CN103675005B - 最优模糊网络的工业熔融指数软测量仪表及方法 - Google Patents
最优模糊网络的工业熔融指数软测量仪表及方法 Download PDFInfo
- Publication number
- CN103675005B CN103675005B CN201310432289.XA CN201310432289A CN103675005B CN 103675005 B CN103675005 B CN 103675005B CN 201310432289 A CN201310432289 A CN 201310432289A CN 103675005 B CN103675005 B CN 103675005B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- munderover
- fuzzy
- msup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000005259 measurement Methods 0.000 title claims abstract description 25
- 238000012706 support-vector machine Methods 0.000 claims abstract description 59
- 238000013528 artificial neural network Methods 0.000 claims abstract description 49
- 230000008569 process Effects 0.000 claims abstract description 26
- 239000000155 melt Substances 0.000 claims abstract description 9
- 238000012549 training Methods 0.000 claims description 172
- 238000005457 optimization Methods 0.000 claims description 48
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 23
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 23
- 238000007781 pre-processing Methods 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 238000003062 neural network model Methods 0.000 claims description 19
- 238000009795 derivation Methods 0.000 claims description 18
- 230000009977 dual effect Effects 0.000 claims description 15
- 238000006116 polymerization reaction Methods 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 7
- 238000000691 measurement method Methods 0.000 claims 3
- 238000000151 deposition Methods 0.000 claims 1
- 238000012795 verification Methods 0.000 claims 1
- 238000002844 melting Methods 0.000 abstract description 10
- 230000008018 melting Effects 0.000 abstract description 10
- 238000004364 calculation method Methods 0.000 abstract description 7
- 238000010276 construction Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 22
- 230000006870 function Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 7
- -1 Polypropylene Polymers 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229920000891 common polymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种最优模糊网络的工业熔融指数软测量仪表及方法。该方法通过引入支持向量机对原有的模糊神经网络进行优化,解决了模糊神经网络构建过程中参数难设定的问题。在本发明中,现场智能仪表、控制站与DCS数据库连接,软测量值显示仪包括最优模糊网络的工业熔融指数软测量模型,DCS数据库与软测量模型的输入端连接,所述最优模糊网络的工业熔融指数软测量模型的输出端与熔融指数软测量值显示仪连接。最后,本发明具有在线测量、计算速度快、抗噪声能力强、推广性能好的特点。
Description
技术领域
本发明涉及软测量仪表及方法,尤其涉及一种最优模糊网络的工业熔融指数软测量仪表及方法。
背景技术
聚丙烯是一种由丙烯聚合而成的半结晶的热塑性塑料,具有较高的耐冲击性,机械性质强韧,抗多种有机溶剂和酸碱腐蚀,在工业界有广泛的应用,是平常最常见的高分子材料之一。熔融指数(MI)是聚丙烯生产中确定最终产品牌号的重要质量指标之一,它决定了产品的不同用途。熔融指数的精确、及时的测量,对生产和科研,都有非常重要的作用和指导意义。然而,熔融指数的在线分析测量目前仍然很难做到,缺乏熔融指数的在线分析仪是制约聚丙烯产品质量的一个主要问题。MI只能通过人工取样、离线化验分析获得,而且一般每2-4小时分析一次,时间滞后大,难以满足生产实时控制的要求。
近年来关于MI的在线预报的研究工作大部分都集中在人工神经网络上面,取得了不错的效果。但是人工神经网络也有其自身的缺点,例如过拟合、隐含层的节点数目和参数不好确定。其次,工业现场采集到的DCS数据也因为噪音、人工操作误差等带有一定的不确定误差,所以使用确定性强的人工神经网络的预报模型一般推广能力不强。
1965年美国数学家L.Zadeh首先提出了Fuzzy集合的概念。随后模糊逻辑以其更接近于日常人们的问题和语意陈述的方式,开始代替坚持所有事物都可以用二元项表示的经典逻辑。1987年,Bart Kosko率先将模糊理论与神经网络有机结合进行了较为系统的研究。在这之后的时间里,模糊神经网络的理论及其应用获得了飞速的发展,各种新的模糊神经网络模型的提出及其相适应的学习算法的研究不仅加速了模糊神经理论的完善,而且在实践中也得到了非常广泛的应用。
支持向量机,由Vapnik在1998年引入,通过使用统计理论学习中结构风险最小化而非一般的经验结构最小化方法,把原有的最优分类面问题转化为其对偶的优化问题,因而具有良好的推广能力,被广泛应用在模式识别、拟合和分类问题中。在本方案中,支持向量机被用来优化模糊神经网络模型中的线性参数。
发明内容
为了克服已有的丙烯聚合生产过程的测量精度不高、对噪声敏感度低、推广性能差的不足,本发明提供一种在线测量、计算速度快、模型自动更新、抗噪声能力强、推广性能好的 最优模糊网络的工业熔融指数软测量仪表及方法。
一种最优模糊网络的工业熔融指数软测量仪表,包括丙烯聚合生产过程、用于测量易测变量的现场智能仪表、用于测量操作变量的控制站、存放数据的DCS数据库以及熔融指数软测量值显示仪,所述现场智能仪表、控制站与丙烯聚合生产过程连接,所述现场智能仪表、控制站与DCS数据库连接,所述软测量仪表还包括最优模糊网络的工业熔融指数软测量模型,所述DCS数据库与所述最优模糊网络的工业熔融指数软测量模型的输入端连接,所述最优模糊网络的工业熔融指数软测量模型的输出端与熔融指数软测量值显示仪连接,所述最优模糊网络的工业熔融指数软测量模型包括:
数据预处理模块,用于将从DCS数据库输入的模型训练样本进行预处理,使得训练样本的均值为0,方差为1,该处理采用以下算式过程来完成:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
模糊神经网络模块,对从数据预处理模块传过来的输入变量,进行模糊推理和建立模糊规则。对从数据预处理模块传过来的经过预处理过的训练样本X进行模糊分类,得到模糊规则库中每个模糊聚类的中心和宽度。设第p个标准化后的训练样本Xp=[Xp1,…,Xpn],其中n是输入变量的个数。
设模糊神经网络有R个模糊规则,为了求得每个模糊规则对于训练样本Xp的每个输入变量Xpj,j=1,…,n,下面的模糊化方程将求出其对第i个模糊规则的隶属度:
其中mij和σij分别表示第i个模糊规则的第j个高斯成员函数的中心和宽度,由模糊聚类求得。
设标准化后的训练样本Xp对模糊规则i的适应度为μ(i)(Xp),则μ(i)(Xp)的大小可由下 式决定:
求得输入训练样本对于每个规则的适应度之后,模糊神经网络对模糊规则输出进行推导以得到最后的解析解。在常用的模糊神经网络结构中,每个模糊规则推导的过程都可以表示为如下:首先求得训练样本中所有输入变量的线性乘积和,然后用此线性乘积和与规则的适用度μ(i)(Xp)相乘,得到最终的每条模糊规则的输出。模糊规则i的推导输出可以表示如下:
式中,f(i)为第i条模糊规则的输出,是模糊神经网络模型对第p个训练样本的预测输出,aij,j=1,…,n是第i条模糊规则中第j个变量的线性系数,ai0是第i条模糊规则中输入变量线性乘积和的常数项,b是输出偏置量。
支持向量机优化模块,在式(7)中,输入变量线性乘积和中的参数的确定是模糊神经网络使用中用到的一个主要问题,这里我们采用把原有的模糊规则推导输出形式转换为支持向量机优化问题,再使用支持向量机进行线性优化,转换过程如下:
其中Xp0为常数项且恒等于1。令
其中,表示原训练样本的转化形式,即把原来的训练样本转换为如上式形式,作为支持向量机的训练样本:
其中y1,…,yN是训练样本的目标输出,取S作为新的输入训练样本集合,那么原有问题可以转化为如下的支持向量机对偶优化问题:
其中yp是输入训练样本Xp的目标输出,ω是支持向量机超平面的法向量,f(Xp)是对应于Xp的模型输出,γ是支持向量机的惩罚因子,R(ω,b)是优化问题的目标函数,N是训练样本数,Lε(yp,f(Xp))表达式如下:
其中ε是优化问题的误差容限,接下来使用支持向量机求得模糊神经网络的模糊规则最优推导线性参数和对偶优化问题的预报输出:
其中αk,分别是yp-f(Xp)大于0和小于0时对应的拉格朗日乘子,即为对应于第p个标准化后的训练样本Xp的MI预报值。
作为优选的一种方案,所述最优模糊网络的工业熔融指数软测量模型还包括:模型更新模块,用于模型的在线更新,定期将离线化验数据输入到训练集中,更新模糊神经网络模型。
一种最优模糊网络的工业熔融指数软测量方法,所述软测量方法具体实现步骤如下:
1)、对丙烯聚合生产过程对象,根据工艺分析和操作分析,选择操作变量和易测变量作为模型的输入,操作变量和易测变量由DCS数据库获得;
2)、用于将从DCS数据库输入的模型训练样本进行预处理,使得训练样本的均值为0,方差为1,该处理采用以下算式过程来完成:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
3)、对从数据预处理模块传过来的输入变量,进行模糊推理和建立模糊规则。对从数据预处理模块传过来的经过预处理过的训练样本X进行模糊分类,得到模糊规则库中每个模糊聚类的中心和宽度。设第p个标准化后的训练样本Xp=[Xp1,…,Xpn],其中n是输入变量的个数。
设模糊神经网络有R个模糊规则,为了求得每个模糊规则对于训练样本Xp的每个输入变量Xpj,j=1,…,n,下面的模糊化方程将求出其对第i个模糊规则的隶属度:
其中mij和σij分别表示第i个模糊规则的第j个高斯成员函数的中心和宽度,由模糊聚类求得。
设标准化后的训练样本Xp对模糊规则i的适应度为μ(i)(Xp),则μ(i)(Xp)的大小可由下式决定:
求得输入训练样本对于每个规则的适应度之后,模糊神经网络对模糊规则输出进行推导以得到最后的解析解。在常用的模糊神经网络结构中,每个模糊规则推导的过程都可以表示为如下:首先求得训练样本中所有输入变量的线性乘积和,然后用此线性乘积和与规则的适用度μi(Xp)相乘,得到最终的每条模糊规则的输出。模糊规则i的推导输出可以表示如下:
式中,f(i)为第i条模糊规则的输出,是模糊神经网络模型对第p个训练样本的预测输出,aij,j=1,…,n是第i条模糊规则中第j个变量的线性系数,ai0是第i条模糊规则中输入变量线 性乘积和的常数项,b是输出偏置量。
4)、在式(7)中,输入变量线性乘积和中的参数的确定是模糊神经网络使用中用到的一个主要问题,这里我们采用把原有的模糊规则推导输出形式转换为支持向量机优化问题,再使用支持向量机进行线性优化,转换过程如下:
其中Xp0为常数项且恒等于1。令
其中,表示原训练样本的转化形式,即把原来的训练样本转换为如上式形式,作为支持向量机的训练样本:
其中y1,…,yN是训练样本的目标输出,取S作为新的输入训练样本集合,那么原有问题可以转化为如下的支持向量机对偶优化问题:
其中yp是输入训练样本Xp的目标输出,ω是支持向量机超平面的法向量,f(Xp)是对应于Xp的模型输出,γ是支持向量机的惩罚因子,R(ω,b)是优化问题的目标函数,N是训练样本数,Lε(yp,f(Xp))表达式如下:
其中ε是优化问题的误差容限,接下来使用支持向量机求得模糊神经网络的模糊规则最优推导线性参数和对偶优化问题的预报输出:
其中αk,分别是yp-f(Xp)大于0和小于0时对应的拉格朗日乘子,即为对应于第p个标准化后的训练样本Xp的MI预报值。
作为优选的一种方案:所述软测量方法还包括以下步骤:5)、定期将离线化验数据输入到训练样本集中,更新模糊神经网络模型。
本发明的技术构思为:对丙烯聚合生产过程的重要质量指标熔融指数进行在线软测量,克服已有的聚丙稀熔融指数测量仪表测量精度不高、容噪能力差、模型参数设定难度大的不足,引入支持向量机对模糊神经网络模型进行自动优化。此模型相对于已有的熔融指数软测量模型有以下优点:(1)减小了噪声和人工操作误差对模型预报精度的影响;(2)增强了模型的推广性能,对已有模型的过拟合现象进行有效的抑制;(3)提高了模型的稳定性,降低了模型过发生过拟合的可能性。
本发明的有益效果主要表现在:1、在线测量;2、模型自动更新;3、抗噪声干扰能力强、4、精度高;5、推广能力强。
附图说明
图1是最优模糊网络的工业熔融指数软测量仪表及方法的基本结构示意图;
图2是最优模糊网络的工业熔融指数软测量模型结构示意图。
具体实施方式
下面结合附图对本发明作进一步描述。本发明实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。
实施例1
参照图1、图2,一种基于支持向量机优化模糊神经网络的丙烯聚合生产过程软测量仪表,包括丙烯聚合生产过程1、用于测量易测变量的现场智能仪表2、用于测量操作变量的控制站3、存放数据的DCS数据库4以及熔融指数软测量值显示仪6,所述现场智能仪表2、控制站3与丙烯聚合生产过程1连接,所述现场智能仪表2、控制站3与DCS数据库4连接,所述软测量仪表还包括支持向量机优化模糊神经网络的软测量模型5,所述DCS数据库4与所述最优模糊网络的工业熔融指数软测量模型5的输入端连接,所述最优模糊网络的工业熔融指数软测量模型5的输出端与熔融指数软测量值显示仪6连接,所述最优模糊网络的工业熔融指数软测量模型包括:
数据预处理模块:用于将从DCS数据库输入的模型训练样本进行预处理,使得训练样本的均值为0,方差为1,该处理采用以下算式过程来完成:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
模糊神经网络模块,对从数据预处理模块传过来的输入变量,进行模糊推理和建立模糊规则。对从数据预处理模块传过来的经过预处理过的训练样本X进行模糊分类,得到模糊规则库中每个模糊聚类的中心和宽度。设第p个标准化后的训练样本Xp=[Xp1,…,Xpn],其中n是输入变量的个数。
设模糊神经网络有R个模糊规则,为了求得每个模糊规则对于训练样本Xp的每个输入变量Xpj,j=1,…,n,下面的模糊化方程将求出其对第i个模糊规则的隶属度:
其中mij和σij分别表示第i个模糊规则的第j个高斯成员函数的中心和宽度,由模糊聚类求得。
设标准化后的训练样本Xp对模糊规则i的适应度为μ(i)(Xp),则μ(i)(Xp)的大小可由下式决定:
求得输入训练样本对于每个规则的适应度之后,模糊神经网络对模糊规则输出进行推导以得到最后的解析解。在常用的模糊神经网络结构中,每个模糊规则推导的过程都可以表示为如下:首先求得训练样本中所有输入变量的线性乘积和,然后用此线性乘积和与规则的适用度μ(i)(Xp)相乘,得到最终的每条模糊规则的输出。模糊规则i的推导输出可以表示如下:
式中,f(i)为第i条模糊规则的输出,是模糊神经网络模型对第p个训练样本的预测输出,aij,j=1,…,n是第i条模糊规则中第j个变量的线性系数,ai0是第i条模糊规则中输入变量线性乘积和的常数项,b是输出偏置量。
支持向量机优化模块,在式(7)中,输入变量线性乘积和中的参数的确定是模糊神经网络使用中用到的一个主要问题,这里我们采用把原有的模糊规则推导输出形式转换为支持向量机优化问题,再使用支持向量机进行线性优化,转换过程如下:
其中Xp0为常数项且恒等于1。令
其中,表示原训练样本的转化形式,即把原来的训练样本转换为如上式形式,作为支持向量机的训练样本:
其中y1,…,yN是训练样本的目标输出,取S作为新的输入训练样本集合,那么原有问题可以转化为如下的支持向量机对偶优化问题:
其中yp是输入训练样本Xp的目标输出,ω是支持向量机超平面的法向量,f(Xp)是对应于Xp的模型输出,γ是支持向量机的惩罚因子,R(ω,b)是优化问题的目标函数,N是训练样本数,Lε(yp,f(Xp))表达式如下:
其中ε是优化问题的误差容限,接下来使用支持向量机求得模糊神经网络的模糊规则最优推导线性参数和对偶优化问题的预报输出:
其中αk,分别是yp-f(Xp)大于0和小于0时对应的拉格朗日乘子,即为对应于第p个标准化后的训练样本Xp的MI预报值。
所述最优模糊网络的工业熔融指数软测量模型还包括:模型更新模块,用于模型的在线更新,定期将离线化验数据输入到训练集中,更新模糊神经网络模型。
根据反应机理以及流程工艺分析,考虑到聚丙烯生产过程中对熔融指数产生影响的各种因素,取实际生产过程中常用的九个操作变量和易测变量作为建模变量,有:三股丙稀进料流率,主催化剂流率,辅催化剂流率,釜内温度、压强、液位,釜内氢气体积浓度。表1列出了作为软测量模型5输入的9个建模变量,分别为釜内温度(T)、釜内压力(P)、釜内液位(L)、釜内氢气体积浓度(Xv)、3股丙烯进料流率(第一股丙稀进料流率f1,第二股丙稀进料流率f2,第三股丙稀进料流率f3)、2股催化剂进料流率(主催化剂流率f4,辅催化剂流率f5)。反应釜中的聚合反应是反应物料反复混合后参与反应的,因此模型输入变量涉及物料的过程变量采用前若干时刻的平均值。此例中数据采用前一小时的平均值。熔融指数离线化验值作为软测量模型5的输出变量。通过人工取样、离线化验分析获得,每4小时分析采集一次。
现场智能仪表2及控制站3与丙烯聚合生产过程1相连,与DCS数据库4相连;软测量模型5与DCS数据库及软测量值显示仪6相连。现场智能仪表2测量丙烯聚合生产对象的易测变量,将易测变量传输到DCS数据库4;控制站3控制丙烯聚合生产对象的操作变量,将操作变量传输到DCS数据库4。DCS数据库4中记录的变量数据作为基于粒子群算法优化加权最小二乘支持向量机模糊方程的软测量模型5的输入,软测量值显示仪6用于显示最优模糊网络的工业熔融指数软测量模型5的输出,即软测量值。
表1:最优模糊网络的工业熔融指数软测量模型所需建模变量
变量符号 | 变量含义 | 变量符号 | 变量含义 |
T | 釜内温度 | f1 | 第一股丙稀进料流率 |
P | 釜内压强 | f2 | 第二股丙稀进料流率 |
L | 釜内液位 | f3 | 第三股丙稀进料流率 |
Xv | 釜内氢气体积浓度 | f4 | 主催化剂流率 |
f5 | 辅催化剂流率 |
最优模糊网络的工业熔融指数软测量模型5,包括以下3个部分:
数据预处理模块7用于将从DCS数据库输入的模型训练样本进行预处理,使得训练样本的均值为0,方差为1,该处理采用以下算式过程来完成:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
模糊神经网络模块8,对从数据预处理模块传过来的输入变量,进行模糊推理和建立模糊规则。对从数据预处理模块传过来的经过预处理过的训练样本X进行模糊分类,得到模糊规则库中每个模糊聚类的中心和宽度。设第p个标准化后的训练样本Xp=[Xp1,…,Xpn],其中n是输入变量的个数。
设模糊神经网络有R个模糊规则,为了求得每个模糊规则对于训练样本Xp的每个输入变量Xpj,j=1,…,n,下面的模糊化方程将求出其对第i个模糊规则的隶属度:
其中mij和σij分别表示第i个模糊规则的第j个高斯成员函数的中心和宽度,由模糊聚类求得。
设标准化后的训练样本Xp对模糊规则i的适应度为μ(i)(Xp),则μ(i)(Xp)的大小可由下式决定:
求得输入训练样本对于每个规则的适应度之后,模糊神经网络对模糊规则输出进行推导以得到最后的解析解。在常用的模糊神经网络结构中,每个模糊规则推导的过程都可以表示为如下:首先求得训练样本中所有输入变量的线性乘积和,然后用此线性乘积和与规则的适用度μ(i)(Xp)相乘,得到最终的每条模糊规则的输出。模糊规则i的推导输出可以表示如下:
式中,f(i)为第i条模糊规则的输出,是模糊神经网络模型对第p个训练样本的预测输出,aij,j=1,…,n是第i条模糊规则中第j个变量的线性系数,ai0是第i条模糊规则中输入变量线性乘积和的常数项,b是输出偏置量。
支持向量机优化模块9,在式(7)中,输入变量线性乘积和中的参数的确定是模糊神经网络使用中用到的一个主要问题,这里我们采用把原有的模糊规则推导输出形式转换为支持向量机优化问题,再使用支持向量机进行线性优化,转换过程如下:
其中Xp0为常数项且恒等于1。令
其中,表示原训练样本的转化形式,即把原来的训练样本转换为如上式形式,作为支持向量机的训练样本:
其中y1,…,yN是训练样本的目标输出,取S作为新的输入训练样本集合,那么原有问题可以 转化为如下的支持向量机对偶优化问题:
其中yp是输入训练样本Xp的目标输出,ω是支持向量机超平面的法向量,f(Xp)是对应于Xp的模型输出,γ是支持向量机的惩罚因子,R(ω,b)是优化问题的目标函数,N是训练样本数,Lε(yp,f(Xp))表达式如下:
其中ε是优化问题的误差容限,接下来使用支持向量机求得模糊神经网络的模糊规则最优推导线性参数和对偶优化问题的预报输出:
其中αk,分别是yp-f(Xp)大于0和小于0时对应的拉格朗日乘子,即为对应于第p个标准化后的训练样本Xp的MI预报值。
模型更新模块10,用于模型的在线更新,定期将离线化验数据输入到训练集中,更新模糊神经网络模型。
实施例2
参照图1、图2,一种最优模糊网络的工业熔融指数软测量方法,所述软测量方法具体实现步骤如下:
1)、对丙烯聚合生产过程对象,根据工艺分析和操作分析,选择操作变量和易测变量作为模型的输入,操作变量和易测变量由DCS数据库获得;
2)、用于将从DCS数据库输入的模型训练样本进行预处理,使得训练样本的均值为0,方差为1,该处理采用以下算式过程来完成:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
3)、对从数据预处理模块传过来的输入变量,进行模糊推理和建立模糊规则。对从数据预处理模块传过来的经过预处理过的训练样本X进行模糊分类,得到模糊规则库中每个模糊聚类的中心和宽度。设第p个标准化后的训练样本Xp=[Xp1,…,Xpn],其中n是输入变量的个数。
设模糊神经网络有R个模糊规则,为了求得每个模糊规则对于训练样本Xp的每个输入变量Xpj,j=1,…,n,下面的模糊化方程将求出其对第i个模糊规则的隶属度:
其中mij和σij分别表示第i个模糊规则的第j个高斯成员函数的中心和宽度,由模糊聚类求得。
设标准化后的训练样本Xp对模糊规则i的适应度为μ(i)(Xp),则μ(i)(Xp)的大小可由下式决定:
求得输入训练样本对于每个规则的适应度之后,模糊神经网络对模糊规则输出进行推导以得到最后的解析解。在常用的模糊神经网络结构中,每个模糊规则推导的过程都可以表示为如下:首先求得训练样本中所有输入变量的线性乘积和,然后用此线性乘积和与规则的适用度μ(i)(Xp)相乘,得到最终的每条模糊规则的输出。模糊规则i的推导输出可以表示如下:
式中,f(i)为第i条模糊规则的输出,是模糊神经网络模型对第p个训练样本的预测输出,aij,j=1,…,n是第i条模糊规则中第j个变量的线性系数,ai0是第i条模糊规则中输入变量线 性乘积和的常数项,b是输出偏置量。
4)、在式(7)中,输入变量线性乘积和中的参数的确定是模糊神经网络使用中用到的一个主要问题,这里我们采用把原有的模糊规则推导输出形式转换为支持向量机优化问题,再使用支持向量机进行线性优化,转换过程如下:
其中Xp0为常数项且恒等于1。令
其中,表示原训练样本的转化形式,即把原来的训练样本转换为如上式形式,作为支持向量机的训练样本:
其中y1,…,yN是训练样本的目标输出,取S作为新的输入训练样本集合,那么原有问题可以转化为如下的支持向量机对偶优化问题:
其中yp是输入训练样本Xp的目标输出,ω是支持向量机超平面的法向量,f(Xp)是对应于Xp的模型输出,γ是支持向量机的惩罚因子,R(ω,b)是优化问题的目标函数,N是训练样本数,Lε(yp,f(Xp))表达式如下:
其中ε是优化问题的误差容限,接下来使用支持向量机求得模糊神经网络的模糊规则最优推导线性参数和对偶优化问题的预报输出:
其中αk,分别是yp-f(Xp)大于0和小于0时对应的拉格朗日乘子,即为对应于第p个标准化后的训练样本Xp的MI预报值。
作为优选的一种方案:所述软测量方法还包括以下步骤:5)、定期将离线化验数据输入到训练样本集中,更新模糊方程模型。
本实施例的方法具体实现步骤如下:
步骤1:对丙烯聚合生产过程对象1,根据工艺分析和操作分析,选择操作变量和易测变量作为模型的输入。操作变量和易测变量由DCS数据库4获得。
步骤2:对训练样本进行预处理,由数据预处理模块7完成。
步骤3:基于预处理过的训练样本数据建立初始模糊神经网络模型8。输入数据如步骤2所述获得,输出数据由离线化验获得。
步骤4:由支持向量机优化模块9优化初始模糊神经网络模型8的反模糊输出参数。
步骤5:模型更新模块10定期将离线化验数据输入到训练集中,更新模糊神经网络模型,最优模糊网络的工业熔融指数软测量模型5建立完成。
步骤6:熔融指数软测量值显示仪6显示最优模糊网络的工业熔融指数软测量模型5的输出,完成对工业聚丙烯生产熔融指数软测量的显示。
Claims (2)
1.一种最优模糊网络的工业熔融指数软测量仪表,包括用于测量易测变量的现场智能仪表、用于测量操作变量的控制站、存放数据的DCS数据库以及熔融指数软测量值显示仪,所述现场智能仪表、控制站与DCS数据库连接,其特征在于:所述软测量仪表还包括最优模糊网络的工业熔融指数软测量模型,所述DCS数据库与所述最优模糊网络的工业熔融指数软测量模型的输入端连接,所述最优模糊网络的工业熔融指数软测量模型的输出端与熔融指数软测量值显示仪连接,所述最优模糊网络的工业熔融指数软测量模型包括:
数据预处理模块,用于将从DCS数据库输入的模型训练样本进行预处理,使得训练样本的均值为0,方差为1,该处理采用以下算式过程来完成:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本;σx表示训练样本的标准差,σ2 x表示训练样本的方差;
模糊神经网络模块,对从数据预处理模块传过来的输入变量,进行模糊推理和建立模糊规则;对从数据预处理模块传过来的经过预处理过的训练样本X进行模糊分类,得到模糊规则库中每个模糊聚类的中心和宽度;设第p个标准化后的训练样本Xp=[Xp1,...,Xpn],其中n是输入变量的个数;
设模糊神经网络有R个模糊规则,为了求得每个模糊规则对于训练样本Xp的每个输入变量Xpj,j=1,…,n,下面的模糊化方程将求出其对第i个模糊规则的隶属度:
其中mij和σij分别表示第i个模糊规则的第j个高斯成员函数的中心和宽度,由模糊聚类求得;
设标准化后的训练样本Xp对模糊规则i的适应度为μ(i)(Xp),则μ(i)(Xp)的大小可由下式决定:
求得输入训练样本对于每个规则的适应度之后,模糊神经网络对模糊规则输出进行推导以得到最后的解析解;在常用的模糊神经网络结构中,每个模糊规则推导的过程都可以表示为如下:首先求得训练样本中所有输入变量的线性乘积和,然后用此线性乘积和与规则的适用度μi(Xp)相乘,得到最终的每条模糊规则的输出;模糊规则i的推导输出可以表示如下:
式中,f(i)为第i条模糊规则的输出,是模糊神经网络模型对第p个训练样本的预测输出,aij,j=1,…,n是第i条模糊规则中第j个变量的线性系数,ai0是第i条模糊规则中输入变量线性乘积和的常数项,b是输出偏置量;
支持向量机优化模块,在式(7)中,输入变量线性乘积和中的参数的确定是模糊神经网络使用中用到的一个主要问题,这里我们采用把原有的模糊规则推导输出形式转换为支持向量机优化问题,再使用支持向量机进行线性优化,转换过程如下:
其中Xp0为常数项且恒等于1;令
其中,表示原训练样本的转化形式,即把原来的训练样本转换为如上式形式,作为支持向量机的训练样本:
其中y1,…,yN是训练样本的目标输出,取S作为新的输入训练样本集合,那么原有问题可以转化为如下的支持向量机对偶优化问题:
其中yp是输入训练样本Xp的目标输出,ω是支持向量机超平面的法向量,f(Xp)是对应于Xp的模型输出,γ是支持向量机的惩罚因子,R(ω,b)是优化问题的目标函数,N是训练样本数,Lε(yp,f(Xp))表达式如下:
其中ε是优化问题的误差容限,接下来使用支持向量机求得模糊神经网络的模糊规则最优推导线性参数和对偶优化问题的预报输出:
其中αk,(k=1,…,N)分别是yp-f(Xp)大于0和小于0时对应的拉格朗日乘子,即为对应于第p个标准化后的训练样本Xp的MI预报值;
所述最优模糊网络的工业熔融指数软测量模型还包括:
模型更新模块,用于模型的在线更新,定期将离线化验数据输入到训练集中,更新模糊神经网络模型。
2.一种用如权利要求1所述的一种最优模糊网络的工业熔融指数软测量仪表实现的软测量方法,其特征在于:所述软测量方法具体实现步骤如下:
1)、对丙烯聚合生产过程对象,根据工艺分析和操作分析,选择操作变量和易测变量作为模型的输入,操作变量和易测变量由DCS数据库获得;
2)、用于将从DCS数据库输入的模型训练样本进行预处理,使得训练样本的均值为0,方差为1,该处理采用以下算式过程来完成:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本;σx表示训练样本的标准差,σ2 x表示训练样本的方差;
3)、对从数据预处理模块传过来的输入变量,进行模糊推理和建立模糊规则;对从数据预处理模块传过来的经过预处理过的训练样本X进行模糊分类,得到模糊规则库中每个模糊聚类的中心和宽度;设第p个标准化后的训练样本Xp=[Xp1,...,Xpn],其中n是输入变量的个数;
设模糊神经网络有R个模糊规则,为了求得每个模糊规则对于训练样本Xp的每个输入变量Xpj,j=1,…,n,下面的模糊化方程将求出其对第i个模糊规则的隶属度:
其中mij和σij分别表示第i个模糊规则的第j个高斯成员函数的中心和宽度,由模糊聚类求得;
设标准化后的训练样本Xp对模糊规则i的适应度为μ(i)(Xp),则μ(i)(Xp)的大小可由下式决定:
求得输入训练样本对于每个规则的适应度之后,模糊神经网络对模糊规则输出进行推导以得到最后的解析解;在常用的模糊神经网络结构中,每个模糊规则推导的过程都可以表示为如下:首先求得训练样本中所有输入变量的线性乘积和,然后用此线性乘积和与规则的适用度μ(i)(Xp)相乘,得到最终的每条模糊规则的输出;模糊规则i的推导输出可以表示如下:
式中,f(i)为第i条模糊规则的输出,是模糊神经网络模型对第p个训练样本的预测输出,aij,j=1,…,n是第i条模糊规则中第j个变量的线性系数,ai0是第i条模糊规则中输入变量线性乘积和的常数项,b是输出偏置量;
4)、在式(7)中,输入变量线性乘积和中的参数的确定是模糊神经网络使用中用到的一个主要问题,这里我们采用把原有的模糊规则推导输出形式转换为支持向量机优化问题,再使用支持向量机进行线性优化,转换过程如下:
其中Xp0为常数项且恒等于1;令
其中,表示原训练样本的转化形式,即把原来的训练样本转换为如上式形式,作为支持向量机的训练样本:
其中y1,…,yN是训练样本的目标输出,取S作为新的输入训练样本集合,那么原有问题可以转化为如下的支持向量机对偶优化问题:
其中yp是输入训练样本Xp的目标输出,ω是支持向量机超平面的法向量,f(Xp)是对应于Xp的模型输出,γ是支持向量机的惩罚因子,R(ω,b)是优化问题的目标函数,N是训练样本数,Lε(yp,f(Xp))表达式如下:
其中ε是优化问题的误差容限,接下来使用支持向量机求得模糊神经网络的模糊规则最优推导线性参数和对偶优化问题的预报输出:
其中αk,(k=1,…,N)分别是yp-f(Xp)大于0和小于0时对应的拉格朗日乘子,即为对应于第p个标准化后的训练样本Xp的MI预报值;
所述软测量方法还包括以下步骤:5)、定期将离线化验数据输入到训练样本集中,更新模糊神经网络模型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310432289.XA CN103675005B (zh) | 2013-09-22 | 2013-09-22 | 最优模糊网络的工业熔融指数软测量仪表及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310432289.XA CN103675005B (zh) | 2013-09-22 | 2013-09-22 | 最优模糊网络的工业熔融指数软测量仪表及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103675005A CN103675005A (zh) | 2014-03-26 |
CN103675005B true CN103675005B (zh) | 2015-09-30 |
Family
ID=50313210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310432289.XA Expired - Fee Related CN103675005B (zh) | 2013-09-22 | 2013-09-22 | 最优模糊网络的工业熔融指数软测量仪表及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103675005B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108803525A (zh) * | 2018-06-28 | 2018-11-13 | 浙江大学 | 一种混沌敏捷高精度的丙烯聚合生产过程最优软测量仪表 |
CN108982576A (zh) * | 2018-06-28 | 2018-12-11 | 浙江大学 | 一种混沌高精度的丙烯聚合生产过程最优软测量仪表 |
CN109063786A (zh) * | 2018-08-27 | 2018-12-21 | 浙江大学 | 等离子体裂解煤制乙炔反应过程中乙炔浓度的软测量方法 |
CN109471363B (zh) * | 2018-12-28 | 2020-08-04 | 浙江大学 | 基于后效性函数与杜鹃搜索的工业熔融指数软测量方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19718262A1 (de) * | 1997-04-30 | 1998-11-05 | Schenck Panel Production Syste | Verfahren und System zur Generierung eines Prozeßmodells eines technischen Problems |
US7251638B2 (en) * | 2004-03-03 | 2007-07-31 | Yamaha Hatsudoki Kabushiki Kaisha | Intelligent robust control system for motorcycle using soft computing optimizer |
CN1295576C (zh) * | 2004-11-04 | 2007-01-17 | 浙江大学 | 槽式反应器基于支持向量机的非线性模型预测控制方法 |
CN100458607C (zh) * | 2006-09-12 | 2009-02-04 | 浙江大学 | 一种丙稀聚合工业生产熔融指数软测量方法 |
CN201017224Y (zh) * | 2006-12-22 | 2008-02-06 | 浙江大学 | 工业聚丙烯生产熔融指数检测故障诊断装置 |
CN201035377Y (zh) * | 2006-12-22 | 2008-03-12 | 浙江大学 | 丙烯聚合生产中熔融指数检测的故障诊断装置 |
CN102122132A (zh) * | 2010-01-11 | 2011-07-13 | 北京航空航天大学 | 一种基于模糊神经网络的用于环境模拟系统的智能控制系统 |
CN102621888B (zh) * | 2012-03-27 | 2014-04-02 | 上海大学 | 基于最小二乘支持向量机的结构地震响应时滞智能控制方法 |
-
2013
- 2013-09-22 CN CN201310432289.XA patent/CN103675005B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN103675005A (zh) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101315557B (zh) | 基于遗传算法优化bp神经网络的丙烯聚合生产过程最优软测量仪表及方法 | |
CN102609593B (zh) | 基于多重先验知识混合模型的聚丙烯熔融指数预报方法 | |
CN103675011B (zh) | 最优支持向量机的工业熔融指数软测量仪表和方法 | |
CN101630376A (zh) | 多模型神经网络的生物发酵过程软测量建模方法及软仪表 | |
CN103674778B (zh) | Rbf粒子群优化的工业熔融指数软测量仪表和方法 | |
CN111103420B (zh) | 一种原料不确定下的酚醛树脂产品质量预测方法 | |
CN101382801A (zh) | 基于ega优化的丙烯聚合生产过程最优软测量仪表及方法 | |
CN103675006B (zh) | 最小二乘的工业熔融指数软测量仪表和方法 | |
CN103823964A (zh) | 一种全局最优丙烯聚合生产过程最优软测量仪表和方法 | |
CN103675005B (zh) | 最优模糊网络的工业熔融指数软测量仪表及方法 | |
CN103675010B (zh) | 支持向量机的工业熔融指数软测量仪表及方法 | |
CN103839103B (zh) | 丙烯聚合生产过程bp最优预报系统和方法 | |
Gao et al. | Research on modeling of industrial soft sensor based on ensemble learning | |
CN103838206B (zh) | 最优bp多模丙烯聚合生产过程最优软测量仪表和方法 | |
CN103675009B (zh) | 模糊方程的工业熔融指数软测量仪表及方法 | |
CN103838142B (zh) | 基于混合寻优的丙烯聚合生产过程最优软测量系统和方法 | |
CN103675012B (zh) | Bp粒子群优化的工业熔融指数软测量仪表和方法 | |
CN109507889A (zh) | 卷积神经网络的丙烯聚合生产过程最优在线预报系统 | |
CN103955170A (zh) | 基于群智寻优的丙烯聚合生产过程在线预报系统和方法 | |
CN103824121A (zh) | 基于多模群智的丙烯聚合生产过程最优预报系统和方法 | |
CN103630568B (zh) | Bp网络的工业熔融指数软测量仪表及方法 | |
CN103838209B (zh) | 丙烯聚合生产过程自适应最优预报系统和方法 | |
CN111204867A (zh) | 膜生物反应器-mbr膜污染智能决策方法 | |
CN103838958B (zh) | 模糊智能最优丙烯聚合生产过程最优软测量仪表和方法 | |
CN103675007B (zh) | Rbf网络的工业熔融指数软测量仪表及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150930 Termination date: 20180922 |
|
CF01 | Termination of patent right due to non-payment of annual fee |