CN103743553B - 一种集成波导调制器的双通道光学性能测试装置及其偏振串音识别与处理方法 - Google Patents
一种集成波导调制器的双通道光学性能测试装置及其偏振串音识别与处理方法 Download PDFInfo
- Publication number
- CN103743553B CN103743553B CN201310744466.8A CN201310744466A CN103743553B CN 103743553 B CN103743553 B CN 103743553B CN 201310744466 A CN201310744466 A CN 201310744466A CN 103743553 B CN103743553 B CN 103743553B
- Authority
- CN
- China
- Prior art keywords
- waveguide
- fiber
- output
- polarization
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 149
- 230000010287 polarization Effects 0.000 title claims abstract description 86
- 238000012360 testing method Methods 0.000 title claims abstract description 43
- 238000003672 processing method Methods 0.000 title claims abstract description 8
- 230000009977 dual effect Effects 0.000 title claims description 6
- 238000001228 spectrum Methods 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 239000000835 fiber Substances 0.000 claims description 100
- 239000013307 optical fiber Substances 0.000 claims description 52
- 230000008033 biological extinction Effects 0.000 claims description 26
- 230000008859 change Effects 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000005693 optoelectronics Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 57
- 238000013461 design Methods 0.000 abstract description 4
- 238000012113 quantitative test Methods 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 description 18
- 230000008878 coupling Effects 0.000 description 17
- 238000005859 coupling reaction Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 238000003780 insertion Methods 0.000 description 13
- 230000037431 insertion Effects 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 239000000306 component Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000005305 interferometry Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
本发明设计属于光学器件测量技术领域,具体涉及到一种集成波导调制器的双通道光学性能测试装置及其偏振串音识别与处理方法。本发明包括高偏振稳定度宽谱光源、待测集成波导调制器、光程解调装置、偏振串音检测与记录装置。该装置简化了系统结构,丰富了测试功能,降低了成本,提高了测试效率,可以广泛用于80dB以上集成波导器件的光学性能的定量测试。
Description
技术领域
本发明设计属于光学器件测量技术领域,具体涉及到一种集成波导调制器的双通道光学性能测试装置及其偏振串音识别与处理方法。
背景技术
多功能集成光学器件俗称“Y波导”,一般采用铌酸锂材料作为基底,它将单模光波导、光分束器、光调制器和光学偏振器进行了高度集成,是组成干涉型光纤陀螺(FOG)和光纤电流互感器的核心器件,决定着光纤传感系统的测量精度、稳定性、体积和成本。
Y波导器件的重要参量主要包括:波导芯片消光比、尾纤串音、输出通道光程差,上述参数的温度特性等。如何对Y波导器件的光学性能进行准确、全面的测试是高性能器件研制和生产中遇到的一个非常棘手的问题。高精度精密级光纤陀螺中使用的Y波导的芯片消光比要求达到80dB以上。例如,中国电子科技集团公司第四十四研究所的华勇、舒平等人提出的一种提高光纤陀螺用Y波导芯片消光比的方法(CN 201310185490.2),已经可以实现80dB以上Y波导器件。而常用的偏振性能检测仪器——消光比测试仪,分辨率最高的美国dBm Optics公司研制的Model4810型偏振消光比测量仪也仅有72dB;其余美国GeneralPhotonics公司的ERM102型、韩国Fiberpro公司的ER2200型、日本Santec公司的PEM-330型最高消光比均只能达到50dB左右。
Y波导器件由输入光纤、波导芯片和输出光纤、调制电极等几部分组成,至少包含一个输入通道和两个输出通道。结构的复杂性要求除芯片消光比外,其余芯片的线性双折射射、尾纤串音、插损损耗、输出通道光程差,以及上述参数的温度特性、电压特性等性能也是必须进行测量的参量。
20世纪90年代初,法国Herve Lefevre等人(US 4893931)首次公开了基于白光干涉原理的OCDP系统,它采用超辐射发光二极管(SLD)和空间干涉光路测量结构。法国Photonetics公司根据此专利研制了WIN-P 125和WIN-P 400两种型号OCDP测试系统,主要用于较短(500m)和较长(1600m)保偏光纤的偏振特性分析。其主要性能为偏振串音灵敏度为-70dB、动态范围为70dB,后经过改进,灵敏度和动态范围分别提升到-80dB和80dB。但对于高消光比Y波导的测量还略显不足。
2002年美国Fibersense Technology Corporation公司的Alfred Healy等人公开一种集成波导芯片的输入/输出光纤的耦合方法(US6870628),利用白光干涉测量方法实现了波导芯片输入/输出光纤的耦合串音的测量;2004年北京航空航天大学的伊小素、肖文等人公开了一种光纤陀螺用集成光学调制器在线测试方法及其测试装置(CN200410003424.X),可以实现器件的损耗、分光比等光学参数的测量;2007年北京航空航天大学的伊小素、徐小斌等人公开了一种Y波导芯片与保偏光纤在线对轴装置及其在线对轴方法(CN 200710064176.3),利用干涉光谱法同样实现了波导芯片与波导输入/输出光纤串音的测量。但没有涉及波导芯片消光比的测量问题。
2011年,天津大学张红霞等人公开了一种光学偏振器件偏振消光比的检测方法和检测装置(CN 201110052231.3),同样采用空间干涉光路作为OCDP的核心装置,通过检测耦合点的耦合强度,推导出偏振消光比。该装置适用于保偏光纤、保偏光纤耦合器、偏振器等多种光学偏振器件。与Herve Lefevre等人的方案相比,技术性能和指标相近。
同年,美国通用光电公司(General Photonics Corporation)的姚晓天等人公开了一种用于保偏光纤和光学双折射材料中分布式偏振串音测量的全光纤测量系统(US20110277552,Measuring Distributed Polarization Crosstalk in PolarizationMaintaining Fiber and Optical Birefringent Material),利用在光程相关器之前增加光程延迟器,抑制偏振串音测量时杂散白光干涉信号的数量和幅度。该方法可以将全光纤测量系统的偏振串音灵敏度提高到-95dB,但动态范围保持在75dB。
2012年,本研究组提出了基于全光纤光路的偏振串音测量测试装置(CN201210379406.6)及其提高光学器件偏振串音测量性能的方法(CN201210379407.0),采用全光纤光路和抑制拍噪声的技术方案,极大地抑制噪声幅度,使偏振串音测量的灵敏度提高的-95dB以上,同时动态范围能够相应保持在95dB,同时减小了测试系统的体积,增加了测量稳定性。为高消光比Y波导器件的特性测量奠定了基础。
传统观点认为:Y波导的两个输出端的光学性能如芯片消光比、线性双折射是一致的。但实际测试的研究表明:受限于Y波导的材料和制作工艺,两输出通道的光学性能可能具有一定差异性,这对于分析波导的制作工艺和参数具有非常大的意义;基于白光干涉测量原理的Y波导测量系统,只具备单通道的测试能力,需要对Y波导的两个输出通道进行测量时,必须分两次测量完成;特别是在外界环境参数(如温度等)或者应用参数(如波导芯片的电极加载电压等)变化时,两次单通道测量和一次双通道同时测量,在外界加载条件和测量时间存在差异时,是无法完全等效的。因此,对于Y波导器件不同输出通道的参数,如:波导芯片消光比、线性双折射、插入损耗、尾纤串音等光学特性的绝对值和差异值,具有非常重大的实际价值。但目前测试装置和方法还没有涉及到对Y波导器件不同输出通道光学性能及其差异性的全面测试和评估。
本发明提供了一种Y波导器件的双通道光学性能同时测试装置,其设计思想是:基于全光纤光路结构,将两套功能独立的解调干涉仪分别用于Y波导器件的两个输出通道,利用对称性原则,通过对测试装置结构的有机复合和简化,通过对光路和器件参数的一致性设定,实现了Y波导器件的光学特性参数的全面测量。装置的特征包含两个功能独立、光路结构和参数相同的解调干涉仪,它们分别连接于波导调制器的两个输出通道,并且共用同一个光程扫描器,它特别适合于在加载温度等环境参数载荷下,对Y波导器件输出通道光学性能变化及其不一致性的评价和分析,可以实现集成波导器件两输出通道间的波导芯片消光比、线性双折射、插入损耗、尾纤串音等光学参量的绝对值和差异值的同时测量。具有测试参数全面、测量精度高、稳定性好,光路结构简单等优点,既降低了系统造价,又提高了测试效率、节约了测试成本,可以广泛用于80dB以上高消光比集成波导器件的光学性能的定量测试。
发明内容
本发明的目的在于提供一种集成波导调制器的双通道光学性能测试装置,本发明的目的还在于提供一种集成波导调制器的双通道光学性能测试装置的偏振串音识别与处理方法。
本发明的目的是这样实现的:
一种集成波导调制器的双通道光学性能测试装置,包括高偏振稳定度宽谱光源、待测集成波导调制器、光程解调装置、偏振串音检测与记录装置:
待测集成波导调制器的第一输出通道和第二输出通道分别连接于光程解调装置的第一解调干涉仪和第二解调干涉仪;偏振串音检测与记录装置同时连接第一解调干涉仪和第二解调干涉仪,光电转换与信号处理单元对第一解调干涉仪中的第一差分探测器和第二解调仪中的第二差分探测器输出的白光干涉信号同时进行处理与记录;控制计算机利用内置的待测集成波导调制器的偏振串音识别与处理方法,对待测集成波导调制器的第一输出通道和第二输出通道间的波导芯片消光比、线性双折射、插入损耗、尾纤串音的绝对值进行测量、存储与显示,对在外界环境参数或应用参数变化时的性能差异进行比较和显示。
第一解调干涉仪和第二解调干涉仪:第一解调干涉仪由第一光纤检偏器与第一2×2光纤耦合器的第一端连接、第一2×2光纤耦合器的第二端与第二2×2光纤耦合器的第一端连接、第一2×2光纤耦合器的第三端与第二2×2光纤耦合器的第四端通过第一光纤环形器连接、第一2×2光纤耦合器的第四端与第一DFB光源连接,第一光纤环形器的另一端连接第一光纤准直透镜、第二2×2光纤耦合器的第二端和第三端连接第一差分探测器;
第二解调干涉仪与第一解调干涉仪的组成相同,分别由第二光纤检偏器、第三2×2光纤耦合器、第四2×2光纤耦合器、第二光纤环形器、第二光纤准直透镜、第二差分探测器、第二DFB光源组成。
高偏振稳定度宽谱光源,通过光纤耦合器的第一输出端连接于第一光电探测器;通过第二输出端经过光纤隔离器后,连接于光纤起偏器。
待测集成波导调制器与高偏振稳定度宽谱光源和光程解调装置的连接关系是:
光纤起偏器的输出保偏光纤与待测集成波导调制器输入通道的输入保偏尾纤对轴角度为0~45°;
待测集成波导调制器的第一输出通道、第二输出通道的输出保偏尾纤与第一解调干涉仪和第二解调干涉仪的第一光纤检偏器、第二光纤检偏器的输入保偏尾纤的对轴角度分别为0~45°。
一种集成波导调制器的双通道光学性能测试装置的偏振串音识别与处理方法:
1)检测输入保偏尾纤的长度lW-,,判断是否满足:
SW-i=lW-i×Δnf>Sripple
式中:Δnf为保偏尾纤线性双折射,Sripple为光源二阶相干峰的光程最大值;
2)如不满足,则焊接一段延长保偏光纤lf-i,对轴角度为0°-0°,测量并记录延长光纤lf-i的长度和理论光程Sf-i,判断:
Sf-i=lf-i×Δnf>Sripple
3)测量波导芯片的长度lW;
4)测量第一输出通道尾纤、第二输出通道尾纤的长度lW-o-1、lW-o-2,判断:
SW-o-1=lW-o-1×Δnf且SW-o-2=lW-o-1×Δnf>SW=lW×ΔnW
式中:ΔnW波导芯片的线性双折射;
5)如输出通道尾纤的长度lW-o-1、lW-o-2不满足步骤4)的条件,则在第一输出通道、第二输出通道分别焊接两段长度相同的延长光纤lf-o-1、lf-o-2,其对轴角度为0°-0°,其长度要求满足:
Sf-o-1=lf-o-1×Δnf且Sf-o-2=lf-o-1×Δnf>SW=lW×ΔnW,测量并记录延长光纤lf-o-1、lf-o-2;
6)将待测集成波导调制器与宽谱光源和光程解调装置连接,其输入和和输出的对轴角度分别为θ1=45°,θ2=45°;
7)启动白光干涉仪,同时获得第一输出通道、第二输出通道的两幅分布式偏振串音测量结果曲线;
8)利用已经测量的器件各部分的几何长度,包括:输入保偏尾纤长度lW-i、输入延长保偏光纤长度lf-i、波导芯片长度lW、第一输出通道、第二输出通道尾纤长度lW-o-1、lW-o-2、输出延长光纤的长度lf-o-1、lf-o-2;计算其光程延迟量,并按照大小依次排列为两行:
第一行对应第一波导输出通道:Sf-i、(Sf-i+SW-i)、Sf-o-1、(Sf-o-1+SW-o-1)、(Sf-o-1+SW-o-1+Sf-i+SW-i+SW-1)
第二行对应第二波导输出通道:Sf-i、(Sf-i+SW-i)、Sf-o-2、(Sf-o-2+SW-o-2)、(Sf-o-2+SW-o-2+Sf-i+SW-i+SW-2)
9)与理论公式进行对比,确定第一输出通道测量的偏振串音特征峰,具体为:
(1)波导输入延长光纤与波导输入尾纤的偏振串音ρf-i;
(2)波导输入尾纤与波导芯片的偏振串音ρW-i;
(3)输出延长光纤与第一输出通道波导输出尾纤的偏振串音ρf-o-1;
(4)第一输出通道波导输出尾纤与波导芯片的偏振串音ρW-o-1;
(5)第一通道测量的Y波导芯片的偏振串音
确定第二输出通道(2C)测量的偏振串音特征峰,具体为:
(1)波导输入延长光纤与波导输入尾纤(21)的偏振串音ρf-i;
(2)波导输入尾纤(21)与波导芯片(2D)的偏振串音ρW-i;
(3)输出延长光纤与第二输出通道波导输出尾纤的偏振串音ρf-o-2;
(4)第二输出通道波导输出尾纤与波导芯片(2D)的偏振串音ρW-o-2;
(5)第二通道测量的Y波导芯片的偏振串音
10)对比偏振串音与偏振串音偏振串音ρW-o-2与偏振串音ρW-o-1;
11)根据计算得出的保偏光纤尾纤和波导芯片实测的双折射Δnf、ΔnW;I(0)out1/I(0)out2代表波导器件第一、第二输出通道测量的插入损耗比值;
12)当外界环境参数或者应用参数变化时,重新执行步骤7),对Y波导的光学参数进行测量,可以测量的参数还包括两个输出通道的光学特性变化,包括输入/输出光纤与波导芯片的耦合串音随温度的变化;波导两输出通道的芯片消光比随外加电压的变化。
本发明的有益效果在于:
(1)作为一种Y波导器件光学性能的全方位测试装置,能够测量的光学参数最多,也最为全面,包括Y波导器件两输出通道间的波导芯片消光比、线性双折射、尾纤串音、插入损耗,及其输出通道一致性的测量,一次扫描即可获得众多参数的测量,测试效率高、稳定性好、受环境影响小;
(2)采用功能完全独立的两套解调干涉仪,可以对两个输出通道的光学特性同时进行测量,可以实现不同波导输出通道在环境参数(如温度等)或应用参数(如波导芯片的电极加载电压等)加载时,Y波导器件的光学性能变化及其不一致性的评价和分析,既提高了测试效率,又节约了测试成本;
(3)全同光路设计(包括光路结构和元件参数),共用同一光程扫描器,降低了系统构建成本,提高了测试速度、减小了通道之间的测量不一致性;
(4)采用全光纤光路,具有体积小、测量精度高、温度稳定性和抗振动稳定性好等。
附图说明
图1是光学器件的分布式偏振串音测量的光学原理示意图;
图2是偏振串音形成的干涉信号幅度与光程对应关系示意图;
图3是基于Mach-Zehnder解调干涉仪的Y波导器件双通道光学性能测试装置原理图;
图4是一种集成波导调制器的双通道光学性能测试装置的偏振串音处理方法流程图;
图5是波导尾纤慢轴与波导芯片快轴对准,器件0°~0°接入测试装置时,测量得到的布式偏振串音数据(测量装置的偏振串扰噪声);
图6是Y波导器件的输入0°~45°、输出45°~0°接入测量装置时,从第一输出通道2B测量得到的分布式偏振串音数据(Y波导器件的光学特性);
图7是Y波导器件90°~0°接入测试装置时,从第一输出通道2C测量得到的布式偏振串音数据(测量装置的偏振串扰噪声);
图8是Y波导输入尾纤与波导芯片的功率耦合串音随温度的变化;
图9是Y波导第一输出通道尾纤与波导芯片的功率耦合串音随温度的变化;
图10是Y波导第二输出通道尾纤与波导芯片的功率耦合串音随温度的变化;
图11是Y波导第一输出通道2B的测量数据汇总表;
图12是Y波导第二输出通道2C的测量数据汇总表;
图13是Y波导第一输出通道2B的测量的线性双折射;
图14是Y波导第二输出通道2C的线性双折射。
具体实施方式
本发明提出的一种Y波导器件的双通道光学性能同时测试装置,包括高偏振稳定度宽谱光源1、待测集成波导调制器(Y波导)2、光程解调装置3、偏振串音检测与记录装置4,其特征是:
1)Y波导2的第一和第二输出通道2B、2C分别连接于光程解调装置3的第一、第二解调干涉仪31、32;
2)第一解调干涉仪31和第二解调干涉仪32的光路结构、组成元件及其器件参数均相同,包括第一干涉仪31与第二干涉仪32两臂光程差和连接光纤300、320、302、322、304、324;
3)第一解调干涉仪31中的光纤准直透镜306和第二解调干涉仪32中的光纤准直透镜326共用同一个光程扫描器310;
4)偏振串音检测与记录装置4同时连接第一、第二解调干涉仪31、32,光电转换与信号处理单元41对第一、第二差分探测器308与309、328与329输出白光干涉信号,同时进行处理与记录;
5)控制计算机42利用数据识别与处理算法,除对Y波导2第一、第二输出通道2B、2C的光学性能进行测量、存储与显示外,还要对输出通道2B、2C的性能差异性,特别是加载温度等环境条件和电压等应用条件下的性能进行比较和显示。
所述的第一、第二解调干涉仪31、32,其特征是:
1)第一解调干涉仪31分别由第一光纤检偏器301、第一2×2光纤耦合器303、第二2×2光纤耦合器307、第一光纤环形器305、第一光纤准直透镜306、第一差分探测器308、309、第一DFB光源311组成;
2)第二解调干涉仪32分别由第二光纤检偏器321、第三2×2光纤耦合器323、第四2×2光纤耦合器327、第二光纤环形器325、第二光纤准直透镜326、第二差分探测器328、329、第二DFB光源331组成;
3)第一解调干涉仪31和第二解调干涉仪32的光路结构、组成元件及其器件参数均相同,包括第一干涉仪31与第二干涉仪32两臂光程差大小和连接光纤300与320、302与322、304与324的长度;
所述的高偏振稳定度宽谱光源1,其特征是:宽谱光源11通过光纤耦合器12的第一输出端13连接于第一光电探测器14;通过第二输出端15经过光纤隔离器16后,连接于光纤起偏器17。
所述的Y波导2与高偏振稳定度宽谱光源1和光程解调装置3的连接关系,其特征是:
1)起偏器17的输出保偏光纤18与Y波导2输入通道2A的输入保偏尾纤21对轴角度为0~45°;
2)Y波导的第一、第二输出通道2B、2C的输出保偏尾纤22、23与第一、第二解调干涉仪31、32的第一、第二光纤检偏器301、321的输入保偏尾纤300、320的对轴角度分别为0~45°。
所述的Y波导2器件的光学参数测量方法,其特征是:
1)输入保偏尾纤21的长度lW-i要求满足下式:
SW-i=lW-i×Δnf>Sripple (1)
式中:Δnf为保偏尾纤线性双折射,Sripple为光源11二阶相干峰的光程最大值。
2)如不满足,则焊接一段延长保偏光纤lf-i,对轴角度为0°-0°,长度要求类似(1)式,即满足(2)式,测量并记录延长光纤lf-i的长度和理论光程Sf-i;
Sf-i=lf-i×Δnf>Sripple (2)
3)测量波导芯片2D的长度lW;
4)测量波导第一、第二输出通道尾纤21、22的长度lW-o-1、lW-o-2,其长度要求类似(1)式,即满足(3)式:
SW-o-1=lW-o-1×Δnf且SW-o-2=lW-o-1×Δnf>SW=lW×ΔnW (3)
式中:ΔnW波导芯片的线性双折射。
5)如输出尾纤21、22的长度lW-o-1、lW-o-2不满足(3)式,则在第一第二输出通道分别焊接两段长度相同的延长光纤lf-o-1、lf-o-2,其对轴角度为0°-0°,其长度要求类似(3)式,即满足(4)式,测量并记录延长光纤lf-o-1、lf-o-2;
Sf-o-1=lf-o-1×Δnf且Sf-o-2=lf-o-1×Δnf>SW=lW×ΔnW (4)
6)将Y波导2与光源1和光程解调装置3连接,其输入和和输出的对轴角度分别为θ1=45°,θ2=45°;
7)启动白光干涉仪,同时获得第一、第二输出通道2B、2C的两幅分布式偏振串音测量结果曲线;
8)利用已经测量的器件各部分的几何长度,包括:输入保偏尾纤21长度lW-i、输入延长保偏光纤长度lf-i、波导芯片2D长度lW、波导第一、第二输出通道尾纤21、22长度lW-o-1、lW-o-2、输出延长光纤的长度lf-o-1、lf-o-2;计算其光程延迟量,并按照其大小依次排列为两行:
第一行(对应第一波导输出通道):Sf-i、(Sf-i+SW-i)、Sf-o-1、(Sf-o-1+SW-o-1)、(Sf-o-1+SW-o-1+Sf-i+SW-i+SW-1)
第二行(对应第二波导输出通道):Sf-i、(Sf-i+SW-i)、Sf-o-2、(Sf-o-2+SW-o-2)、(Sf-o-2+SW-o-2+Sf-i+SW-i+SW-2)
9)跟与理论分析结果公式(7)进行对比,按照光程延迟量可能出现的范围,确定各偏振串音峰值的含义,包括:
确定第一输出通道2B测量的偏振串音特征峰,具体为:
(1)波导输入延长光纤与波导输入尾纤21的偏振串音ρf-i;
(2)波导输入尾纤21与波导芯片2D的偏振串音ρW-i;
(3)输出延长光纤与第一输出通道波导输出尾纤22的偏振串音ρf-o-1;
(4)第一输出通道波导输出尾纤与波导芯片2D的偏振串音ρW-o-1;
(5)第一通道测量的Y波导芯片的偏振串音
确定第二输出通道2C测量的偏振串音特征峰,具体为:
(1)波导输入延长光纤与波导输入尾纤21的偏振串音ρf-i;
(2)波导输入尾纤21与波导芯片2D的偏振串音ρW-i;
(3)输出延长光纤与第二输出通道波导输出尾纤23的偏振串音ρf-o-2;
(4)第二输出通道波导输出尾纤与波导芯片2D的偏振串音ρW-o-2;
(5)第二通道测量的Y波导芯片的偏振串音
10)对比与ρW-o-2与ρW-o-1,可知Y波导2两个输出通道2B、2C之间性能上的不一致;
11)根据公式(7)和(8)可以计算出保偏光纤尾纤和波导芯片实测的双折射Δnf、ΔnW;I(0)out1/I(0)out2代表波导器件第一、第二输出通道测量的插入损耗比值;
12)当外界环境参数(如温度等)或者应用参数(如波导芯片的电极加载电压等)变化时,重新回到步骤7),重新对Y波导的光学参数进行测量,可以测量的参数除上述步骤给出的外,还包括两个通道的光学特性变化:
(1)输入/输出光纤与波导芯片的耦合串音随温度的变化;
(2)波导两输出通道的芯片消光比随外加电压的变化。
本发明是对基于白光干涉原理的光学相干域偏振测试系统(OCDP)的一种技术改进。OCDP的工作原理如图1所示,以保偏光纤的焊接点串音性能测试为例,由宽谱光源发出的高稳定宽谱偏振光501注入到一定长度的保偏光纤521的慢轴(快轴时,原理相同)。当传输光经过光纤521中的焊接点511时,在慢轴中信号光的一部分光能量就会耦合到正交的快轴中,形成耦合光束503,剩余的传输光束502依旧沿着慢轴传输。当传输光从光纤521的另外一端出射时(传输距离为l),由于光纤存在的线性双折射Δn(例如:5×10-4),使慢轴中的传输光502和在快轴中的耦合光503之间将存在一个光程差Δnl。光束502和503通过45°旋转的焊接点或者连接头512,并经过检偏器531的偏振极化后,由分光器532分别均匀地分成两部分。如图2所示,由传输光601和耦合光602组成参考光束,传输在干涉仪的固定臂中,经过固定反射镜533的反射后回到分光器532;由传输光603和耦合光604组成扫描光束,同样经过移动反射镜534的反射后也回到分光器532,两部分光汇聚在探测器537上形成白光干涉信号,被其接收并将光信号转换为电信号。此信号经过信号解调电路551处理后,送入测量计算机552中;测量计算机552另外还要负责控制移动反射镜534实现光程扫描。
如图1和2所示,在测量计算机552的控制下,Michelson干涉仪的移动反射镜534使干涉仪两臂的光程差从Δnl经过零,扫描至-Δnl:
(1)当光程差等于Δnl时,扫描光束中耦合光604与参考光束中的传输光601光程发生匹配,则产生白光干涉信号,其峰值幅度为它与缺陷点的耦合幅度因子和光源强度成正比;
(2)当光程差为零时,参考光束601、602分别与扫描光束中的传输光605、耦合光606光程发生匹配,分别产生白光干涉信号,其峰值幅度为二者的强度叠加,其幅度为Imain∝I0,它与光源输入功率成正比。如图2可知,与前一个白光干涉信号相比,两个白光干涉信号峰值之间的光程差刚好为Δnl。如果已知光学器件的线性双折射Δn,则可以计算得到缺陷点发生的位置l,而通过干涉信号峰值强度的比值可以计算得到缺陷点的功率耦合大小ρ;
(3)当光程差等于-Δnl时,扫描光束中传输光607与参考光束中的耦合光602光程发生匹配,则产生白光干涉信号,其峰值幅度为它与光程差为Δnl时相同。如图可知,与光程差为Δnl时相比,此白光干涉信号与之在光程上对称,幅度上相同。
偏振串音ρ可以根据光程差为Δnl或者-Δnl获得的偏振串音信号幅度Icoupling,以及光程差为零时获得传输光信号幅度Imain计算得到:
由于一般偏振串音远小于1,因此(1)式变化为:
为了同时获得Y波导器件两个输出通道的光学特性,其测试装置如图3所示。当Y波导器件2与宽谱光源1和光程解调装置3的对准角度为0°~45°、45°~0°对准时,偏振串音检测与记录装置4获得的第一和第二输出通道2B、2C的白光干涉信号的幅度和光程延迟量,均满足(3)式表示:
式中:I(Sout1)、I(Sout2)分别表示为第一差分探测器(308、309)和第二差分探测器(328、329)探测的所有白光干涉信号幅度之和;Sout1、Sout2分别代表第一、第二解调干涉仪31、32的光程扫描延迟量,I(0)out1、I(0)out2分别光程差为零时,表示白光干涉信号的最大峰值幅度;R(S)为宽谱光源的归一化自相干函数,R(0)=1,传输光的白光干涉峰值信号幅度,光程差为零;R(S)=0(S>S0时,S0为宽谱光源的相干长度);Sf-i、Sf-o-1、Sf-o-2、SW-i、SW-o-1、SW-o-2、SW-1、SW-2分别为输入延长光纤、第一输出通道延长光纤、第二输出通道延长光纤、波导输入尾纤、波导第一输出通道尾纤、波导第二输出通道尾纤、第一输出通道波导传输光程、第二输出通道波导传输光程所对应的光程延迟量,当慢轴光程超前于快轴光程时,上述延迟量定义为+;当慢轴光程落后于快轴光程时,上述延迟量定义为-,各光程延迟量可以依次表示为:
Sf-i=lf-i×Δnf
SW-i=lW-i×Δnf
Sf-o-1=lf-o-1×Δnf
Sf-o-2=lf-o-2×Δnf
(8)
SW-o-1=lW-o-1×Δnf
SW-o-2=lW-o-2×Δnf
SW-1=lW-1×ΔnW
SW-2=lW-2×ΔnW
式中,lf-i、lf-o-1、lf-o-2、lW-i、lW-o-1、lW-o-2、lW-1、lW-2分别为输入延长光纤、第一输出通道延长光纤、第二输出通道延长光纤、波导输入尾纤、波导第一输出通道尾纤、波导第二输出通道尾纤、第一输出通道波导芯片、第二输出通道波导芯片的长度,Δnf、ΔnW分别为保偏光纤和波导芯片的线性双折射;ρf-i、ρf-o-1、ρf-o-2分别为波导输入延长光纤与波导输入尾纤、第一输出通道的延长光纤与波导输出尾纤、第二输出通道的延长光纤与波导输出尾纤的焊点偏振串音功率因子,ρW-i、ρW-o-1、ρW-o-2分别为波导输入、第一输出尾纤、第二输出尾纤与波导芯片的偏振串音功率因子,分别为第一、第二通道测量的Y波导芯片偏振串音(消光比的倒数)。
由(7)、(8)式可知,如果已知输入、第一输出、第二输出延长光纤,输入、第一输出、第二输出波导尾纤、以及波导芯片的长度,通过光程解调装置3的光程扫描和偏振串音检测与记录装置4的白光干涉信号幅度的采集与处理,在光程延迟量为0、±Sf-i、±Sf-o-1、±Sf-o-2、±(Sf-i+SW-i)、±(Sf-o-1+SW-o-1)、±(Sf-o-2+SW-o-2)、±(Sf-o-1+SW-o-1+Sf-i+SW-i+SW-1)、±(Sf-o-2+SW-o-2+Sf-i+SW-i+SW-2)处,分别可以获得白光干涉信号的峰值,其幅度分别对应ρf-i、ρf-o-1、ρf-o-2、ρW-i、ρW-o-1、ρW-o-2、等光学参数。
为清楚地说明本发明集成波导调制器(Y波导)双输出通道同时测量的装置和测量方法,结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
实施例1——基于Mach-Zehnder解调干涉仪的波导测量装置
器件测量装置如图3所示,白光干涉测量装置的器件选择与参数如下:
(1)宽带光源11的中心波长1550nm、半谱宽度大于45nm,出纤功率大于2mW,光源光谱纹波<0.05dB(峰值幅度大约为-60dB),相干峰的光程范围4~7mm;DFB光源311的半谱宽度小于50MHz,出纤功率大于1mW;
(2)2/98光纤耦合器12工作波长1550nm、分光比2:98;
(3)光纤隔离器16工作波长1550nm、插入损耗0.8dB,隔离度>35dB;
(4)光纤起偏器17,第一、第二光纤检偏器301、321的工作波长为1550nm,消光比为30dB,插入损耗小于1dB;
(5)第一、第二、第三、第四光纤耦合器303、307、323、337的参数相同,工作波长为1310/1550nm,分光比50:50;
(6)第一、第二光纤环行器305、325为三端口环行器,插入损耗1dB,回波损耗大于55dB;
(7)第一、第二准直透镜306、326的工作波长为1550nm,它与光程扫描器310(反射率为92%以上)之间的光程扫描距离大约在0~200mm之间变化,平均插入损耗为2.0dB,损耗波动±0.2dB以内,并且光程扫描器310大约处于100mm位置时,第一、第二解调干涉仪31、32的两臂光程差大约为零;
(8)第一、第二差分探测器308与309、328与329的光敏材料均为InGaAs,光探测范围为1100~1700nm,响应度大于0.85;
(9)选择待测的Y波导器件2,其工作波长为1550nm,波导尾纤慢轴与波导芯片的快轴对准,波导芯片长度20mm。
测量装置的工作过程如下:
宽谱光源11的输出光经过光纤耦合器12的分光、光纤隔离器16的隔离和起偏器17的极化后成为线偏光,再经过保偏输出光纤18与Y波导2的保偏输入尾纤21的45°对轴焊点,光能量均匀地注入到待测波导芯片2D的快慢轴中;光信号首先被分成两束,分别传输在2B和2C中,由于Y波导的消光比的存在,在波导慢轴中传输信号光得到较大衰减,而快轴传输光略有衰减(对应插入损耗),快慢轴传输光一同从Y波导的第一输出通道2B和第一输出通道2C中输出,注入尾纤22和23中,分别经过尾纤300和320的45°焊点,分别在第一检偏器301和第二检偏器321中混合,并分别注入到第一解调干涉仪31和第二解调干涉仪32中。
以第一解调干涉仪31为例,从Y波导2的慢轴中输出的信号光和快轴输出的信号光被303均匀分成2束,一束传输在光纤304组成的固定臂中,另外一束传输在由第一环形器305、第一准直器306和光程扫描器310组成的扫描臂中。当光程扫描器310运动实现光程扫描时,第一解调干涉仪31的固定臂和扫描臂之间产生的光程差与Y波导2快、慢轴输出光的光程差相匹配时,第一差分探测器308与309将输出白光干涉信号,白光干涉峰值与波导芯片消光比成反比,其峰值对应的光程扫描位置对应波导芯片的长度。上述测量过程获得了从第一输出通道测量的Y波导2的光学性能。
第二解调干涉仪32与第一解调干涉仪共用同一光程扫描器310。因此,当光程扫描器310工作时,第二解调干涉仪32几乎同时获得了从第一输出通道测量的Y波导2的光学性能。
实施例2——尾纤慢轴与波导芯片的快轴的Y波导器件的双通道同时测量
Y波导器件的测量装置图如图3所示,光学性能测量流程如图4所示。
(1)由步骤701可知,测量Y波导输入尾纤长度lW-i为1.53米;
(2)由步骤702可知,输入尾纤lW-i的理论光程(Δnf按5×10-4计)SW-i=0.765mm;而Sripple=4~7mm,可见,必须要焊接输入延长光纤;
(3)根据步骤703可知,连接延长光纤lf-i的长度至少要7×10-3/5×10-4=14米,实际选取15米;
(4)根据步骤704可知,测量波导芯片的长度为20mm,其理论光程(ΔnW按8×10-2计)SW-o=1.6mm,对应的输出尾纤长度lW-o=1.6×10-3/5×10-4=3.2米;
(5)根据步骤705可知,测量第一、第二输出通道的尾纤长度lW-o-1、lW-o-1为1.72米、1.78米;
(6)根据步骤706~707可知,输出尾纤的光程SW-o-1、SW-o-1均小于SW,可见,必须要延长输出光纤,焊接延长光纤lf-o至少要3.2米,实际选取5.6米;
(7)由于是首次测量,将Y波导输入/输出尾纤与光源1和光程解调装置3的对轴角度调整为0°-0°,启动测量,获得如图5的测量结果,81表示为测量的干涉主峰,它是测量幅度和光程位置参考点;82(82’)、83(83’)为测量装置3光路的杂散干涉峰;84(84’)为光源光谱纹波导致的高阶相干峰;85(85’)为测量装置3的偏振串音噪声本底,代表测量装置的测量极限;
(8)由步骤708~709可知,调整输入/输出角度分别为0°-45°、45°-0°再次启动测试装置,可以获得如图6、图7所示的Y波导第一输出通道2B、第二输出通道2C的测量结果;
(9)由步骤710~711可知,根据光纤和波导芯片长度,计算各部分的光程量,并排序,获得8A~8E(8A’~8E’分别8A~8E对称)、9A~9E(9A’~9E’分别9A~9E对称)各10个特征峰,并由公式(7)确定各偏振串音峰值的含义和具体幅值,如图11和图12所示;
(10)由步骤712可知,第一输出通道和第二输出通道分别测量波导芯片的消光比分别为55.2±0.2dB和52.3±0.2dB,其差值为2.9dB;
(11)由步骤713~714可知,根据输入/输出延长光纤长度分别为lf-i=15.00米、lf-o-1=lf-o-2=5.60米,输入/输出尾纤分别为lW-i=1.53米、lW-o-1=1.72米、lW-o-1=1.78米,波导芯片长度为20mm,并根据(7)、(8)式可以计算得到光纤和波导的线性双折射详见图13和图14;
(12)根据测试数据可知,从第一、第二输出通道得到的白光干涉信号峰值的最大值I(0)out1、I(0)out2分别为2.8dBV、3.9dBV,可知两通道插入损耗相差1.1dB。
实施例3——Y波导器件两输出通道随温度变化的测量
Y波导器件的测量装置依旧如图3所示,与实施例2的区别之处在于,将另外一只连接与宽谱光源1和光程解调装置3的待测Y波导2置于温度控制箱内,从-50℃变化到80℃改变温度,按照如图4所示的测量流程和数据分析方法,同时从第一测量通道和第二测量通道获得Y波导器件的各种光学随温度的变化量。
试验结果表明:输入/输出尾纤与波导芯片的耦合点串音对温度非常敏感,如图8~10所示,分别为Y波导输入尾纤、第一输出通道尾纤、第二输出通道尾纤与波导芯片的功率耦合串音随温度的变化。从图中可以看出,三者变化并不一致,波导输入尾纤串音和第一输出通道尾纤串音变化较大(20dB以上),而第二输出通道尾纤串音变化较小(10dB以内)。串音变化量的大小、最小串音点的温度等与光纤、波导连接处的材料和工艺有关。因此,通过对第一、第二输出通道串音随温度变化曲线的分析,对Y波导材料和工艺的选择和优化具有非常大的指导意义。
Claims (4)
1.一种集成波导调制器的双通道光学性能测试装置,包括高偏振稳定度宽谱光源(1)、待测集成波导调制器(2)、光程解调装置(3)、偏振串音检测与记录装置(4),其特征是:
待测集成波导调制器(2)的第一输出通道和第二输出通道分别连接于光程解调装置(3)的第一解调干涉仪和第二解调干涉仪;偏振串音检测与记录装置(4)同时连接第一解调干涉仪和第二解调干涉仪,光电转换与信号处理单元(41)对第一解调干涉仪中的第一差分探测器和第二解调干涉仪中的第二差分探测器输出的白光干涉信号同时进行处理与记录;控制计算机(42)利用内置的待测集成波导调制器(2)的偏振串音识别与处理方法,对待测集成波导调制器(2)的第一输出通道和第二输出通道间的波导芯片消光比、线性双折射、插入损耗、尾纤串音的绝对值进行测量、存储与显示,对在外界环境参数或应用参数变化时的性能差异进行比较和显示。
2.根据权利要求1所述的一种集成波导调制器的双通道光学性能测试装置,其特征在于:所述的第一解调干涉仪和第二解调干涉仪:第一解调干涉仪(31)由第一光纤检偏器(301)与第一2×2光纤耦合器(303)的第一端连接、第一2×2光纤耦合器的第二端与第二2×2光纤耦合器(307)的第一端连接、第一2×2光纤耦合器的第三端与第二2×2光纤耦合器(307)的第四端通过第一光纤环形器(305)连接、第一2×2光纤耦合器的第四端与第一DFB光源(311)连接,第一光纤环形器(305)的另一端连接第一光纤准直透镜(306)、第二2×2光纤耦合器(307)的第二端和第三端连接第一差分探测器;
第二解调干涉仪(32)与第一解调干涉仪的组成相同,分别由第二光纤检偏器(321)、第三2×2光纤耦合器(323)、第四2×2光纤耦合器(327)、第二光纤环形器(325)、第二光纤准直透镜(326)、第二差分探测器、第二DFB光源(331)组成。
3.根据权利要求1或2所述的一种集成波导调制器的双通道光学性能测试装置,其特征在于:所述的高偏振稳定度宽谱光源(1),通过光纤耦合器(12)的第一输出端(13)连接于第一光电探测器(14);通过第二输出端(15)经过光纤隔离器(16)后,连接于光纤起偏器(17)。
4.根据权利要求3所述的一种集成波导调制器的双通道光学性能测试装置,其特征在于:所述的待测集成波导调制器(2)与高偏振稳定度宽谱光源(1)和光程解调装置(3)的连接关系是:
光纤起偏器(17)的输出保偏光纤(18)与待测集成波导调制器(2)输入通道(2A)的输入保偏尾纤(21)对轴角度为0~45°;
待测集成波导调制器的第一输出通道(2B)、第二输出通道(2C)的输出保偏尾纤与第一解调干涉仪和第二解调干涉仪的第一光纤检偏器、第二光纤检偏器的输入保偏尾纤的对轴角度分别为0~45°。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310744466.8A CN103743553B (zh) | 2013-12-30 | 2013-12-30 | 一种集成波导调制器的双通道光学性能测试装置及其偏振串音识别与处理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310744466.8A CN103743553B (zh) | 2013-12-30 | 2013-12-30 | 一种集成波导调制器的双通道光学性能测试装置及其偏振串音识别与处理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103743553A CN103743553A (zh) | 2014-04-23 |
CN103743553B true CN103743553B (zh) | 2016-09-14 |
Family
ID=50500591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310744466.8A Active CN103743553B (zh) | 2013-12-30 | 2013-12-30 | 一种集成波导调制器的双通道光学性能测试装置及其偏振串音识别与处理方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103743553B (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104280216B (zh) * | 2014-10-11 | 2017-05-24 | 哈尔滨工程大学 | 一种y波导器件的双通道光学性能同时测试装置及其y波导偏振串音识别与处理方法 |
CN104280217B (zh) * | 2014-10-11 | 2017-10-03 | 哈尔滨工程大学 | 一种y波导双通道光学性能测量装置 |
CN104535089B (zh) * | 2014-12-15 | 2017-12-19 | 哈尔滨工程大学 | 一种具有光程可调功能的杨氏光纤白光干涉解调仪 |
CN104597552B (zh) * | 2015-02-26 | 2017-07-28 | 中国电子科技集团公司第四十四研究所 | 高偏振消光比的偏振片及其制作方法和测试装置 |
CN105823620B (zh) * | 2016-03-17 | 2018-04-17 | 哈尔滨工程大学 | 一种对保偏光纤缺陷点测量中的伪干涉峰鉴别方法 |
CN106441353B (zh) * | 2016-07-07 | 2019-05-21 | 哈尔滨工程大学 | 一种光纤陀螺环偏振耦合的对称性评估装置 |
CN106643507B (zh) * | 2017-02-13 | 2019-03-05 | 中国计量大学 | 一种基于双通道点衍射干涉的三坐标测量装置及方法 |
CN107346993A (zh) * | 2017-07-18 | 2017-11-14 | 深圳市杰普特光电股份有限公司 | 光信号相干检测方法和装置 |
CN108106817B (zh) * | 2017-12-11 | 2019-12-24 | 哈尔滨工程大学 | 一种提高y波导器件偏振性能测量准确性的方法 |
CN109408844B (zh) * | 2018-07-11 | 2022-12-09 | 桂林电子科技大学 | 芯片封装焊点随机振动应力和回波损耗的优化方法 |
CN113405564B (zh) * | 2021-05-25 | 2022-07-22 | 广东工业大学 | 一种光纤陀螺敏感环对称性与内部缺陷的测试方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2954635B2 (ja) * | 1990-02-26 | 1999-09-27 | 安藤電気株式会社 | 偏波面保存光ファイバのクロストーク測定器 |
CN101339093B (zh) * | 2008-08-29 | 2010-06-09 | 苏州光环科技有限公司 | 光纤陀螺用光纤环质量的测量方法及其装置 |
CN102288388B (zh) * | 2011-05-09 | 2013-04-10 | 哈尔滨工程大学 | 提高保偏光纤偏振耦合测量精度和对称性的装置与方法 |
CN102269647B (zh) * | 2011-05-10 | 2012-12-19 | 浙江大学 | 基于谐振腔技术测试保偏光纤耦合器偏振消光比的装置及方法 |
CN102928198B (zh) * | 2012-10-09 | 2015-02-25 | 哈尔滨工程大学 | 一种光学器件偏振串扰测量的全光纤测试装置 |
CN102928199B (zh) * | 2012-10-09 | 2014-12-03 | 哈尔滨工程大学 | 一种提高光学器件偏振串扰测量性能的装置及方法 |
CN102914421B (zh) * | 2012-10-19 | 2015-08-12 | 苏州光环科技有限公司 | 一种用于测量光学双折射媒介中偏振串扰的方法及其设备 |
-
2013
- 2013-12-30 CN CN201310744466.8A patent/CN103743553B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN103743553A (zh) | 2014-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103743553B (zh) | 一种集成波导调制器的双通道光学性能测试装置及其偏振串音识别与处理方法 | |
CN102928199B (zh) | 一种提高光学器件偏振串扰测量性能的装置及方法 | |
CN102928198B (zh) | 一种光学器件偏振串扰测量的全光纤测试装置 | |
CN103743551B (zh) | 一种多功能铌酸锂集成器件的光学性能测量方法 | |
CN104792503B (zh) | 一种光学偏振器件分布式串扰测量灵敏度增强的装置 | |
CN103900798B (zh) | 一种带有光程扫描在线校正的光学相干域偏振测量装置 | |
CN105784336B (zh) | 一种光纤器件的透射和反射性能测试装置及方法 | |
CN107894245A (zh) | 一种应变与温度同时测量的保偏光纤干涉仪 | |
CN106768877B (zh) | 一种用于光学相干域偏振计的大动态范围标定方法 | |
CN103900680B (zh) | 一种利用光源抑制偏振串音测量噪声的装置及检测方法 | |
Yang et al. | Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy | |
CN103900797A (zh) | 带有光程扫描位置和速度校正的光学相干域偏振测量装置 | |
CN106441353B (zh) | 一种光纤陀螺环偏振耦合的对称性评估装置 | |
CN104280217B (zh) | 一种y波导双通道光学性能测量装置 | |
CN102279095A (zh) | 一种减小双折射色散对保偏光纤偏振耦合测量影响的装置 | |
CN105841928B (zh) | 一种光纤偏振器件的高消光比测量方法 | |
CN104280216B (zh) | 一种y波导器件的双通道光学性能同时测试装置及其y波导偏振串音识别与处理方法 | |
CN102288388A (zh) | 提高保偏光纤偏振耦合测量精度和对称性的装置与方法 | |
CN103900799B (zh) | 一种可抑制干涉噪声的光学相干偏振测量装置 | |
CN101639387B (zh) | 基于极值对应的波长检测的光纤温度传感器及其温度传感方法 | |
CN111912400A (zh) | 一种保偏光纤环分布式偏振串扰双向同时测量装置及方法 | |
CN104280215B (zh) | 一种y波导的双通道光学性能双向多对轴角度自动测试装置 | |
CN112082735B (zh) | 一种基于Sagnac结构的光纤敏感环双向同步测量装置及方法 | |
CN108106817B (zh) | 一种提高y波导器件偏振性能测量准确性的方法 | |
CN105953817B (zh) | 一种光纤陀螺核心敏感光路的组装方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250119 Address after: No.729 Dongfeng Road, Guangzhou, Guangdong 510006 Patentee after: GUANGDONG University OF TECHNOLOGY Country or region after: China Address before: 150001 Intellectual Property Office, Harbin Engineering University science and technology office, 145 Nantong Avenue, Nangang District, Harbin, Heilongjiang Patentee before: HARBIN ENGINEERING University Country or region before: China |