[go: up one dir, main page]

CN103632969A - How the transistor is formed - Google Patents

How the transistor is formed Download PDF

Info

Publication number
CN103632969A
CN103632969A CN201210299790.9A CN201210299790A CN103632969A CN 103632969 A CN103632969 A CN 103632969A CN 201210299790 A CN201210299790 A CN 201210299790A CN 103632969 A CN103632969 A CN 103632969A
Authority
CN
China
Prior art keywords
layer
liner layer
forming
transistor according
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210299790.9A
Other languages
Chinese (zh)
Inventor
涂火金
何有丰
金兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201210299790.9A priority Critical patent/CN103632969A/en
Publication of CN103632969A publication Critical patent/CN103632969A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/791Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
    • H10D30/797Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in source or drain regions, e.g. SiGe source or drain
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/149Source or drain regions of field-effect devices
    • H10D62/151Source or drain regions of field-effect devices of IGFETs 
    • H10D62/152Source regions of DMOS transistors
    • H10D62/153Impurity concentrations or distributions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/149Source or drain regions of field-effect devices
    • H10D62/151Source or drain regions of field-effect devices of IGFETs 
    • H10D62/156Drain regions of DMOS transistors
    • H10D62/157Impurity concentrations or distributions

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种晶体管的形成方法,包括:提供半导体衬底,所述半导体衬底表面具有栅极结构;在所述栅极结构两侧的半导体衬底内形成开口;在所述开口的侧壁和底部表面形成第一衬垫层,所述第一衬垫层的材料为硅锗或碳化硅,所述第一衬垫层内具掺杂离子,所述掺杂离子为P型离子或N型离子;在所述第一衬垫层表面形成填充满所述开口的第二衬垫层,所述第二衬垫层的材料与第一衬垫层一致,且所述第二衬垫层内的锗或碳的原子百分比浓度比第一衬垫层高,所述第二衬垫层内具有与第一衬垫层内相同的掺杂离子,且第二衬垫层内的掺杂离子浓度比第一衬垫层高。所形成的晶体管阈值电压减小,性能稳定。

Figure 201210299790

A method for forming a transistor, comprising: providing a semiconductor substrate, the surface of the semiconductor substrate has a gate structure; forming openings in the semiconductor substrate on both sides of the gate structure; A first liner layer is formed on the surface, the material of the first liner layer is silicon germanium or silicon carbide, and there are dopant ions in the first liner layer, and the dopant ions are P-type ions or N-type ions ; A second liner layer filling the opening is formed on the surface of the first liner layer, the material of the second liner layer is consistent with that of the first liner layer, and the inside of the second liner layer The atomic percent concentration of germanium or carbon is higher than that of the first liner layer, and the second liner layer has the same dopant ions as in the first liner layer, and the dopant ion concentration in the second liner layer is higher than that of the first liner layer. The first underlayment layer is high. The formed transistor has a reduced threshold voltage and stable performance.

Figure 201210299790

Description

晶体管的形成方法How the transistor is formed

技术领域 technical field

本发明涉及半导体制造技术领域,尤其涉及一种晶体管的形成方法。The invention relates to the technical field of semiconductor manufacturing, in particular to a method for forming a transistor.

背景技术 Background technique

晶体管作为最基本的半导体器件目前正被广泛应用,随着半导体器件的元件密度和集成度的提高,晶体管的栅极尺寸变得比以往更短;然而,晶体管的栅极尺寸变短会使晶体管产生短沟道效应,进而产生漏电流,最终影响半导体器件的电学性能。目前,现有技术主要通过提高晶体管沟道区的应力,以提高载流子迁移,进而提高晶体管的驱动电流,减少晶体管中的漏电流。As the most basic semiconductor device, transistors are currently being widely used. With the increase of component density and integration of semiconductor devices, the gate size of transistors has become shorter than before; however, the shortened gate size of transistors will make transistors The short channel effect is generated, and then leakage current is generated, which finally affects the electrical performance of the semiconductor device. At present, in the prior art, the stress of the channel region of the transistor is mainly increased to increase the mobility of carriers, thereby increasing the driving current of the transistor and reducing the leakage current in the transistor.

现有技术提高晶体管沟道区的应力的方法为,在晶体管的源/漏区形成应力衬垫层,其中,PMOS晶体管的应力衬垫层的材料为硅锗(SiGe),硅和硅锗之间因晶格失配形成的压应力,从而提高PMOS晶体管的性能;NMOS晶体管的应力衬垫层的材料为碳化硅(SiC),硅和碳化硅之间因晶格失配形成的拉应力,从而提高NMOS晶体管的性能。In the prior art, the method for increasing the stress of the channel region of the transistor is to form a stress liner layer in the source/drain region of the transistor, wherein the material of the stress liner layer of the PMOS transistor is silicon germanium (SiGe), silicon and silicon germanium. The compressive stress formed by the lattice mismatch between them improves the performance of the PMOS transistor; the material of the stress liner layer of the NMOS transistor is silicon carbide (SiC), and the tensile stress formed by the lattice mismatch between silicon and silicon carbide, Thereby improving the performance of the NMOS transistor.

现有技术具有应力衬垫层的晶体管形成过程的剖面结构示意图,如图1至图3所示,包括:The schematic cross-sectional structural diagrams of the formation process of transistors with stress liner layers in the prior art, as shown in FIGS. 1 to 3 , include:

请参考图1,提供半导体衬底10,在所述半导体衬底10表面形成栅极结构11。所述栅极结构11包括:所述半导体衬底10表面的栅介质层14,所述栅介质层14表面的栅电极层15,以及所述栅电极层15两侧的半导体衬底10表面的侧墙16。Referring to FIG. 1 , a semiconductor substrate 10 is provided, and a gate structure 11 is formed on the surface of the semiconductor substrate 10 . The gate structure 11 includes: a gate dielectric layer 14 on the surface of the semiconductor substrate 10, a gate electrode layer 15 on the surface of the gate dielectric layer 14, and the gate electrode layer 15 on the surface of the semiconductor substrate 10 on both sides of the gate electrode layer 15. side wall 16.

请参考图2,在所述栅极结构11两侧的半导体衬底10内形成开口12。所述开口12为西格玛(Σ,sigma)形,即所述开口12的侧壁与半导体衬底10的表面构成西格玛形,所述开口12侧壁上的顶角向所述栅极结构11下方的半导体衬底10内延伸。Referring to FIG. 2 , openings 12 are formed in the semiconductor substrate 10 on both sides of the gate structure 11 . The opening 12 has a sigma (Σ, sigma) shape, that is, the sidewall of the opening 12 and the surface of the semiconductor substrate 10 form a sigma shape, and the apex angle on the sidewall of the opening 12 faces below the gate structure 11 extending within the semiconductor substrate 10 .

请参考图3,在所述开口12内形成应力衬垫层13,所述应力衬垫层13的材料为硅锗或碳化硅。Referring to FIG. 3 , a stress liner layer 13 is formed in the opening 12 , and the material of the stress liner layer 13 is silicon germanium or silicon carbide.

需要说明的是,为了使应力衬垫层13与半导体衬底10之间的晶格更为匹配,现有技术在应力衬垫层13和半导体衬底10之间形成过渡层14,所述过度层14的材料与所述应力衬垫层13的材料相同,且所述过渡层14内的碳或锗的原子百分比浓度小于所述应力衬垫层13。It should be noted that, in order to better match the lattice between the stress liner layer 13 and the semiconductor substrate 10, a transition layer 14 is formed between the stress liner layer 13 and the semiconductor substrate 10 in the prior art. The material of the layer 14 is the same as that of the stress liner layer 13 , and the atomic percentage concentration of carbon or germanium in the transition layer 14 is smaller than that of the stress liner layer 13 .

然而,以现有技术形成的具有应力衬垫层的晶体管的阈值电压过高,性能不良。However, the threshold voltage of the transistor with the stress liner layer formed in the prior art is too high and the performance is poor.

更多具有应力衬垫层的晶体管请参考公开号为US 2011256681A1的美国专利文件。For more transistors with stressed liner layers, please refer to the US patent document with publication number US 2011256681A1.

发明内容 Contents of the invention

本发明解决的问题是提供一种晶体管的形成方法,使所形成的晶体管的阈值电压减小,改善性能。The problem to be solved by the present invention is to provide a method for forming a transistor, which reduces the threshold voltage of the formed transistor and improves performance.

为解决上述问题,本发明提供一种晶体管的形成方法,包括:提供半导体衬底,所述半导体衬底表面具有栅极结构;在所述栅极结构两侧的半导体衬底内形成开口;在所述开口的侧壁和底部表面形成第一衬垫层,所述第一衬垫层的材料为硅锗或碳化硅,所述第一衬垫层内具掺杂离子,所述掺杂离子为P型离子或N型离子;在所述第一衬垫层表面形成填充满所述开口的第二衬垫层,所述第二衬垫层的材料与第一衬垫层一致,且所述第二衬垫层内的锗或碳的原子百分比浓度比第一衬垫层高,所述第二衬垫层内具有与第一衬垫层内相同的掺杂离子,且第二衬垫层内的掺杂离子浓度比第一衬垫层高。In order to solve the above problems, the present invention provides a method for forming a transistor, comprising: providing a semiconductor substrate, the surface of which has a gate structure; forming openings in the semiconductor substrate on both sides of the gate structure; The sidewall and bottom surface of the opening form a first liner layer, the material of the first liner layer is silicon germanium or silicon carbide, the first liner layer contains dopant ions, and the dopant ion It is a P-type ion or an N-type ion; a second liner layer filling the opening is formed on the surface of the first liner layer, the material of the second liner layer is consistent with that of the first liner layer, and the The atomic percentage concentration of germanium or carbon in the second liner layer is higher than that of the first liner layer, the second liner layer has the same doping ions as in the first liner layer, and the second liner layer The concentration of doping ions in the layer is higher than that of the first liner layer.

可选地,所述第一衬垫层和第二衬垫层的材料为硅锗时,所述掺杂离子为硼或铟。Optionally, when the material of the first pad layer and the second pad layer is silicon germanium, the dopant ions are boron or indium.

可选地,所述第一衬垫层内的硼或铟的掺杂浓度为1E17原子/立方厘米-1E19原子/立方厘米,所述第二衬垫层内的硼或铟的掺杂浓度为1E19原子/立方厘米-1E21原子/立方厘米。Optionally, the doping concentration of boron or indium in the first pad layer is 1E17 atoms/cubic centimeter to 1E19 atoms/cubic centimeter, and the doping concentration of boron or indium in the second pad layer is 1E19 atoms/cubic centimeter - 1E21 atoms/cubic centimeter.

可选地,所述第一衬垫层内锗的原子百分比浓度为1%-25%,所述第二衬垫层内锗的原子百分比浓度为25%-45%。Optionally, the atomic percentage concentration of germanium in the first liner layer is 1%-25%, and the atomic percentage concentration of germanium in the second liner layer is 25%-45%.

可选地,所述第一衬垫层和第二衬垫层的材料为碳化硅时,所述掺杂离子为磷或砷。Optionally, when the material of the first liner layer and the second liner layer is silicon carbide, the dopant ions are phosphorus or arsenic.

可选地,所述第一衬垫层内的磷或砷的掺杂浓度为1E17原子/立方厘米-1E19原子/立方厘米,所述第二衬垫层内的磷或砷的掺杂浓度为1E19原子/立方厘米-1E21原子/立方厘米。Optionally, the doping concentration of phosphorus or arsenic in the first liner layer is 1E17 atoms/cubic centimeter to 1E19 atoms/cubic centimeter, and the doping concentration of phosphorus or arsenic in the second liner layer is 1E19 atoms/cubic centimeter - 1E21 atoms/cubic centimeter.

可选地,所述第一衬垫层内碳的原子百分比浓度为0.05%-1%,所述第二衬垫层内锗的原子百分比浓度为1%-10%。Optionally, the atomic percentage concentration of carbon in the first liner layer is 0.05%-1%, and the atomic percentage concentration of germanium in the second liner layer is 1%-10%.

可选地,所述第一衬垫层和第二衬垫层的形成工艺为选择性外延沉积工艺。Optionally, the formation process of the first liner layer and the second liner layer is a selective epitaxial deposition process.

可选地,选择性外延沉积工艺的温度为500摄氏度-800摄氏度,气压为1托-100托。Optionally, the temperature of the selective epitaxial deposition process is 500°C-800°C, and the gas pressure is 1 Torr-100 Torr.

可选地,所述选择性外延沉积工艺的气体包括SiH4或SiH2Cl2,所述SiH4或SiH2Cl2的流量为1sccm-1000sccm。Optionally, the gas of the selective epitaxial deposition process includes SiH 4 or SiH 2 Cl 2 , and the flow rate of the SiH 4 or SiH 2 Cl 2 is 1 sccm-1000 sccm.

可选地,所述选择性外延沉积工艺的气体还包括:HCl和H2,所述HCl的流量为1sccm-1000sccm,H2的流量为0.1slm-50slm。Optionally, the gas in the selective epitaxial deposition process further includes: HCl and H 2 , the flow rate of HCl is 1 sccm-1000 sccm, and the flow rate of H 2 is 0.1 slm-50 slm.

可选地,所述第一衬垫层和第二衬垫层内掺杂离子的工艺为原位掺杂工艺。Optionally, the process of doping ions in the first liner layer and the second liner layer is an in-situ doping process.

可选地,所述原位掺杂工艺的气体为B2H6、InCl3、PH3或AsH3,所述B2H6、InCl3、PH3或AsH3的流量为1sccm-1000sccm。Optionally, the gas of the in-situ doping process is B 2 H 6 , InCl 3 , PH 3 or AsH 3 , and the flow rate of the B 2 H 6 , InCl 3 , PH 3 or AsH 3 is 1 sccm-1000 sccm.

可选地,所述第二衬垫层内掺杂离子的工艺为离子注入工艺。Optionally, the process of doping ions in the second liner layer is an ion implantation process.

可选地,所述第一衬垫层的厚度为1埃~200纳米,所述第二衬垫层的底部到半导体衬底表面的厚度为1埃~200纳米。Optionally, the thickness of the first liner layer is 1 angstrom to 200 nanometers, and the thickness from the bottom of the second liner layer to the surface of the semiconductor substrate is 1 angstrom to 200 nanometers.

可选地,所述开口的侧壁与半导体衬底的表面构成西格玛形,所述开口侧壁上的顶角向所述栅极结构下方的半导体衬底内延伸。Optionally, the sidewall of the opening and the surface of the semiconductor substrate form a sigma shape, and the vertex on the sidewall of the opening extends into the semiconductor substrate below the gate structure.

可选地,在所述第一衬垫层和第二衬垫层表面形成覆盖层。Optionally, a covering layer is formed on the surfaces of the first pad layer and the second pad layer.

可选地,所述覆盖层的材料为钛硅,镍硅或钴硅。Optionally, the material of the covering layer is titanium silicon, nickel silicon or cobalt silicon.

可选地,所述半导体衬底的材料为硅或绝缘体上硅。Optionally, the material of the semiconductor substrate is silicon or silicon-on-insulator.

可选地,所述栅极结构包括:所述半导体衬底表面的栅介质层,所述栅介质层表面的栅电极层,以及所述栅电极层两侧的半导体衬底表面的侧墙。Optionally, the gate structure includes: a gate dielectric layer on the surface of the semiconductor substrate, a gate electrode layer on the surface of the gate dielectric layer, and spacers on the surface of the semiconductor substrate on both sides of the gate electrode layer.

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

在开口侧壁和底部形成第一衬垫层,以及填充满所述开口的第二衬底层,所述第二衬垫层的材料与第一衬垫层一致,且所述第二衬垫层内的锗或碳的原子百分比浓度比第一衬垫层高;使第二衬垫层内具有与第一衬垫层内相同的掺杂离子,当所形成的晶体管工作时,第一衬垫层内掺杂的离子能够进入沟道区,而所述第一衬垫层内的掺杂离子的迁移,能够使第二衬垫层内的掺杂离子更易于穿过所述第一衬垫层,并进入沟道区,从而使所形成的晶体管的阈值电压减小,性能改善;此外,第一衬垫层内的掺杂离子浓度比第二衬垫层低,保证了在非工作状态下,第一衬垫层内的掺杂离子不会发生扩散而形成漏电流,使晶体管的性能稳定。Form a first liner layer on the sidewall and bottom of the opening, and a second substrate layer filling the opening, the material of the second liner layer is consistent with that of the first liner layer, and the second liner layer The atomic percent concentration of germanium or carbon in the inner liner layer is higher than that of the first liner layer; the second liner layer has the same doping ions as in the first liner layer, and when the formed transistor works, the first liner layer The internally doped ions can enter the channel region, and the migration of the dopant ions in the first liner layer can make it easier for the dopant ions in the second liner layer to pass through the first liner layer , and enter the channel region, so that the threshold voltage of the formed transistor is reduced and the performance is improved; in addition, the dopant ion concentration in the first liner layer is lower than that in the second liner layer, which ensures that in the non-operating state , the dopant ions in the first liner layer will not diffuse to form leakage current, so that the performance of the transistor is stable.

附图说明Description of drawings

图1至图3是现有技术具有应力衬垫层的晶体管形成过程的剖面结构示意图;1 to 3 are schematic cross-sectional structural diagrams of the formation process of a transistor with a stress liner layer in the prior art;

图4至图8为本实施例所述晶体管的形成过程的剖面结构示意图。4 to 8 are schematic cross-sectional structure diagrams of the formation process of the transistor described in this embodiment.

具体实施方式 Detailed ways

如背景技术所述,现有技术形成的具有应力衬垫层的晶体管的阈值电压过高,性能不良。As mentioned in the background art, the threshold voltage of the transistor with the stress liner layer formed in the prior art is too high, and the performance is poor.

请继续参考图3,具有应力衬垫层的晶体管中,为了提高应力衬垫层13施加于沟道区的应力,需要提高应力衬垫层13中碳或锗的原子百分比浓度;然而,应力衬垫层13中碳或锗的原子百分比浓度越高,所述应力衬垫层13和半导体衬底10之间的晶格差异越严重,容易在所述应力衬垫层13和半导体衬底10的界面处造成缺陷。因此,现有技术为了缓解所述应力衬垫层13和半导体衬底10之间的晶格差异,会在所述应力衬垫层13和半导体衬底10之间再形成一层过渡层14,所述过渡层14内的碳或锗的原子百分比浓度较应力衬垫层13内低,从而起到过渡作用;而且当所述过渡层14内的碳或锗的原子百分比浓度为20%-25%时,过渡效果较佳。Please continue to refer to FIG. 3, in a transistor with a stress liner layer, in order to increase the stress applied to the channel region by the stress liner layer 13, it is necessary to increase the atomic percentage concentration of carbon or germanium in the stress liner layer 13; however, the stress liner layer The higher the atomic percentage concentration of carbon or germanium in the pad layer 13 is, the more serious the lattice difference between the stress pad layer 13 and the semiconductor substrate 10 is, and the Defects at the interface. Therefore, in order to alleviate the lattice difference between the stress liner layer 13 and the semiconductor substrate 10 in the prior art, a transition layer 14 is formed between the stress liner layer 13 and the semiconductor substrate 10, The atomic percent concentration of carbon or germanium in the transition layer 14 is lower than that in the stress liner layer 13, thereby playing a transitional role; and when the atomic percent concentration of carbon or germanium in the transition layer 14 is 20%-25 %, the transition effect is better.

本发明的发明人经过研究发现,在所述应力衬垫层13内掺杂离子形成源/漏区后,当所述晶体管工作时,所掺杂的离子难以越过所述过渡层14进入沟道区,导致所述晶体管的阈值电压被抬高,提高了半导体器件的功耗;而且,所述过渡层14内碳或锗的原子百分比浓度越高,所掺杂的离子穿过所述过渡层14的难度越大,使阈值电压越高;然而,若减小所述过渡层14内碳或锗的原子百分比浓度时,则所述过渡层14无法对应力衬垫层13和半导体衬底10之间的晶格差异起到过渡作用,同时会相应减小应力衬垫层13施加于沟道区的应力,不利于晶体管的性能改善。The inventors of the present invention have found through research that after doping ions in the stress liner layer 13 to form source/drain regions, when the transistor is working, it is difficult for the doped ions to cross the transition layer 14 and enter the channel. region, causing the threshold voltage of the transistor to be raised, which increases the power consumption of the semiconductor device; moreover, the higher the atomic percentage concentration of carbon or germanium in the transition layer 14, the doped ions pass through the transition layer The greater the difficulty of 14, the higher the threshold voltage; yet, if the atomic percentage concentration of carbon or germanium in the transition layer 14 is reduced, the transition layer 14 cannot cope with the stress liner layer 13 and the semiconductor substrate 10. The lattice difference between them plays a transitional role, and at the same time, the stress applied to the channel region by the stress liner layer 13 will be correspondingly reduced, which is not conducive to the improvement of the performance of the transistor.

本发明的发明人经过进一步研究,在栅极结构两侧开口侧壁和底部形成第一衬垫层,在所述第一衬垫层表面形成填充满所述开口的第二衬垫层,且所述第一衬垫层的材料与第二衬垫层相同,而第二衬垫层内的锗或碳的原子百分比浓度比第一衬垫层高;使所述第二衬垫层内具有与第一衬垫层内相同的掺杂离子,当晶体管工作时,第一衬垫层内的掺杂离子能够向沟道区迁移,从而带动第二衬垫层内的掺杂离子向沟道区内迁移,使第二衬垫层内的掺杂离子更易于进入沟道区,从而降低了晶体管的阈值电压;另一方面,第一衬垫层内的掺杂离子浓度比第二衬垫层低,能够在晶体管断开时,避免第一衬垫层内的掺杂离子发生扩散而产生漏电流,使晶体管的性能更为稳定。After further research, the inventors of the present invention formed a first liner layer on the sidewalls and bottom of the opening on both sides of the gate structure, formed a second liner layer on the surface of the first liner layer to fill the opening, and The material of the first liner layer is the same as that of the second liner layer, and the atomic percentage concentration of germanium or carbon in the second liner layer is higher than that of the first liner layer; The same dopant ions in the first liner layer, when the transistor is working, the dopant ions in the first liner layer can migrate to the channel region, thereby driving the dopant ions in the second liner layer to the channel Migration in the region makes it easier for the dopant ions in the second liner layer to enter the channel region, thereby reducing the threshold voltage of the transistor; on the other hand, the dopant ion concentration in the first liner layer is higher than that of the second liner The layer is low, and when the transistor is turned off, the dopant ions in the first liner layer are prevented from diffusing to cause leakage current, so that the performance of the transistor is more stable.

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。图4至图8为本实施例所述晶体管的形成过程的剖面结构示意图。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings. 4 to 8 are schematic cross-sectional structure diagrams of the formation process of the transistor described in this embodiment.

请参考图4,提供半导体衬底100,所述半导体衬底100表面具有栅极结构101。Referring to FIG. 4 , a semiconductor substrate 100 is provided, and the surface of the semiconductor substrate 100 has a gate structure 101 .

所述半导体衬底100用于为后续工艺提供工作平台,所述半导体衬底100的材料为单晶硅或绝缘体上硅,从而后续形成的第一衬垫层和第二衬垫层与所述半导体衬底100之间具有晶格失配,能够向沟道区提供应力而提高载流子的迁移率;所述半导体衬底100表面的晶面为(100),使后续各向异性的湿法刻蚀后形成的开口的侧壁与半导体衬底100表面形成西格玛形,进一步提高应力。The semiconductor substrate 100 is used to provide a working platform for subsequent processes, and the material of the semiconductor substrate 100 is single crystal silicon or silicon-on-insulator, so that the first pad layer and the second pad layer formed subsequently are compatible with the There is a lattice mismatch between the semiconductor substrates 100, which can provide stress to the channel region to increase the mobility of carriers; the crystal plane on the surface of the semiconductor substrate 100 is (100), so that the subsequent anisotropic wet The sidewall of the opening formed after etching by the method and the surface of the semiconductor substrate 100 form a sigma shape, further increasing the stress.

所述栅极结构101包括:位于所述半导体衬底100表面的栅介质层110,位于所述栅介质层110表面的栅电极层111,以及位于所述栅电极层111两侧的半导体衬底100表面的侧墙112。The gate structure 101 includes: a gate dielectric layer 110 located on the surface of the semiconductor substrate 100, a gate electrode layer 111 located on the surface of the gate dielectric layer 110, and semiconductor substrates located on both sides of the gate electrode layer 111 100 surface side walls 112 .

所述栅电极层111的材料为多晶硅或金属;当所述栅电极层111的材料为多晶硅时,所述栅介质层110为氧化硅、氮化硅、氮氧化硅;当所述栅电极层111的材料为金属时,所述栅介质层110为高K介质材料,所述高K介质材料包括:氧化铪、氧化锆、氧化铪硅、氧化镧、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛、氧化锶钛或氧化铝,所述金属包括:铝、铜、银、金、铂、镍、钛、钴、铊、钽或钨;所述侧墙112的材料为氧化硅、氮化硅、氮氧化硅中的一种或多种组合。The material of the gate electrode layer 111 is polysilicon or metal; when the material of the gate electrode layer 111 is polysilicon, the gate dielectric layer 110 is silicon oxide, silicon nitride, silicon oxynitride; when the gate electrode layer When the material of 111 is metal, the gate dielectric layer 110 is a high-K dielectric material, and the high-K dielectric material includes: hafnium oxide, zirconium oxide, hafnium silicon oxide, lanthanum oxide, zirconium silicon oxide, titanium oxide, tantalum oxide, Barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide or aluminum oxide, the metal includes: aluminum, copper, silver, gold, platinum, nickel, titanium, cobalt, thallium, tantalum or tungsten; the material of the side wall 112 One or more combinations of silicon oxide, silicon nitride, and silicon oxynitride.

当所述栅电极层111的材料为多晶硅,所述栅介质层110为氧化硅、氮化硅、氮氧化硅时,所述栅极结构101的形成工艺为:在所述半导体衬底100表面沉积形成栅介质薄膜;在所述栅介质薄膜表面形成栅电极薄膜;刻蚀所述栅介质薄膜和栅电极薄膜,形成栅介质层110和栅电极层111;在所述半导体衬底100、栅介质层110和栅电极层111表面形成侧墙层;回刻蚀所述侧墙层,在所述栅电极层111两侧的半导体衬底100表面形成侧墙112。When the material of the gate electrode layer 111 is polysilicon, and the gate dielectric layer 110 is silicon oxide, silicon nitride, or silicon oxynitride, the formation process of the gate structure 101 is as follows: on the surface of the semiconductor substrate 100 Depositing and forming a gate dielectric film; forming a gate electrode film on the surface of the gate dielectric film; etching the gate dielectric film and the gate electrode film to form a gate dielectric layer 110 and a gate electrode layer 111; A spacer layer is formed on the surface of the dielectric layer 110 and the gate electrode layer 111 ; the spacer layer is etched back to form spacer walls 112 on the surface of the semiconductor substrate 100 on both sides of the gate electrode layer 111 .

当所述栅电极层111的材料为金属,所述栅介质层110为高K介质材料时,所述栅极结构101的形成工艺为:在所述半导体衬底100表面沉积形成栅介质薄膜;在所述栅介质薄膜表面形成伪栅极薄膜,所述伪栅极薄膜的材料为多晶硅;刻蚀所述栅介质薄膜和为栅极薄膜,形成栅介质层110和伪栅极;在所述半导体衬底100、栅介质层110和伪栅极表面形成侧墙层;回刻蚀所述侧墙层,在所述伪栅极两侧的半导体衬底100表面形成侧墙112;在所述侧墙112和伪栅极两侧的半导体衬底表面形成绝缘层;则形成绝缘层后,去除所述伪栅极,形成开口;在所述开口内填充金属,形成栅电极层111。When the material of the gate electrode layer 111 is metal and the gate dielectric layer 110 is a high-K dielectric material, the formation process of the gate structure 101 is as follows: depositing and forming a gate dielectric thin film on the surface of the semiconductor substrate 100; Form a dummy gate film on the surface of the gate dielectric film, the material of the dummy gate film is polysilicon; etch the gate dielectric film and the gate film to form a gate dielectric layer 110 and a dummy gate; The semiconductor substrate 100, the gate dielectric layer 110 and the surface of the dummy gate form a spacer layer; the sidewall layer is etched back, and spacer 112 is formed on the surface of the semiconductor substrate 100 on both sides of the dummy gate; An insulating layer is formed on the surface of the semiconductor substrate on both sides of the sidewall 112 and the dummy gate; after the insulating layer is formed, the dummy gate is removed to form an opening; metal is filled in the opening to form a gate electrode layer 111 .

需要说明的是,在所述栅电极层111表面还具有掩膜层(未示出),所述掩膜层的材料为氮化硅、氮化钛、氮化铊、氮化钨、氧化铝中的一种或多种组合;所述掩膜层用于在后续形成西格玛形开口的干法刻蚀和湿法刻蚀过程中,避免对所述栅电极层211表面造成损伤;所述掩膜层在后续工艺形成第一衬垫层和第二衬垫层之后被去除。It should be noted that there is also a mask layer (not shown) on the surface of the gate electrode layer 111, and the material of the mask layer is silicon nitride, titanium nitride, thallium nitride, tungsten nitride, aluminum oxide One or more combinations of them; the mask layer is used to avoid damage to the surface of the gate electrode layer 211 during the subsequent dry etching and wet etching processes for forming sigma-shaped openings; the mask layer The film layer is removed after the first liner layer and the second liner layer are formed in a subsequent process.

请参考图5,在所述栅极结构101两侧的半导体衬底100内形成开口102。Referring to FIG. 5 , openings 102 are formed in the semiconductor substrate 100 on both sides of the gate structure 101 .

所述开口102用于在后续工艺中形成第一衬垫层和第二衬垫层;在本实施例中,所述开口102的侧壁与半导体衬底100的表面构成西格玛(Σ,sigma)形,所述开口102侧壁上的顶角向所述栅极结构101下方的半导体衬底100内延伸,使后续在栅极结构101两侧的开口102内形成的第一衬垫层之间的距离较近,则后续形成的第一衬垫层和第二衬垫层施加于栅极结构101下方的沟道区的应力较大,所形成的晶体管的性能提高。The opening 102 is used to form a first pad layer and a second pad layer in a subsequent process; in this embodiment, the sidewall of the opening 102 and the surface of the semiconductor substrate 100 form a sigma (Σ, sigma) shape, the vertex on the side wall of the opening 102 extends into the semiconductor substrate 100 below the gate structure 101, so that the first pad layer formed in the opening 102 on both sides of the gate structure 101 will If the distance is shorter, the stress applied to the channel region under the gate structure 101 by the subsequently formed first liner layer and the second liner layer is greater, and the performance of the formed transistor is improved.

在本实施例中,所述开口102的形成工艺为:以所述栅极结构101为掩膜,采用干法刻蚀在所述半导体衬底100内形成侧壁与半导体衬底100表面垂直的开口(未示出);在干法刻蚀后,采用湿法刻蚀所述开口,使所述开口侧壁上的顶角向栅极结构101下方的半导体衬底100内延伸,形成西格玛形的开口102。In this embodiment, the forming process of the opening 102 is as follows: using the gate structure 101 as a mask, dry etching is used to form a hole in the semiconductor substrate 100 with sidewalls perpendicular to the surface of the semiconductor substrate 100. an opening (not shown); after dry etching, wet etching is used to etch the opening so that the apex on the sidewall of the opening extends into the semiconductor substrate 100 below the gate structure 101 to form a sigma-shaped The opening 102.

所述干法刻蚀为各向异性的干法刻蚀,刻蚀气体为氯气、溴化氢或氯气和溴化氢的混合气体;所述干法刻蚀工艺参数为:溴化氢的流量为200~800sccm,氯气的流量为20~100sccm,惰性气体的流量为50~1000sccm,刻蚀腔室的压力为2~200mTorr,刻蚀时间为15~60秒。The dry etching is anisotropic dry etching, and the etching gas is chlorine, hydrogen bromide or a mixed gas of chlorine and hydrogen bromide; the dry etching process parameters are: the flow rate of hydrogen bromide The flow rate of the chlorine gas is 20-100 sccm, the flow rate of the inert gas is 50-1000 sccm, the pressure of the etching chamber is 2-200 mTorr, and the etching time is 15-60 seconds.

所述湿法刻蚀为各向异性的湿法刻蚀,所述刻蚀液为碱性溶液,所述碱性溶液为氢氧化钾(KOH)、氢氧化钠(NaOH)、氢氧化锂(LiOH)、氢氧化锂氨水(NH4OH)为四甲基氢氧化铵(TMAH)中的一种或多种组合。The wet etching is anisotropic wet etching, the etching solution is an alkaline solution, and the alkaline solution is potassium hydroxide (KOH), sodium hydroxide (NaOH), lithium hydroxide ( LiOH), lithium hydroxide ammonia water (NH 4 OH) is one or more combinations of tetramethylammonium hydroxide (TMAH).

由于所述半导体衬底100表面的晶面为(100),而所述各向异性的湿法刻蚀在垂直于半导体衬底100表面以及平行于半导体衬底100表面的方向上的刻蚀速率较快,而在刻蚀晶面(111)时的刻蚀速率最慢,从而使所述开口102的形状成为西格玛形;当后续在所述开口102内形成第一衬垫层后,相邻第一衬垫层之间距离较小,则所述第一衬垫层施加与沟道区的应力较大。Since the crystal plane of the surface of the semiconductor substrate 100 is (100), the etching rate of the anisotropic wet etching in the direction perpendicular to the surface of the semiconductor substrate 100 and parallel to the surface of the semiconductor substrate 100 is Faster, and the etching rate is the slowest when etching the crystal plane (111), so that the shape of the opening 102 becomes a sigma shape; when the first liner layer is subsequently formed in the opening 102, the adjacent If the distance between the first liner layers is small, the stress exerted by the first liner layer on the channel region is relatively large.

在另一实施例中,所述开口102的形成工艺为各向异性的干法刻蚀,则所述开口102的侧壁与半导体衬底表面垂直,使工艺简化,节约成本。In another embodiment, the opening 102 is formed by anisotropic dry etching, and the sidewall of the opening 102 is perpendicular to the surface of the semiconductor substrate, which simplifies the process and saves cost.

请参考图6,在所述开口102的侧壁和底部表面形成第一衬垫层103,所述第一衬垫层103的材料为硅锗或碳化硅,所述第一衬垫层103内具掺杂离子,所述掺杂离子为P型离子或N型离子。Please refer to FIG. 6 , a first liner layer 103 is formed on the sidewall and bottom surface of the opening 102 , and the material of the first liner layer 103 is silicon germanium or silicon carbide. It has doping ions, and the doping ions are P-type ions or N-type ions.

所述第一衬垫层103的厚度为1埃~200纳米,所述第一衬垫层103的形成工艺为选择性外延沉积工艺;当所形成的晶体管为PMOS晶体管时,所述第一衬垫层103的材料为硅锗,其中锗的原子百分比浓度为1%~25%,较佳的,锗的原子百分比浓度为20%-25%,使第一衬垫层103能够作为后续形成的第二衬垫层与半导体衬底100之间的过渡的同时,向所形成的晶体管沟道区提供足够的应力,以提高载流子迁移率;当所形成的晶体管为NMOS晶体管时,所述第一衬垫层103的材料为碳化硅,其中碳的原子百分比浓度为0.05%~1%。The thickness of the first pad layer 103 is 1 angstrom to 200 nanometers, and the formation process of the first pad layer 103 is a selective epitaxial deposition process; when the formed transistor is a PMOS transistor, the first pad layer The material of the layer 103 is silicon germanium, wherein the atomic percentage concentration of germanium is 1%-25%, preferably, the atomic percentage concentration of germanium is 20%-25%, so that the first liner layer 103 can be used as the second liner layer formed subsequently. At the same time as the transition between the second liner layer and the semiconductor substrate 100, sufficient stress is provided to the formed transistor channel region to improve carrier mobility; when the formed transistor is an NMOS transistor, the first The material of the liner layer 103 is silicon carbide, wherein the atomic percent concentration of carbon is 0.05%˜1%.

当所形成的晶体管为PMOS晶体管,所述第一衬垫层103的材料为硅锗时,所述第一衬垫层103内所掺杂离子为P型离子,包括硼或铟;所述硼或铟在第一衬垫层103内的掺杂浓度为1E17原子/立方厘米-1E19原子/立方厘米;当所形成的晶体管为NMOS晶体管,所述第一衬垫层103的材料为碳化硅时,所述第一衬垫层103内所掺杂离子为N型离子,包括磷或砷;所述磷或砷在第一衬垫层103内的掺杂浓度为1E17原子/立方厘米-1E19原子/立方厘米。When the formed transistor is a PMOS transistor, and the material of the first pad layer 103 is silicon germanium, the doped ions in the first pad layer 103 are P-type ions, including boron or indium; the boron or The doping concentration of indium in the first pad layer 103 is 1E17 atoms/cubic centimeter-1E19 atoms/cubic cm; when the formed transistor is an NMOS transistor and the material of the first pad layer 103 is silicon carbide, the The doped ions in the first pad layer 103 are N-type ions, including phosphorus or arsenic; the doping concentration of the phosphorus or arsenic in the first pad layer 103 is 1E17 atoms/cm3-1E19 atoms/cubic centimeter.

所述第一衬垫层103中所掺杂的离子在所形成的晶体管工作时,能够向沟道区迁移;而第一衬垫层103中掺杂离子的迁移,能够带动后续形成的第二衬垫层中的掺杂离子穿过所述第一衬垫层,并进入沟道区中,从而使所形成的晶体管的阈值电压减小;此外,所述第一衬垫层103的掺杂离子的浓度较后续形成的第二衬垫层低,因此当所形成的晶体管关断时,第一衬垫层103内的离子不会发生扩散而形成漏电流,所形成的晶体管的性能稳定。The doped ions in the first liner layer 103 can migrate to the channel region when the formed transistor works; and the migration of doped ions in the first liner layer 103 can drive the subsequently formed second The dopant ions in the liner layer pass through the first liner layer and enter the channel region, thereby reducing the threshold voltage of the formed transistor; in addition, the doping of the first liner layer 103 The concentration of ions is lower than that of the subsequently formed second liner layer, so when the formed transistor is turned off, the ions in the first liner layer 103 will not diffuse to form leakage current, and the performance of the formed transistor is stable.

当所形成的晶体管为PMOS晶体管,所述第一衬垫层103的形成工艺为选择性外延沉积工艺,温度为500-800摄氏度,气压为1托-100托,反应气体包括硅源气体SiH4或SiH2Cl2、以及锗源气体GeH4,所述硅源气体和锗源气体的流量为1sccm-1000sccm;所述选择性外延沉积工艺的气体还包括HCl和H2,所述HCl的流量为1sccm-1000sccm,H2的流量为0.1slm-50slm。When the formed transistor is a PMOS transistor, the formation process of the first liner layer 103 is a selective epitaxial deposition process, the temperature is 500-800 degrees Celsius, the pressure is 1 Torr-100 Torr, and the reaction gas includes silicon source gas SiH 4 or SiH 2 Cl 2 , and germanium source gas GeH 4 , the flow rate of the silicon source gas and germanium source gas is 1 sccm-1000 sccm; the gas of the selective epitaxial deposition process also includes HCl and H 2 , the flow rate of the HCl is 1sccm-1000sccm, the flow rate of H2 is 0.1slm-50slm.

在所述第一衬垫层103内掺杂硼或铟的工艺为原位掺杂工艺,即在选择性外延沉积第一衬垫层103时,在反应气体中再加入硼源气体B2H6、或铟源气体InCl3,所述硼源气体或铟源气体的流量为1sccm-1000sccm。The process of doping boron or indium in the first liner layer 103 is an in-situ doping process, that is, when the first liner layer 103 is selectively epitaxially deposited, boron source gas B2H is added to the reaction gas 6. Or the indium source gas InCl 3 , the flow rate of the boron source gas or the indium source gas is 1 sccm-1000 sccm.

当所形成的晶体管为NMOS晶体管,所述第一衬垫层103的形成工艺为选择性外延沉积工艺,温度为500摄氏度-800摄氏度,气压为1托-100托,反应气体包括硅源气体SiH4或SiH2Cl2、以及碳源气体CH4、CH3Cl或CH2Cl2,所述硅源气体和碳源气体的流量为1sccm-1000sccm;所述选择性外延沉积工艺的气体还包括HCl和H2,所述HCl的流量为1sccm-1000sccm,H2的流量为0.1slm-50slm。When the formed transistor is an NMOS transistor, the formation process of the first liner layer 103 is a selective epitaxial deposition process, the temperature is 500°C-800°C, the pressure is 1 Torr-100 Torr, and the reaction gas includes silicon source gas SiH 4 Or SiH 2 Cl 2 , and carbon source gas CH 4 , CH 3 Cl or CH 2 Cl 2 , the flow rate of the silicon source gas and carbon source gas is 1 sccm-1000 sccm; the gas of the selective epitaxial deposition process also includes HCl and H 2 , the HCl flow rate is 1 sccm-1000 sccm, and the H 2 flow rate is 0.1 slm-50 slm.

在所述第一衬垫层103内掺杂磷或砷的工艺为原位掺杂工艺,即在选择性外延沉积第一衬垫层103时,在反应气体中再加入磷源气体PH3、或砷源气体AsH3,所述磷源气体或砷源气体的流量为1sccm-1000sccm。The process of doping phosphorus or arsenic in the first pad layer 103 is an in-situ doping process, that is, during the selective epitaxial deposition of the first pad layer 103, phosphorus source gas PH 3 , Or the arsenic source gas AsH 3 , the flow rate of the phosphorus source gas or the arsenic source gas is 1 sccm-1000 sccm.

请参考图7,在所述第一衬垫层103表面形成填充满所述开口102(如图6所示)的第二衬垫层104,所述第二衬垫层104的材料与第一衬垫层103一致,且所述第二衬垫层104内的锗或碳的原子百分比浓度比第一衬垫层103高,所述第二衬垫层104内具有与第一衬垫层103内相同的掺杂离子,且第二衬垫层104内的掺杂离子浓度比第一衬垫层103高。Please refer to FIG. 7 , a second liner layer 104 filling the opening 102 (as shown in FIG. 6 ) is formed on the surface of the first liner layer 103, and the material of the second liner layer 104 is the same as the first The liner layer 103 is consistent, and the atomic percentage concentration of germanium or carbon in the second liner layer 104 is higher than that of the first liner layer 103. The same dopant ions in the second liner layer 104 are higher than that in the first liner layer 103 .

所述第二衬垫层104的厚度为1埃~200纳米,所述第二衬垫层104的形成工艺为选择性外延沉积工艺;当所形成的晶体管为PMOS晶体管时,所述第二衬垫层104的材料为硅锗,其中锗的原子百分比浓度为25%~45%;当所形成的晶体管为NMOS晶体管时,所述第二衬垫层104的材料为碳化硅,其中碳的原子百分比浓度为1%~10%;所述第二衬垫层104内锗或碳的原子百分比浓度较第一衬垫层103高,能够向沟道区提供较大的应力,使载流子迁移率提高,晶体管的性能良好。The thickness of the second pad layer 104 is 1 angstrom to 200 nanometers, and the formation process of the second pad layer 104 is a selective epitaxial deposition process; when the formed transistor is a PMOS transistor, the second pad layer The material of layer 104 is silicon germanium, wherein the atomic percentage concentration of germanium is 25%~45%; when the formed transistor is an NMOS transistor, the material of the second liner layer 104 is silicon carbide, wherein the atomic percentage concentration of carbon is 1% to 10%; the atomic percentage concentration of germanium or carbon in the second liner layer 104 is higher than that of the first liner layer 103, which can provide greater stress to the channel region and increase carrier mobility , the performance of the transistor is good.

当所形成的晶体管为PMOS晶体管,所述第二衬垫层104的材料为硅锗时,所述第二衬垫层104内所掺杂离子为P型离子,包括硼或铟;所述硼或铟在第一衬垫层103内的掺杂浓度为1E19-1E21原子/立方厘米;当所形成的晶体管为NMOS晶体管,所述第二衬垫层104的材料为碳化硅时,所述第一衬垫层103内所掺杂离子为N型离子,包括磷或砷;所述磷或砷在第一衬垫层103内的掺杂浓度为1E19原子/立方厘米-1E21原子/立方厘米;所述第二衬垫层104内掺杂离子后,形成源/漏区;当所形成的晶体管工作时,所述第二衬垫层104内的掺杂离子受到工作电压的影响而向沟道区迁移。When the formed transistor is a PMOS transistor and the material of the second pad layer 104 is silicon germanium, the doped ions in the second pad layer 104 are P-type ions, including boron or indium; the boron or The doping concentration of indium in the first liner layer 103 is 1E19-1E21 atoms/cubic centimeter; when the formed transistor is an NMOS transistor and the material of the second liner layer 104 is silicon carbide, the first liner The doped ions in the pad layer 103 are N-type ions, including phosphorus or arsenic; the doping concentration of the phosphorus or arsenic in the first pad layer 103 is 1E19 atoms/cubic centimeter-1E21 atoms/cubic centimeter; After doping ions in the second liner layer 104 , a source/drain region is formed; when the formed transistor is in operation, the doped ions in the second liner layer 104 are affected by the working voltage and migrate to the channel region.

由于所述第二衬垫层104和半导体衬底100之间形成有第一衬垫层103作为过渡,使第二衬垫层104和半导体衬底100之间不会因为晶格差异而在界面处造成缺陷;因此,当所形成的晶体管工作时,第二衬垫层104内掺杂的离子需要穿过第一衬垫层103才能到达沟道区;在本实施例中,所述第一衬垫层103内具有与第二衬垫层104内相同的掺杂离子,当所形成的晶体管工作时,第一衬垫层103内的掺杂离子会向沟道区迁移,从而带动所述第二衬垫层104内的掺杂离子穿过所述第一衬垫层103,因此第二衬垫层104内的掺杂离子更易于穿过第一衬垫层103,从而减小了所形成的晶体管的阈值电压,晶体管的性能改善。Since the first pad layer 103 is formed as a transition between the second pad layer 104 and the semiconductor substrate 100, there will be no gap between the second pad layer 104 and the semiconductor substrate 100 at the interface due to lattice differences. cause defects; therefore, when the formed transistor works, the doped ions in the second liner layer 104 need to pass through the first liner layer 103 to reach the channel region; in this embodiment, the first liner layer There are the same dopant ions in the pad layer 103 as in the second pad layer 104, when the formed transistor works, the dopant ions in the first pad layer 103 will migrate to the channel region, thereby driving the second pad layer The dopant ions in the liner layer 104 pass through the first liner layer 103, so the dopant ions in the second liner layer 104 are easier to pass through the first liner layer 103, thereby reducing the formed The threshold voltage of the transistor improves the performance of the transistor.

所述第二衬垫层104的形成工艺为选择性外延沉积工艺,掺杂离子的工艺为原位掺杂工艺,所述第二衬垫层104的形成工艺以及掺杂离子的工艺与第一衬垫层103相同,在此不作赘述。The formation process of the second liner layer 104 is a selective epitaxial deposition process, and the process of doping ions is an in-situ doping process. The formation process of the second liner layer 104 and the process of doping ions are the same as those of the first The liner layer 103 is the same and will not be repeated here.

需要说明的是,在其他实施例中,所述第二衬垫层104内所掺杂的离子能够在选择性外延沉积硅锗或碳化硅后,采用离子注入工艺进行掺杂。It should be noted that, in other embodiments, the doped ions in the second liner layer 104 can be doped by ion implantation after the selective epitaxial deposition of silicon germanium or silicon carbide.

请参考图8,在所述第一衬垫层103和第二衬垫层104表面形成覆盖层105。Referring to FIG. 8 , a covering layer 105 is formed on the surfaces of the first liner layer 103 and the second liner layer 104 .

所述覆盖层105用于作为所形成的晶体管源/漏区的电极;所述覆盖层105的材料为金属硅化物(salicide),包括钛硅、镍硅或钴硅;所述覆盖层105的形成工艺为:在所述栅极结构101两侧的半导体衬底100表面形成掩膜层,所述掩膜层暴露出第一衬垫层103和第二衬垫层104表面;在形成掩膜层后,在所述第一衬垫层103和第二衬垫层104表面选择性外延沉积形成硅层;在所述硅层表面沉积形成金属层,所述金属层的材料为钛、镍或钴;在形成金属层后,进行热退火,使所述金属层和硅层反应,形成覆盖层105;去除覆盖层105表面剩余的金属层和掩膜层。The cover layer 105 is used as an electrode for the formed transistor source/drain region; the material of the cover layer 105 is metal silicide (salicide), including titanium silicon, nickel silicon or cobalt silicon; the cover layer 105 The forming process is as follows: a mask layer is formed on the surface of the semiconductor substrate 100 on both sides of the gate structure 101, and the mask layer exposes the surfaces of the first pad layer 103 and the second pad layer 104; layer, a silicon layer is formed by selective epitaxial deposition on the surface of the first pad layer 103 and the second pad layer 104; a metal layer is deposited on the surface of the silicon layer, and the material of the metal layer is titanium, nickel or cobalt; after the metal layer is formed, thermal annealing is performed to make the metal layer react with the silicon layer to form the covering layer 105; and the remaining metal layer and mask layer on the surface of the covering layer 105 are removed.

本实施例所述晶体管的形成方法,在栅极结构101两侧的开口内形成第一衬垫层103、以及位于第一衬垫层103表面且填充满所述开口的第二衬垫层104;所述第二衬垫层104内具有与第一衬垫层103内相同的掺杂离子,当所述晶体管工作时,所述第一衬垫层103内掺杂的离子能够向沟道区迁移,从而带动第二衬垫层104内掺杂的离子穿过所述第一衬垫层103并进入沟道区;所形成的晶体管的阈值电压降低;其次,第一衬垫层103内的掺杂离子浓度比第二衬垫层104内低,当所述晶体管关断时,所述第一衬垫层103内掺杂的离子不会发生扩散,避免了产生漏电流,所述晶体管的性能稳定。In the method for forming the transistor in this embodiment, the first liner layer 103 and the second liner layer 104 located on the surface of the first liner layer 103 and filling the opening are formed in the openings on both sides of the gate structure 101 ; The second liner layer 104 has the same dopant ions as in the first liner layer 103, when the transistor works, the doped ions in the first liner layer 103 can flow to the channel region migration, thereby driving the doped ions in the second liner layer 104 to pass through the first liner layer 103 and enter the channel region; the threshold voltage of the formed transistor is reduced; secondly, the ions in the first liner layer 103 The concentration of doping ions is lower than that in the second pad layer 104. When the transistor is turned off, the doped ions in the first pad layer 103 will not diffuse, which avoids leakage current. Stable performance.

综上所述,在开口侧壁和底部形成第一衬垫层,以及填充满所述开口的第二衬底层,所述第二衬垫层的材料与第一衬垫层一致,且所述第二衬垫层内的锗或碳的原子百分比浓度比第一衬垫层高;使第二衬垫层内具有与第一衬垫层内相同的掺杂离子,当所形成的晶体管工作时,第一衬垫层内掺杂的离子能够进入沟道区,而所述第一衬垫层内的掺杂离子的迁移,能够使第二衬垫层内的掺杂离子更易于穿过所述第一衬垫层,并进入沟道区,从而使所形成的晶体管的阈值电压减小,性能改善;此外,第一衬垫层内的掺杂离子浓度比第二衬垫层低,保证了在非工作状态下,第一衬垫层内的掺杂离子不会发生扩散而形成漏电流,使晶体管的性能稳定。In summary, a first liner layer is formed on the sidewall and bottom of the opening, and a second substrate layer that fills the opening is formed, the material of the second liner layer is consistent with that of the first liner layer, and the The atomic percent concentration of germanium or carbon in the second liner layer is higher than that of the first liner layer; the second liner layer has the same doping ions as in the first liner layer, and when the formed transistor works, The doped ions in the first liner layer can enter the channel region, and the migration of the doped ions in the first liner layer can make it easier for the dopant ions in the second liner layer to pass through the channel region. The first liner layer, and enter the channel region, so that the threshold voltage of the formed transistor is reduced and the performance is improved; in addition, the dopant ion concentration in the first liner layer is lower than that of the second liner layer, ensuring that In the non-working state, the dopant ions in the first liner layer will not diffuse to form leakage current, so that the performance of the transistor is stable.

本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention, and any person skilled in the art can use the methods disclosed above and technical content to analyze the present invention without departing from the spirit and scope of the present invention. Possible changes and modifications are made in the technical solution. Therefore, any simple modification, equivalent change and modification made to the above embodiments according to the technical essence of the present invention, which do not depart from the content of the technical solution of the present invention, all belong to the technical solution of the present invention. protected range.

Claims (20)

1.一种晶体管的形成方法,其特征在于,包括:1. A method for forming a transistor, comprising: 提供半导体衬底,所述半导体衬底表面具有栅极结构;providing a semiconductor substrate, the surface of the semiconductor substrate has a gate structure; 在所述栅极结构两侧的半导体衬底内形成开口;forming openings in the semiconductor substrate on both sides of the gate structure; 在所述开口的侧壁和底部表面形成第一衬垫层,所述第一衬垫层的材料为硅锗或碳化硅,所述第一衬垫层内具掺杂离子,所述掺杂离子为P型离子或N型离子;A first liner layer is formed on the sidewall and bottom surface of the opening, the material of the first liner layer is silicon germanium or silicon carbide, the first liner layer contains dopant ions, and the dopant Ions are P-type ions or N-type ions; 在所述第一衬垫层表面形成填充满所述开口的第二衬垫层,所述第二衬垫层的材料与第一衬垫层一致,且所述第二衬垫层内的锗或碳的原子百分比浓度比第一衬垫层高,所述第二衬垫层内具有与第一衬垫层内相同的掺杂离子,且第二衬垫层内的掺杂离子浓度比第一衬垫层高。A second liner layer filling the opening is formed on the surface of the first liner layer, the material of the second liner layer is consistent with that of the first liner layer, and the germanium in the second liner layer Or the atomic percent concentration of carbon is higher than that of the first liner layer, the second liner layer has the same dopant ions as in the first liner layer, and the dopant ion concentration in the second liner layer is higher than that of the first liner layer One cushion layer height. 2.如权利要求1所述晶体管的形成方法,其特征在于,所述第一衬垫层和第二衬垫层的材料为硅锗时,所述掺杂离子为硼或铟。2 . The method for forming a transistor according to claim 1 , wherein when the material of the first pad layer and the second pad layer is silicon germanium, the dopant ions are boron or indium. 3 . 3.如权利要求2所述晶体管的形成方法,其特征在于,所述第一衬垫层内的硼或铟的掺杂浓度为1E17原子/立方厘米-1E19原子/立方厘米,所述第二衬垫层内的硼或铟的掺杂浓度为1E19原子/立方厘米-1E21原子/立方厘米。3. The method for forming a transistor according to claim 2, wherein the doping concentration of boron or indium in the first liner layer is 1E17 atoms/cubic centimeter to 1E19 atoms/cubic centimeter, and the second The doping concentration of boron or indium in the liner layer is 1E19 atoms/cm3-1E21 atoms/cm3. 4.如权利要求2所述晶体管的形成方法,其特征在于,所述第一衬垫层内锗的原子百分比浓度为1%-25%,所述第二衬垫层内锗的原子百分比浓度为25%-45%。4. The forming method of the transistor according to claim 2, wherein the atomic percentage concentration of germanium in the first pad layer is 1%-25%, and the atomic percentage concentration of germanium in the second pad layer is 25%-45%. 5.如权利要求1所述晶体管的形成方法,其特征在于,所述第一衬垫层和第二衬垫层的材料为碳化硅时,所述掺杂离子为磷或砷。5 . The method for forming a transistor according to claim 1 , wherein when the material of the first pad layer and the second pad layer is silicon carbide, the dopant ions are phosphorus or arsenic. 6.如权利要求5所述晶体管的形成方法,其特征在于,所述第一衬垫层内的磷或砷的掺杂浓度为1E17原子/立方厘米-1E19原子/立方厘米,所述第二衬垫层内的磷或砷的掺杂浓度为1E19原子/立方厘米-1E21原子/立方厘米。6. The method for forming a transistor according to claim 5, wherein the doping concentration of phosphorus or arsenic in the first liner layer is 1E17 atoms/cubic centimeter to 1E19 atoms/cubic centimeter, and the second The doping concentration of phosphorus or arsenic in the liner layer is 1E19 atoms/cm3-1E21 atoms/cm3. 7.如权利要求5所述晶体管的形成方法,其特征在于,所述第一衬垫层内碳的原子百分比浓度为0.05%-1%,所述第二衬垫层内锗的原子百分比浓度为1%-10%。7. The method for forming a transistor according to claim 5, wherein the atomic percentage concentration of carbon in the first pad layer is 0.05%-1%, and the atomic percentage concentration of germanium in the second pad layer is 1%-10%. 8.如权利要求1所述晶体管的形成方法,其特征在于,所述第一衬垫层和第二衬垫层的形成工艺为选择性外延沉积工艺。8 . The method for forming a transistor according to claim 1 , wherein the forming process of the first pad layer and the second pad layer is a selective epitaxial deposition process. 9.如权利要求8所述晶体管的形成方法,其特征在于,选择性外延沉积工艺的温度为500摄氏度-800摄氏度,气压为1托-100托。9 . The method for forming a transistor according to claim 8 , wherein the temperature of the selective epitaxial deposition process is 500° C.-800° C., and the gas pressure is 1 Torr-100 Torr. 10.如权利要求8所述晶体管的形成方法,其特征在于,所述选择性外延沉积工艺的气体包括SiH4或SiH2Cl2,所述SiH4或SiH2Cl2的流量为1sccm-1000sccm。10. The method for forming a transistor according to claim 8, wherein the gas in the selective epitaxial deposition process comprises SiH 4 or SiH 2 Cl 2 , and the flow rate of the SiH 4 or SiH 2 Cl 2 is 1 sccm-1000 sccm . 11.如权利要求10所述晶体管的形成方法,其特征在于,所述选择性外延沉积工艺的气体还包括:HCl和H2,所述HCl的流量为1sccm-1000sccm,H2的流量为0.1slm-50slm。11. The method for forming a transistor according to claim 10, wherein the gas in the selective epitaxial deposition process further comprises: HCl and H 2 , the flow of HCl is 1 sccm-1000 sccm, and the flow of H 2 is 0.1 slm-50slm. 12.如权利要求1所述晶体管的形成方法,其特征在于,所述第一衬垫层和第二衬垫层内掺杂离子的工艺为原位掺杂工艺。12 . The method for forming a transistor according to claim 1 , wherein the process of doping ions in the first pad layer and the second pad layer is an in-situ doping process. 13 . 13.如权利要求12所述晶体管的形成方法,其特征在于,所述原位掺杂工艺的气体为B2H6、InCl3、PH3或AsH3,所述B2H6、InCl3、PH3或AsH3的流量为1sccm-1000sccm。13. The method for forming a transistor according to claim 12, wherein the gas used in the in-situ doping process is B 2 H 6 , InCl 3 , PH 3 or AsH 3 , and the B 2 H 6 , InCl 3 , PH 3 or AsH 3 flow rate is 1sccm-1000sccm. 14.如权利要求1所述晶体管的形成方法,其特征在于,所述第二衬垫层内掺杂离子的工艺为离子注入工艺。14. The method for forming a transistor according to claim 1, wherein the process of doping ions in the second liner layer is an ion implantation process. 15.如权利要求1所述晶体管的形成方法,其特征在于,所述第一衬垫层的厚度为1埃~200纳米,所述第二衬垫层的底部到半导体衬底表面的厚度为1埃~200纳米。15. The method for forming a transistor according to claim 1, wherein the thickness of the first pad layer is 1 angstrom to 200 nanometers, and the thickness from the bottom of the second pad layer to the surface of the semiconductor substrate is 1 Angstrom ~ 200 nanometers. 16.如权利要求1所述晶体管的形成方法,其特征在于,所述开口的侧壁与半导体衬底的表面构成西格玛形,所述开口侧壁上的顶角向所述栅极结构下方的半导体衬底内延伸。16. The method for forming a transistor according to claim 1, wherein the sidewall of the opening forms a sigma shape with the surface of the semiconductor substrate, and the vertex angle on the sidewall of the opening faces to the bottom of the gate structure. extending within the semiconductor substrate. 17.如权利要求1所述晶体管的形成方法,其特征在于,在所述第一衬垫层和第二衬垫层表面形成覆盖层。17. The method for forming a transistor according to claim 1, wherein a covering layer is formed on the surfaces of the first pad layer and the second pad layer. 18.如权利要求17所述晶体管的形成方法,其特征在于,所述覆盖层的材料为钛硅,镍硅或钴硅。18. The method for forming a transistor according to claim 17, wherein the material of the capping layer is titanium silicon, nickel silicon or cobalt silicon. 19.如权利要求1所述晶体管的形成方法,其特征在于,所述半导体衬底的材料为硅或绝缘体上硅。19. The method for forming the transistor according to claim 1, wherein the material of the semiconductor substrate is silicon or silicon-on-insulator. 20.如权利要求1所述晶体管的形成方法,其特征在于,所述栅极结构包括:所述半导体衬底表面的栅介质层,所述栅介质层表面的栅电极层,以及所述栅电极层两侧的半导体衬底表面的侧墙。20. The method for forming a transistor according to claim 1, wherein the gate structure comprises: a gate dielectric layer on the surface of the semiconductor substrate, a gate electrode layer on the surface of the gate dielectric layer, and the gate The sidewalls on the surface of the semiconductor substrate on both sides of the electrode layer.
CN201210299790.9A 2012-08-21 2012-08-21 How the transistor is formed Pending CN103632969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210299790.9A CN103632969A (en) 2012-08-21 2012-08-21 How the transistor is formed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210299790.9A CN103632969A (en) 2012-08-21 2012-08-21 How the transistor is formed

Publications (1)

Publication Number Publication Date
CN103632969A true CN103632969A (en) 2014-03-12

Family

ID=50213870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210299790.9A Pending CN103632969A (en) 2012-08-21 2012-08-21 How the transistor is formed

Country Status (1)

Country Link
CN (1) CN103632969A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755297A (en) * 2017-11-07 2019-05-14 中芯国际集成电路制造(上海)有限公司 Semiconductor devices and its manufacturing method
US10361301B2 (en) 2016-03-31 2019-07-23 International Business Machines Corporation Fabrication of vertical fin transistor with multiple threshold voltages
CN110047754A (en) * 2018-01-16 2019-07-23 中芯国际集成电路制造(上海)有限公司 Semiconductor devices and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070235802A1 (en) * 2006-04-05 2007-10-11 Chartered Semiconductor Manufacturing Ltd Method to control source/drain stressor profiles for stress engineering
CN101578690A (en) * 2006-11-21 2009-11-11 先进微装置公司 Stress enhanced MOS transistor and methods for its fabrication
CN102637728A (en) * 2011-02-14 2012-08-15 台湾积体电路制造股份有限公司 Method of manufacturing strained source/drain structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070235802A1 (en) * 2006-04-05 2007-10-11 Chartered Semiconductor Manufacturing Ltd Method to control source/drain stressor profiles for stress engineering
CN101578690A (en) * 2006-11-21 2009-11-11 先进微装置公司 Stress enhanced MOS transistor and methods for its fabrication
CN102637728A (en) * 2011-02-14 2012-08-15 台湾积体电路制造股份有限公司 Method of manufacturing strained source/drain structures

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361301B2 (en) 2016-03-31 2019-07-23 International Business Machines Corporation Fabrication of vertical fin transistor with multiple threshold voltages
US10991823B2 (en) 2016-03-31 2021-04-27 International Business Machines Corporation Fabrication of vertical fin transistor with multiple threshold voltages
US11018254B2 (en) 2016-03-31 2021-05-25 International Business Machines Corporation Fabrication of vertical fin transistor with multiple threshold voltages
US11043587B2 (en) 2016-03-31 2021-06-22 International Business Machines Corporation Fabrication of vertical fin transistor with multiple threshold voltages
CN109755297A (en) * 2017-11-07 2019-05-14 中芯国际集成电路制造(上海)有限公司 Semiconductor devices and its manufacturing method
CN109755297B (en) * 2017-11-07 2021-09-03 中芯国际集成电路制造(上海)有限公司 Semiconductor device and method for manufacturing the same
CN110047754A (en) * 2018-01-16 2019-07-23 中芯国际集成电路制造(上海)有限公司 Semiconductor devices and its manufacturing method

Similar Documents

Publication Publication Date Title
CN103715090B (en) Transistor and forming method thereof
CN104752212B (en) The forming method of transistor
CN105470132A (en) Fin field-effect transistor formation method
CN106486350B (en) Formation method of semiconductor structure
CN105280492B (en) The forming method of semiconductor structure
CN105097521A (en) Formation method of semiconductor device
CN106486375B (en) The forming method of semiconductor structure
CN104253046A (en) Fin field effect transistor and forming method thereof
CN104241130B (en) PMOS transistor and forming method thereof, semiconductor devices and forming method thereof
CN104124170A (en) Transistor and forming method thereof
CN104347512B (en) The forming method of CMOS transistor
CN104752216B (en) The forming method of transistor
CN104701177B (en) How the transistor is formed
CN103632975B (en) PMOS transistor and preparation method thereof
CN103632969A (en) How the transistor is formed
CN103715089B (en) The forming method of transistor
CN103515237A (en) Formation method of transistor
CN104465486B (en) The forming method of semiconductor devices
CN103390558B (en) The forming method of transistor
CN104183491B (en) The forming method of transistor
CN104253090B (en) The forming method of CMOS transistor
CN109411414B (en) Semiconductor structure and forming method thereof
CN104752348B (en) The forming method of semiconductor devices
CN103311122B (en) The formation method of transistor
CN104425379A (en) Forming method of semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140312

RJ01 Rejection of invention patent application after publication