CN103681274B - 半导体器件制造方法 - Google Patents
半导体器件制造方法 Download PDFInfo
- Publication number
- CN103681274B CN103681274B CN201210336478.2A CN201210336478A CN103681274B CN 103681274 B CN103681274 B CN 103681274B CN 201210336478 A CN201210336478 A CN 201210336478A CN 103681274 B CN103681274 B CN 103681274B
- Authority
- CN
- China
- Prior art keywords
- layer
- dummy gate
- amorphous silicon
- etching
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000004065 semiconductor Substances 0.000 title claims description 15
- 239000000463 material Substances 0.000 claims abstract description 40
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 35
- 238000005530 etching Methods 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 48
- 229920002120 photoresistant polymer Polymers 0.000 claims description 17
- 150000004767 nitrides Chemical class 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 125000006850 spacer group Chemical group 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 5
- 125000001475 halogen functional group Chemical group 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 description 9
- 238000000151 deposition Methods 0.000 description 4
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000011165 process development Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000000671 immersion lithography Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/017—Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/31051—Planarisation of the insulating layers
- H01L21/31053—Planarisation of the insulating layers involving a dielectric removal step
- H01L21/31055—Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/022—Manufacture or treatment of FETs having insulated gates [IGFET] having lightly-doped source or drain extensions selectively formed at the sides of the gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0413—Manufacture or treatment of FETs having insulated gates [IGFET] of FETs having charge-trapping gate insulators, e.g. MNOS transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/025—Manufacture or treatment forming recessed gates, e.g. by using local oxidation
- H10D64/027—Manufacture or treatment forming recessed gates, e.g. by using local oxidation by etching at gate locations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31144—Etching the insulating layers by chemical or physical means using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32139—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明提供了一种假栅结构的制造方法。本发明在假栅材料层之上形成了ONO结构和顶层非晶硅层,首先以图案化的顶层非晶硅层为掩膜对ONO结构进行刻蚀,能够精确地控制其尺寸和剖面形貌,使ONO结构成为所期望的假栅材料层的掩膜,并且能够控制ONO各层刻蚀速率和厚度;接着,以ONO结构为掩膜刻蚀假栅材料层,同样实现图形的精确转移,使得假栅关键尺寸和剖面形貌得到精确控制,使得后续形成的金属栅极具有良好的粗糙度,保证了器件的性能及其稳定性。
Description
技术领域
本发明涉及半导体器件制造方法领域,特别地,涉及一种后栅工艺中的假栅制造方法。
背景技术
随着晶体管尺寸的不断缩小,HKMG(高K绝缘层和金属栅极)技术已经成为45nm以下半导体制程的必备技术。HKMG技术中,后栅工艺(Gate Last)方案被众多业内知名半导体企业广泛看好,其中,已有企业(例如美国Intel公司)生产出基于后栅工艺的HKMG产品。所谓后栅工艺,指的是在晶体管制造工艺中,首先形成假栅(dummy gate),然后,进行例如间隙壁(spacer)的沉积和刻蚀,源漏注入等工艺以形成源漏区域,在完成晶体管栅极之外的部件的制造以后,去除假栅,在假栅所在位置形成晶体管栅极。假栅通常为形成于二氧化硅层上的非晶硅或多晶硅假栅,而HKMG技术中最终形成的晶体管栅极为金属栅极。
目前看来,后栅工艺具有一些独特的优势,例如,克服了高温工艺负面影响,尤其是在金属栅材料选择上避开高温限制,另外,后栅工艺有助于大幅提高晶体管沟道应力,对提高PFETs性能尤其有效。但是,现有的后栅工艺面对如下问题还存在困难,例如超细线条(45nm以下)的形成,栅极的关键尺寸(Critical Dimension)和剖面形貌(Profile)的精确控制,硬掩膜结构的剖面形貌和剩余厚度控制,等等。因此,需要一种新的后栅工艺,尤其是假栅形成工艺,来解决上面所述的难题,从而更好地解决晶体管制造过程中的问题,确保晶体管性能。
发明内容
本发明提供一种晶体管后栅工艺中的假栅制造方法,其避免了现有后栅工艺的缺陷。
根据本发明的一个方面,本发明提供一种半导体器件制造方法,其包括如下步骤:
提供半导体衬底,在该半导体衬底上依次形成假栅栅极氧化层和假栅材料层;
在所述假栅材料层之上形成ONO结构,其从下至上包括第一氧化物层,氮化物层,第二氧化物层;
在所述ONO结构之上形成顶层非晶硅层;
在所述顶层非晶硅层之上形成图案化光刻胶层;
以所述图案化光刻胶层为掩膜,对所述顶层非晶硅层进行刻蚀,刻蚀停止在所述ONO结构的最上层;
以所述图案化光刻胶层以及剩余的所述顶层非晶硅层为掩膜,对所述ONO结构进行刻蚀,刻蚀停止在所述假栅材料层的上表面上;
去除所述图案化光刻胶层;
对所述假栅材料层进行刻蚀,刻蚀停止在所述假栅栅极氧化层的上表面上,形成所需要的假栅结构。
根据本发明的一个方面,所述假栅材料层的材料为非晶硅,厚度为900-1200埃;所述假栅栅极氧化层的材料为二氧化硅,厚度为20-40埃。
根据本发明的一个方面,所述第一氧化物层为SiO2,其厚度为100埃,所述氮化物层为Si3N4,其厚度为200埃,所述第二氧化物层为SiO2,其厚度为500-800埃。
根据本发明的一个方面,对所述ONO结构进行刻蚀,分为三个不同阶段,分别刻蚀所述第二氧化物层、所述氮化物层和所述第一氧化物层。
根据本发明的一个方面,所述顶层非晶硅层的厚度为400-600埃。
根据本发明的一个方面,对所述假栅材料层进行刻蚀具体包括:以剩余的所述顶层非晶硅层和所述ONO结构为掩膜,对所述假栅材料层进行刻蚀,刻蚀停止在所述假栅栅极氧化层的上表面上,同时,剩余的所述顶层非晶硅层也在该步骤中被完全除去。
根据本发明的一个方面,在形成所述假栅结构之后,依次进行如下步骤:
栅极间隙壁的沉积和刻蚀;
自对准地形成LDD区域、Halo结构和源漏区域;
形成源漏区域接触;
形成中间介质层,进行CMP工艺。
根据本发明的一个方面,在形成中间介质层,进行CMP工艺之后,去除所述假栅以及所述假栅下方的所述假栅栅极氧化层,以在所述中间介质层中形成栅极凹槽;然后,在所述栅极凹槽中依次沉积高K栅绝缘材料和金属栅极材料,并进行CMP工艺,从而形成了高K栅绝缘层和金属栅极,完成HKMG工艺的制造过程。
本发明的优点在于:本发明在假栅材料层之上形成了ONO结构和顶层非晶硅层,首先,以图案化的顶层非晶硅层为掩膜对ONO结构进行刻蚀,能够精确地控制其尺寸和剖面形貌,使ONO结构成为所期望的假栅材料层的掩膜,并且能够控制ONO各层最终厚度;接着,以ONO结构为掩膜刻蚀假栅材料层,同样实现图形的精确转移,使得假栅关键尺寸和剖面形貌得到精确控制,使得后续形成的金属栅极具有良好的粗糙度,有利于之后间隙壁沉积和刻蚀,以及硅化物形成、CMP等工艺的顺利进行,保证了器件的性能及其稳定性。另外,本发明的技术方案适用于亚45nm的技术带,不仅适合于工厂的大规模生产,也适合于实验室的先导工艺开发,通过部分优化,具备向更先进制造技术升级转移的能力。
附图说明
图1-8本发明提供的半导体器件制造方法流程示意图。
具体实施方式
以下,通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
本发明提供一种半导体器件制造方法,特别地涉及后栅工艺中的假栅制造方法,其克服了现有后栅工艺中的一些难题。下面,参见附图1-8,将详细描述本发明提供的半导体器件制造方法。
首先,参见附图1,在半导体衬底10上依次形成假栅栅极氧化层11和假栅材料层12。其中,本实施例中采用了单晶硅衬底,可选地,也可采用锗衬底或者其他合适的半导体衬底。假栅栅极氧化层11可以通过热氧化方式形成,材料可以是SiO2,其厚度优选为20-40埃。假栅材料层12优选为非晶硅层,可选地为多晶硅层,采用LPCVD工艺形成,其厚度优选为900-1200埃。
接着,参见附图2,在假栅材料层12之上依次形成第一氧化物层13,氮化物层14,第二氧化物层15,其中,第一氧化物层13,氮化物层14和第二氧化物层15形成了ONO结构。第一氧化物层13可以是SiO2,采用PECVD工艺形成,其厚度为100埃。氮化物层14可以是Si3N4,采用LPCVD工艺形成,其厚度为200埃。第二氧化物层15可以是SiO2,采用PECVD工艺形成,其厚度为500-800埃。
接着,参见附图3,在ONO结构之上,形成顶层非晶硅层16。其中,顶层非晶硅层16采用LPCVD工艺形成,顶层非晶硅层16的厚度为400-600埃。
之后,参见附图4,在顶层非晶硅层16之上形成图案化光刻胶层17。该步骤具体包括:首先全面性涂敷一层光刻胶,然后,采用浸润式光刻或者电子束(eBeam)直写光刻对光刻胶层进行曝光,形成图案化光刻胶层17,图案化光刻胶层17具有小于45nm的线条尺寸。
接着,参见附图5,以图案化光刻胶层17为掩膜,对顶层非晶硅层16进行刻蚀。该步刻蚀工艺可以采用等离子干法刻蚀,刻蚀停止在ONO结构的最上层,也即第二氧化物层15的上表面上。
接着,参见附图6,以图案化光刻胶层17以及剩余的顶层非晶硅层16为掩膜,对ONO结构进行刻蚀。该步刻蚀工艺可以分为三个不同阶段,分别刻蚀第二氧化物层15、氮化物层14和第一氧化物层13,刻蚀最终停止在假栅材料层12的上表面上。
接着,参见附图7,去除图案化光刻胶层17。采用湿法清洗的方式,例如SPM/APM(SPM,H2SO4,H2O2和H2O的混合物;APM,NH4OH,H2O2和H2O的混合物),将剩余的图案化光刻胶层17清洗除去。
接着,参见附图8,对假栅材料层12进行刻蚀,停止在假栅栅极氧化层11的上表面上。该步刻蚀以剩余的顶层非晶硅层16和ONO结构为掩膜,对假栅材料层12进行刻蚀,由于顶层非晶硅层16的材料与假栅材料层12的材料相同,例如均为非晶硅,在该步刻蚀中顶层非晶硅层16也会被完全除去,因此,不需要采用额外的后续步骤去除顶层非晶硅层16。通过此步骤刻蚀,即可实现假栅的制造,其中,假栅堆栈包括了假栅材料层12和其上的ONO结构。
在假栅形成之后,可以进行晶体管其余部件的制造,例如,栅极间隙壁(spacer)的沉积和刻蚀,自对准地形成LDD区域、Halo结构、源漏区域,形成源漏接触,形成中间介质层,进行CMP工艺等等。在完成上述部件制造之后,去除假栅以及假栅下方的假栅栅极氧化层,这样,在中间介质层中形成了栅极凹槽,然后,在栅极凹槽中依次沉积高K栅绝缘材料和金属栅极材料,并进行CMP工艺,从而形成了高K栅绝缘层和金属栅极,完成HKMG工艺的制造过程。
至此,已经完全描述了本发明提供的制造方法。本发明在假栅材料层之上形成了ONO结构和顶层非晶硅层,首先以图案化的顶层非晶硅层为掩膜对ONO结构进行刻蚀,能够精确地控制其尺寸和剖面形貌,使ONO结构成为所期望的假栅材料层的掩膜,并且能够控制ONO各层刻蚀速率和厚度;接着,以ONO结构为掩膜刻蚀假栅材料层,同样实现图形的精确转移,使得假栅关键尺寸和剖面形貌得到精确控制,使得后续形成的金属栅极具有良好的粗糙度(Line Edge Roughens,LER),保证了器件的性能及其稳定性,同时,还为后续栅极间隙壁、CMP工艺以及假栅去除等工艺的顺利进行提供了保障。另外,本发明的技术方案适用于亚45nm的技术带,不仅适合于工厂的大规模生产,也适合于实验室的先导工艺开发,通过部分优化,具备向更先进制造技术(如22nm以下技术带)升级转移的能力。
以上参照本发明的实施例对本发明予以了说明。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本发明的范围。本发明的范围由所附权利要求及其等价物限定。不脱离本发明的范围,本领域技术人员可以做出多种替换和修改,这些替换和修改都应落在本发明的范围之内。
Claims (7)
1.一种半导体器件制造方法,其特征在于,包括如下步骤:
提供半导体衬底,在该半导体衬底上依次形成假栅栅极氧化层和假栅材料层;
在所述假栅材料层之上形成ONO结构,其从下至上包括第一氧化物层,氮化物层,第二氧化物层;
在所述ONO结构之上形成顶层非晶硅层;
在所述顶层非晶硅层之上形成图案化光刻胶层;
以所述图案化光刻胶层为掩膜,对所述顶层非晶硅层进行刻蚀,刻蚀停止在所述ONO结构的最上层;
以所述图案化光刻胶层以及剩余的所述顶层非晶硅层为掩膜,对所述ONO结构进行刻蚀,刻蚀停止在所述假栅材料层的上表面上;
去除所述图案化光刻胶层;
对所述假栅材料层进行刻蚀,刻蚀停止在所述假栅栅极氧化层的上表面上,形成所需要的假栅结构;
其中,对所述假栅材料层进行刻蚀具体包括:
以剩余的所述顶层非晶硅层和所述ONO结构为掩膜,对所述假栅材料层进行刻蚀,刻蚀停止在所述假栅栅极氧化层的上表面上,同时,剩余的所述顶层非晶硅层也在该步骤中被完全除去。
2.根据权利要求1所述的方法,其特征在于,所述假栅材料层的材料为非晶硅,其厚度为900-1200埃;所述假栅栅极氧化层的材料为二氧化硅,厚度为20-40埃。
3.根据权利要求1所述的方法,其特征在于,所述第一氧化物层为SiO2,其厚度为100埃,所述氮化物层为Si3N4,其厚度为200埃,所述第二氧化物层为SiO2,其厚度为500-800埃。
4.根据权利要求1所述的方法,其特征在于,对所述ONO结构进行刻蚀,分为三个不同阶段,分别刻蚀所述第二氧化物层、所述氮化物层和所述第一氧化物层。
5.根据权利要求1所述的方法,其特征在于,所述顶层非晶硅层的厚度为400-600埃。
6.根据权利要求1所述的方法,其特征在于,在形成所述假栅结构之后,依次进行如下步骤:
栅极间隙壁的沉积和刻蚀;
自对准地形成LDD区域、Halo结构和源漏区域;
形成源漏区域接触;
形成中间介质层,进行CMP工艺。
7.根据权利要求6所述的方法,其特征在于,在形成中间介质层,进行CMP工艺之后,去除所述假栅以及所述假栅下方的所述假栅栅极氧化层,以在所述中间介质层中形成栅极凹槽;然后,在所述栅极凹槽中依次沉积高K栅绝缘材料和金属栅极材料,并进行CMP工艺,从而形成了高K栅绝缘层和金属栅极,完成HKMG工艺的制造过程。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210336478.2A CN103681274B (zh) | 2012-09-12 | 2012-09-12 | 半导体器件制造方法 |
US14/426,690 US9331172B2 (en) | 2012-09-12 | 2012-11-13 | Method for making HKMG dummy gate structure with amorphous/ONO masking structure and procedure |
PCT/CN2012/001537 WO2014040213A1 (zh) | 2012-09-12 | 2012-11-13 | 半导体器件制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210336478.2A CN103681274B (zh) | 2012-09-12 | 2012-09-12 | 半导体器件制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103681274A CN103681274A (zh) | 2014-03-26 |
CN103681274B true CN103681274B (zh) | 2016-12-28 |
Family
ID=50277467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210336478.2A Active CN103681274B (zh) | 2012-09-12 | 2012-09-12 | 半导体器件制造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9331172B2 (zh) |
CN (1) | CN103681274B (zh) |
WO (1) | WO2014040213A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103681274B (zh) * | 2012-09-12 | 2016-12-28 | 中国科学院微电子研究所 | 半导体器件制造方法 |
CN103854985B (zh) * | 2012-12-03 | 2016-06-29 | 中国科学院微电子研究所 | 一种后栅工艺假栅的制造方法和后栅工艺假栅 |
CN105762071B (zh) * | 2014-12-17 | 2019-06-21 | 中国科学院微电子研究所 | 鳍式场效应晶体管及其鳍的制造方法 |
US12040241B2 (en) * | 2019-12-13 | 2024-07-16 | Xidian University | Package structure for semiconductor device and preparation method thereof |
CN112382564B (zh) * | 2020-11-02 | 2024-01-19 | 上海华力集成电路制造有限公司 | 栅极的制造方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102386085A (zh) * | 2010-09-06 | 2012-03-21 | 中国科学院微电子研究所 | 一种用于后栅工艺的平坦化方法及其器件结构 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5342801A (en) * | 1993-03-08 | 1994-08-30 | National Semiconductor Corporation | Controllable isotropic plasma etching technique for the suppression of stringers in memory cells |
US6037265A (en) * | 1998-02-12 | 2000-03-14 | Applied Materials, Inc. | Etchant gas and a method for etching transistor gates |
US6297092B1 (en) * | 1998-12-02 | 2001-10-02 | Micron Technology, Inc. | Method and structure for an oxide layer overlaying an oxidation-resistant layer |
TW473840B (en) * | 2000-10-06 | 2002-01-21 | Winbond Electronics Corp | Manufacturing method of EEPROM with split-gate structure |
US6897514B2 (en) * | 2001-03-28 | 2005-05-24 | Matrix Semiconductor, Inc. | Two mask floating gate EEPROM and method of making |
US6803315B2 (en) * | 2002-08-05 | 2004-10-12 | International Business Machines Corporation | Method for blocking implants from the gate of an electronic device via planarizing films |
US6781186B1 (en) * | 2003-01-30 | 2004-08-24 | Silicon-Based Technology Corp. | Stack-gate flash cell structure having a high coupling ratio and its contactless flash memory arrays |
US20050118531A1 (en) * | 2003-12-02 | 2005-06-02 | Hsiu-Chun Lee | Method for controlling critical dimension by utilizing resist sidewall protection |
US7344965B2 (en) * | 2003-12-10 | 2008-03-18 | International Business Machines Corporation | Method of etching dual pre-doped polysilicon gate stacks using carbon-containing gaseous additions |
JP2006332130A (ja) * | 2005-05-23 | 2006-12-07 | Toshiba Corp | 半導体装置の製造方法 |
JP4575320B2 (ja) * | 2006-03-15 | 2010-11-04 | 株式会社東芝 | 不揮発性半導体記憶装置 |
US7410854B2 (en) * | 2006-10-05 | 2008-08-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of making FUSI gate and resulting structure |
KR100831571B1 (ko) * | 2006-12-28 | 2008-05-21 | 동부일렉트로닉스 주식회사 | 플래시 소자 및 이의 제조 방법 |
US20090130836A1 (en) * | 2007-11-16 | 2009-05-21 | Jong-Won Sun | Method of fabricating flash cell |
US8008145B2 (en) * | 2008-09-10 | 2011-08-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | High-K metal gate structure fabrication method including hard mask |
US7776757B2 (en) * | 2009-01-15 | 2010-08-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of fabricating high-k metal gate devices |
CN101930979B (zh) * | 2009-06-26 | 2014-07-02 | 中国科学院微电子研究所 | 控制器件阈值电压的CMOSFETs结构及其制造方法 |
US8329515B2 (en) * | 2009-12-28 | 2012-12-11 | Globalfoundries Inc. | eFUSE enablement with thin polysilicon or amorphous-silicon gate-stack for HKMG CMOS |
US8592296B2 (en) * | 2010-06-16 | 2013-11-26 | International Business Machines Corporation | Gate-last fabrication of quarter-gap MGHK FET |
US8334198B2 (en) * | 2011-04-12 | 2012-12-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of fabricating a plurality of gate structures |
CN103531475A (zh) * | 2012-07-03 | 2014-01-22 | 中国科学院微电子研究所 | 半导体器件及其制造方法 |
CN103681274B (zh) * | 2012-09-12 | 2016-12-28 | 中国科学院微电子研究所 | 半导体器件制造方法 |
CN103855016A (zh) * | 2012-11-30 | 2014-06-11 | 中国科学院微电子研究所 | 半导体器件的制造方法 |
CN103854982B (zh) * | 2012-11-30 | 2016-09-28 | 中国科学院微电子研究所 | 半导体器件的制造方法 |
CN103854984B (zh) * | 2012-12-03 | 2017-03-01 | 中国科学院微电子研究所 | 一种后栅工艺假栅的制造方法和后栅工艺假栅 |
CN103854985B (zh) * | 2012-12-03 | 2016-06-29 | 中国科学院微电子研究所 | 一种后栅工艺假栅的制造方法和后栅工艺假栅 |
US9111863B2 (en) * | 2012-12-03 | 2015-08-18 | Institute of Microelectronics, Chinese Academy of Sciences | Method for manufacturing dummy gate in gate-last process and dummy gate in gate-last process |
US9054220B2 (en) * | 2013-02-08 | 2015-06-09 | Freescale Semiconductor, Inc. | Embedded NVM in a HKMG process |
JP6026914B2 (ja) * | 2013-02-12 | 2016-11-16 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
-
2012
- 2012-09-12 CN CN201210336478.2A patent/CN103681274B/zh active Active
- 2012-11-13 US US14/426,690 patent/US9331172B2/en active Active
- 2012-11-13 WO PCT/CN2012/001537 patent/WO2014040213A1/zh active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102386085A (zh) * | 2010-09-06 | 2012-03-21 | 中国科学院微电子研究所 | 一种用于后栅工艺的平坦化方法及其器件结构 |
Also Published As
Publication number | Publication date |
---|---|
CN103681274A (zh) | 2014-03-26 |
WO2014040213A1 (zh) | 2014-03-20 |
US9331172B2 (en) | 2016-05-03 |
US20150214332A1 (en) | 2015-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8722494B1 (en) | Dual gate finFET devices | |
CN104795332B (zh) | 鳍式场效应晶体管的形成方法 | |
CN103681274B (zh) | 半导体器件制造方法 | |
JP6173083B2 (ja) | 電界効果半導体デバイスを製造する方法 | |
CN103854984B (zh) | 一种后栅工艺假栅的制造方法和后栅工艺假栅 | |
CN106960875B (zh) | 半导体装置及其制造方法 | |
TWI646660B (zh) | 具有通過鰭片間的導電路徑的接觸至閘極短路的裝置及製法 | |
CN105355559A (zh) | 一种制备半导体器件的方法 | |
CN108878278B (zh) | 栅氧化层的制造方法 | |
CN103855095B (zh) | 一种半导体器件的制造方法 | |
CN102938372B (zh) | 鳍形半导体结构的制造方法 | |
CN110854016A (zh) | 光刻胶剥离方法 | |
CN104900528B (zh) | 一种利用应力记忆技术制造FinFET结构的方法 | |
CN103730341B (zh) | 半导体器件制造方法 | |
CN104299914B (zh) | FinFET的制造方法 | |
CN103730345B (zh) | 半导体器件制造方法 | |
CN104979202B (zh) | 晶体管的形成方法 | |
CN103972103B (zh) | 增加光刻对准的栅极分离方法 | |
CN103854985B (zh) | 一种后栅工艺假栅的制造方法和后栅工艺假栅 | |
CN110556338A (zh) | 半导体器件及其形成方法 | |
CN108847393B (zh) | 鳍式场效应晶体管结构的形成方法 | |
CN103578952B (zh) | 半导体器件制造方法 | |
KR100720470B1 (ko) | 반도체 소자의 제조방법 | |
US20150255563A1 (en) | Method for manufacturing a semiconductor device having multi-layer hard mask | |
CN107887335B (zh) | 一种金属栅极制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |