[go: up one dir, main page]

CN103687820A - Ozone water supply device and ozone water supply method - Google Patents

Ozone water supply device and ozone water supply method Download PDF

Info

Publication number
CN103687820A
CN103687820A CN201280033875.0A CN201280033875A CN103687820A CN 103687820 A CN103687820 A CN 103687820A CN 201280033875 A CN201280033875 A CN 201280033875A CN 103687820 A CN103687820 A CN 103687820A
Authority
CN
China
Prior art keywords
ozone water
main pipe
ozone
branch
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280033875.0A
Other languages
Chinese (zh)
Other versions
CN103687820B (en
Inventor
床嶋裕人
井田纯一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Publication of CN103687820A publication Critical patent/CN103687820A/en
Application granted granted Critical
Publication of CN103687820B publication Critical patent/CN103687820B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

Provided are a device for supplying ozone water and a method for supplying ozone water that supply ozone water to a point of use without reductions in ozone concentration. A device (10) for supplying ozone water is provided with: an ozone water producing means (1) that produces ozone water; a main pipe (11) on which branch points (12, 13, 14), at which the flow of ozone water from the ozone water producing means (1) splits, are formed; branch pipes (15, 16, 17) that connect the branch points and points of use; and a flow rate maintaining means that prevents the flow rate of ozone water flowing in the main pipe and branch pipes from being reduced. The cross-sectional area of the flow path in the main pipe (11) decreases on the downstream side of the branch points (12, 13, 14) from that on the upstream side. The decrease in the cross-sectional area of the flow path of the main pipe (11) corresponds to the amount of flow of ozone water flowing into the branch pipes at the branch points.

Description

臭氧水供给装置和臭氧水供给方法Ozone water supply device and ozone water supply method

技术领域technical field

本发明涉及臭氧水供给装置以及臭氧水供给方法。更详细而言,涉及不使对于电子材料等进行湿处理的臭氧水的臭氧浓度降低地将臭氧水从臭氧水生成场所供给至使用位置(臭氧水使用场所)的臭氧水供给装置以及臭氧水供给方法。The present invention relates to an ozone water supply device and an ozone water supply method. More specifically, it relates to an ozone water supply device and an ozone water supply that supply ozone water from an ozone water generation place to a use place (ozone water use place) without reducing the ozone concentration of ozone water that is wet-processed on electronic materials, etc. method.

背景技术Background technique

在现有技术中,半导体用硅基板、液晶用玻璃基板或者是光掩模用石英基板等的基板以及其他电子零件的洗净,如以美国的RCA公司(美国无线电公司:Radio of Corporation of America Corp.)所开发的RCA洗净所代表的,使用高浓度的药液或洗剂以及用于对其作洗涤的大量的纯水或超纯水来进行。为了达成削减洗净工序的成本的目的或者是对于大量的洗净水的使用作抑制并保护环境的目的等,进行了对于洗净技术的各种的简略化的研究,并且其成果不断提升。作为其代表性的洗净技术,存在着由溶解有臭氧或氢等的特定气体的洗净水来进行的洗净技术。In the prior art, the cleaning of substrates such as silicon substrates for semiconductors, glass substrates for liquid crystals, or quartz substrates for photomasks and other electronic parts, such as the RCA company of the United States (Radio of Corporation of America Corp.), represented by RCA cleaning, is performed using a high-concentration chemical solution or lotion and a large amount of pure or ultrapure water for washing. For the purpose of reducing the cost of the washing process or reducing the use of a large amount of washing water and protecting the environment, various simplifications of washing technology have been studied, and the results have been continuously improved. As a typical cleaning technique, there is a cleaning technique using cleaning water in which a specific gas such as ozone or hydrogen is dissolved.

例如,在纯水中溶解有臭氧的臭氧水,即使溶存臭氧浓度为数mg/L的低浓度,也仍具备有强氧化力。因此,臭氧水,被使用在将附着于基板表面上的有机物或金属等的杂质除去的工序、或者是在硅基板的表面上形成氧化皮膜层的工序中。在此种工序中,由于所使用的臭氧浓度会对于基板表面的洗净力或者是所形成的膜厚造成大幅度影响,因此,臭氧浓度的管理变得极为重要。For example, ozone water in which ozone is dissolved in pure water has strong oxidizing power even if the dissolved ozone concentration is as low as several mg/L. Therefore, ozone water is used in the process of removing impurities such as organic substances and metals adhering to the surface of the substrate, or in the process of forming an oxide film layer on the surface of the silicon substrate. In such a process, since the concentration of ozone used greatly affects the detergency of the surface of the substrate or the thickness of the formed film, management of the concentration of ozone becomes extremely important.

臭氧,容易自我分解,当臭氧水生成场所和使用位置之间的距离长的情况时,在将所生成的臭氧水输送至使用位置的途中,臭氧水中的臭氧浓度会降低。Ozone is easy to self-decompose. When the distance between the place where the ozone water is generated and the place where it is used is long, the concentration of ozone in the ozone water will decrease while the generated ozone water is being transported to the place where it is used.

当存在有多个使用位置的情况时,若是采用将在臭氧水生成场所所生成的臭氧水通过配管来进行输送,并依序分流供给至使用位置的方法,则在每次的使臭氧水分流时,在配管内所流动的臭氧水的流速会降低。因此,在位于下游侧的使用位置,直到臭氧水到达为止的期间中,会耗费时间,当臭氧水到达使用位置时,臭氧会自我分解,臭氧水中的臭氧浓度会降低。When there are multiple usage locations, if the ozone water generated at the ozone water generation site is transported through the pipes and then distributed to the usage locations in sequence, the ozone water will be diverted each time. , the flow rate of ozone water flowing in the piping will decrease. Therefore, it takes time until the ozone water arrives at the usage location located on the downstream side, and when the ozone water reaches the usage location, the ozone self-decomposes and the ozone concentration in the ozone water decreases.

在专利文献1、2中,记载有防止臭氧水中的臭氧浓度降低的技术。Patent Documents 1 and 2 describe techniques for preventing a decrease in ozone concentration in ozone water.

在专利文献1中,在输送使臭氧溶解在纯水中所生成的臭氧水时,通过在臭氧水生成装置中将碳酸气体或者是有机化合物溶解于纯水或臭氧水中,来抑制臭氧的自我分解。在专利文献2中,在从臭氧水供给装置的臭氧水的供水管起直到排出管为止的任意的位置处,设置药剂供给装置,并添加从由亚硝酸、亚硝酸盐、碳酸、碳酸盐、碳酸氢盐、亚硫酸、亚硫酸盐、亚硫酸氢盐以及肼所组成的组中选择的1种或2种以上的臭氧分解抑制剂。In Patent Document 1, when transporting ozone water produced by dissolving ozone in pure water, the self-decomposition of ozone is suppressed by dissolving carbon dioxide gas or organic compounds in pure water or ozone water in an ozone water generator. . In Patent Document 2, at any position from the supply pipe of the ozone water of the ozone water supply device until the discharge pipe, a medicament supply device is set, and the nitrous acid, nitrite, carbonic acid, carbonate 1, or 2 or more ozonolysis inhibitors selected from the group consisting of , bicarbonate, sulfurous acid, sulfite, bisulfite, and hydrazine.

在专利文献3~5中,记载有对于臭氧水中的臭氧浓度进行调整而能够容易地供给所期望的臭氧浓度的臭氧水的技术。Patent Documents 3 to 5 describe techniques that can easily supply ozone water having a desired ozone concentration by adjusting the ozone concentration in the ozone water.

在专利文献3中,在使臭氧过度溶解的臭氧水的浓度调整方法中,通过通水路径的长度、加温、超声波、紫外线或者是紊流化,来促进臭氧的分解并调整臭氧浓度。在专利文献4中,使含臭氧水与玻璃作接触,并调整臭氧水的臭氧浓度。In Patent Document 3, in the method of adjusting the concentration of ozone water by excessively dissolving ozone, the decomposition of ozone is promoted and the ozone concentration is adjusted by the length of the water passage, heating, ultrasonic waves, ultraviolet rays, or turbulence. In Patent Document 4, ozone-containing water is brought into contact with glass, and the ozone concentration of the ozone water is adjusted.

在专利文献5中,记载有稳定地供给所期望浓度的臭氧水的技术。在专利文献5中,将存在有臭氧分解抑制物质的臭氧水输送至使用位置,并在使用位置近旁,通过浓度调整装置来使其降低至规定的臭氧浓度。Patent Document 5 describes a technique for stably supplying ozone water of a desired concentration. In Patent Document 5, the ozonated water containing the ozonolysis inhibiting substance is transported to the use location, and is lowered to a predetermined ozone concentration by a concentration adjustment device near the use location.

现有技术文献prior art literature

专利文献patent documents

专利文献1:日本特开2000-37695号公报Patent Document 1: Japanese Patent Laid-Open No. 2000-37695

专利文献2:日本特开2002-18454号公报Patent Document 2: Japanese Patent Laid-Open No. 2002-18454

专利文献3:日本特开2000-180433号公报Patent Document 3: Japanese Patent Laid-Open No. 2000-180433

专利文献4:日本特开2000-334468号公报Patent Document 4: Japanese Patent Laid-Open No. 2000-334468

专利文献5:日本特开2005-294377号公报Patent Document 5: Japanese Patent Laid-Open No. 2005-294377

发明内容Contents of the invention

发明所要解决的课题The problem to be solved by the invention

本发明的目的在于提供一种当臭氧水生成装置和使用位置之间的距离长的情况时、和/或具备有多个使用位置的情况时,能够不使臭氧水中的臭氧浓度降低地供给臭氧水的臭氧水供给装置及臭氧水供给方法。The object of the present invention is to provide a method that can supply ozone without lowering the ozone concentration in the ozone water when the distance between the ozone water generating device and the use position is long, and/or when there are a plurality of use positions. An ozone water supply device for water and an ozone water supply method.

解决课题的方法Solution to the problem

第1方案的臭氧水供给装置,其特征在于,其具备:生成用于供给至使用位置的臭氧水的臭氧水生成装置;连接于前述臭氧水生成装置并且形成有将在内部流动的臭氧水分流并与前述使用位置的数量相对应的分支点的主管;联络前述分支点和前述使用位置的分支管;以及防止在前述主管和前述分支管中流动的臭氧水的流速降低的流速维持装置。The ozone water supply device of the first aspect is characterized in that it comprises: an ozone water generator for supplying ozone water to the place of use; connected to the aforementioned ozone water generator and formed with an ozone water distributor that flows inside. And the main pipe of the branch point corresponding to the quantity of the aforementioned use position; The branch pipe of the aforementioned branch point and the aforementioned use position;

根据第1方案,则能够防止臭氧水的流速的降低,并以所期望的流速来输送臭氧水,能够在臭氧水中的臭氧浓度降低前将臭氧水供给至使用位置。因此,第1方案可适宜使用于臭氧水生成装置和使用位置之间的距离长的情形。According to the first aspect, it is possible to prevent the decrease in the flow velocity of the ozone water, to deliver the ozone water at a desired flow velocity, and to supply the ozone water to the use position before the ozone concentration in the ozone water decreases. Therefore, the first aspect can be suitably used when the distance between the ozone water generator and the use location is long.

在第2方案中,将前述流速维持装置构成为:将前述主管的流路剖面积,形成为与前述分支点的上游侧相比,在下游侧减少,并且,前述主管的流路剖面积的减少量,对应于在前述分支点被分流至前述分支管的臭氧水的流量。In the second aspect, the flow velocity maintaining device is configured such that the cross-sectional flow area of the main pipe is formed to be smaller on the downstream side than the upstream side of the branch point, and the flow cross-sectional area of the main pipe is The amount of reduction corresponds to the flow rate of the ozone water that is diverted to the aforementioned branch pipe at the aforementioned branch point.

根据第2方案,则在从主管将臭氧水进行了分流之后,也能够防止臭氧水的流速的降低。此臭氧水供给装置,可优选地使用于当将臭氧水从作为臭氧水的供给用配管的主管依序分流并供给至多个使用位置的情形。According to the second aspect, even after the ozone water is diverted from the main pipe, it is possible to prevent a decrease in the flow velocity of the ozone water. This ozone water supply device can be suitably used for sequentially branching and supplying ozone water from a main pipe which is a supply pipe for ozone water to a plurality of use locations.

在第3方案中,对应于前述使用位置的数量设置将使朝向前述使用位置的臭氧水的流动作迂回的迂回用配管,并设置使臭氧水流动至前述使用位置或者是前述迂回用配管的切换装置。In the third aspect, a detour piping that will detour the flow of ozone water toward the aforementioned use position is provided corresponding to the number of the aforementioned use positions, and a switch for making the ozone water flow to the aforementioned use position or the aforementioned detour piping is provided. device.

根据第3方案,则即使是不对于使用位置的任一者供给臭氧水的情形时,也能够使臭氧水流动至此迂回用配管中。因此,在对应于不供给臭氧水的使用位置的主管的分支点的下游侧,能够流动与主管的流路剖面相配合的流量的臭氧水,能够将臭氧水的流速适当地维持。According to the third aspect, even when the ozone water is not supplied to any of the use positions, the ozone water can be made to flow into the piping for this detour. Therefore, on the downstream side of the branch point of the main pipe corresponding to the use position where no ozone water is supplied, the flow rate of ozone water matching the flow path section of the main pipe can flow, and the flow velocity of the ozone water can be maintained appropriately.

在第4方案的臭氧水供给装置中,以使在紧接于前述使用位置之前的前述分支管内流动的臭氧水的流速成为至少30m/分钟的方式,来进行控制。In the ozone water supply device according to the fourth aspect, the flow velocity of the ozone water flowing in the branch pipe immediately before the use position is controlled to be at least 30 m/min.

根据第4方案,则能够在臭氧水中的臭氧产生自我分解并使溶存臭氧浓度降低之前,将臭氧水供给至使用位置。According to the fourth aspect, the ozone water can be supplied to the use site before the ozone in the ozone water is self-decomposed and the dissolved ozone concentration is reduced.

第5方案的臭氧水供给装置,具备有将供给至前述使用位置的臭氧水的pH值抑制为6以下的pH值抑制装置。An ozone water supply device according to a fifth aspect includes a pH suppressing device for suppressing the pH of the ozone water supplied to the use point to 6 or less.

根据第5方案,将臭氧水的pH值调整为酸性,抑制臭氧的自我分解,能够有效地防止臭氧水中的溶存臭氧浓度的降低。According to the fifth aspect, the pH value of the ozone water is adjusted to be acidic, the self-decomposition of ozone is suppressed, and the reduction of the dissolved ozone concentration in the ozone water can be effectively prevented.

第6方案的臭氧水供给方法,其是将通过臭氧水生成装置生成的臭氧水经由配管供给至使用臭氧水的使用位置的臭氧水供给方法,其特征在于,将在前述配管中流动的臭氧水的流速维持在规定值以上,并将臭氧水供给至前述使用位置。The ozone water supply method of the 6th aspect, it is the ozone water supply method of supplying the ozone water generated by the ozone water generating device to the usage position using the ozone water through piping, it is characterized in that the ozone water flowing in the piping is The flow rate is maintained above the specified value, and the ozone water is supplied to the aforementioned location of use.

根据第6方案,则能够防止臭氧水的流速的降低,并以所期望的流速来输送臭氧水。由于防止臭氧水的流速的降低,因此,能够在臭氧水中的臭氧浓度降低之前,将臭氧水供给至使用位置。第6方案,可优选地使用于臭氧水生成装置和使用位置之间的距离长的情形。According to the sixth aspect, it is possible to transport ozone water at a desired flow rate while preventing a decrease in the flow rate of ozone water. Since the decrease of the flow velocity of the ozone water is prevented, the ozone water can be supplied to the use place before the ozone density|concentration of the ozone water decreases. The sixth means can be preferably used when the distance between the ozone water generator and the place of use is long.

在第7方案中,前述配管,连接于前述臭氧水生成装置,并且由形成有将在内部流动的臭氧水分流并与前述使用位置的数量相对应的分支点的主管、和联络前述分支点和前述使用位置的分支管构成,并且,将前述主管的流路剖面积,形成为与前述分支点的上游侧相比,在下游侧减少,并且,使前述主管的流路剖面积的减少量与在前述分支点被分流至前述分支管中的臭氧水的流量相对应,防止在主管中流动的臭氧水的流速的降低,并供给臭氧水。In the 7th aspect, the aforementioned piping is connected to the aforementioned ozone water generator, and is formed with a main pipe that divides the ozone water flowing inside and a branch point corresponding to the number of the aforementioned use positions, and communicates the aforementioned branch point and The branch pipe at the position of use is configured, and the cross-sectional area of the flow path of the main pipe is formed to be reduced on the downstream side compared with the upstream side of the branch point, and the reduction in the cross-sectional area of the flow path of the main pipe is equal to According to the flow rate of the ozone water branched into the said branch pipe at the said branch point, the decrease of the flow velocity of the ozone water flowing in the main pipe is prevented, and ozone water is supplied.

根据第7方案,则在从主管将臭氧水进行了分流之后,也能够防止在主管中流动的臭氧水的流速的降低。第7方案可优选地使用于当将臭氧水从作为臭氧水的供给用配管的主管依序分流并供给至多个使用位置的情形。According to the seventh aspect, even after the ozone water is diverted from the main pipe, it is possible to prevent a decrease in the flow velocity of the ozone water flowing through the main pipe. The seventh aspect can be preferably used when the ozone water is sequentially divided from the main pipe which is the supply pipe of the ozone water and supplied to a plurality of use locations.

在第8方案中,对应于前述使用位置的数量设置将使朝向前述使用位置的臭氧水的流动作迂回的迂回用配管,并且,设置使臭氧水流动至前述使用位置或者是前述迂回用配管的切换装置,并通过与所选择了的前述使用位置相对应的前述切换装置,来使臭氧水流动至前述迂回用配管,防止在与所选择了的前述使用位置相对应的分支点的下游侧的主管中流动的臭氧水的流速的降低,并供给臭氧水。In the eighth aspect, the detour piping that will detour the flow of ozone water toward the above-mentioned use position is provided corresponding to the number of the above-mentioned use positions, and the flow of ozone water to the above-mentioned use position or the above-mentioned detour piping is provided. Switching device, and through the aforementioned switching device corresponding to the selected aforementioned use position, the ozone water flows to the aforementioned detour piping to prevent the downstream side of the branch point corresponding to the selected aforementioned use position. The flow velocity of the ozone water flowing in the main pipe is reduced, and the ozone water is supplied.

在第8方案中,即使是不对于使用位置的任一者供给臭氧水的情形时,也能够使臭氧水流动至此迂回用配管中。因此,在对应于不供给臭氧水的使用位置的主管的分支点的下游侧,能够流动与主管的流路剖面相配合的流量的臭氧水,能够将臭氧水的流速适当地维持。In the eighth aspect, even when the ozone water is not supplied to any of the use positions, the ozone water can be made to flow into the piping for this detour. Therefore, on the downstream side of the branch point of the main pipe corresponding to the use position where no ozone water is supplied, the flow rate of ozone water matching the flow path section of the main pipe can flow, and the flow velocity of the ozone water can be maintained appropriately.

在第9方案的臭氧水供给方法中,以使在紧接于前述使用位置之前的前述分支管内流动的臭氧水的流速成为至少30m/分钟的方式,来进行控制并供给臭氧水。In the ozone water supply method according to the ninth aspect, the ozone water is controlled and supplied so that the flow velocity of the ozone water flowing in the branch pipe immediately before the use position becomes at least 30 m/min.

根据第9方案,则能够在臭氧水中的臭氧产生自我分解并使溶存臭氧浓度降低之前,将臭氧水供给至使用位置。According to the ninth aspect, the ozone water can be supplied to the use site before the ozone in the ozone water is self-decomposed and the dissolved ozone concentration is reduced.

在第10方案的臭氧水供给方法中,将臭氧水的pH值设为6以下而供给臭氧水。In the ozone water supply method of Claim 10, the pH value of ozone water is 6 or less, and ozone water is supplied.

根据第10方案,将臭氧水的pH值调整为酸性,抑制自我分解,能够有效地防止臭氧的溶存浓度的降低。According to the tenth aspect, the pH value of the ozone water is adjusted to be acidic, self-decomposition is suppressed, and a decrease in the dissolved concentration of ozone can be effectively prevented.

发明的效果The effect of the invention

根据本发明的臭氧水供给装置及臭氧水供给方法,则即使是在臭氧水生成装置和使用位置之间的距离长的情形时,也能够以所期望的流速来输送臭氧水,能够在溶存臭氧浓度降低之前供给臭氧水。According to the ozone water supply device and the ozone water supply method of the present invention, even when the distance between the ozone water generating device and the use position is long, the ozone water can be transported at a desired flow rate, and the ozone can be dissolved Ozone water is supplied until the concentration decreases.

根据本发明的臭氧水供给装置及臭氧水供给方法,则即使是在将臭氧水从输送臭氧水的主管来依序进行分流并供给至多个使用位置的情形时,也能够在分流后不使在主管中流动的臭氧水的流速降低地来进行输送。其结果,即使是位于下游侧的使用位置,也能够以所期望的流速来供给臭氧水,能够供给防止了溶存臭氧浓度的降低的臭氧水。According to the ozone water supply device and the ozone water supply method of the present invention, even when the ozone water is sequentially divided from the main pipe that transports the ozone water and supplied to a plurality of use positions, it is not necessary to use the ozone water after the division. The flow rate of the ozone water flowing in the main pipe is reduced and transported. As a result, even in the use position located on the downstream side, ozone water can be supplied at a desired flow rate, and it is possible to supply ozone water in which a decrease in dissolved ozone concentration is prevented.

附图说明Description of drawings

图1是本发明的第1实施方式的臭氧水供给装置的工序系统图。Fig. 1 is a process system diagram of an ozone water supply device according to a first embodiment of the present invention.

图2是表示构成臭氧水供给装置的主管以及分支管的局部切剖平面图。Fig. 2 is a partially cutaway plan view showing a main pipe and branch pipes constituting the ozone water supply device.

图3是表示切换臭氧水的流路的电磁阀的符号的说明图。Fig. 3 is an explanatory diagram showing symbols of solenoid valves that switch the flow path of ozone water.

图4是表示使用有挡止阀的切换臭氧水的流路的切换装置的说明图。Fig. 4 is an explanatory view showing a switching device for switching a flow path of ozone water using a check valve.

图5是表示本发明的第2实施方式的臭氧水供给装置的局部的工序系统图。Fig. 5 is a process system diagram showing a part of an ozone water supply device according to a second embodiment of the present invention.

图6是表示切换臭氧水的流路的电磁阀的符号的说明图。Fig. 6 is an explanatory diagram showing symbols of solenoid valves that switch the flow path of ozone water.

图7是表示使用有挡止阀的切换臭氧水的流路的切换装置的说明图。Fig. 7 is an explanatory view showing a switching device for switching a flow path of ozone water using a check valve.

具体实施方式Detailed ways

以下,参考附图,针对本发明的实施方式作说明。另外,本发明的技术范围,并非限定于以下的记载内容或者是附图。Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the technical scope of the present invention is not limited to the following description or drawings.

[第1实施方式][the first embodiment]

臭氧水供给装置10,如图1中所示,具备有用于流动臭氧水的配管。配管,由连接于臭氧水生成装置1的主管11、和从主管11分支出的多个分支管15、16、17构成。在主管11处,从主管11的上游侧起直到下游侧,在不同的位置处设置有与使用位置21、22、23相对应的分支点12、13、14。分支管15、16、17,设置成分别联络这些的分支点12、13、14和使用位置21、22、23。The ozone water supply device 10 is provided with piping for flowing ozone water, as shown in FIG. 1 . The piping is composed of a main pipe 11 connected to the ozone water generator 1 and a plurality of branch pipes 15 , 16 , 17 branched from the main pipe 11 . In the main pipe 11 , branch points 12 , 13 , 14 corresponding to use positions 21 , 22 , 23 are provided at different positions from the upstream side of the main pipe 11 to the downstream side. The branch pipes 15, 16, 17 are provided so as to connect these branch points 12, 13, 14 and use locations 21, 22, 23, respectively.

分别设置有从各分支管15、16、17分支的迂回用配管31、32、33。这些的迂回用配管31、32、33,当不对于使用位置21、22、23作供给的情形时,将臭氧水送水至回收管线37。Detour pipes 31 , 32 , 33 branched from the branch pipes 15 , 16 , 17 are respectively provided. These detour pipes 31 , 32 , and 33 send ozone water to the recovery line 37 when they are not supplied to the use locations 21 , 22 , and 23 .

〈臭氧水生成装置〉<Ozone water generator>

臭氧水生成装置1,具备有作为臭氧气体供给源的臭氧发生器4、和将臭氧溶解至水(例如纯水)中的臭氧溶解装置5。The ozone water generating device 1 includes an ozone generator 4 as an ozone gas supply source, and an ozone dissolving device 5 for dissolving ozone in water (for example, pure water).

在臭氧发生器4处,连接有氧气槽2和碳酸气体槽3,并被供给有氧气和碳酸气体的混合气体。此臭氧发生器4,通过各种的臭氧生成方式而生成臭氧。例如,可使用无声放电方式、电分解方式或者是紫外线方式的臭氧发生机(Ozonizer),来生成臭氧。The oxygen tank 2 and the carbon dioxide gas tank 3 are connected to the ozone generator 4, and the mixed gas of oxygen gas and carbon dioxide gas is supplied. This ozone generator 4 generates ozone by various ozone generation methods. For example, ozone can be generated using an ozonizer using a silent discharge method, an electrolysis method, or an ultraviolet method.

臭氧溶解装置5,被供给有水(例如纯水,也可为超纯水)、和通过臭氧发生器4所生成的含臭氧气体,并生成臭氧水。关于臭氧溶解装置5,并未作特别限制,例如,可使用:利用气体透过膜来使臭氧气体溶解的方式的装置、或者是使用喷射器来使臭氧气体溶解在高压的纯水中的方式的装置等。The ozone dissolving device 5 is supplied with water (for example, pure water, or ultrapure water) and the ozone-containing gas generated by the ozone generator 4 to generate ozone water. Regarding the ozone dissolving device 5, it is not particularly limited. For example, a device that utilizes a gas permeable membrane to dissolve the ozone gas, or a method that uses an injector to dissolve the ozone gas in high-pressure pure water devices etc.

在此臭氧水生成装置1中,使碳酸气体溶解于水中而将臭氧水的pH设为酸性,以抑制臭氧水中的臭氧的自我分解。通过对于碳酸气体的溶解量作控制,来调整臭氧水的pH。In this ozone water generating device 1 , carbon dioxide gas is dissolved in water to make the pH of the ozone water acidic to suppress self-decomposition of ozone in the ozone water. Adjust the pH of ozone water by controlling the dissolved amount of carbon dioxide gas.

在此实施方式中,将碳酸气体和氧气进行混合,但是,也可在通过臭氧发生器4所生成的臭氧气体中混合碳酸气体,也可在从臭氧溶解装置5而来的臭氧水中添加碳酸气体并使其溶解。但是,由于碳酸气体为用于抑制臭氧的自我分解,因此,优选在使臭氧气体溶解时,或者是在使臭氧气体溶解之前,将碳酸气体溶解于水中。为了将臭氧水的pH调整为酸性,也可在臭氧水生成装置1的内部或者是其前后,使用其他药品(pH调整液)。In this embodiment, carbon dioxide gas and oxygen are mixed, but also carbon dioxide gas can be mixed in the ozone gas generated by the ozone generator 4, and carbon dioxide gas can also be added in the ozone water coming from the ozone dissolving device 5 and let it dissolve. However, since carbon dioxide gas is used to suppress self-decomposition of ozone, it is preferable to dissolve carbon dioxide gas in water when or before dissolving ozone gas. In order to adjust the pH of the ozone water to be acidic, other chemicals (pH adjustment liquid) may be used inside the ozone water generator 1 or before and after it.

对于调整pH后的臭氧水,优选pH为7以下,特别优选为6以下,更优选为2~6。The pH of the ozone water after pH adjustment is preferably 7 or less, particularly preferably 6 or less, more preferably 2-6.

〈使用位置〉<utilized location>

在使用位置21、22、23处,使用所供给而来的臭氧水,来将半导体用硅基板、液晶用玻璃基板或者是光掩模用石英基板等的基板或是其他的电子零件洗净。在使用位置21、22、23处,将基板等浸渍于被供给有臭氧水的处理槽中而进行处理,或者是对于基板等喷射臭氧水的淋浴而进行处理。在图1所示的臭氧水供给装置10中,设置有3个位置的使用位置21、22、23,但是,此使用位置,也可设置1个位置、2个位置或者是4个位置以上。At the usage positions 21, 22, and 23, the supplied ozone water is used to clean substrates such as silicon substrates for semiconductors, glass substrates for liquid crystals, or quartz substrates for photomasks, or other electronic components. In use positions 21 , 22 , and 23 , substrates and the like are treated by immersing them in a treatment tank supplied with ozone water, or treated by showering the substrates and the like by spraying ozone water. In the ozone water supply device 10 shown in FIG. 1 , there are three usage positions 21 , 22 , and 23 , but this usage position can also be provided with 1 position, 2 positions, or more than 4 positions.

〈主管及分支管〉〈Supervisor and branch management〉

主管11,输送从臭氧水生成装置1而来的臭氧水。优选在主管11处设置有送水用泵。泵,也可设置在臭氧溶解装置5的上游侧。The main pipe 11 transports the ozone water from the ozone water generating device 1 . It is preferable that a pump for sending water is provided at the main pipe 11 . The pump may also be installed on the upstream side of the ozone dissolving device 5 .

主管11,如图2中所示,具备有与使用位置21、22、23的数量相同数量的分支点12、13、14,并使臭氧水分流。主管11,在各分支点12、13、14附近,成为随着朝向下游侧而流路剖面积逐渐减少的锥状形状。The main pipe 11, as shown in FIG. 2, has the same number of branch points 12, 13, 14 as the number of use positions 21, 22, 23, and divides the ozone water. The main pipe 11 has a tapered shape in which the cross-sectional area of the flow path gradually decreases toward the downstream side in the vicinity of the respective branch points 12 , 13 , and 14 .

分支管15、16、17,分别联络主管11的分支点12、13、14和使用位置21、22、23,并将在各分支点12、13、14处而从主管11所分流的臭氧水送水至使用位置21、22、23。The branch pipes 15, 16, 17 are respectively connected to the branch points 12, 13, 14 and the use positions 21, 22, 23 of the main pipe 11, and the ozone water diverted from the main pipe 11 at each branch point 12, 13, 14 Water is sent to the use positions 21, 22, 23.

流速维持装置,如图2中所示,通过构成为如下装置而实现的:将主管11形成为使主管11的流路剖面积在与分支点12、13、14的上游侧相比在下游侧减少,并且,使主管11的流路剖面积的减少量与在分支点12、13、14处分流至分支管15、16、17中的臭氧水的流量相对应。The flow velocity maintaining means, as shown in FIG. 2 , is realized by configuring the main pipe 11 so that the cross-sectional area of the flow path of the main pipe 11 is on the downstream side compared with the upstream side of the branch points 12 , 13 , 14 Reduce, and make the reduction of the cross-sectional area of the flow path of the main pipe 11 correspond to the flow rate of the ozone water branched into the branch pipes 15 , 16 , 17 at the branch points 12 , 13 , 14 .

即使是在分支点12上游侧的主管11a中流动来的臭氧水的一部分,从分支点12分流至分支管15,也由于分支点12的下游侧的主管11b的管径成为较上游侧的主管11a小,因此,在主管11b中流动的臭氧水的流速,成为规定范围内。Even if part of the ozone water flowing in the main pipe 11a on the upstream side of the branch point 12 is diverted from the branch point 12 to the branch pipe 15, the pipe diameter of the main pipe 11b on the downstream side of the branch point 12 becomes the main pipe 11b on the upstream side. Since 11a is small, the flow velocity of the ozone water flowing through the main pipe 11b falls within a predetermined range.

同样地,即使是臭氧水从分支点13、14分流至分支管16、17处,也由于在分支点12、13下游侧的主管11c、11d的管径分别变得更小,因此,在主管11c、11d内的臭氧水的流速成为规定范围内。Similarly, even if the ozone water is diverted from the branch points 13,14 to the branch pipes 16,17, because the pipe diameters of the main pipes 11c, 11d on the downstream side of the branch points 12,13 become smaller respectively, therefore, in the main pipe The flow velocity of the ozone water in 11c and 11d falls within a predetermined range.

通过如此地构成主管11以及分支管15、16、17,即使是在臭氧水从主管11分流至分支管15、16、17之后,也能够防止在主管11中所流动的臭氧水的流速的降低。此主管11的配管直径,根据所要得到的臭氧水的流速来进行设计。By configuring the main pipe 11 and the branch pipes 15, 16, 17 in this way, even after the ozone water is diverted from the main pipe 11 to the branch pipes 15, 16, 17, it is possible to prevent the flow velocity of the ozone water flowing in the main pipe 11 from decreasing. . The pipe diameter of the main pipe 11 is designed according to the flow velocity of the ozone water to be obtained.

在主管11中流动的臭氧水的流速,根据臭氧水生成装置1和使用位置21、22、23之间的距离而进行控制。为了能够在臭氧水中的溶存臭氧浓度降低之前在使用位置21、22、23使用臭氧水,优选将臭氧水的流速设为30m/分钟~180m/分钟,更优选设为30m/分钟~120m/分钟,特别优选设为40m/分钟~90m/分钟。The flow velocity of the ozone water flowing through the main pipe 11 is controlled according to the distances between the ozone water generator 1 and the use locations 21 , 22 , and 23 . In order to be able to use the ozone water at the use positions 21, 22, and 23 before the dissolved ozone concentration in the ozone water decreases, it is preferable to set the flow velocity of the ozone water at 30 m/min to 180 m/min, more preferably at 30 m/min to 120 m/min , particularly preferably set to 40 m/min to 90 m/min.

使用于主管11以及分支管15、16、17的配管的材质,并未特别限定,但是,优选使用具备有耐臭氧性的配管。例如,可使用通过全氟烷氧基氟树脂所形成的PFA配管等。The material of the pipes used for the main pipe 11 and the branch pipes 15 , 16 , and 17 is not particularly limited, but it is preferable to use pipes having ozone resistance. For example, PFA piping or the like formed of perfluoroalkoxy fluororesin can be used.

〈迂回用配管〉〈Detour piping〉

迂回用配管31、32、33,能够使臭氧水迂回过使用位置21、22、23并流动至回收管线37。迂回用配管31、32、33,连接于各分支管15、16、17,当不对于使用位置21、22、23供给臭氧水的情形时,使流动至分支管15、16、17的臭氧水迂回至回收管线37。The detour piping 31 , 32 , 33 can make the ozone water detour through the use positions 21 , 22 , 23 and flow to the recovery line 37 . Detour piping 31, 32, 33 is connected to each branch pipe 15, 16, 17, and when the ozone water is not supplied to the use position 21, 22, 23, the ozone water flowing to the branch pipe 15, 16, 17 Detour to recovery line 37.

在分支管15~17以及迂回用配管31~33处,设置有用于在将臭氧水供给至使用位置21~23的流路选择和使臭氧水流动至迂回用配管31~33的流路选择之间进行切换的切换装置(阀)。At the branch pipes 15-17 and the detour piping 31-33, there is provided a flow channel selection for supplying ozone water to the use positions 21-23 and a flow channel selection for making the ozone water flow to the detour piping 31-33. Switching device (valve) for switching between.

例如,当在3个位置的使用位置21、22、23中的位于第1个位置的使用位置21未被使用的情形时,将流动至分支管15的臭氧水的全量,从迂回用配管31流动至回收管线37。如此地,即使是在存在有未使用的使用位置21的情形时,也能够通过迂回用配管31来使臭氧水作迂回,并将在主管11的分支点12下游侧的主管11b中所流动的臭氧水的流速维持在规定范围内。For example, when the use position 21 at the first position among the use positions 21, 22, and 23 of the three positions is not used, the whole amount of ozone water flowing to the branch pipe 15 is transferred from the detour piping 31 Flow to recovery line 37. In this way, even when there is an unused use position 21, the ozone water can be detoured through the detour piping 31, and the ozone water flowing in the main pipe 11b on the downstream side of the branch point 12 of the main pipe 11 can be diverted. The flow rate of ozone water is maintained within the specified range.

同样地,在不使用其他的使用位置22或23的情形时,也使在朝向各个的使用位置22、23的分支管16、17中所流动的臭氧水的全量,从迂回用配管32、33来流动至回收管线37。由此,在主管11的分支点13、14下游侧的主管11c、11d中的臭氧水的流速被维持于规定值。Similarly, when not using other use positions 22 or 23, also make the total amount of ozone water flowing in the branch pipes 16, 17 towards each use positions 22, 23 flow from the detour piping 32, 33 to flow to recovery line 37. Thereby, the flow velocity of the ozone water in the main pipes 11c, 11d downstream of the branch points 13, 14 of the main pipe 11 is maintained at a predetermined value.

迂回用配管31、32、33的管径,优选与分支管15、16、17的管径相同。迂回用配管31、32、33的材质,虽并未特别限定,但是,优选使用具备有耐臭氧性的配管,例如,可使用通过全氟烷氧基氟树脂所形成的PFA配管等。The diameters of the detour piping 31 , 32 , 33 are preferably the same as those of the branch pipes 15 , 16 , 17 . The material of the detour pipes 31, 32, 33 is not particularly limited, but it is preferable to use a pipe having ozone resistance, for example, a PFA pipe formed of a perfluoroalkoxy fluororesin or the like can be used.

用于进行使流入至分支管14、15、16中的臭氧水的全量流动至使用位置21、22、23的流路选择和流动至迂回用配管31、32、33的流路选择的切换装置,例如使用如图3中所示的电磁阀40或者是如图4中所示的挡止阀41、42而构成。Switching device for selecting the flow path for the entire amount of ozone water flowing into the branch pipes 14, 15, and 16 to flow to the use positions 21, 22, and 23 and to flow to the detour piping 31, 32, and 33 , for example, using a solenoid valve 40 as shown in FIG. 3 or stop valves 41 and 42 as shown in FIG. 4 .

图3中所示的电磁阀40,经由阀内的滑轴(spool)的移动,来切换为使在分支管15、16、17中所流动的臭氧水的全量流动至使用位置21、22、23的状态和流动至迂回用配管31、32、33的状态中的任一者。滑轴的移动,是通过对于电磁阀40所具备的电磁线圈的电流的ON、OFF(开、关)来进行的。The solenoid valve 40 shown in Figure 3 is switched to make the full amount of ozone water flowing in the branch pipes 15, 16, 17 flow to the use positions 21, 22, 23 and the state of flowing to the detour piping 31 , 32 , 33 . The movement of the spool is performed by turning ON and OFF (opening and closing) current to a solenoid coil included in the solenoid valve 40 .

图4中所示的挡止阀41,设置在分支管15、16、17和迂回用配管31、32、33的分支点的下游侧的分支管15、16、17处,挡止阀42,设置在迂回用配管31、32、33处。当停止对于使用位置21、22、23的臭氧水的供给,并使臭氧水流动至迂回用配管31、32、33的情形时,将分支管15、16、17的挡止阀41关闭,并且将迂回用配管31、32、33的挡止阀42开启。当使臭氧水流动至使用位置21、22、23处时,将挡止阀41设为开,并将挡止阀42设为关。The check valve 41 shown in FIG. Installed at detour piping 31 , 32 , 33 . When the supply of ozone water to the use positions 21, 22, 23 is stopped, and the ozone water is made to flow to the detour piping 31, 32, 33, the stop valves 41 of the branch pipes 15, 16, 17 are closed, and The check valve 42 of the detour piping 31, 32, 33 is opened. When making the ozone water flow to the usage positions 21, 22, 23, the stop valve 41 is set to open, and the stop valve 42 is set to close.

另外,流路的切换,并不被限定于使用图3中所示的电磁阀40或者是图4中所示的挡止阀41、42的切换装置,也可使用其他构成的切换装置。In addition, the switching of the flow path is not limited to the switching device using the solenoid valve 40 shown in FIG. 3 or the stop valves 41 and 42 shown in FIG. 4 , and switching devices of other configurations may be used.

〈臭氧水供给装置的动作〉<Operation of the ozone water supply device>

上述的臭氧水供给装置10,如下所述进行动作。The above-mentioned ozone water supply device 10 operates as follows.

通过臭氧水生成装置1所生成的臭氧水,在主管11中流动。如同前述,当在主管11中流动臭氧水时,将臭氧水,以至少30m/分钟的流速而送出,优选为30m/分钟~180m/分钟的流速,更优选为30m/分钟~120m/分钟的流速,特别优选为40m/分钟~90m/分钟的流速。此时,臭氧水的pH值优选设为7以下、特别优选设为6以下,更优选设为2~6。The ozone water generated by the ozone water generating device 1 flows through the main pipe 11 . As mentioned above, when the ozone water flows in the main pipe 11, the ozone water is sent out at a flow velocity of at least 30m/min, preferably at a flow velocity of 30m/min to 180m/min, more preferably at a rate of 30m/min to 120m/min The flow velocity is particularly preferably a flow velocity of 40 m/min to 90 m/min. At this time, the pH of the ozone water is preferably 7 or less, particularly preferably 6 or less, and more preferably 2-6.

被送出至主管11处的臭氧水,在主管11的区间11a中流动,并到达最初的分支点12处。到达分支点12的臭氧水,其一部分被分流至分支管15中,残余的部分在主管11的区间11b中流动。The ozone water sent to the main pipe 11 flows through the section 11 a of the main pipe 11 and reaches the first branch point 12 . A part of the ozone water reaching the branch point 12 is branched into the branch pipe 15 , and the rest flows through the section 11 b of the main pipe 11 .

从主管11分流至分支管15的臭氧水,被供给至使用位置21。被供给的臭氧水,在使用位置21,被使用于半导体用硅基板、液晶用玻璃基板或者是光掩模用石英基板等的基板也或是其他的电子零件的洗净中。The ozone water branched from the main pipe 11 to the branch pipe 15 is supplied to the use location 21 . The supplied ozone water is used at the use position 21 to clean substrates such as silicon substrates for semiconductors, glass substrates for liquid crystals, or quartz substrates for photomasks, or other electronic components.

并未被分流至分支管15的臭氧水,通过分支点12,并流入至区间11b中。由于分支点12附近成为平缓的锥状,因此,在分支点12附近,在内部流动的臭氧水并不会生成紊流,不会有由于能量的损失所导致的臭氧水流速降低的情形。主管11,相对于区间11a的流路剖面积而将区间11b的流路剖面积形成为较小,因此,区间11b的臭氧水的流速,成为规定值以上,优选为30~180m/分钟,更优选为30~120m/分钟,特别优选为40~90m/分钟。The ozone water not branched into the branch pipe 15 passes through the branch point 12 and flows into the section 11b. Since the vicinity of the branch point 12 becomes a gentle cone, the ozone water flowing inside does not generate turbulent flow near the branch point 12, and the flow rate of the ozone water will not decrease due to energy loss. The main pipe 11 forms the flow path cross-sectional area of the section 11b smaller with respect to the flow path cross-sectional area of the section 11a. Therefore, the flow velocity of the ozone water in the section 11b becomes more than a predetermined value, preferably 30 to 180 m/min, more preferably 30 to 180 m/min. It is preferably 30 to 120 m/min, particularly preferably 40 to 90 m/min.

在区间11b中流动的臭氧水,在之后到达分支点13、14时,使其一部分分流至分支管16、17中,并使残余部分流动至主管11中的分支点14下游侧的区间11d中。After the ozone water flowing in the section 11b reaches the branch points 13 and 14, part of it is diverted into the branch pipes 16 and 17, and the rest is flowed into the section 11d on the downstream side of the branch point 14 in the main pipe 11. .

在分支管15、16、17处,以规定值以上的流速从主管11流动而来的臭氧水,在维持该流速的状态下流入。被分流至分支管15、16、17的臭氧水,在分支管15、16、17中流动并被供给至使用位置21、22、23,且在各使用位置21、22、23被使用在电子零件等的洗净中。在分支点12~14未被分流至分支管15~16中的臭氧水,以规定值以上的流速在主管11中流动。In the branch pipes 15 , 16 , and 17 , the ozone water flowing from the main pipe 11 at a flow velocity equal to or higher than a predetermined value flows in while maintaining the flow velocity. The ozone water branched to the branch pipes 15, 16, 17 flows in the branch pipes 15, 16, 17 and is supplied to the use positions 21, 22, 23, and is used in the electronic Cleaning of parts etc. The ozone water not branched into the branch pipes 15 to 16 at the branch points 12 to 14 flows through the main pipe 11 at a flow velocity equal to or higher than a predetermined value.

如此地,由于在主管11中所流动的臭氧水的流速的降低被防止,因此,能够使臭氧水迅速地到达各使用位置21、22、23处。因此,臭氧水中的臭氧并不会产生自我分解,在溶存臭氧浓度降低之前,臭氧水被供给至各使用位置21、22、23。In this way, since the fall of the flow velocity of the ozone water which flows through the main pipe 11 is prevented, the ozone water can be made to reach each use location 21,22,23 rapidly. Therefore, the ozone in the ozone water does not self-decompose, and the ozone water is supplied to the use locations 21, 22, and 23 until the dissolved ozone concentration decreases.

在主管11的区间14d中流动的臭氧水,之后在回收管线37中合流并被回收。The ozone water flowing in the section 14d of the main pipe 11 is then combined in the recovery line 37 and recovered.

当对于使用位置21、22、23的任一者并不供给臭氧水的情形时,使臭氧水流动至相对应的迂回用配管31、32、33中并迂回至回收管线37。When the ozone water is not supplied to any one of the use positions 21 , 22 , 23 , the ozone water is made to flow into the corresponding detour piping 31 , 32 , 33 and detour to the recovery line 37 .

因此,即使是在对于1个或者是2个以上的使用位置并不供给臭氧水的情形时,也不会有使在朝向该使用位置的分支点下游侧的主管11内的臭氧水的流速成为过大的情形,能够维持于规定范围内。Therefore, even when not supplying ozone water to 1 or 2 or more use positions, the flow velocity of the ozone water in the main pipe 11 on the downstream side of the branch point toward the use position will not become If it is too large, it can be maintained within the specified range.

若是使用此臭氧水供给装置10来供给臭氧水,则即使是在臭氧水生成装置1和使用位置21、22、23之间的距离长的情形时,也能够以所期望的流速来输送臭氧水,能够在溶存臭氧浓度降低之前供给臭氧水。If the ozone water supply device 10 is used to supply the ozone water, even when the distance between the ozone water generation device 1 and the use positions 21, 22, 23 is long, the ozone water can be delivered at a desired flow rate. , Ozone water can be supplied before the concentration of dissolved ozone decreases.

当对于多个使用位置21、22、23从输送臭氧水的主管11来依序进行分流并供给臭氧水的情形时,能够在分流后并不使在主管11中所流动的臭氧水的流速降低地来进行输送,即使是对于位于下游侧的使用位置22、23,也能够以所期望的流速来供给臭氧水。当通过臭氧水供给装置10来供给臭氧水的情形时,也会有对于规定的使用位置(例如,位于最上游侧的使用位置21)并不供给臭氧水的情形。于此情形,也同样地,能够对于位于该使用位置21的下游侧的使用位置22、23,将臭氧水维持于所期望的流速地来进行供给。When a plurality of use positions 21, 22, 23 are sequentially divided and supplied with ozone water from the main pipe 11 that transports ozone water, the flow velocity of the ozone water flowing in the main pipe 11 can not be reduced after the diversion. It is possible to supply ozone water at a desired flow rate even to the usage positions 22 and 23 located on the downstream side. When the ozone water is supplied by the ozone water supply device 10 , the ozone water may not be supplied to a predetermined use position (for example, the use position 21 on the most upstream side). In this case, too, the ozonated water can be supplied while maintaining a desired flow velocity with respect to the use positions 22 and 23 located on the downstream side of the use position 21 .

[第2实施方式][the second embodiment]

在上述实施方式中,迂回用配管31~33,虽从分支管15~17的途中分支,但是,也可从主管和分支管间的分支点或者是其附近分支。In the above-described embodiment, the detour piping 31 to 33 branched from the branch pipes 15 to 17 in the middle, but they may branch from the branch point between the main pipe and the branch pipe or its vicinity.

在图5中,表示出了此种实施方式的分支点附近的构成的一个实例。FIG. 5 shows an example of the configuration of the vicinity of the branch point in this embodiment.

图5中表示出了在与臭氧水生成装置相连接的主管51的各分支点52、53、54处连接有分支管55、56、57和迂回用配管61、62、63的臭氧水供给装置10A的工序系统图。在此第2实施方式中所使用的臭氧水生成装置的构成,与第1实施方式中相同,因此,在此省略其说明。Figure 5 shows an ozone water supply device in which branch pipes 55, 56, 57 and detour piping 61, 62, 63 are connected to branch points 52, 53, 54 of the main pipe 51 connected to the ozone water generating device. 10A process system diagram. Since the structure of the ozone water generator used in this 2nd Embodiment is the same as that of 1st Embodiment, the description is abbreviate|omitted here.

设置在主管51的3个的分支点52、53、54,分别连接有分支管55、56、57和与此分支管55、56、57相独立所设置的迂回用配管61、62、63。这些的分支管55、56、57和迂回用配管61、62、63,使用管径被形成为互为同尺寸的管,其流路剖面积被设计为相同的值。又,这些的分支管55、56、57以及迂回用配管61、62、63的流路剖面积,与主管51的相对于分支点52、53、54的上游侧流路剖面积的下游侧流路剖面积的减少量相对应。The three branch points 52, 53, 54 provided in the main pipe 51 are respectively connected to branch pipes 55, 56, 57 and detour pipes 61, 62, 63 provided independently of the branch pipes 55, 56, 57. These branch pipes 55 , 56 , 57 and detour pipes 61 , 62 , 63 use pipes whose pipe diameters are formed to be the same size as each other, and whose flow path cross-sectional areas are designed to have the same value. Moreover, the cross-sectional flow areas of these branch pipes 55, 56, and 57 and the detour piping 61, 62, and 63 are different from those of the upstream side flow cross-sectional areas of the branch points 52, 53, and 54 of the main pipe 51. Corresponding to the reduction in the cross-sectional area of the road.

分支点51的下游侧的主管51b的管径,与分支点51的上游侧的主管51a的管径相比,为更小,分支点52的下游侧的主管51c的管径,与分支点52的上游侧的主管51b的管径相比,为更小,分支点53的下游侧的主管51c的管径,与分支点53的上游侧的主管51b的管径相比,为更小。The pipe diameter of the main pipe 51b on the downstream side of the branch point 51 is smaller than the pipe diameter of the main pipe 51a on the upstream side of the branch point 51, and the pipe diameter of the main pipe 51c on the downstream side of the branch point 52 is smaller than that of the main pipe 51a on the upstream side of the branch point 52. The pipe diameter of the main pipe 51b on the upstream side of the branch point 53 is smaller than the pipe diameter of the main pipe 51b on the upstream side of the branch point 53, and the pipe diameter of the main pipe 51c on the downstream side of the branch point 53 is smaller than the pipe diameter of the main pipe 51b on the upstream side of the branch point 53.

在各分支点52、53、54处,设置有切换装置,该切换装置,用于使从主管51所流动而来的臭氧水的一部分,分流至分支管55、56、57或者是迂回用配管61、62、63中的任一者,并且,使残余部分流动至主管51的分支点52、53、54的下游侧。At each branch point 52, 53, 54, a switching device is provided, and the switching device is used to divert a part of the ozone water flowing from the main pipe 51 to branch pipes 55, 56, 57 or detour piping. 61 , 62 , 63 , and the remainder flows to the downstream side of the branch point 52 , 53 , 54 of the main pipe 51 .

图6是表示作为切换装置的一个实例的电磁阀70。此电磁阀70,通过将电流ON、OFF(开、关),使电磁阀70所具备的滑轴的位置移动,并进行使流动而来的臭氧水流动至分支管55、56、57以及主管51的下游侧的状态和使臭氧水流动至迂回用配管61、62、63以及主管51的下游侧的状态之间的切换。FIG. 6 shows a solenoid valve 70 as an example of switching means. This solenoid valve 70 moves the position of the slide shaft provided by the solenoid valve 70 by turning the current ON and OFF (opening and closing), and makes the flowing ozone water flow to the branch pipes 55, 56, 57 and the main pipe. Switching between the state on the downstream side of 51 and the state in which the ozone water flows to the detour piping 61 , 62 , 63 and the downstream side of the main pipe 51 .

图7中表示出了使用了作为切换装置的挡止阀71、72的例子。挡止阀71,设置在与分支点52、53、54相连接的分支管55、56、57,挡止阀72,被设置在迂回用配管61、62、63。在图7所示的切换装置中,当使臭氧水的一部分分流至分支管55、56、57并且使残余部分流动至主管51的下游侧的情形时,将挡止阀71设为开,并将挡止阀72设为关。相反的,当使臭氧水的一部分分流至迂回用配管61、62、63并且使残余部分流动至主管51的下游侧的情形时,将挡止阀71设为关,并将挡止阀72设为开。FIG. 7 shows an example using check valves 71 and 72 as switching means. The stop valve 71 is provided in the branch pipes 55 , 56 , 57 connected to the branch points 52 , 53 , 54 , and the stop valve 72 is provided in the detour piping 61 , 62 , 63 . In the switching device shown in FIG. 7, when a part of the ozone water is branched to the branch pipes 55, 56, 57 and the remaining part is made to flow to the downstream side of the main pipe 51, the stop valve 71 is set to open, and Set the stop valve 72 to OFF. Conversely, when part of the ozone water is diverted to the detour piping 61, 62, 63 and the rest is flowed to the downstream side of the main pipe 51, the stop valve 71 is set to off, and the stop valve 72 is set to for open.

于图7的情形,迂回用配管61、62、63的从主管51的分支位置,只要为分支管55、56、57的从主管51的分支位置的附近即可,也可在管轴方向上作些许的偏移。In the case of FIG. 7, the branching positions of the detour piping 61, 62, 63 from the main pipe 51 need only be in the vicinity of the branching positions of the branch pipes 55, 56, 57 from the main pipe 51, and may be in the direction of the pipe axis. Make a slight offset.

迂回用配管61、62、63,连接于回收管线67,当在使用位置21、22、23并不使用臭氧水的情形时,迂回用配管61、62、63使臭氧水迂回至回收管线67。The detour piping 61 , 62 , 63 is connected to the recovery line 67 , and when the ozone water is not used at the use positions 21 , 22 , 23 , the detour piping 61 , 62 , 63 detours the ozone water to the recovery line 67 .

在此第2实施方式的臭氧水供给装置10A中,也同样地,主管51形成为相对于各分支点52、53、54的上游侧的流路剖面积而使下游侧的流路剖面积变为更小,并且以使该流路剖面积的减少量成为与分流至分支管55、56、57的臭氧水的流量相对应的方式而形成。因此,能够将在各分支点52、53、54的下游侧的主管51中流动的臭氧水的流速,设为规定范围内。即使是在不对于使用位置供给臭氧水的情形时,也由于使臭氧水分流至迂回用配管61、62、63,因此,在主管51中的与并不供给臭氧水的使用位置相对应的分支点52、53、54的下游侧,并不会有在主管51中流动的臭氧水的流速变得过大的情形。能够设为规定的范围内。In the ozone water supply device 10A of this second embodiment, also, the main pipe 51 is formed so that the flow path cross-sectional area on the downstream side becomes smaller with respect to the flow path cross-sectional area on the upstream side of each branch point 52 , 53 , 54 . It is formed so that the reduction of the cross-sectional area of the flow path corresponds to the flow rate of the ozone water branched into the branch pipes 55 , 56 , and 57 . Therefore, the flow velocity of the ozone water flowing through the main pipe 51 on the downstream side of each branch point 52, 53, 54 can be set within a predetermined range. Even when the ozone water is not supplied to the use position, since the ozone water is diverted to the detour piping 61, 62, 63, the branch corresponding to the use position that does not supply the ozone water in the main pipe 51 On the downstream side of the points 52, 53, and 54, the flow velocity of the ozone water flowing through the main pipe 51 does not become too large. It can be set within a predetermined range.

实施例Example

以下,列举出实施例,对于本发明更进一步作详细说明,但是,本发明并不被以下的实施例作任何的限定。Hereinafter, examples are given, and the present invention is further described in detail. However, the present invention is not limited by the following examples.

另外,在以下所说明的实施例以及比较例中,使用图1中所示的臭氧发生器4(住友精密工业(株),无声放电式臭氧发生器GR-RD)和臭氧溶解装置5(JAPAN GORE-TEX(株),臭氧溶解膜,GNK-01K),来生成臭氧水。另外,溶存臭氧浓度,使用溶存臭氧计(荏原实业(株),溶存臭氧计,EL-700A)来分别进行测定。In addition, in the examples and comparative examples described below, the ozone generator 4 (Sumitomo Precision Industries Co., Ltd., silent discharge type ozone generator GR-RD) and the ozone dissolving device 5 (JAPAN GORE-TEX Co., Ltd., ozone-dissolving membrane, GNK-01K), to generate ozone water. In addition, the concentration of dissolved ozone was measured using a dissolved ozone meter (Ebara Industrial Co., Ltd., dissolved ozone meter, EL-700A).

[实施例][Example]

在此实施例中,使用图1中所示的具备有主管11以及分支管15、16、17的臭氧水供给装置10。使用位置21、22、23,如同图1中所示设为3个位置,并将直到使用位置21的送水距离设为30m,将直到使用位置22的送水距离设为60m,将直到使用位置23的送水距离设为90m。使用将内径如下述地设定的配管:在直到对应于第1个使用位置21的分支点12为止的区间11a中,主管11的内径为32mm,在从对应于第1个使用位置21的分支点12起直到对应于第2个使用位置22的分支点13为止的区间11b的主管11的内径为25mm,在从对应于第2个使用位置22的分支点13起直到对应于第3个使用位置23的分支点14为止的区间11c的主管11的内径为20mm。In this embodiment, an ozone water supply device 10 provided with a main pipe 11 and branch pipes 15 , 16 , 17 shown in FIG. 1 is used. Use positions 21, 22, 23, as shown in Figure 1, be set to 3 positions, and the water delivery distance until use position 21 is set as 30m, the water delivery distance until use position 22 is set as 60m, and the water delivery distance until use position 23 is set as 60m. The water delivery distance is set to 90m. Use a pipe whose inner diameter is set as follows: In the section 11a up to the branch point 12 corresponding to the first use position 21, the inner diameter of the main pipe 11 is 32 mm, and at the branch point from the first use position 21 The inner diameter of the main pipe 11 of the section 11b from the point 12 until the branch point 13 corresponding to the second use position 22 is 25mm, and from the branch point 13 corresponding to the second use position 22 until the branch point 13 corresponding to the third use position The inner diameter of the main pipe 11 in the section 11 c up to the branch point 14 at the position 23 is 20 mm.

对于臭氧发生器4供给氧气和碳酸气体的混合气体,并使生成臭氧气体,再将生成的臭氧气体导入至作为臭氧溶解装置5的臭氧溶解膜,在纯水中溶解臭氧并生成臭氧水。在臭氧溶解装置5的出口处的溶存臭氧浓度为25mg/L。所生成的臭氧水的pH值为5。The mixed gas of oxygen and carbonic acid gas is supplied to the ozone generator 4, and the ozone gas is generated, and then the generated ozone gas is introduced into the ozone dissolving membrane as the ozone dissolving device 5, and ozone is dissolved in pure water to generate ozone water. The dissolved ozone concentration at the outlet of the ozone dissolving device 5 is 25 mg/L. The generated ozone water has a pH value of 5.

在各使用位置21、22、23处,由于溶存臭氧浓度至少需要为20mg/L,因此,到达各使用位置21、22、23时的溶存臭氧浓度的目标值,为20mg/L。At each use position 21 , 22 , 23 , since the dissolved ozone concentration needs to be at least 20 mg/L, the target value of the dissolved ozone concentration when reaching each use position 21 , 22 , 23 is 20 mg/L.

所生成的臭氧水,以送水量35L/分钟而被送出至主管11,并将在各使用位置21、22、23的臭氧水的使用量,设为每一位置为10L/分钟。The generated ozone water was sent to the main pipe 11 at a water supply rate of 35 L/min, and the usage rate of the ozone water at each use position 21 , 22 , 23 was 10 L/min for each position.

通过下述的式(1),算出在主管11中流动的臭氧水的流速。The flow velocity of the ozone water flowing through the main pipe 11 is calculated by the following formula (1).

配管流速LV(m/分钟)=送水量(m3/分钟)/配管剖面积(m2)(1)Piping flow rate LV (m/min) = Water supply volume (m 3 /min)/ Piping cross-sectional area (m 2 ) (1)

在此式(1)中,若是将送水量=0.035(m3/分钟)、配管剖面积=162×3.14×10-6(m2)代入,并求出在区间11a处的配管流速,则成为约43.5m/分钟。In this formula (1), if the water supply rate = 0.035 (m 3 /min) and the piping cross-sectional area = 16 2 × 3.14 × 10 -6 (m 2 ) are substituted, and the piping flow velocity in the section 11a is obtained, Then, it becomes about 43.5 m/min.

同样地,在式(1)中,若是将送水量=0.035-0.010=0.025(m3/分钟)、配管剖面积=12.52×3.14×10-6(m2)代入,并求出在区间11b处的配管流速,则成为约51.0m/分钟。另外,在式(1)中,若是将送水量=0.025-0.010=0.015(m3/分钟)、配管剖面积=102×3.14×10-6(m2)代入,并求出在区间11c处的配管流速,则成为约47.8m/分钟。Similarly, in formula (1), if the water delivery rate = 0.035 - 0.010 = 0.025 (m 3 /min), the piping cross-sectional area = 12.5 2 × 3.14 × 10 -6 (m 2 ), and find the The piping flow velocity at 11b is about 51.0 m/min. In addition, in the formula (1), if the water delivery rate = 0.025 - 0.010 = 0.015 (m 3 /min), the pipe cross-sectional area = 10 2 × 3.14 × 10 -6 (m 2 ), and obtain the The flow velocity of the piping at the point becomes about 47.8m/min.

在各使用位置21、22、23的臭氧水的溶存臭氧浓度的测定结果,在第1个使用位置21为24mg/L,在第2个使用位置22为24mg/L,在第3个使用位置23为23mg/L。The measurement results of the dissolved ozone concentration of ozone water at each use position 21, 22, 23 are 24 mg/L at the first use position 21, 24 mg/L at the second use position 22, and 24 mg/L at the third use position 23 is 23mg/L.

如此地,在对于使用位置21、22、23处的溶存离子浓度作了测定后,可以确认,所供给的臭氧水的溶存臭氧浓度的降低被抑制,溶存臭氧浓度为目标值以上。In this manner, after measuring the dissolved ion concentrations at the use positions 21, 22, and 23, it was confirmed that the decrease in the dissolved ozone concentration of the supplied ozone water was suppressed, and the dissolved ozone concentration was more than the target value.

[比较例][comparative example]

在此比较例中,除了将主管11的内径在全部的区间中均形成为32mm以外,使用与图1中所示的臭氧水供给装置10相同的臭氧水供给装置10,并经由相同的方法来进行了测定。与实施例相同地,使用位置21、22、23,设为3个位置,并将直到使用位置21的送水距离设为30m,将直到使用位置22的送水距离设为60m,将直到使用位置23的送水距离设为90m。臭氧水的生成以及所生成的臭氧水的溶存臭氧浓度(25mg/L),也设为与实施例相同。In this comparative example, except that the inner diameter of the main pipe 11 is formed to 32 mm in all sections, the same ozone water supply device 10 as that shown in FIG. measured. Same as the embodiment, the use position 21, 22, 23 is set as 3 positions, and the water delivery distance until the use position 21 is set as 30m, the water delivery distance until the use position 22 is set as 60m, and the water delivery distance until the use position 23 is set as 60m. The water delivery distance is set to 90m. The generation of ozone water and the dissolved ozone concentration (25 mg/L) of the generated ozone water were also set to be the same as in the examples.

所生成的臭氧水,以送水量35L/分钟而被送出至主管11,并将在各使用位置21、22、23的臭氧水的使用量,设为每一位置为10L/分钟。The generated ozone water was sent to the main pipe 11 at a water supply rate of 35 L/min, and the usage rate of the ozone water at each use position 21 , 22 , 23 was 10 L/min for each position.

在式(1)中,若是将送水量=0.035(m3/分钟)、配管剖面积=162×3.14×10-6(m2)代入,并求出在区间11a处的配管流速,则成为约43.5m/分钟。关于此点,与上述的实施例相同。In Equation (1), if the flow rate of water = 0.035 (m 3 /min) and the cross-sectional area of piping = 16 2 × 3.14 × 10 -6 (m 2 ) are substituted, and the piping flow velocity in section 11a is obtained, then It becomes about 43.5m/min. In this point, it is the same as the above-mentioned embodiment.

相对于此,在式(1)中,若是将送水量=0.035-0.010=0.025(m3/分钟)、配管剖面积=162×3.14×10-6(m2)代入,并求出在区间11b处的配管流速,则成为约31.1m/分钟。另外,在式(1)中,若是将送水量=0.025-0.010=0.015(m3/分钟)、配管剖面积=162×3.14×10-6(m2)代入,并求出在区间11c处的配管流速,则成为约18.7m/分钟。On the other hand, in formula (1), if water supply = 0.035 - 0.010 = 0.025 (m 3 /min), cross-sectional area of piping = 16 2 × 3.14 × 10 -6 (m 2 ), and obtain the The piping flow velocity in the section 11b is about 31.1 m/min. In addition, in the formula (1), if the water supply rate = 0.025 - 0.010 = 0.015 (m 3 /min), the cross-sectional area of the piping = 16 2 × 3.14 × 10 -6 (m 2 ), and obtain the The flow velocity of the piping at the point becomes about 18.7m/min.

在此种条件下,对于在各臭氧水使用区域的溶存臭氧浓度作了测定,其结果,在第1个使用位置21为24mg/L,在第2个使用位置22为22mg/L,在第3个使用位置23为18mg/L。Under this condition, the concentration of dissolved ozone in each ozone water use area was measured. As a result, it was 24 mg/L at the first use position 21, 22 mg/L at the second use position 22, and 22 mg/L at the second use position 22. 23 of the 3 usage positions are 18mg/L.

如此地,在比较例中,在对于使用位置21、22、23处的溶存离子浓度作了测定后,其结果,可以得知,在下游侧的使用位置的溶存臭氧浓度依序降低。在第3个使用位置,溶存臭氧浓度,降低至18mg/L,无法成为作为目标值的20mg/L以上。In this way, in the comparative example, as a result of measuring the dissolved ion concentrations at the use positions 21, 22, and 23, it was found that the dissolved ozone concentrations at the use positions on the downstream side decreased sequentially. At the third usage position, the concentration of dissolved ozone decreased to 18 mg/L, which was unable to reach the target value of 20 mg/L or more.

在表1中示出了实施例以及比较例的配管流速,在表2中示出了溶存臭氧浓度。Table 1 shows the piping flow rates of Examples and Comparative Examples, and Table 2 shows the dissolved ozone concentration.

表1Table 1

表2Table 2

Figure BDA0000454320010000152
Figure BDA0000454320010000152

由表1明显可知,在使用将主管11的配管径以在每通过分支点时便依序缩小的方式所形成的配管的实施例中,与不将配管径缩小而形成为维持相同的大小的配管的比较例相比,在主管11中流动的臭氧水的流速的降低被防止。并且,如表2中所示,在各使用位置21、22、23的臭氧水的溶存臭氧浓度,在实施例中,于全部的使用位置21、22、23处,均能够成为作为目标值的溶存臭氧浓度20mg/L以上。相对于此,在比较例中,于各使用位置21、22、23处的溶存臭氧浓度,随着臭氧水的输送距离的增长而降低,在第3个使用位置23处,溶存臭氧浓度降低至18mg/L,低于作为目标值的溶存臭氧浓度20mg/L。As is clear from Table 1, in the example using the piping formed so that the piping diameter of the main pipe 11 is gradually reduced every time it passes through a branch point, the piping diameter is maintained at the same size without reducing the piping diameter. Compared with the comparative example of piping, the decrease of the flow velocity of the ozone water flowing in the main pipe 11 was prevented. And, as shown in table 2, in the dissolved ozone concentration of the ozone water of each use position 21,22,23, in embodiment, in all use position 21,22,23 places, all can become as target value The dissolved ozone concentration is above 20mg/L. In contrast, in the comparative example, the concentration of dissolved ozone at each use position 21, 22, and 23 decreases along with the growth of the transport distance of ozone water, and at the 3rd use position 23, the concentration of dissolved ozone decreases to 18mg/L, lower than the target value of dissolved ozone concentration of 20mg/L.

由此可以得知,通过适用实施例的臭氧水供给装置,能够不使臭氧水的流速降低,而以一定值以上的流速来供给臭氧水,并能够有效地防止臭氧水的溶存臭氧浓度的降低。It can be known that, by applying the ozone water supply device of the embodiment, the flow velocity of the ozone water can not be reduced, and the ozone water can be supplied with a flow velocity above a certain value, and the reduction of the dissolved ozone concentration of the ozone water can be effectively prevented. .

虽然使用特定的方案对于本发明进行了详细的说明,但是,对于本领域技术人员而言,在不脱离本发明的意图与范围的前提下,显然可进行各种的变更。Although the present invention has been described in detail using specific aspects, it is obvious to those skilled in the art that various changes can be made without departing from the intention and scope of the present invention.

另外,本申请以2011年7月8日提出的日本专利申请(特愿2011-151832)为基础,在此通过引用的方式将其全部内容援引于此。In addition, this application is based on the JP Patent application (Japanese Patent Application No. 2011-151832) of an application on July 8, 2011, The content is taken in here by reference.

Claims (11)

1.一种臭氧水供给装置,其是将臭氧水供给至使用位置的臭氧水供给装置,其特征在于,1. A kind of ozone water supply device, it is the ozone water supply device that ozone water is supplied to use position, it is characterized in that, 该臭氧水供给装置具备:The ozone water supply device has: 生成臭氧水的臭氧水生成装置;An ozone water generating device for generating ozone water; 来自该臭氧水生成装置的臭氧水所流动的主管;the main pipe through which the ozone water from the ozone water generating device flows; 设置于该主管的途中的多个位置并使该主管内的臭氧水分流的分支点;以及branch points arranged at various positions en route of the main pipe and diverting the ozone water in the main pipe; and 联络该分支点和使用位置的分支管,The branch pipe that connects the branch point and the location of use, 并且,该臭氧水供给装置构成为:And, this ozone water supply device is constituted as: 在最下游侧的该分支点的上游侧的主管内的全区域中,臭氧水的流速是在规定值以上。The flow velocity of the ozone water is equal to or higher than a predetermined value in the entire area in the main pipe on the upstream side of the branch point on the most downstream side. 2.如权利要求1所述的臭氧水供给装置,其中,其构成为:在最下游侧的前述分支点的上游侧的主管内的全区域中,将臭氧水的流速设为规定范围内。2. The ozone water supply device according to claim 1, wherein the flow velocity of the ozone water is set within a predetermined range in the entire area in the main pipe on the upstream side of the branch point on the most downstream side. 3.如权利要求1或2所述的臭氧水供给装置,其中,该分支点的下游侧的主管的流路剖面积比上游侧的流路剖面积小。3. The ozone water supply device according to claim 1 or 2, wherein the flow path cross-sectional area of the main pipe downstream of the branch point is smaller than the flow path cross-sectional area of the upstream side. 4.如权利要求3所述的臭氧水供给装置,其中,在主管的前述分支点附近,设置有主管的管径从上游侧向下游侧逐渐变小的锥状部。4. The ozone water supply device according to claim 3, wherein, near the branch point of the main pipe, there is provided a tapered portion in which the pipe diameter of the main pipe gradually decreases from the upstream side to the downstream side. 5.如权利要求4所述的臭氧水供给装置,其中,前述分支管连接于前述锥状部或前述锥状部的附近。5. The ozone water supply device according to claim 4, wherein the branch pipe is connected to the tapered portion or the vicinity of the tapered portion. 6.如权利要求1~5中任一项所述的臭氧水供给装置,其中,6. The ozone water supply device according to any one of claims 1 to 5, wherein: 从前述分支管分支有用于使臭氧水迂回过前述使用位置并流动至回收管线的迂回用配管,Branched from the branch pipe, there is a detour piping for detouring the ozone water through the use position and flowing to the recovery line, 并且,设置有流路选择装置,该流路选择装置在使从该主管流入至该分支管内的臭氧水的全量流动至使用位置的流路选择和使从该主管流入至该分支管内的臭氧水的全量流动至迂回用配管的流路选择之间进行切换。In addition, a flow path selection device is provided, and the flow path selection device selects a flow path that allows the full amount of ozone water flowing into the branch pipe from the main pipe to flow to the use position and makes the ozone water flow into the branch pipe from the main pipe Switch between the flow path selection from the full flow to the detour piping. 7.如权利要求1~5中任一项所述的臭氧水供给装置,其中,7. The ozone water supply device according to any one of claims 1 to 5, wherein: 从前述分支点附近分支有用于使臭氧水迂回过前述使用位置并流动至回收管线的迂回用配管,From the vicinity of the branch point, there is a detour piping for detouring the ozone water through the above-mentioned use position and flowing to the recovery pipeline, 并且,设置有流路选择装置,该流路选择装置在使从该主管流入至该分支点的臭氧水的一部分仅流动至前述分支管的流路选择和使从该主管流入至该分支点的臭氧水的一部分仅流动至迂回用配管的流路选择之间进行切换。And, a flow path selection device is provided, and the flow path selection device can only flow a part of the ozone water flowing into the branch point from the main pipe to the flow path selection of the aforementioned branch pipe and make the part of the ozone water flowing from the main pipe into the branch point flow into the branch point. A part of the ozone water flows only to the detour piping to switch between flow path selections. 8.如权利要求1~7中任一项所述的臭氧水供给装置,其中,在最下游侧的分支点的上游侧的前述主管内的臭氧水的流速是30~180m/分钟。8. The ozone water supply device according to any one of claims 1 to 7, wherein the flow velocity of the ozone water in the main pipe on the upstream side of the branch point on the most downstream side is 30 to 180 m/min. 9.如权利要求1~8中任一项所述的臭氧水供给装置,其中,其具备有将前述臭氧水的pH设为6以下的pH调整装置。9. The ozone water supply device according to any one of claims 1 to 8, which is provided with a pH adjustment device for setting the pH of the ozone water to 6 or less. 10.一种臭氧水供给方法,其是将通过臭氧水生成装置生成的臭氧水经由配管供给至使用位置的臭氧水供给方法,其特征在于,10. A method of supplying ozone water, which is a method of supplying ozone water generated by an ozone water generating device to a place of use via piping, wherein: 将在前述配管中流动的臭氧水的流速设为规定值以上。The flow velocity of the ozone water flowing through the piping is set to a predetermined value or more. 11.如权利要求10所述的臭氧水供给方法,其中,经由权利要求1~9中任一项所述的臭氧水供给装置来供给臭氧水。11. The ozone water supply method according to claim 10, wherein the ozone water is supplied via the ozone water supply device according to any one of claims 1 to 9.
CN201280033875.0A 2011-07-08 2012-07-05 Ozone water supply apparatus and method of ozone water supply Active CN103687820B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011151832A JP5874223B2 (en) 2011-07-08 2011-07-08 Ozone water supply apparatus and ozone water supply method
JP2011-151832 2011-07-08
PCT/JP2012/067205 WO2013008721A1 (en) 2011-07-08 2012-07-05 Device for supplying ozone water and method for supplying ozone water

Publications (2)

Publication Number Publication Date
CN103687820A true CN103687820A (en) 2014-03-26
CN103687820B CN103687820B (en) 2015-08-05

Family

ID=47506012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280033875.0A Active CN103687820B (en) 2011-07-08 2012-07-05 Ozone water supply apparatus and method of ozone water supply

Country Status (5)

Country Link
JP (1) JP5874223B2 (en)
KR (1) KR101974667B1 (en)
CN (1) CN103687820B (en)
TW (1) TWI538877B (en)
WO (1) WO2013008721A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107720941A (en) * 2017-12-11 2018-02-23 重庆丰望环保科技有限公司 A kind of sewage disposal system with sterilizing function

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452050B2 (en) * 2020-02-04 2024-03-19 株式会社大林組 piping system
JP7262673B2 (en) * 2020-06-08 2023-04-21 三菱電機株式会社 Ozonated water production device, water treatment device, and ozone water production method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237113A (en) * 2006-03-10 2007-09-20 Sasakura Engineering Co Ltd Apparatus for supplying ozone water

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614587A (en) * 1984-06-15 1986-01-10 Toshiba Corp Demineralized water supply system and its method
JPS6369588A (en) * 1986-09-09 1988-03-29 Mitsubishi Electric Corp System for supplying pure water to semiconductor washing vessel
JP2606910B2 (en) * 1988-11-21 1997-05-07 神鋼パンテツク株式会社 Ultrapure water production and supply equipment
JPH0625424B2 (en) * 1989-03-09 1994-04-06 須賀工業株式会社 Method of determining return pipe diameter in forced circulation hot water supply piping equipment
JP2689662B2 (en) * 1989-12-19 1997-12-10 トヨタ自動車株式会社 Paint circulation device
JP2652301B2 (en) * 1992-05-28 1997-09-10 株式会社荏原製作所 Cleaning water production equipment
JPH1147754A (en) * 1997-07-31 1999-02-23 Nec Corp Method and apparatus for sterilizing piping
JPH11138182A (en) * 1997-11-10 1999-05-25 Kurita Water Ind Ltd Ozone dissolved ultrapure water supply device
JP2000037695A (en) 1998-07-24 2000-02-08 Kurita Water Ind Ltd Ozone water supply device
JP5037748B2 (en) 1998-12-15 2012-10-03 栗田工業株式会社 Ozone water concentration adjustment method and ozone water supply system
JP4508311B2 (en) 1999-05-26 2010-07-21 栗田工業株式会社 Adjustment method of ozone concentration
JP4538702B2 (en) 2000-07-05 2010-09-08 栗田工業株式会社 Ozone dissolved water supply device
JP4221551B2 (en) * 2002-01-25 2009-02-12 株式会社ササクラ Ozone water supply device
JP4513122B2 (en) 2004-03-31 2010-07-28 栗田工業株式会社 Ozone water supply method and ozone water supply device
JP4942067B2 (en) * 2004-10-08 2012-05-30 オルガノ株式会社 Viable bacteria measurement method
CN104355391B (en) * 2005-01-24 2017-07-11 纽泰科O3公司 Ozone injection method and system
JP4950915B2 (en) * 2008-02-20 2012-06-13 パナソニック株式会社 Ozone water production equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237113A (en) * 2006-03-10 2007-09-20 Sasakura Engineering Co Ltd Apparatus for supplying ozone water

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
方敏等: ""臭氧水稳定性的研究"", 《食品科学》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107720941A (en) * 2017-12-11 2018-02-23 重庆丰望环保科技有限公司 A kind of sewage disposal system with sterilizing function

Also Published As

Publication number Publication date
WO2013008721A1 (en) 2013-01-17
TW201318963A (en) 2013-05-16
JP5874223B2 (en) 2016-03-02
TWI538877B (en) 2016-06-21
KR101974667B1 (en) 2019-05-02
CN103687820B (en) 2015-08-05
JP2013017932A (en) 2013-01-31
KR20140032403A (en) 2014-03-14

Similar Documents

Publication Publication Date Title
EP2104648B1 (en) System and method for carbonation of deionized water
CN105283422B (en) Hyperpure water manufacturing systems, ultra-pure water manufacture feed system and its washing methods
JP2002316027A (en) Device and method for manufacturing gas-dissolved water, device and method for ultrasonic cleaning
JP5292923B2 (en) Microorganism detection method, microorganism detection apparatus, and slurry supply apparatus using the same
TWI373792B (en)
CN103687820B (en) Ozone water supply apparatus and method of ozone water supply
JP2007288134A (en) Substrate processing apparatus
TWI601695B (en) Method for producing ozone gas dissolved water and washing method of electronic material
TW202012319A (en) System for producing washing water for electronic components, and operating method for system for producing washing water for electronic components
US20060207777A1 (en) System and method for supplying functional water
JP3381250B2 (en) Gas dissolving cleaning water flow pipe
TWI463549B (en) Substrate liquid treatment method, treatment liquid producing method, and computer readable storage medium recorded with program for producing treatment liquid
JP2014117628A (en) Circulation type method and apparatus for supplying ozone water
WO2018127986A1 (en) Real-time large-volume hydrogen water generator
JP4843339B2 (en) Ozone water supply device
JP2004261768A (en) Ultrapure water manufacturing system and its operation method
CN107427786A (en) Resistivity value adjusting apparatus and resistivity value method of adjustment
JP4221551B2 (en) Ozone water supply device
JP2001149930A (en) UV oxidation equipment
TW200528400A (en) Method for forwarding ozonated water
JP2022149413A (en) Substrate processing apparatus and substrate processing method
US20190112200A1 (en) Method and device for controlling water hardness in a dwelling
JP5286940B2 (en) Slurry feeder
JP2008211096A (en) Resistivity controller
JP6059871B2 (en) Gas dissolved water manufacturing apparatus and gas dissolved water manufacturing method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant