In+Ga)界限的。在另外的实施方案中,Cu/(In+Ga)组成范围可以是约0.01-约1.0。在另外的实施方案中,Cu/(In+Ga)组成范围可以是约0.01-约1.1。在另外的实施方案中,Cu/(In+Ga)组成范围可以是约0.01-约1.5。这通常产生额外的CuxSey,如果它在顶面上的话可能以后将其除去。应当理解这些比率可以适用于本文上述实施方案中的任何。In some specific embodiments of the invention, having an intermetallic material provides a wider range of flexibility. Since it is difficult to manufacture elemental indium particles economically, it would be advantageous to have a more economically interesting source of indium. In addition, it would be advantageous if the indium source also allowed changing Cu/(In+Ga) and Ga/(In+Ga) in the layers independently of each other. As a non-limiting example, an intermetallic phase can be used to differentiate between Cu 11 In 9 and Cu 1 In 2 . This is especially true if only one layer of precursor material is used. For this particular example, there are more constraints on the stoichiometry that can be produced in the final Group IB-IIIA-VIA compound if only the indium is provided by Cu 11 In 9 . However, with Cu 1 In 2 as the sole indium source, a much larger range of ratios can be produced in the final Group IB-IIIA-VIA compound. Cu 1 In 2 allows independent changes of Cu/(In+Ga) and Ga/(In+Ga) over a wide range, while Cu 11 In 9 cannot. For example, Cu 11 In 9 only allows Ga/(In+Ga)=0.25 at Cu/(In+Ga)>0.92. As another example, Cu 11 In 9 only allows Ga/(In+Ga)=0.20 at Cu/(In+Ga)>0.98. As another example, Cu 11 In 9 only allows Ga/(In+Ga)=0.15 at Cu/(In+Ga)>1.04. Thus for intermetallic materials, especially when the intermetallic material is the sole source of one of the elements in the final compound, the final compound can be produced in a stoichiometric ratio: This stoichiometric ratio explores a broader compositional range of about 0.7 to about 1.0 Cu/(In+Ga) bound and compositions ranging from about 0.05 to about 0.3 Ga/(In+Ga) bound. In other embodiments, the Cu/(In+Ga) composition may range from about 0.01 to about 1.0. In other embodiments, the Cu/(In+Ga) composition may range from about 0.01 to about 1.1. In other embodiments, the Cu/(In+Ga) composition may range from about 0.01 to about 1.5. This usually creates extra Cux Se y which may be removed later if it is on the top surface. It should be understood that these ratios may apply to any of the embodiments described herein above.

此外,应当理解在处理期间,金属间材料可以比其它化合物产生更多液体。作为一种非限制性实例,Cu1In2在处理期间进行加热时将会形成比Cu11In9更多的液体。更多的液体促进更多的原子混合,因为材料在液态时更易于移动和混合。Furthermore, it should be understood that intermetallic materials may generate more liquid during processing than other compounds. As a non-limiting example, Cu1In2 will form more liquid than Cu11In9 when heated during processing. More liquid promotes more intermixing of atoms because materials move and mix more easily when they are in a liquid state.

另外,特定种类的金属间化合颗粒例如但是不限于Cu1In2存在特别的优点。Cu1In2是亚稳态材料。该材料更倾向于分解,这对于本发明将会有利地提高反应速率(在动力学上)。此外,该材料较少倾向于氧化(例如与纯In相比)而且这进一步简化处理。该材料还可以是单相的,这会使它作为前体材料更均匀,产生更好的收率。In addition, particular advantages exist for certain types of intermetallic particles such as, but not limited to, Cu1In2 . Cu 1 In 2 is a metastable material. This material is more prone to decomposition, which would advantageously increase the reaction rate (kinetically) for the present invention. Furthermore, the material is less prone to oxidation (compared to eg pure In) and this further simplifies handling. The material can also be single-phase, which would make it more homogeneous as a precursor material, leading to better yields.

如图18和19中看到的那样,在衬底1506上沉积层1500之后,可以接着在合适气氛下进行加热以使图18中的层1500反应并且形成图19所示的膜1510。应当理解层1500可以与层915和917结合使用。层915可以由包括但是不限于以下至少一种的各种材料组成:IB族元素、IIIA族元素、VIA族元素、IA族元素(新体例:1族)、任何前述元素的二元和/或多元合金、任何前述元素的固溶体。应当理解也可以将钠或钠基材料例如但是不限于钠、钠化合物、氟化钠和/或硫化铟钠与前体材料一起用于层915中以改善所得膜的性质。图19显示还可以如同关于图6F所述使用层932。关于钠含量的前面建议的任何方法也可以适合与图17-19所示的实施方案一起使用。As seen in FIGS. 18 and 19 , after depositing layer 1500 on substrate 1506 , heating may follow under a suitable atmosphere to react layer 1500 in FIG. 18 and form film 1510 shown in FIG. 19 . It should be understood that layer 1500 may be used in combination with layers 915 and 917 . Layer 915 may be composed of various materials including but not limited to at least one of the following: Group IB elements, Group IIIA elements, Group VIA elements, Group IA elements (new style: Group 1), binary and/or Multiple alloys, solid solutions of any of the foregoing elements. It should be understood that sodium or sodium-based materials such as, but not limited to, sodium, sodium compounds, sodium fluoride, and/or sodium indium sulfide may also be used in layer 915 along with precursor materials to improve the properties of the resulting film. Figure 19 shows that layer 932 can also be used as described with respect to Figure 6F. Any of the previously suggested methods regarding sodium content may also be adapted for use with the embodiments shown in Figures 17-19.

应当理解本发明另外的实施方案还公开包含至少两种元素的材料,其中该材料中的至少一种元素的量少于前体材料中该元素总摩尔量的约50mol%。这包括其中IB族元素的量少于金属间材料中的IIIA族元素量的实施方案。作为一种非限制性实例,这可以包括其它贫IB族的IB-IIIA族材料例如贫Cu的CuxIny颗粒(其中x<y)。IIIA族材料的量可以在任何需要的范围内(超过该元素在前体材料中的约50mol%或少于50mol%)。在另一非限制性实例中,Cu1Ga2可以与单质Cu和单质In一起使用。尽管该材料不是金属间材料,但是该材料是中间固溶体而且与端际固溶体不同。所有固体颗粒均是基于Cu1Ga2前体产生。在该实施方案中,没有使用乳液。It should be understood that additional embodiments of the present invention also disclose materials comprising at least two elements, wherein the amount of at least one element in the material is less than about 50 mole percent of the total molar amount of the element in the precursor material. This includes embodiments wherein the amount of Group IB element is less than the amount of Group IIIA element in the intermetallic material. As a non -limiting example, this may include other Group IB-depleted Group IB-IIIA materials such as Cu-depleted CuxIny particles (where x<y). The amount of Group IIIA material can be in any desired range (more than about 50 mol% or less than 50 mol% of this element in the precursor material). In another non-limiting example, Cu 1 Ga 2 can be used with elemental Cu and elemental In. Although the material is not an intermetallic material, the material is an intermediate solid solution and is distinct from a terminal solid solution. All solid particles are produced based on Cu 1 Ga 2 precursors. In this embodiment, no emulsion is used.

在本发明另外的实施方案中,可以用富IB族的IB-IIIA族材料形成其它可行的前体材料。作为一种非限制性实例,可以使用多种中间固溶体。可以将Cu-Ga(38原子%Ga)与单质铟和单质铜一起用于前体层1500中。在另一实施方案中,可以将Cu-Ga(30原子%Ga)与单质铜和单质铟一起用于前体层1500中。这两种实施方案都描述其中IIIA族元素少于该元素在前体材料中的约50mol%的富Cu材料。在另外的实施方案中,可以将Cu-Ga(多相,25原子%Ga)与单质铜和铟一起用来形成期望的前体层。应当理解这些材料的纳米颗粒可以通过机械研磨或其它粉碎方法制造。在另外的实施方案中,这些颗粒可以通过电爆丝线(EEW)处理、蒸发冷凝(EC)、脉冲等离子体处理或其它方法制造。尽管不限于以下内容,但是颗粒尺寸可以是约10nm-约1μm。它们可以具有本文所述的任何形状。In additional embodiments of the invention, Group IB-enriched Group IB-IIIA materials may be used to form other viable precursor materials. As a non-limiting example, various intermediate solid solutions can be used. Cu—Ga (38 atomic % Ga) may be used in the precursor layer 1500 together with elemental indium and elemental copper. In another embodiment, Cu—Ga (30 atomic % Ga) may be used in the precursor layer 1500 together with elemental copper and elemental indium. Both of these embodiments describe Cu-rich materials in which the Group IIIA element is less than about 50 mol% of that element in the precursor material. In additional embodiments, Cu-Ga (heterogeneous, 25 atomic % Ga) can be used with elemental copper and indium to form the desired precursor layer. It should be understood that nanoparticles of these materials may be produced by mechanical milling or other comminution methods. In additional embodiments, these particles can be produced by electro-explosive wire (EEW) processing, evaporative condensation (EC), pulsed plasma processing, or other methods. Although not limited to the following, the particle size may be from about 10 nm to about 1 μm. They can have any shape described herein.

现在参照图19,在本发明的另一实施方案中,可以涂覆、印刷或者以另外方式形成两层或多层材料以提供具有期望化学计量比的前体层。作为一种非限制性实例,层1530可以包含具有Cu11In9和Ga源例如单质Ga和/或GaxSey的前体材料。可以在层1530上印刷含有Cu78In28(固溶体)和单质铟或InxSey的富铜前体层1532。在这样的实施方案中,所产生的整体比率可以具有Cu/(In+Ga)=0.85和Ga/(In+Ga)0.19。在所得膜的一种实施方案中,该膜具有组成范围约0.7-约1.0的Cu/(In+Ga)化学计量比和组成范围约0.05-约0.3的Ga/(In+Ga)的化学计量比。Referring now to FIG. 19, in another embodiment of the invention, two or more layers of material may be coated, printed, or otherwise formed to provide precursor layers with a desired stoichiometric ratio. As a non-limiting example, layer 1530 may comprise a precursor material having Cu 11 In 9 and a Ga source such as elemental Ga and/or Ga x Se y . A copper-rich precursor layer 1532 containing Cu 78 In 28 (solid solution) and elemental indium or In x Se y may be printed on layer 1530 . In such an embodiment, the resulting overall ratios may have Cu/(In+Ga)=0.85 and Ga/(In+Ga)0.19. In one embodiment of the resulting film, the film has a Cu/(In+Ga) stoichiometry in the composition range from about 0.7 to about 1.0 and a Ga/(In+Ga) stoichiometry in the composition range from about 0.05 to about 0.3 Compare.

现在参照图21,应当理解在本发明的一些实施方案中,将金属间材料用作进料或原料,由它们可以形成颗粒和/或纳米颗粒。作为一种非限制性实例,图21显示进行处理以形成其它颗粒的一种金属间进料颗粒1550。用于粉碎和/或形状变化的任何方法可以是适合的,其包括但是不限于研磨、EEW、EC、脉冲等离子体处理或它们的组合。可以形成颗粒552、554、556和558。这些颗粒可以具有变化的形状而且一些颗粒可以只含有金属间相而另外的颗粒可以含有该相和其它材料相。Referring now to FIG. 21 , it will be appreciated that in some embodiments of the invention, intermetallic materials are used as feedstock or raw materials from which particles and/or nanoparticles may be formed. As a non-limiting example, Figure 21 shows an intermetallic feed particle 1550 that is processed to form other particles. Any method for comminution and/or shape change may be suitable including, but not limited to, milling, EEW, EC, pulsed plasma treatment, or combinations thereof. Particles 552, 554, 556, and 558 may be formed. The particles may have varying shapes and some particles may contain only the intermetallic phase while others may contain this phase as well as other material phases.

现在参照图22A和22B,薄片1600(微米薄片和/或纳米薄片)相对其它非球形状例如但是不限于片晶(platelet)提供某些优点。薄片1600提供非常有效的堆叠(由于Z轴上均匀的厚度)和高的表面积(在X和Y轴上)。这导致更快的反应、更好的动力学以及更均匀的产物/膜/化合物(具有较少的侧蔓延)。图23A和23B中看到的片晶1602未能具备所有的上述优点。Referring now to FIGS. 22A and 22B , flakes 1600 (microflakes and/or nanoflakes) offer certain advantages over other non-spherical shapes such as, but not limited to, platelets. Flakes 1600 provide very efficient stacking (due to uniform thickness in the Z axis) and high surface area (in the X and Y axes). This results in faster reactions, better kinetics, and more uniform products/films/compounds (with less side spread). The lamellae 1602 seen in Figures 23A and 23B do not have all of the above advantages.

虽然本发明已经参照其某些具体实施方案进行了描述和说明,但是本领域技术人员将会意识到在不脱离本发明的精神和范围的情况下,可以进行工艺和规程的各种调整、改变、改进、取代、省略、或增加。例如,对于任何上述实施方案,纳米薄片可以被微米薄片代替和/或与其混合,其中该平面微米薄片的长度和/或最大横向尺寸为约500nm或更大。微米薄片可以各自具有小于约5μm而且大于约500nm的长度。微米薄片可以各自具有约3μm-约500nm的长度。所述颗粒可以是长度大于500nm的微米薄片。该颗粒可以是长度大于750nm的微米薄片。微米薄片可以各自具有约100nm或更小的厚度。所述颗粒可以是厚度约75nm或更小的微米薄片。该颗粒可以是厚度约50nm或更小的微米薄片。微米薄片可以各自具有小于约20nm的厚度。微米薄片可以具有小于约2μm的长度和小于100nm的厚度。微米薄片可以具有小于约1μm的长度和小于50nm的厚度。微米薄片可以具有至少约10或更大的纵横比。微米薄片具有至少约15或更大的纵横比。While the invention has been described and illustrated with reference to certain specific embodiments thereof, those skilled in the art will recognize that various modifications and changes in process and procedures can be made without departing from the spirit and scope of the invention. , improve, replace, omit, or add to. For example, for any of the above embodiments, the nanoflakes may be replaced by and/or mixed with microflakes, wherein the planar microflakes have a length and/or largest lateral dimension of about 500 nm or greater. The microflakes may each have a length less than about 5 μm and greater than about 500 nm. The microflakes may each have a length from about 3 μm to about 500 nm. The particles may be microflakes with a length greater than 500 nm. The particles may be microflakes with a length greater than 750 nm. The microflakes may each have a thickness of about 100 nm or less. The particles may be microflakes having a thickness of about 75 nm or less. The particles may be microflakes with a thickness of about 50 nm or less. The microflakes may each have a thickness of less than about 20 nm. The microflakes may have a length of less than about 2 μm and a thickness of less than 100 nm. The microflakes may have a length of less than about 1 μm and a thickness of less than 50 nm. The microflakes can have an aspect ratio of at least about 10 or greater. The microflakes have an aspect ratio of at least about 15 or greater.

如同提及过的那样,本发明的一些实施方案可以同时包括纳米薄片和微米薄片。其它实施方案可以包括专门在纳米薄片尺寸范围内或微米薄片尺寸范围内的薄片。对于任何上述实施方案,微米薄片可以被微米棒(microrods)代替,该微米棒是基本上线性的细长体。对于任何上述实施方案,纳米薄片可以被纳米棒代替,该纳米棒是基本上线性的伸长的材料。另外的实施方案可以在前体层中将纳米棒与纳米薄片组合。任何的上述实施方案可以用在刚性衬底、柔性衬底或两者的组合上,该组合例如但是不限于由于其材料性质在处理期间变成刚性的柔性衬底。在本发明的一种实施方案中,颗粒可以是具有微米尺寸部分的板和/或盘和/或薄片和/或线和/或棒。在本发明的另一实施方案中,颗粒可以是具有纳米尺寸部分的纳米板和/或纳米盘和/或纳米薄片和/或纳米线和/或纳米棒。As mentioned, some embodiments of the invention may include both nanoflakes and microflakes. Other embodiments may include flakes exclusively in the nanoflake size range or in the microflake size range. For any of the above embodiments, the microflakes may be replaced by microrods, which are elongated substantially linear bodies. For any of the above embodiments, the nanoflakes may be replaced by nanorods, which are substantially linear elongated materials. Additional embodiments may combine nanorods with nanoflakes in the precursor layer. Any of the above-described embodiments may be used on rigid substrates, flexible substrates, or a combination of both, such as, but not limited to, flexible substrates that become rigid during processing due to their material properties. In one embodiment of the invention, the particles may be plates and/or discs and/or flakes and/or wires and/or rods with micron-sized fractions. In another embodiment of the invention, the particles may be nanoplates and/or nanodisks and/or nanoflakes and/or nanowires and/or nanorods with nanosized portions.

对于任何的上述实施方案,应当理解除了上述以外,温度还可以在前体层处理的不同时间段内变化。作为一种非限制性实例,加热可以在最初的处理时间段内在第一温度下进行并且对于随后的处理时间段进行至另外的温度。任选地,该方法可以包括有意产生一个或多个温度下降以至于作为一种非限制性实例,该方法包含加热、冷却、加热和随后冷却。对于任何的上述实施方案,还可以在硫属元素化物颗粒和/或所产生的膜中具有两种或多种IB元素。As with any of the above embodiments, it should be understood that in addition to the above, the temperature may also be varied over different periods of time during the processing of the precursor layer. As a non-limiting example, heating may be at a first temperature for an initial treatment period and to an additional temperature for subsequent treatment periods. Optionally, the method may include intentionally producing one or more temperature drops such that, as a non-limiting example, the method comprises heating, cooling, heating and then cooling. As with any of the above embodiments, it is also possible to have two or more IB elements in the chalcogenide particles and/or the resulting film.

另外,本文中可以用范围形式给出浓度、量和其它数值数据。应当理解这种范围形式只是为了方便和简洁而使用,并且应当灵活地解释为不仅包括作为所述范围界限明确举出的数值,而且还包括该范围内包含的所有个别数值或子范围,如同每个数值和子范围皆是明确所述的。例如,约1nm到约200nm的尺寸范围应当解释为不仅包括明确所述的约1nm和约200nm的界限,而且还包括个别的尺寸例如2nm、3nm、4nm以及子范围例如10nm至50nm,20nm至100nm等。Additionally, concentrations, amounts, and other numerical data may be presented herein in range format. It should be understood that this range format is used for convenience and brevity only, and should be construed flexibly to include not only the values expressly recited as the boundaries of the stated range, but also all individual values or subranges subsumed within that range, as if each Both numerical values and subranges are explicitly stated. For example, a size range of about 1 nm to about 200 nm should be interpreted to include not only the expressly stated boundaries of about 1 nm and about 200 nm, but also individual sizes such as 2 nm, 3 nm, 4 nm and sub-ranges such as 10 nm to 50 nm, 20 nm to 100 nm, etc. .

例如,本发明另外的实施方案可以使用Cu-In前体材料,其中Cu-In贡献少于约50%的在前体材料中存在的Cu和In两者。其余的量由单质形式或由非IB-IIIA合金引入。因此,Cu11In9可以与单质Cu、In和Ga一起使用以形成所得的膜。在另一实施方案中,其它材料例如Cu-Se、In-Se和/或Ga-Se可以代替单质Cu、In和Ga作为IB或IIIA族材料源。任选地,在另一实施方案中,IB源可以是包含没有与In和Ga合金化的Cu的任何颗粒(Cu、Cu-Se)。IIIA源可以是没有Cu的含In的任何颗粒(In-Se、In-Ga-Se)或者没有Cu的含Ga的任何颗粒(Ga、Ga-Se或In-Ga-Se)。另外的实施方案可以具有氮化物或氧化物形式的IB材料的这些组合。另外的实施方案可以具有氮化物或氧化物形式的IIIA材料的这些组合。本发明可以使用元素的任何组合和/或可以使用硒化物(二元、三元或多元)。任选地,一些其它实施方案可以使用氧化物例如In2O3以添加期望量的材料。应当理解对于任何的上述实施方案可以使用多于一种的固溶体,还可以使用多相合金和/或更一般的合金。对于任何的上述实施方案,退火工艺还可以包括化合物膜暴露于气体下,诸如H2、CO、N2、Ar、H2Se、Se蒸气、或这些气体的组合或共混物。另外应当理解可以将Se蒸发或印刷到多个层的叠层上以便处理。For example, additional embodiments of the present invention may use Cu-In precursor materials where Cu-In contributes less than about 50% of both Cu and In present in the precursor material. The remaining amount is introduced in elemental form or from non-IB-IIIA alloys. Therefore, Cu 11 In 9 can be used with elemental Cu, In, and Ga to form the resulting film. In another embodiment, other materials such as Cu-Se, In-Se and/or Ga-Se may replace elemental Cu, In and Ga as the source of Group IB or IIIA materials. Optionally, in another embodiment, the source of IB can be any particle (Cu, Cu—Se) comprising Cu that is not alloyed with In and Ga. The IIIA source can be any particle containing In without Cu (In-Se, In-Ga-Se) or any particle containing Ga without Cu (Ga, Ga-Se or In-Ga-Se). Additional embodiments may have these combinations of IB materials in either nitride or oxide form. Additional embodiments may have these combinations of IIIA materials in either nitride or oxide form. The present invention may use any combination of elements and/or may use selenides (binary, ternary or polynary). Optionally, some other embodiments may use oxides such as In 2 O 3 to add the desired amount of material. It should be understood that more than one solid solution may be used for any of the above-described embodiments, and that multi-phase alloys and/or alloys more generally may also be used. For any of the above embodiments, the annealing process may also include exposing the compound film to a gas, such as H2 , CO, N2 , Ar, H2Se , Se vapor, or a combination or blend of these gases. It should also be understood that Se may be evaporated or printed onto the stack of layers for processing.

另外应当理解若干中间固溶体也可以适合按照本发明使用。作为非限制性实例,Cu-In的δ相中的组成(约42.52-约44.3wt%In)和/或Cu-In的δ相与Cu16In9之间的组成可以是适合于与本发明一起用来形成IB-IIIA-VIA族化合物的适宜金属间材料。应当理解这些金属间材料可以与单质或其它材料例如Cu-Se、In-Se和/或Ga-Se混合以提供IB或IIIA族材料源,从而达到最终化合物中的期望的化学计量比。金属间材料的其它非限制性实例包括含有下列相的Cu-Ga组合物:γ1(约31.8-约39.8wt%Ga)、γ2(约36.0-约39.9wt%Ga)、γ3(约39.7-约44.9wt%Ga)、γ2与γ3之间的相、端际固溶体与γ1之间的相、和θ(约66.7-约68.7wt%Ga)。对于Cu-Ga,合适组成还存在于端际固溶体与仅次于它的中间固溶体之间的范围内。有利地,这些金属间材料中的一些可以是多相的,它们更可能产生能够进行机械研磨的脆性材料。下列材料的相图可以在为了所有目的全部通过引用并入本文的ASM International的ASM Handbook,Volume3Alloy Phase Diagrams(1992)中找到。一些具体实例(通过引用全部并入本文)可以在第2-168、2-170、2-176、2-178、2-208、2-214、2-257和/或2-259页找到。It should also be understood that several intermediate solid solutions may also be suitable for use in accordance with the present invention. As non-limiting examples, compositions in the delta phase of Cu-In (about 42.52 to about 44.3 wt% In) and/or compositions between the delta phase of Cu-In and Cu 16 In 9 may be suitable for use with the present invention Suitable intermetallic materials used together to form Group IB-IIIA-VIA compounds. It should be understood that these intermetallic materials may be mixed with elemental or other materials such as Cu-Se, In-Se and/or Ga-Se to provide a source of Group IB or IIIA materials to achieve the desired stoichiometric ratio in the final compound. Other non-limiting examples of intermetallic materials include Cu-Ga compositions containing the following phases: γ1 (about 31.8 to about 39.8 wt% Ga), γ2 (about 36.0 to about 39.9 wt% Ga), γ3 (about 39.7 to about 44.9 wt% Ga), a phase between γ2 and γ3, a phase between terminal solid solution and γ1, and θ (about 66.7 to about 68.7 wt% Ga). For Cu-Ga, the suitable composition also exists in the range between the terminal solid solution and the intermediate solid solution next to it. Advantageously, some of these intermetallic materials may be heterogeneous, which are more likely to result in a brittle material capable of mechanical grinding. Phase diagrams for the following materials can be found in ASM Handbook, Volume 3 Alloy Phase Diagrams (1992), ASM International, incorporated herein by reference in its entirety for all purposes. Some specific examples (incorporated by reference herein in their entirety) can be found at pages 2-168, 2-170, 2-176, 2-178, 2-208, 2-214, 2-257, and/or 2-259.

本文所讨论或引用的出版物仅由于它们的公开在本申请的提交日期之前而提供。这里不应解释为承认本发明没有资格通过在先发明先于这些出版物。此外,提供的公开日期可以与实际公开日期有所不同,这需要独立证实。通过引用将本文提及的所有出版物并入本文,以便公开和描述与所引用的出版物有关的结构和/或方法。为了所有目的也通过引用将以下申请并入本文:2005年11月29日提交的美国专利申请11/290,633,题为“CHALCOGENIDE SOLAR CELLS”,2004年2月19日提交的美国专利申请10/782,017,题为“SOLUTION-BASEDFABRICATION OF PHOTOVOLTAIC CELL”,2004年9月18日提交的美国专利申请10/943,657,题为“COATED NANOPARTICLES AND QUANTUMDOTS FOR SOLUTION-BASED FABRICATION OF PHOTOVOLTAIC CELLS”,和2005年3月16日提交的美国专利申请11/081,163,题为“METALLICDISPERSION”,和2004年9月18日提交的美国专利申请10/943,685,题为“FORMATION OF CIGS ABSORBER LAYERS ON FOIL SUBSTRATES”,2006年2月23日提交的11/361,433,和2006年3月30日提交的11/394,849,其全部公开内容通过引用并入本文。Publications discussed or referenced herein are provided only for their disclosure prior to the filing date of the present application. Nothing here should be construed as an admission that the present invention is not entitled to antedate these publications by prior invention. In addition, the dates of publication provided may differ from the actual publication dates, which need to be independently confirmed. All publications mentioned herein are incorporated herein by reference to disclose and describe the structures and/or methods in connection with which the publications are cited. The following applications are also incorporated herein by reference for all purposes: U.S. Patent Application 11/290,633, filed November 29, 2005, and titled "CHALCOGENIDE SOLAR CELLS," and U.S. Patent Application 10/782,017, filed February 19, 2004 , entitled "SOLUTION-BASED FABRICATION OF PHOTOVOLTAIC CELLS," U.S. Patent Application 10/943,657, filed September 18, 2004, and titled "COATED NANOPARTICLES AND QUANTUMDOTS FOR SOLUTION-BASED FABRICATION OF PHOTOVOLTAIC CELLS," and March 16, 2005 U.S. Patent Application 11/081,163, filed September 18, 2004, entitled "METALLIC DISPERSION," and U.S. Patent Application 10/943,685, filed September 18, 2004, entitled "FORMATION OF CIGS ABSORBER LAYERS ON FOIL SUBSTRATES," February 23, 2006 11/361,433, filed March 30, 2006, and 11/394,849, filed March 30, 2006, the entire disclosures of which are incorporated herein by reference.

虽然上述是本发明优选实施方案的完整描述,但是可以使用各种替代、修改和等效。因此,不应参照上述说明书确定本发明的范围,相反应根据所附权利要求以及它们的等价物的完整范围来确定本发明的范围。任何特征,无论优选与否,均可以与任何其它特征结合,无论优选与否。在下面的权利要求书中,不定冠词“一”,或“一种”是指所述冠词后的项目的数量为一个或多个,除非另外明确指出。所附权利要求不应解释为包括装置加功能的限制,除非使用短语“用于…的装置”在给定的权利要求中明确指出这种限制。While the above is a complete description of the preferred embodiment of the invention, various alternatives, modifications and equivalents may be used. The scope of the invention, therefore, should be determined not with reference to the above description, but should be determined in accordance with the appended claims, along with their full scope of equivalents. Any feature, whether preferred or not, may be combined with any other feature, whether preferred or not. In the following claims, the indefinite article "a", or "an" means that the number of the item following said article is one or more, unless expressly stated otherwise. The appended claims should not be construed to include means-plus-function limitations, unless such limitation is expressly indicated in a given claim using the phrase "means for".

综上所述,本发明提供了如下技术方案:In summary, the invention provides the following technical solutions:

1.一种方法,其包含:1. A method comprising:

在衬底上形成前体层;和forming a precursor layer on a substrate; and

在一个或多个步骤中使该前体层反应以形成吸收层。The precursor layer is reacted in one or more steps to form the absorber layer.

2.一种方法,其包含:2. A method comprising:

配制颗粒油墨,其中约50%或更多的颗粒是各自含有至少一种来自IB、IIIA和/或VIA族的元素而且具有非球形的平面形状的薄片,其中所述油墨中包含的来自IB、IIIA和/或VIA族的元素的总量使得该油墨具有期望的元素化学计量比;Formulated particle inks wherein about 50% or more of the particles are flakes each containing at least one element from Groups IB, IIIA and/or VIA and having a non-spherical planar shape, wherein said ink contains elements from Groups IB, The total amount of elements of groups IIIA and/or VIA is such that the ink has a desired stoichiometric ratio of elements;

用该油墨涂覆衬底以形成前体层;和coating a substrate with the ink to form a precursor layer; and

在合适气氛中处理该前体层以形成致密膜;treating the precursor layer in a suitable atmosphere to form a dense film;

其中该油墨中的至少一组颗粒是含有至少一种IB-IIIA族金属间合金相的金属间薄片颗粒。Wherein at least one set of particles in the ink are intermetallic flake particles comprising at least one Group IB-IIIA intermetallic alloy phase.

3.技术方案1的方法,其中分散体中的至少一组颗粒是纳米小球形式。3. The method of technical scheme 1, wherein at least one group of particles in the dispersion is in the form of nanospheres.

4.技术方案1的方法,其中分散体中的至少一组颗粒是纳米小球形式而且含有至少一种IIIA族元素。4. The method of technical scheme 1, wherein at least one group of particles in the dispersion is in the form of nanospheres and contains at least one group IIIA element.

5.技术方案1的方法,其中分散体中的至少一组颗粒是包含单质形式的IIIA族元素的纳米小球形式。5. The method of technical scheme 1, wherein at least one group of particles in the dispersion is in the form of nanospheres comprising group IIIA elements in elemental form.

6.技术方案1的方法,其中金属间相不是端际固溶体相。6. The method of technical scheme 1, wherein the intermetallic phase is not a terminal solid solution phase.

7.技术方案1的方法,其中金属间相不是固溶体相。7. The method of technical scheme 1, wherein the intermetallic phase is not a solid solution phase.

8.技术方案1的方法,其中金属间颗粒贡献少于约50mol%的在所有颗粒中存在的IB族元素。8. The method of claim 1, wherein the intermetallic particles contribute less than about 50 mol% of the group IB elements present in all the particles.

9.技术方案1的方法,其中金属间颗粒贡献少于约50mol%的在所有颗粒中存在的IIIA族元素。9. The method of claim 1, wherein the intermetallic particles contribute less than about 50 mol% of the group IIIA elements present in all the particles.

10.技术方案1的方法,其中金属间颗粒在沉积于衬底上的分散体中贡献少于约50mol%的IB族元素和少于约50mol%的IIIA族元素。10. The method of embodiment 1, wherein the intermetallic particles contribute less than about 50 mol% of group IB elements and less than about 50 mol% of group IIIA elements in the dispersion deposited on the substrate.

11.技术方案1的方法,其中金属间颗粒在沉积于衬底上的分散体中贡献少于约50mol%的IB族元素和多于约50mol%的IIIA族元素。11. The method of embodiment 1, wherein the intermetallic particles contribute less than about 50 mol% of group IB elements and more than about 50 mol% of group IIIA elements in the dispersion deposited on the substrate.

12.技术方案1的方法,其中金属间颗粒在沉积于衬底上的分散体中贡献多于约50mol%的IB族元素和少于约50mol%的IIIA族元素。12. The method of claim 1, wherein the intermetallic particles contribute more than about 50 mol% of group IB elements and less than about 50 mol% of group IIIA elements in the dispersion deposited on the substrate.

13.技术方案10的方法,其中摩尔百分比基于所述分散体中存在的所有颗粒中的元素的总摩尔量。13. The method of technical scheme 10, wherein the molar percentage is based on the total molar amount of elements in all particles present in the dispersion.

14.技术方案1的方法,其中至少一些颗粒具有片晶状。14. The method of technical solution 1, wherein at least some of the particles have a lamellar shape.

15.技术方案1的方法,其中大部分颗粒具有片晶状。15. The method of technical scheme 1, wherein most of the particles have a lamellar shape.

16.技术方案1的方法,其中所有的颗粒具有片晶状。16. The method of technical scheme 1, wherein all the particles have a lamellar shape.

17.技术方案1的方法,其中沉积步骤包含用分散体涂覆衬底。17. The method of claim 1, wherein the step of depositing comprises coating the substrate with the dispersion.

18.技术方案1的方法,其中分散体包含乳液。18. The method of technical scheme 1, wherein the dispersion comprises an emulsion.

19.技术方案1的方法,其中金属间材料是二元材料。19. The method of technical scheme 1, wherein the intermetallic material is a binary material.

20.技术方案1的方法,其中金属间材料是三元材料。20. The method of technical solution 1, wherein the intermetallic material is a ternary material.

21.技术方案1的方法,其中金属间材料包含Cu1In221. The method of technical scheme 1, wherein the intermetallic material comprises Cu 1 In 2 .

22.技术方案1的方法,其中金属间材料包含Cu1In2的δ相的组成。22. The method of technical scheme 1, wherein the intermetallic material comprises a composition of Cu 1 In 2 δ phase.

23.技术方案1的方法,其中金属间材料包含Cu1In2的δ相与Cu16In9限定的相之间的组成。23. The method of technical solution 1, wherein the intermetallic material comprises a composition between the δ phase of Cu 1 In 2 and the phase defined by Cu 16 In 9 .

24.技术方案1的方法,其中金属间材料包含Cu1Ga224. The method of technical solution 1, wherein the intermetallic material comprises Cu 1 Ga 2 .

25.技术方案1的方法,其中金属间材料包含Cu1Ga2的中间固溶体。25. The method of technical solution 1, wherein the intermetallic material comprises an intermediate solid solution of Cu 1 Ga 2 .

26.技术方案1的方法,其中金属间材料包含Cu68Ga3826. The method of technical solution 1, wherein the intermetallic material comprises Cu 68 Ga 38 .

27.技术方案1的方法,其中金属间材料包含Cu70Ga3027. The method of technical solution 1, wherein the intermetallic material comprises Cu 70 Ga 30 .

28.技术方案1的方法,其中金属间材料包含Cu75Ga2528. The method of technical solution 1, wherein the intermetallic material comprises Cu 75 Ga 25 .

29.技术方案1的方法,其中金属间材料包含端际固溶体与仅次于它的中间固溶体之间的相的Cu-Ga组成。29. The method of technical solution 1, wherein the intermetallic material comprises a Cu-Ga composition of the phase between the terminal solid solution and the intermediate solid solution next to it.

30.技术方案1的方法,其中金属间材料包含γ1相的Cu-Ga组成(约31.8-约39.8wt%Ga)。30. The method of technical scheme 1, wherein the intermetallic material comprises a Cu-Ga composition of γ 1 phase (about 31.8 to about 39.8 wt% Ga).

31.技术方案1的方法,其中金属间材料包含γ2相的Cu-Ga组成(约36.0-约39.9wt%Ga)。31. The method of technical scheme 1, wherein the intermetallic material comprises a Cu-Ga composition of γ 2 phase (about 36.0 to about 39.9 wt% Ga).

32.技术方案1的方法,其中金属间材料包含γ3相的Cu-Ga组成(约39.7-约44.9wt%Ga)。32. The method of technical scheme 1, wherein the intermetallic material comprises a Cu-Ga composition of γ 3 phase (about 39.7 to about 44.9 wt% Ga).

33.技术方案1的方法,其中金属间材料包含θ相的Cu-Ga组成(约66.7-约68.7wt%Ga)。33. The method of claim 1, wherein the intermetallic material comprises a Cu-Ga composition of theta phase (about 66.7 to about 68.7 wt% Ga).

34.权利要求1的方法,其中金属间材料包含γ2与γ3之间的相的Cu-Ga组成。34. The method of claim 1, wherein the intermetallic material comprises a Cu-Ga composition of a phase between γ2 and γ3 .

35.技术方案1的方法,其中金属间材料包含端际固溶体与γ1之间的相的Cu-Ga组成。35. The method of technical scheme 1, wherein the intermetallic material comprises a Cu-Ga composition of a phase between the terminal solid solution and γ1 .

36.技术方案1的方法,其中金属间材料包含富Cu的Cu-Ga。36. The method of technical scheme 1, wherein the intermetallic material comprises Cu-rich Cu-Ga.

37.技术方案1的方法,其中镓作为IIIA族元素以纳米小球的悬浮液形式引入。37. The method of technical scheme 1, wherein gallium is introduced as a group IIIA element in the form of a suspension of nanospheres.

38.技术方案37的方法,其中通过在溶液中产生液态镓的乳液来形成镓纳米小球。38. The method of technical solution 37, wherein the gallium nanospheres are formed by producing an emulsion of liquid gallium in a solution.

39.技术方案37的方法,其中将镓在室温以下骤冷。39. The method of technical scheme 37, wherein the gallium is quenched below room temperature.

40.技术方案37的方法,其进一步包含通过搅拌、机械装置、电磁装置、超声装置和/或添加分散剂和/或乳化剂来保持或提高液态镓在溶液中的分散。40. The method of technical solution 37, further comprising maintaining or improving the dispersion of liquid gallium in the solution by stirring, mechanical device, electromagnetic device, ultrasonic device and/or adding dispersant and/or emulsifier.

41.技术方案1的方法,其进一步包含添加一种或多种选自以下的单质颗粒的混合物:铝、碲、或硫。41. The method of technical solution 1, further comprising adding a mixture of one or more elemental particles selected from the group consisting of aluminum, tellurium, or sulfur.

42.技术方案1的方法,其中合适气氛含有下列至少之一:硒、硫、碲、H2、CO、H2Se、H2S、Ar、N2或它们的组合或混合物。42. The method of technical solution 1, wherein the suitable atmosphere contains at least one of the following: selenium, sulfur, tellurium, H 2 , CO, H 2 Se, H 2 S, Ar, N 2 or combinations or mixtures thereof.

43.技术方案1的方法,其中合适气氛含有以下的至少一种:H2、CO、Ar和N243. The method of technical solution 1, wherein the suitable atmosphere contains at least one of the following: H 2 , CO, Ar and N 2 .

44.技术方案1的方法,其中一类或多类颗粒掺杂有一种或多种无机材料。44. The method of technical solution 1, wherein one or more types of particles are doped with one or more inorganic materials.

45.技术方案1的方法,其中一类或多类颗粒掺杂有一种或多种选自铝(Al)、硫(S)、钠(Na)、钾(K)或锂(Li)的无机材料。45. The method of technical scheme 1, wherein one or more types of particles are doped with one or more inorganic substances selected from aluminum (Al), sulfur (S), sodium (Na), potassium (K) or lithium (Li) Material.

46.一种方法,其包含:46. A method comprising:

配制颗粒油墨,其中大多数颗粒是各自含有至少一种来自IB、IIIA和/或VIA族的元素而且具有非球形的平面形状的纳米薄片,其中所述油墨中包含的来自IB、IIIA和/或VIA族的元素的总量使得该油墨具有期望的元素化学计量比;Formulating particle inks wherein the majority of the particles are nanoflakes each containing at least one element from groups IB, IIIA and/or VIA and having a non-spherical planar shape, wherein the ink comprises elements from groups IB, IIIA and/or The total amount of elements of Group VIA is such that the ink has a desired stoichiometric ratio of elements;

用该油墨涂覆衬底以形成前体层;和coating a substrate with the ink to form a precursor layer; and

处理该前体层以形成用于光伏器件的半导体吸收体生长的致密膜;processing the precursor layer to form a dense film for semiconductor absorber growth for photovoltaic devices;

其中该油墨中的至少一组颗粒是含有至少一种IB-IIIA族金属间合金相的金属间纳米薄片颗粒。Wherein at least one set of particles in the ink are intermetallic nanoflake particles comprising at least one Group IB-IIIA intermetallic alloy phase.

47.一种方法,其包含:47. A method comprising:

配制颗粒油墨,其中约50%或更多的颗粒是各自含有至少一种来自IB、IIIA和/或VIA族的元素而且具有非球形的平面形状的薄片,其中所述油墨中包含的来自IB、IIIA和/或VIA族的元素的总量使得该油墨具有期望的元素化学计量比;Formulated particle inks wherein about 50% or more of the particles are flakes each containing at least one element from Groups IB, IIIA and/or VIA and having a non-spherical planar shape, wherein said ink contains elements from Groups IB, The total amount of elements of groups IIIA and/or VIA is such that the ink has a desired stoichiometric ratio of elements;

用该油墨涂覆衬底以形成前体层;和coating a substrate with the ink to form a precursor layer; and

在合适气氛中处理该前体层以形成致密膜。The precursor layer is treated in a suitable atmosphere to form a dense film.

48.技术方案47的方法,其中分散体中的至少一组颗粒是纳米小球形式。48. The method of technical solution 47, wherein at least one group of particles in the dispersion is in the form of nanospheres.

49.技术方案47的方法,其中分散体中的至少一组颗粒是纳米小球形式而且含有至少一种IIIA族元素。49. The method according to claim 47, wherein at least one group of particles in the dispersion is in the form of nanospheres and contains at least one group IIIA element.

50.技术方案47的方法,其中分散体中的至少一组颗粒是包含单质形式的IIIA族元素的纳米小球形式。50. The method according to technical solution 47, wherein at least one group of particles in the dispersion is in the form of nanospheres containing group IIIA elements in elemental form.

51.技术方案47的方法,其中金属间相不是端际固溶体相。51. The method of technical solution 47, wherein the intermetallic phase is not a terminal solid solution phase.

52.技术方案47的方法,其中金属间相不是固溶体相。52. The method according to technical solution 47, wherein the intermetallic phase is not a solid solution phase.

53.技术方案47的方法,其中金属间颗粒贡献少于约50mol%的在所有颗粒中存在的IB族元素。53. The method of technical scheme 47, wherein the intermetallic particles contribute less than about 50 mol% of group IB elements present in all particles.

54.一种方法,其包含:54. A method comprising:

配制颗粒油墨,其中大多数颗粒是各自含有至少一种来自IB、IIIA和/或VIA族的元素而且具有非球形的平面形状的纳米薄片,其中所述油墨中包含的来自IB、IIIA和/或VIA族的元素的总量使得该油墨具有期望的元素化学计量比;Formulating particle inks wherein the majority of the particles are nanoflakes each containing at least one element from groups IB, IIIA and/or VIA and having a non-spherical planar shape, wherein the ink comprises elements from groups IB, IIIA and/or The total amount of elements of Group VIA is such that the ink has a desired stoichiometric ratio of elements;

用该油墨涂覆衬底以形成前体层;和coating a substrate with the ink to form a precursor layer; and

处理该前体层以形成用于光伏器件的半导体吸收体生长的致密膜;processing the precursor layer to form a dense film for semiconductor absorber growth for photovoltaic devices;

其中该油墨中的至少一组颗粒是含有至少一种IB-IIIA族金属间合金相的金属间纳米薄片颗粒。Wherein at least one set of particles in the ink are intermetallic nanoflake particles comprising at least one Group IB-IIIA intermetallic alloy phase.

55。技术方案54的方法,其中至少80%的颗粒是纳米薄片。55. The method of technical scheme 54, wherein at least 80% of the particles are nanoflakes.

56.技术方案54的方法,其中至少90%的颗粒是纳米薄片。56. The method of technical scheme 54, wherein at least 90% of the particles are nanoflakes.

57.一种组合物,其包含:57. A composition comprising:

包含IB和/或IIIA族元素和任选地至少一种VIA族元素的多个颗粒;a plurality of particles comprising a group IB and/or IIIA element and optionally at least one group VIA element;

其中至少一组颗粒是含有至少一种IB-IIIA族金属间合金相的纳米薄片。Wherein at least one set of particles are nanoflakes containing at least one Group IB-IIIA intermetallic alloy phase.

58.一种材料,其包含:58. A material comprising:

材料组成含有至少一种来自IB、IIIA和/或VIA族的元素的多个纳米薄片;The material composition comprises a plurality of nanoflakes of at least one element from groups IB, IIIA and/or VIA;

其中通过研磨以一定前体组成为特征的前体颗粒来制备所述纳米薄片,该前体组成提供足够的延展性以在研磨时从非平面的起始形状形成平面形状,并且其中在合并的前体颗粒中包含的IB、IIIA和/或VIA族元素的总量处在期望的元素化学计量比。wherein the nanoflakes are prepared by milling precursor particles characterized by a precursor composition that provides sufficient ductility to form a planar shape from a non-planar starting shape upon milling, and wherein the combined The total amount of group IB, IIIA and/or VIA elements contained in the precursor particle is at a desired stoichiometric ratio of elements.

59.技术方案1的材料,其中研磨将至少50%的前体颗粒转变成纳米薄片。59. The material of technical scheme 1, wherein grinding converts at least 50% of the precursor particles into nanoflakes.

60.技术方案1的材料,其中研磨将至少95%的前体颗粒转变成纳米薄片。60. The material of technical scheme 1, wherein milling converts at least 95% of the precursor particles into nanoflakes.

61.技术方案1的材料,其中研磨将基本上所有的前体颗粒转变成纳米薄片。61. The material of claim 1, wherein milling converts substantially all of the precursor particles into nanoflakes.

62.技术方案1的材料,其中前体颗粒在沿着其最长的维度测量时为10μm或更大。62. The material of claim 1, wherein the precursor particles are 10 μm or larger when measured along their longest dimension.

63.技术方案1的材料,其中研磨在无氧气氛中进行以产生无氧纳米薄片。63. The material of technical solution 1, wherein the milling is performed in an oxygen-free atmosphere to produce oxygen-free nanoflakes.

64.技术方案1的材料,其中研磨在惰性气体气氛中进行以产生无氧纳米薄片。64. The material of technical scheme 1, wherein the milling is performed in an inert gas atmosphere to produce oxygen-free nanoflakes.

65.技术方案1的材料,其中研磨在室温下进行。65. The material according to technical scheme 1, wherein the grinding is performed at room temperature.

66.技术方案1的材料,其中研磨在低温下进行。66. The material according to technical scheme 1, wherein grinding is performed at a low temperature.

67.技术方案1的材料,其中研磨在其中该前体颗粒中的所有元素都是固体的研磨温度下进行,而且前体颗粒在该研磨温度下具有足够的延展性以从非平面的起始形状形成平面形状。67. The material of technical scheme 1, wherein grinding is carried out under the grinding temperature where all elements in the precursor particles are solid, and the precursor particles have sufficient ductility at the grinding temperature to start from non-planar The shape forms a flat shape.

68.技术方案1的材料,其中研磨在低于15℃的温度下进行。68. The material of technical solution 1, wherein the grinding is performed at a temperature lower than 15°C.

69.技术方案1的材料,其中研磨在低于-200℃的温度下进行。69. The material according to technical solution 1, wherein the grinding is carried out at a temperature lower than -200°C.

70.技术方案1的材料,其中前体颗粒是单一金属颗粒。70. The material of technical scheme 1, wherein the precursor particle is a single metal particle.

71.技术方案1的材料,其中前体颗粒是单质颗粒。71. The material of technical solution 1, wherein the precursor particles are elemental particles.

72.技术方案1的材料,其中前体颗粒是合金颗粒。72. The material of technical solution 1, wherein the precursor particles are alloy particles.

73.技术方案1的材料,其中前体颗粒是二元合金颗粒。73. The material of technical solution 1, wherein the precursor particles are binary alloy particles.

74.技术方案1的材料,其中前体颗粒是三元合金颗粒。74. The material of technical solution 1, wherein the precursor particles are ternary alloy particles.

75.技术方案1的材料,其中前体颗粒是四元合金颗粒。75. The material of technical solution 1, wherein the precursor particles are quaternary alloy particles.

76.技术方案1的材料,其中前体颗粒是固溶体颗粒。76. The material of technical solution 1, wherein the precursor particles are solid solution particles.

77.技术方案1的材料,其中纳米薄片仅包含IIIA族材料。77. The material of technical solution 1, wherein the nanoflakes only contain group IIIA materials.

78.技术方案1的材料,其中纳米薄片仅包含IB族和IIIA族材料。78. The material of technical solution 1, wherein the nanoflakes only contain group IB and group IIIA materials.

79.技术方案1的材料,其中纳米薄片仅包含IB族和VIA族材料。79. The material of technical solution 1, wherein the nanoflakes only contain group IB and group VIA materials.

80.技术方案1的材料,其中纳米薄片仅包含IIIA族和VIA族材料。80. The material of technical solution 1, wherein the nanoflakes only contain group IIIA and group VIA materials.

81.技术方案1的材料,其中多个纳米薄片中的IB族材料与IIIA族材料的摩尔比大于1.0。81. The material of technical solution 1, wherein the molar ratio of group IB material to group IIIA material in the plurality of nanoflakes is greater than 1.0.

82.技术方案1的材料,其中前体颗粒是单质颗粒并且其中从该单质颗粒研磨形成合金纳米薄片。82. The material of technical scheme 1, wherein the precursor particles are elemental particles and wherein the alloy nanoflakes are milled from the elemental particles.

83.技术方案1的材料,其中前体颗粒是硫属元素化物颗粒,该颗粒的特征在于如下的元素化学计量比:该化学计量比向前体颗粒提供足够的延展性以从非平面的起始形状形成平面形状。83. The material of technical scheme 1, wherein the precursor particles are chalcogenide particles, the particles are characterized by a stoichiometric ratio of the elements: the stoichiometric ratio provides sufficient ductility to the precursor particles from non-planar The original shape forms a flat shape.

84.技术方案1的材料,其中前体颗粒选自下列之一:硒化铜、硒化铟或硒化镓。84. The material of technical solution 1, wherein the precursor particles are selected from one of the following: copper selenide, indium selenide or gallium selenide.

85.技术方案1的材料,其中纳米薄片之间的元素化学计量比变化,只要所有合并的纳米薄片中的总量处在期望的化学计量比。85. The material of technical scheme 1, wherein the stoichiometric ratio of elements between nanoflakes varies as long as the total amount in all combined nanoflakes is at the desired stoichiometric ratio.

86.技术方案1的材料,其进一步包含对纳米薄片进行尺寸判定以排除大于期望长度的纳米薄片。86. The material of claim 1, further comprising performing size determination on the nanoflakes to exclude nanoflakes larger than a desired length.

87.技术方案1的材料,其进一步包含对纳米薄片进行尺寸判定以排除大于期望厚度的纳米薄片。87. The material of claim 1, further comprising performing size determination on the nanoflakes to exclude nanoflakes larger than a desired thickness.

88.技术方案1的材料,其进一步包含对纳米薄片进行尺寸判定以控制纳米薄片的尺寸变化至如下偏差:小于平均长度的约30%以及平均厚度的约30%。88. The material of technical solution 1, which further comprises determining the size of the nanoflakes to control the size change of the nanoflakes to the following deviation: less than about 30% of the average length and about 30% of the average thickness.

89.技术方案1的材料,其中偏离纳米薄片平均厚度的一种标准偏差小于10nm。89. The material of technical solution 1, wherein one standard deviation from the average thickness of the nanoflakes is less than 10 nm.

90.技术方案1的材料,其中偏离纳米薄片平均厚度的一种标准偏差小于5nm。90. The material of technical solution 1, wherein one standard deviation from the average thickness of the nanoflakes is less than 5 nm.

91.技术方案1的材料,其进一步包含用至少一层含有VIA族元素的材料涂覆纳米薄片。91. The material according to technical solution 1, further comprising coating the nanoflakes with at least one layer of a material containing a group VIA element.

92.技术方案1的材料,其进一步包含用至少一层含有硒和/或硒化物的材料涂覆纳米薄片。92. The material of technical solution 1, further comprising coating the nanoflakes with at least one layer of material containing selenium and/or selenide.

93.技术方案1的材料,其中纳米薄片形成干燥粉末。93. The material of technical solution 1, wherein the nano flakes are formed into a dry powder.

94.技术方案1的材料,其中纳米薄片具有至少约10或更大的纵横比。94. The material of claim 1, wherein the nanoflakes have an aspect ratio of at least about 10 or greater.

95.技术方案1的材料,其中纳米薄片具有至少约15或更大的纵横比。95. The material of claim 1, wherein the nanoflakes have an aspect ratio of at least about 15 or greater.

96.技术方案1的材料,其中纳米薄片含有钠。96. The material according to technical solution 1, wherein the nanoflakes contain sodium.

97.技术方案1的材料,其中纳米薄片含有下列材料中的至少一种:Cu-Na、In-Na、Ga-Na、Cu-In-Na、Cu-Ga-Na、In-Ga-Na、Na-Se、Cu-Se-Na、In-Se-Na、Ga-Se-Na、Cu-In-Se-Na、Cu-Ga-Se-Na、In-Ga-Se-Na、Cu-In-Ga-Se-Na、Na-S、Cu-S-Na、In-S-Na、Ga-S-Na、Cu-In-S-Na、Cu-Ga-S-Na、In-Ga-S-Na或Cu-In-Ga-S-Na。97. The material of technical scheme 1, wherein the nano flakes contain at least one of the following materials: Cu-Na, In-Na, Ga-Na, Cu-In-Na, Cu-Ga-Na, In-Ga-Na, Na-Se, Cu-Se-Na, In-Se-Na, Ga-Se-Na, Cu-In-Se-Na, Cu-Ga-Se-Na, In-Ga-Se-Na, Cu-In- Ga-Se-Na, Na-S, Cu-S-Na, In-S-Na, Ga-S-Na, Cu-In-S-Na, Cu-Ga-S-Na, In-Ga-S- Na or Cu-In-Ga-S-Na.

98.技术方案1的材料,其进一步包含油墨,该油墨包含具有有机抗衡离子的钠化合物或具有无机抗衡离子的钠化合物。98. The material according to claim 1, further comprising an ink comprising a sodium compound having an organic counter ion or a sodium compound having an inorganic counter ion.

99.一种使用技术方案1的材料的方法,其包括在非氧硫属元素气氛中加热纳米薄片以形成致密膜。99. A method of using the material of claim 1, comprising heating nanoflakes in a non-oxygen chalcogen atmosphere to form a dense film.

100.一种使用技术方案1的材料的方法,其进一步包括加热衬底上的材料以形成膜然后在该膜上形成含钠材料的层。100. A method of using the material of claim 1, further comprising heating the material on the substrate to form a film and then forming a layer of the sodium-containing material on the film.

101.一种太阳能电池,其包含:101. A solar cell comprising:

衬底;Substrate;

在所述衬底上形成的背面电极;a back electrode formed on the substrate;

在所述背面电极上形成的p型半导体薄膜;a p-type semiconductor thin film formed on the back electrode;

形成以便与所述p型半导体薄膜一起构成pn结的n型半导体薄膜;以及an n-type semiconductor film formed so as to constitute a pn junction with the p-type semiconductor film; and

在所述n型半导体薄膜上形成的透明电极;a transparent electrode formed on the n-type semiconductor film;

其中所述p型半导体薄膜通过对由材料组成含有至少一种来自IB、IIIA和/或VIA族的元素的多个纳米薄片所形成的致密膜进行处理而产生,其中该致密膜具有约26%或更小的空隙体积。wherein said p-type semiconductor thin film is produced by processing a dense film formed of a plurality of nanoflakes whose material composition contains at least one element from groups IB, IIIA and/or VIA, wherein the dense film has about 26% or smaller void volume.

102.技术方案1的太阳能电池,其中致密膜是基本上无空隙的膜。102. The solar cell of technical solution 1, wherein the dense film is a substantially void-free film.

103.技术方案1的太阳能电池,其中所述多个纳米薄片中的IB族材料与IIIA族材料的摩尔比大于约1.0。103. The solar cell of embodiment 1, wherein a molar ratio of group IB material to group IIIA material in the plurality of nanoflakes is greater than about 1.0.

104.技术方案1的太阳能电池,其中纳米薄片是无氧纳米薄片。104. The solar cell of technical solution 1, wherein the nanoflakes are oxygen-free nanoflakes.

105.技术方案1的太阳能电池,其中纳米薄片是单一金属颗粒。105. The solar cell of technical solution 1, wherein the nanoflakes are single metal particles.

106.技术方案1的太阳能电池,其中纳米薄片是单质颗粒。106. The solar cell of technical solution 1, wherein the nano flakes are elemental particles.

107.技术方案1的太阳能电池,其中纳米薄片是合金颗粒。107. The solar cell of technical solution 1, wherein the nano flakes are alloy particles.

108.技术方案1的太阳能电池,其中纳米薄片是二元合金颗粒。108. The solar cell of technical solution 1, wherein the nano flakes are binary alloy particles.

109.技术方案1的太阳能电池,其中纳米薄片是三元合金颗粒。109. The solar cell of technical solution 1, wherein the nano flakes are ternary alloy particles.

110.技术方案1的太阳能电池,其中纳米薄片是四元合金颗粒。110. The solar cell of technical solution 1, wherein the nano flakes are quaternary alloy particles.

111.技术方案1的太阳能电池,其中纳米薄片是固溶体颗粒。111. The solar cell of technical solution 1, wherein the nano flakes are solid solution particles.

112.技术方案1的太阳能电池,其中纳米薄片仅包含IIIA族材料。112. The solar cell of technical solution 1, wherein the nanoflakes only contain group IIIA materials.

113.技术方案1的太阳能电池,其中纳米薄片仅包含IB族和IIIA族材料。113. The solar cell of technical solution 1, wherein the nanoflakes only contain group IB and group IIIA materials.

114.技术方案1的太阳能电池,其中纳米薄片仅包含IB族和VIA族材料。114. The solar cell of technical solution 1, wherein the nanoflakes only contain group IB and group VIA materials.

115.技术方案1的太阳能电池,其中纳米薄片仅包含IIIA族和VIA族材料。115. The solar cell of technical solution 1, wherein the nanoflakes only contain group IIIA and group VIA materials.

116.技术方案1的太阳能电池,其中纳米薄片选自下列之一:硒化铜、硒化铟或硒化镓。116. The solar cell of technical solution 1, wherein the nanoflakes are selected from one of the following: copper selenide, indium selenide or gallium selenide.

117.技术方案1的太阳能电池,其中偏离纳米薄片平均厚度的一种标准偏差小于10nm。117. The solar cell of technical solution 1, wherein one standard deviation from the average thickness of the nanoflakes is less than 10 nm.

118.技术方案1的太阳能电池,其中偏离纳米薄片平均厚度的一种标准偏差小于5nm。118. The solar cell of technical solution 1, wherein one standard deviation from the average thickness of the nanoflakes is less than 5 nm.

119.技术方案1的太阳能电池,其中纳米薄片之间的元素化学计量比变化,只要所有合并的颗粒中的总量处在期望的化学计量比。119. The solar cell of technical scheme 1, wherein the stoichiometric ratio of elements between the nanoflakes varies as long as the total amount in all combined particles is at the desired stoichiometric ratio.

120.技术方案1的太阳能电池,其中纳米薄片具有至少约10或更大的纵横比。120. The solar cell of embodiment 1, wherein the nanoflakes have an aspect ratio of at least about 10 or greater.

121.技术方案1的太阳能电池,其中纳米薄片具有至少约15或更大的纵横比。121. The solar cell of embodiment 1, wherein the nanoflakes have an aspect ratio of at least about 15 or greater.

122.技术方案1的太阳能电池,其中纳米薄片具有无规的平面形状和/或无规的尺寸分布。122. The solar cell of technical solution 1, wherein the nanoflakes have a random planar shape and/or a random size distribution.

123.技术方案1的太阳能电池,其中纳米薄片具有非无规的平面形状和/或非无规的尺寸分布。123. The solar cell of technical solution 1, wherein the nanoflakes have a non-random planar shape and/or a non-random size distribution.

124.技术方案1的太阳能电池,其中纳米薄片各自具有小于约20nm的厚度。124. The solar cell of embodiment 1, wherein each of the nanoflakes has a thickness of less than about 20 nm.

125.技术方案1的太阳能电池,其中通过将纳米薄片的前体层加热至大于约375℃但是小于衬底熔化温度的温度持续1分钟或更少的时间来形成致密膜。125. The solar cell of embodiment 1, wherein the dense film is formed by heating a precursor layer of nanoflakes to a temperature greater than about 375° C. but less than the melting temperature of the substrate for 1 minute or less.

126.技术方案1的太阳能电池,其中通过将纳米薄片的前体层加热至退火温度但是小于衬底熔化温度持续1分钟或更少的时间来形成致密膜。126. The solar cell of technical solution 1, wherein the dense film is formed by heating the precursor layer of nanoflakes to an annealing temperature but less than the substrate melting temperature for 1 minute or less.

127.技术方案1的太阳能电池,其中通过使用下列至少一种的热处理技术来促进致密膜形成:脉冲热处理、激光束、或通过IR灯加热。127. The solar cell according to claim 1, wherein the dense film formation is promoted by a heat treatment technique using at least one of the following: pulse heat treatment, laser beam, or heating by an IR lamp.

128.技术方案1的太阳能电池,其中衬底是柔性衬底。128. The solar cell according to claim 1, wherein the substrate is a flexible substrate.

129.技术方案1的太阳能电池,其中衬底是刚性衬底。129. The solar cell of technical solution 1, wherein the substrate is a rigid substrate.

130.技术方案1的太阳能电池,其中所述膜由纳米薄片的前体层以及与该前体层接触的含钠材料的层形成。130. The solar cell of embodiment 1, wherein the film is formed from a precursor layer of nanoflakes and a layer of sodium-containing material in contact with the precursor layer.

131.技术方案1的太阳能电池,其中所述膜由纳米薄片的前体层以及与该前体层接触而且含有至少一种下列材料的层形成:IB族元素、IIIA族元素、VIA族元素、IA族元素、任何前述元素的二元和/或多元合金、任何前述元素的固溶体、铜、铟、镓、硒、铜铟、铜镓、铟镓、钠、钠化合物、氟化钠、硫化铟钠、硒化铜、硫化铜、硒化铟、硫化铟、硒化镓、硫化镓、硒化铟铜、硫化铟铜、硒化镓铜、硫化镓铜、硒化镓铟、硫化镓铟、硒化镓铟铜、和/或硫化镓铟铜。131. The solar cell of technical scheme 1, wherein said film is formed by a precursor layer of nanoflakes and a layer contacting the precursor layer and containing at least one of the following materials: IB group elements, IIIA group elements, VIA group elements, Group IA elements, binary and/or multiple alloys of any of the foregoing elements, solid solutions of any of the foregoing elements, copper, indium, gallium, selenium, copper indium, copper gallium, indium gallium, sodium, sodium compounds, sodium fluoride, indium sulfide Sodium, copper selenide, copper sulfide, indium selenide, indium sulfide, gallium selenide, gallium sulfide, copper indium selenide, copper indium sulfide, copper gallium selenide, copper gallium sulfide, gallium indium selenide, gallium indium sulfide, Gallium indium copper selenide, and/or gallium indium copper sulfide.

132.技术方案1的太阳能电池,其中纳米薄片含钠。132. The solar cell of technical solution 1, wherein the nanosheets contain sodium.

133.技术方案1的太阳能电池,其中纳米薄片含有下列材料中的至少一种:Cu-Na、In-Na、Ga-Na、Cu-In-Na、Cu-Ga-Na、In-Ga-Na、Na-Se、Cu-Se-Na、In-Se-Na、Ga-Se-Na、Cu-In-Se-Na、Cu-Ga-Se-Na、In-Ga-Se-Na、Cu-In-Ga-Se-Na、Na-S、Cu-S-Na、In-S-Na、Ga-S-Na、Cu-In-S-Na、Cu-Ga-S-Na、In-Ga-S-Na或Cu-In-Ga-S-Na。133. The solar cell of technical scheme 1, wherein the nanosheets contain at least one of the following materials: Cu-Na, In-Na, Ga-Na, Cu-In-Na, Cu-Ga-Na, In-Ga-Na , Na-Se, Cu-Se-Na, In-Se-Na, Ga-Se-Na, Cu-In-Se-Na, Cu-Ga-Se-Na, In-Ga-Se-Na, Cu-In -Ga-Se-Na, Na-S, Cu-S-Na, In-S-Na, Ga-S-Na, Cu-In-S-Na, Cu-Ga-S-Na, In-Ga-S -Na or Cu-In-Ga-S-Na.

134.技术方案1的太阳能电池,其中所述膜由纳米薄片的前体层以及包含具有有机抗衡离子的钠化合物或具有无机抗衡离子的钠化合物的油墨形成。134. The solar cell of claim 1, wherein the film is formed from a precursor layer of nanoflakes and an ink comprising a sodium compound with an organic counterion or a sodium compound with an inorganic counterion.

135.技术方案1的太阳能电池,其中所述膜由以下形成:纳米薄片的前体层以及含有至少一种下列材料的与该前体层和/或纳米薄片接触的含钠材料的层:Cu-Na、In-Na、Ga-Na、Cu-In-Na、Cu-Ga-Na、In-Ga-Na、Na-Se、Cu-Se-Na、In-Se-Na、Ga-Se-Na、Cu-In-Se-Na、Cu-Ga-Se-Na、In-Ga-Se-Na、Cu-In-Ga-Se-Na、Na-S、Cu-S-Na、In-S-Na、Ga-S-Na、Cu-In-S-Na、Cu-Ga-S-Na、In-Ga-S-Na或Cu-In-Ga-S-Na;和/或包含纳米薄片以及具有有机抗衡离子的钠化合物或具有无机抗衡离子的钠化合物的油墨。135. The solar cell of technical solution 1, wherein said film is formed from a precursor layer of nanoflakes and a layer of a sodium-containing material in contact with the precursor layer and/or nanoflakes containing at least one of the following materials: Cu -Na, In-Na, Ga-Na, Cu-In-Na, Cu-Ga-Na, In-Ga-Na, Na-Se, Cu-Se-Na, In-Se-Na, Ga-Se-Na , Cu-In-Se-Na, Cu-Ga-Se-Na, In-Ga-Se-Na, Cu-In-Ga-Se-Na, Na-S, Cu-S-Na, In-S-Na , Ga-S-Na, Cu-In-S-Na, Cu-Ga-S-Na, In-Ga-S-Na or Cu-In-Ga-S-Na; and/or containing nanoflakes and having organic An ink of a sodium compound as a counterion or a sodium compound with an inorganic counterion.

Claims (10)

1. a method, it comprises:
On substrate, form precursor layer; With
In one or more steps, make this precursor layer react to form absorbed layer.
2. a method, it comprises:
Preparation particle ink, wherein approximately 50% or more particle be contain separately at least one from the element of IB, IIIA and/or VIA family and there is the thin slice of aspheric flat shape, the total amount of the element from IB, IIIA and/or VIA family comprising in wherein said ink makes this ink have the element chemistry metering ratio of expectation;
With this ink coats substrate with form precursor layer; With
In appropriate atmosphere, process this precursor layer to form dense film;
Wherein at least one group of particle in this ink is the intermetallic plane particle that contains at least one IB-IIIA family intermetallic alloy phase.
3. the process of claim 1 wherein that at least one group of particle in dispersion is nanometer bead form.
4. the process of claim 1 wherein that at least one group of particle in dispersion is nanometer bead form and contains at least one IIIA family element.
5. the process of claim 1 wherein that at least one group of particle in dispersion is the nanometer bead form of the IIIA family element that comprises simple substance form.
6. the process of claim 1 wherein that intermetallic phase is not end border solid solution phase.
7. the process of claim 1 wherein that intermetallic phase is not solid solution phase.
8. the process of claim 1 wherein that the contribution of intermetallic particle is less than the IB family element existing in all particles of about 50mol%.
9. the process of claim 1 wherein that the contribution of intermetallic particle is less than the IIIA family element existing in all particles of about 50mol%.
10. the process of claim 1 wherein that intermetallic particle contributes the IB family element that is less than about 50mol% and the IIIA family element that is less than about 50mol% in the dispersion being deposited on substrate.
CN201410025475.6A 2006-02-23 2007-02-23 High-throughput printing of semiconductor precursor layers from intermetallic nanoflake particles Pending CN103824896A (en)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
US11/361,433 US7700464B2 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer from nanoflake particles
US11/361,521 US20070163383A1 (en) 2004-02-19 2006-02-23 High-throughput printing of nanostructured semiconductor precursor layer
US11/361,497 2006-02-23
US11/361,103 US20070169809A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer by use of low-melting chalcogenides
US11/361,433 2006-02-23
US11/361,522 US20070166453A1 (en) 2004-02-19 2006-02-23 High-throughput printing of chalcogen layer
US11/361,515 2006-02-23
US11/361,521 2006-02-23
US11/361,103 2006-02-23
US11/361,497 US20070163638A1 (en) 2004-02-19 2006-02-23 Photovoltaic devices printed from nanostructured particles
US11/361,515 US20070163640A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer by use of chalcogen-rich chalcogenides
US11/361,522 2006-02-23
US11/395,668 US8309163B2 (en) 2004-02-19 2006-03-30 High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor and inter-metallic material
US11/395,438 US20070163643A1 (en) 2004-02-19 2006-03-30 High-throughput printing of chalcogen layer and the use of an inter-metallic material
US11/394,849 2006-03-30
US11/394,849 US20070163641A1 (en) 2004-02-19 2006-03-30 High-throughput printing of semiconductor precursor layer from inter-metallic nanoflake particles
US11/395,438 2006-03-30
US11/395,668 2006-03-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200780014617.7A Division CN101443919B (en) 2006-02-23 2007-02-23 Method for forming absorber layer, precursor material for forming absorber layer, and solar cell

Publications (1)

Publication Number Publication Date
CN103824896A true CN103824896A (en) 2014-05-28

Family

ID=38459767

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200780014617.7A Expired - Fee Related CN101443919B (en) 2006-02-23 2007-02-23 Method for forming absorber layer, precursor material for forming absorber layer, and solar cell
CN201410025475.6A Pending CN103824896A (en) 2006-02-23 2007-02-23 High-throughput printing of semiconductor precursor layers from intermetallic nanoflake particles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN200780014617.7A Expired - Fee Related CN101443919B (en) 2006-02-23 2007-02-23 Method for forming absorber layer, precursor material for forming absorber layer, and solar cell

Country Status (4)

Country Link
EP (1) EP1997150A2 (en)
JP (2) JP2009528682A (en)
CN (2) CN101443919B (en)
WO (1) WO2007101138A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117866484A (en) * 2024-03-12 2024-04-12 成都先进金属材料产业技术研究院股份有限公司 Liquid metal printing ink and preparation method thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354294B2 (en) * 2006-01-24 2013-01-15 De Rochemont L Pierre Liquid chemical deposition apparatus and process and products therefrom
EP2353188A4 (en) * 2008-10-30 2015-04-08 Hak Fei Poon HYBRID TRANSPARENT CONDUCTIVE ELECTRODES
JP5317648B2 (en) * 2008-11-26 2013-10-16 京セラ株式会社 Thin film solar cell manufacturing method
JP2010129648A (en) * 2008-11-26 2010-06-10 Kyocera Corp Method of manufacturing thin-film solar cell
JP5137794B2 (en) * 2008-11-26 2013-02-06 京セラ株式会社 Thin film solar cell manufacturing method
JP5383162B2 (en) * 2008-11-26 2014-01-08 京セラ株式会社 Thin film solar cell manufacturing method
KR20110108388A (en) * 2009-01-21 2011-10-05 퍼듀 리서치 파운데이션 Seleniumization of precursor layers containing copper indium disulfide nanoparticles
JP2010225985A (en) * 2009-03-25 2010-10-07 Fujifilm Corp Photoelectric conversion semiconductor layer and manufacturing method thereof, photoelectric conversion element, and solar cell
US8545734B2 (en) * 2009-08-04 2013-10-01 Precursor Energetics, Inc. Methods for photovoltaic absorbers with controlled group 13 stoichiometry
KR101610382B1 (en) * 2009-10-30 2016-04-08 엘지이노텍 주식회사 Solar cell and method of fabricating the same
FR2964044B1 (en) * 2010-08-26 2012-09-14 Commissariat Energie Atomique LIQUID METAL EMULSION
WO2012037389A2 (en) * 2010-09-15 2012-03-22 Precursor Energetics, Inc. Inks with alkali metals for thin film solar cell processes
TWI538235B (en) * 2011-04-19 2016-06-11 弗里松股份有限公司 Thin film photovoltaic device and manufacturing method
WO2014014057A1 (en) * 2012-07-20 2014-01-23 旭化成株式会社 Semiconductor film and semiconductor element
KR101723062B1 (en) * 2014-11-18 2017-04-04 주식회사 엘지화학 Metal Calcogenide Nano Particle for Manufacturing Light Absorbing Layer of Solar Cell and Method for Manufacturing the Same
CN109830549B (en) * 2018-12-13 2021-01-05 广东工业大学 Indium sulfide/graphene composite film and preparation method and application thereof
CN113324970B (en) * 2021-04-25 2023-04-21 中国科学技术大学 Structure-adjustable high-hot-spot three-dimensional mesh screen nano Raman substrate and preparation and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040060592A1 (en) * 1999-11-25 2004-04-01 Akio Machida Semiconductor device and its manufacturing method
US20040219730A1 (en) * 2001-04-16 2004-11-04 Basol Bulent M. Method of forming semiconductor compound film for fabrication of electronic device and film produced by same
CN1560910A (en) * 2004-03-04 2005-01-05 上海交通大学 Photovoltaic semiconductor thin film crossing liquid and preparation method thereof
CN1571170A (en) * 2003-04-11 2005-01-26 索尼株式会社 Photoelectric conversion device, electronic apparatus and electronic apparatus manufacturing method, metal film formation method and layer structure
US20050172888A1 (en) * 2002-08-22 2005-08-11 Sony Corporation Method of producing crystalline semiconductor material and method of fabricating semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743686A3 (en) * 1995-05-15 1998-12-02 Matsushita Electric Industrial Co., Ltd Precursor for semiconductor thin films and method for producing semiconductor thin films
US6127202A (en) * 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
JP2001044464A (en) * 1999-07-28 2001-02-16 Asahi Chem Ind Co Ltd METHOD OF FORMING Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR LAYER AND MANUFACTURE OF THIN-FILM SOLAR CELL
US20030041893A1 (en) * 2001-08-31 2003-03-06 Matsushita Electric Industrial Co. Ltd. Solar cell, method for manufacturing the same, and apparatus for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040060592A1 (en) * 1999-11-25 2004-04-01 Akio Machida Semiconductor device and its manufacturing method
US20040219730A1 (en) * 2001-04-16 2004-11-04 Basol Bulent M. Method of forming semiconductor compound film for fabrication of electronic device and film produced by same
US20050172888A1 (en) * 2002-08-22 2005-08-11 Sony Corporation Method of producing crystalline semiconductor material and method of fabricating semiconductor device
CN1571170A (en) * 2003-04-11 2005-01-26 索尼株式会社 Photoelectric conversion device, electronic apparatus and electronic apparatus manufacturing method, metal film formation method and layer structure
CN1560910A (en) * 2004-03-04 2005-01-05 上海交通大学 Photovoltaic semiconductor thin film crossing liquid and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117866484A (en) * 2024-03-12 2024-04-12 成都先进金属材料产业技术研究院股份有限公司 Liquid metal printing ink and preparation method thereof
CN117866484B (en) * 2024-03-12 2024-06-04 成都先进金属材料产业技术研究院股份有限公司 Liquid metal printing ink and preparation method thereof

Also Published As

Publication number Publication date
CN101443919A (en) 2009-05-27
WO2007101138A3 (en) 2008-10-23
CN101443919B (en) 2014-03-05
EP1997150A2 (en) 2008-12-03
WO2007101138A2 (en) 2007-09-07
WO2007101138A9 (en) 2008-12-31
JP2013033987A (en) 2013-02-14
JP2009528682A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
CN101438416B (en) High-throughput printing of semiconductor precursor layers from intermetallic microflake particles
CN101443919B (en) Method for forming absorber layer, precursor material for forming absorber layer, and solar cell
US7700464B2 (en) High-throughput printing of semiconductor precursor layer from nanoflake particles
US8372734B2 (en) High-throughput printing of semiconductor precursor layer from chalcogenide nanoflake particles
US8623448B2 (en) High-throughput printing of semiconductor precursor layer from chalcogenide microflake particles
US8329501B1 (en) High-throughput printing of semiconductor precursor layer from inter-metallic microflake particles
US20090246906A1 (en) High-Throughput Printing of Semiconductor Precursor Layer From Microflake Particles
US20070163638A1 (en) Photovoltaic devices printed from nanostructured particles
US20070163383A1 (en) High-throughput printing of nanostructured semiconductor precursor layer
US20070163642A1 (en) High-throughput printing of semiconductor precursor layer from inter-metallic microflake articles
US20120315722A1 (en) High-Throughput Printing of Semiconductor Precursor Layer from Nanoflake Particles
US20070169813A1 (en) High-throughput printing of semiconductor precursor layer from microflake particles
US20080124831A1 (en) High-throughput printing of semiconductor precursor layer from chalcogenide particles
US8889469B2 (en) Multi-nary group IB and VIA based semiconductor
JP5260275B2 (en) Method for forming compound film
US8642455B2 (en) High-throughput printing of semiconductor precursor layer from nanoflake particles
CN101443892B (en) High-throughput printing of chalcogen layers and use of intermetallic materials
US20070163641A1 (en) High-throughput printing of semiconductor precursor layer from inter-metallic nanoflake particles
US20120295022A1 (en) High-Throughput Printing of Chalcogen Layer
US20110294254A1 (en) Low cost solar cells formed using a chalcogenization rate modifier
EP2115783A2 (en) Solar cell absorber layer formed from metal ion precursors
WO2006101986A2 (en) Mettalic dispersion and formation of compound film for photovoltaic device active layer
WO2009051862A2 (en) Semiconductor thin films formed from non-spherical particles
US8846141B1 (en) High-throughput printing of semiconductor precursor layer from microflake particles
CN102593237A (en) High-throughput printing of semiconductor precursor layer from inter-metallic microflake particles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140528