[go: up one dir, main page]

CN103579074A - Semiconductor structure forming method - Google Patents

Semiconductor structure forming method Download PDF

Info

Publication number
CN103579074A
CN103579074A CN201210253734.1A CN201210253734A CN103579074A CN 103579074 A CN103579074 A CN 103579074A CN 201210253734 A CN201210253734 A CN 201210253734A CN 103579074 A CN103579074 A CN 103579074A
Authority
CN
China
Prior art keywords
material layer
forming
semiconductor substrate
groove
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210253734.1A
Other languages
Chinese (zh)
Other versions
CN103579074B (en
Inventor
三重野文健
周梅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201210253734.1A priority Critical patent/CN103579074B/en
Publication of CN103579074A publication Critical patent/CN103579074A/en
Application granted granted Critical
Publication of CN103579074B publication Critical patent/CN103579074B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76229Concurrent filling of a plurality of trenches having a different trench shape or dimension, e.g. rectangular and V-shaped trenches, wide and narrow trenches, shallow and deep trenches
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体结构的形成方法,包括:提供半导体衬底,所述半导体衬底具有第一区域和第二区域;形成覆盖所述半导体衬底表面的第一材料层;在第一区域的第一材料层表面形成第二材料层,第一区域的第一材料层和第二材料层构成堆叠结构;在堆叠结构和第二区域的第一材料层表面形成掩膜层;采用第一等离子体刻蚀工艺刻蚀所述第一材料层,形成暴露所述半导体衬底表面的第三开口,同时刻蚀部分厚度所述堆叠结构,形成若干第四开口;采用第二等离子体刻蚀工艺刻蚀所述半导体衬底,形成第一凹槽,同时刻蚀所述堆叠结构和半导体衬底,形成若干第二凹槽,第二凹槽深度小于第一凹槽的深度。第一凹槽和第二凹槽同一刻蚀步骤形成,工艺过程简单。

Figure 201210253734

A method for forming a semiconductor structure, comprising: providing a semiconductor substrate, the semiconductor substrate having a first region and a second region; forming a first material layer covering the surface of the semiconductor substrate; A second material layer is formed on the surface of the material layer, and the first material layer and the second material layer in the first region form a stacked structure; a mask layer is formed on the stacked structure and the surface of the first material layer in the second region; Etching the first material layer by an etching process to form a third opening exposing the surface of the semiconductor substrate, and at the same time etching a partial thickness of the stacked structure to form a number of fourth openings; using a second plasma etching process to etch In the semiconductor substrate, a first groove is formed, and the stacked structure and the semiconductor substrate are etched simultaneously to form a plurality of second grooves, and the depth of the second grooves is smaller than that of the first grooves. The first groove and the second groove are formed in the same etching step, and the process is simple.

Figure 201210253734

Description

半导体结构的形成方法Formation method of semiconductor structure

技术领域 technical field

本发明涉及半导体制作领域,特别涉及一种半导体结构的形成方法。The invention relates to the field of semiconductor manufacturing, in particular to a method for forming a semiconductor structure.

背景技术 Background technique

随着半导体工艺技术的不断发展,工艺节点逐渐减小,后栅(gate-last)工艺得到了广泛应用,以获得理想的阈值电压,改善器件性能。但是当器件的特征尺寸(CD,Critical Dimension)进一步下降时,即使采用后栅工艺,常规的MOS场效应管的结构也已经无法满足对器件性能的需求,多栅器件作为常规器件的替代得到了广泛的关注。With the continuous development of semiconductor process technology, the process node is gradually reduced, and the gate-last (gate-last) process has been widely used to obtain an ideal threshold voltage and improve device performance. But when the feature size (CD, Critical Dimension) of the device is further reduced, even if the gate-last process is adopted, the structure of the conventional MOS field effect transistor can no longer meet the requirements for device performance, and the multi-gate device has been adopted as a substitute for the conventional device. Widespread concern.

鳍式场效应晶体管(Fin FET)是一种常见的多栅器件,图1~图4为现有的鳍式场效应晶体管形成过程的剖面结构示意图。Fin field effect transistor (Fin FET) is a common multi-gate device. Figures 1 to 4 are schematic cross-sectional structure diagrams of the formation process of the existing fin field effect transistor.

参考图1,提供半导体衬底100,所述半导体衬底100包括第一区域Ⅰ和第二区域Ⅱ;在所述半导体衬底100上形成第一硬掩膜层101,第二区域Ⅱ的第一硬掩膜层101具有第一开口102,沿第一开口102刻蚀部分所述半导体衬底100,形成第一凹槽103。Referring to FIG. 1 , a semiconductor substrate 100 is provided, and the semiconductor substrate 100 includes a first region I and a second region II; a first hard mask layer 101 is formed on the semiconductor substrate 100, and the second region II of the second region A hard mask layer 101 has a first opening 102 , and a portion of the semiconductor substrate 100 is etched along the first opening 102 to form a first groove 103 .

参考图2,在所述第一硬掩膜层101(参考图1)表面形成第一隔离材料层(图未示出),所述第一隔离材料层填充满第一开口102和第一凹槽103(参考图1);化学机械研磨所述第一隔离材料层和第一硬掩膜层101,以半导体衬底100表面为停止层,在第一凹槽103中形成第一隔离结构104,所述第一隔离结构104用于隔离相邻的有源区。Referring to FIG. 2 , a first isolation material layer (not shown) is formed on the surface of the first hard mask layer 101 (refer to FIG. 1 ), and the first isolation material layer fills the first opening 102 and the first recess. Groove 103 (refer to FIG. 1 ); chemical mechanical polishing of the first isolation material layer and the first hard mask layer 101, using the surface of the semiconductor substrate 100 as a stop layer, forming a first isolation structure 104 in the first groove 103 , the first isolation structure 104 is used to isolate adjacent active regions.

参考图3,在所述半导体衬底100上形成第二硬掩膜层105,第一区域Ⅰ的硬掩膜层105具有若干第二开口106,沿所述第二开口106刻蚀所述半导体衬底100形成若干鳍部108,相邻的鳍部108之间以及鳍部与半导体衬底100之间具有第二凹槽107,第二凹槽107的位置与第二开口106的位置相对应,第二凹槽107的深度小于第一凹槽103(参考图1)的深度,后续在第二凹槽107中填充第二隔离材料层形成第二隔离结构,用于相邻鳍部之间的电性隔离。Referring to FIG. 3, a second hard mask layer 105 is formed on the semiconductor substrate 100. The hard mask layer 105 in the first region I has a plurality of second openings 106, and the semiconductor is etched along the second openings 106. The substrate 100 forms several fins 108, and there are second grooves 107 between adjacent fins 108 and between the fins and the semiconductor substrate 100, and the positions of the second grooves 107 correspond to the positions of the second openings 106. , the depth of the second groove 107 is smaller than the depth of the first groove 103 (refer to FIG. 1 ), and the second isolation material layer is filled in the second groove 107 to form a second isolation structure, which is used between adjacent fins. electrical isolation.

参考图4,在所述第二硬掩膜层105(参考图3)上形成第二隔离材料层(图中未示出),所述第二隔离材料层填充满所述第二开口106和第二凹槽107(参考图3);化学机械研磨所述第二隔离材料层和第二硬掩膜层105,在第二凹槽107中形成第二隔离结构109,所述第二隔离结构109用于电性隔离相邻的鳍部108。Referring to FIG. 4 , a second isolation material layer (not shown in the figure) is formed on the second hard mask layer 105 (refer to FIG. 3 ), and the second isolation material layer fills the second opening 106 and The second groove 107 (refer to FIG. 3 ); the second isolation material layer and the second hard mask layer 105 are chemically mechanically polished to form a second isolation structure 109 in the second groove 107, the second isolation structure 109 is used to electrically isolate adjacent fins 108 .

现有工艺形成第一隔离结构104和第二隔离结构109时,第一隔离结构104和第二隔离结构109及其所应的第一凹槽103和第二凹槽107,均在不同工艺步骤形成,工艺过程相对复杂。When forming the first isolation structure 104 and the second isolation structure 109 in the existing process, the first isolation structure 104 and the second isolation structure 109 and the corresponding first groove 103 and the second groove 107 are all processed in different process steps. Formation, the process is relatively complicated.

更多关于鳍式场效应晶体管的介绍请参考公开号为US2011/0068431A1的美国专利。For more information about FinFETs, please refer to US Patent Publication No. US2011/0068431A1.

发明内容 Contents of the invention

本发明解决的问题是提供一种半导体结构的形成方法,工艺过程简单。The problem to be solved by the present invention is to provide a method for forming a semiconductor structure with a simple process.

为解决上述问题,本发明提供了一种半导体结构的形成方法,包括:In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, comprising:

提供半导体衬底,所述半导体衬底具有第一区域和第一区域相邻的第二区域;形成覆盖所述半导体衬底表面的第一材料层;在第一区域的第一材料层表面形成第二材料层,第一区域的第一材料层和第二材料层构成堆叠结构;在堆叠结构和第二区域的第一材料层表面形成掩膜层,第一区域的掩膜层具有若干暴露堆叠结构表面的第一开口,第二区域的掩膜层具有暴露第一材料层表面的第二开口;采用第一等离子体刻蚀工艺沿第二开口刻蚀所述第一材料层,形成暴露所述半导体衬底表面的第三开口,同时沿若干第一开口,刻蚀部分厚度所述堆叠结构,形成若干第四开口;采用第二等离子体刻蚀工艺沿第三开口刻蚀所述半导体衬底,在半导体衬底中形成第一凹槽,同时沿若干第四开口刻蚀所述堆叠结构和半导体衬底,在半导体衬底中形成若干第二凹槽,相邻第二凹槽之间为鳍部,第二凹槽深度小于第一凹槽的深度。A semiconductor substrate is provided, the semiconductor substrate has a first region and a second region adjacent to the first region; forming a first material layer covering the surface of the semiconductor substrate; forming on the surface of the first material layer in the first region The second material layer, the first material layer and the second material layer in the first region constitute a stacked structure; a mask layer is formed on the surface of the stacked structure and the first material layer in the second region, and the mask layer in the first region has several exposures. The first opening on the surface of the stack structure, the mask layer in the second region has a second opening exposing the surface of the first material layer; the first material layer is etched along the second opening by using the first plasma etching process to form an exposed The third opening on the surface of the semiconductor substrate is simultaneously etched along a plurality of first openings to form a partial thickness of the stack structure to form a plurality of fourth openings; the second plasma etching process is used to etch the semiconductor along the third opening. substrate, forming first grooves in the semiconductor substrate, and simultaneously etching the stacked structure and the semiconductor substrate along several fourth openings, forming several second grooves in the semiconductor substrate, between adjacent second grooves There are fins in between, and the depth of the second groove is smaller than that of the first groove.

可选的,所述第一材料层和第二材料层的材料不相同,第一材料层相对于第二材料层的刻蚀选择比大于1:1小于等于5:1。Optionally, the materials of the first material layer and the second material layer are different, and the etching selectivity ratio of the first material layer relative to the second material layer is greater than 1:1 and less than or equal to 5:1.

可选的,所述半导体衬底相对于第一材料层和第二材料层的刻蚀选择比2:1~15:1。Optionally, the etching selectivity ratio of the semiconductor substrate relative to the first material layer and the second material layer is 2:1˜15:1.

可选的,所述第一材料层的材料为二氧化硅,第二材料层的材料为氮化硅。Optionally, the material of the first material layer is silicon dioxide, and the material of the second material layer is silicon nitride.

可选的,所述第一材料层的厚度为20~100纳米,第二材料层的厚度为20~100纳米。Optionally, the thickness of the first material layer is 20-100 nanometers, and the thickness of the second material layer is 20-100 nanometers.

可选的,所述第一等离子刻蚀工艺采用的气体为CHF3和Ar,刻蚀腔压力为5~20毫托,射频功率为200~400瓦,偏置功率为20~40瓦,刻蚀温度为5~30摄氏度。Optionally, the gases used in the first plasma etching process are CHF3 and Ar, the etching chamber pressure is 5-20 mTorr, the radio frequency power is 200-400 watts, the bias power is 20-40 watts, and the engraving The corrosion temperature is 5-30 degrees Celsius.

可选的,所述第二等离子体刻蚀工艺采用的气体为CCl4和Ar,刻蚀腔压力为5~20毫托,射频功率为500~700瓦,偏置功率为20~40瓦,刻蚀温度为5~30摄氏度。Optionally, the gases used in the second plasma etching process are CCl4 and Ar, the etching chamber pressure is 5-20 mtorr, the radio frequency power is 500-700 watts, and the bias power is 20-40 watts, The etching temperature is 5-30 degrees Celsius.

可选的,所述第一凹槽的深度为100~500纳米。Optionally, the depth of the first groove is 100-500 nanometers.

可选的,所述第二凹槽的深度为50~300纳米。Optionally, the second groove has a depth of 50-300 nanometers.

可选的,所述鳍部的宽度为10~50纳米,相邻鳍部之间的距离为10~60纳米。Optionally, the width of the fins is 10-50 nanometers, and the distance between adjacent fins is 10-60 nanometers.

可选的,还包括:对第一凹槽的开口进行圆弧化处理。Optionally, the method further includes: rounding the opening of the first groove.

可选的,所述圆弧化处理采用的工艺为各向同性的微波干法刻蚀功率。Optionally, the arcing treatment adopts isotropic microwave dry etching power.

可选的,所述微波干法刻蚀工艺的频率为2.3~2.5吉赫兹,功率为900~1100瓦,刻蚀气体为CF4、O2和N2Optionally, the frequency of the microwave dry etching process is 2.3-2.5 GHz, the power is 900-1100 watts, and the etching gas is CF 4 , O 2 and N 2 .

可选的,还包括:在第一凹槽和第二凹槽中填充满隔离材料,形成第一隔离结构和第二隔离结构。Optionally, the method further includes: filling the first groove and the second groove with an isolation material to form a first isolation structure and a second isolation structure.

可选的,所述掩膜层材料为光刻胶。Optionally, the material of the mask layer is photoresist.

与现有技术相比,本发明技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

利用第一材料层和第二材料层,第一区域的半导体衬底上为第一材料层和第二材料层的堆叠结构,第二区域为第一材料层的单层结构,第一等离子刻蚀工艺刻蚀第二区域的第一材料层,形成暴露所述半导体衬底表面的第三开口时,同时所述第一区域的堆叠结构只会被刻蚀去除部分厚度,采用第二等离子体刻蚀工艺沿第三开口刻蚀第一区域的所述半导体衬底,在半导体衬底中形成第一凹槽,同时刻蚀第一区域剩余的堆叠结构和半导体衬底,在半导体衬底中形成若干第二凹槽,第二等离子体刻蚀工艺时,由于剩余的堆叠结构的阻挡,使得第二凹槽深度小于第一凹槽的深度,第一凹槽和第二凹槽在同一刻蚀工艺中同时形成,相对于现有的多次硬掩膜、刻蚀和光刻工艺,工艺过程简单。Using the first material layer and the second material layer, the semiconductor substrate in the first region has a stacked structure of the first material layer and the second material layer, the second region has a single-layer structure of the first material layer, and the first plasma etching When the etching process etches the first material layer in the second region to form a third opening exposing the surface of the semiconductor substrate, at the same time, the stacked structure in the first region will only be etched to remove part of the thickness, using the second plasma The etching process etches the semiconductor substrate in the first region along the third opening, forming a first groove in the semiconductor substrate, and simultaneously etching the remaining stacked structure and the semiconductor substrate in the first region, in the semiconductor substrate Several second grooves are formed. During the second plasma etching process, due to the obstruction of the remaining stack structure, the depth of the second grooves is smaller than the depth of the first grooves. The first grooves and the second grooves are formed at the same moment. It is formed simultaneously in the etching process. Compared with the existing multiple hard mask, etching and photolithography processes, the process is simple.

进一步,所述第一材料层和第二材料层的材料不相同时,所述第一材料层相对于第二材料层的刻蚀选择比为大于1:1小于等于5:1,在进行第一等离子刻蚀时,较准确的控制第一区域Ⅰ的第一材料层和第二材料层的堆叠结构剩余的厚度,从而在第二等离子刻蚀工艺时,较准确的控制第一区域Ⅰ的半导体衬底内形成第二凹槽的深度与第二区域Ⅱ的半导体衬底内形成的第一凹槽的深度之间的差值。Further, when the materials of the first material layer and the second material layer are different, the etching selectivity ratio of the first material layer relative to the second material layer is greater than 1:1 and less than or equal to 5:1. During plasma etching, more accurately control the remaining thickness of the stacked structure of the first material layer and the second material layer in the first region I, so that during the second plasma etching process, more accurately control the thickness of the first region I The difference between the depth of the second groove formed in the semiconductor substrate and the depth of the first groove formed in the semiconductor substrate of the second region II.

更进一步,对第一凹槽的开口进行圆弧化处理,形成圆弧开口,当鳍式场效应晶体管工作时,积聚的电荷会沿圆弧开口的弧度均匀分布,圆弧开口处的半导体衬底内积聚的电荷的密度较小,从而避免漏电流的产生。Furthermore, the opening of the first groove is rounded to form an arc opening. When the fin field effect transistor is working, the accumulated charges will be evenly distributed along the arc of the arc opening, and the semiconductor substrate at the arc opening will The density of charges accumulated in the bottom is small, thereby avoiding the generation of leakage current.

附图说明 Description of drawings

图1~图4为现有的鳍式场效应晶体管形成过程的剖面结构示意图;1 to 4 are schematic cross-sectional structural diagrams of the formation process of an existing fin field effect transistor;

图5为本发明实施例半导体结构的形成方法的流程示意图;5 is a schematic flowchart of a method for forming a semiconductor structure according to an embodiment of the present invention;

图6~图11为本发明半导体结构的形成过程的剖面结构示意图。6 to 11 are schematic cross-sectional structure diagrams of the formation process of the semiconductor structure of the present invention.

具体实施方式 Detailed ways

现有在制作相邻有源区的第一隔离结构和鳍式场效应晶体管的鳍部之间的第二隔离结构时,为了达到相邻有源区之间的更好的隔离效果,第一隔离结构对应的第一凹槽的深度要大于第二隔离结构对应的第二凹槽的深度,由于第一凹槽的深度和第二凹槽的深度不一样,因此需要两次硬掩膜工艺、硬掩膜图形化对应的光刻工艺以及两次沉积工艺,工艺步骤较为复杂,增加了制作成本。In order to achieve a better isolation effect between adjacent active regions, the first The depth of the first groove corresponding to the isolation structure is greater than the depth of the second groove corresponding to the second isolation structure. Since the depth of the first groove is different from the depth of the second groove, two hard mask processes are required. 1. The photolithography process corresponding to the patterning of the hard mask and the two deposition processes, the process steps are relatively complicated, which increases the production cost.

为解决上述问题,发明人提出一种半导体结构的形成方法,利用第一材料层和第二材料层,第一区域的半导体衬底上为第一材料层和第二材料层的堆叠结构,第二区域为第一材料层的单层结构,第一等离子刻蚀工艺刻蚀第二区域的第一材料层,形成暴露所述半导体衬底表面的第三开口时,同时所述第一区域的堆叠结构只会被刻蚀去除部分厚度,采用第二等离子体刻蚀工艺沿第三开口刻蚀第一区域的所述半导体衬底,在半导体衬底中形成第一凹槽,同时刻蚀第一区域剩余的堆叠结构和半导体衬底,在半导体衬底中形成若干第二凹槽,第二等离子体刻蚀工艺时,由于剩余的堆叠结构的阻挡,使得第二凹槽深度小于第一凹槽的深度,第一凹槽和第二凹槽在同一刻蚀工艺中同时形成,相对于现有的多次硬掩膜、刻蚀和光刻工艺,工艺过程简单。In order to solve the above problems, the inventor proposes a method for forming a semiconductor structure, using a first material layer and a second material layer, the semiconductor substrate in the first region is a stacked structure of the first material layer and the second material layer, the second The second region is a single-layer structure of the first material layer, and the first plasma etching process etches the first material layer in the second region to form a third opening exposing the surface of the semiconductor substrate, while the first region The stacked structure will only be etched to remove part of the thickness, and the second plasma etching process is used to etch the semiconductor substrate in the first region along the third opening to form a first groove in the semiconductor substrate, and at the same time etch the second The remaining stacked structure and the semiconductor substrate in a region form several second grooves in the semiconductor substrate. During the second plasma etching process, due to the blocking of the remaining stacked structure, the depth of the second grooves is smaller than that of the first grooves. The depth of the groove, the first groove and the second groove are simultaneously formed in the same etching process. Compared with the existing multiple hard mask, etching and photolithography processes, the process is simple.

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings.

参考图5,图5为本发明实施例半导体结构的形成方法的流程示意图,包括:Referring to FIG. 5, FIG. 5 is a schematic flowchart of a method for forming a semiconductor structure according to an embodiment of the present invention, including:

步骤S201,提供半导体衬底,所述半导体衬底具有第一区域和第一区域相邻的第二区域;Step S201, providing a semiconductor substrate, the semiconductor substrate has a first region and a second region adjacent to the first region;

步骤S202,形成覆盖所述半导体衬底表面的第一材料层;在第一区域的第一材料层表面形成第二材料层,第一区域的第一材料层和第二材料层构成堆叠结构;Step S202, forming a first material layer covering the surface of the semiconductor substrate; forming a second material layer on the surface of the first material layer in the first region, where the first material layer and the second material layer in the first region form a stacked structure;

步骤S203,在堆叠结构和第二区域的第一材料层表面形成掩膜层,第一区域的掩膜层具有若干暴露堆叠结构表面的第一开口,第二区域的掩膜层具有暴露第一材料层表面的第二开口;Step S203, forming a mask layer on the stack structure and the surface of the first material layer in the second region, the mask layer in the first region has several first openings exposing the surface of the stack structure, and the mask layer in the second region has a number of first openings exposing the first a second opening in the surface of the material layer;

步骤S204,采用第一等离子体刻蚀工艺沿第二开口刻蚀所述第一材料层,形成暴露所述半导体衬底表面的第三开口,同时沿若干第一开口,刻蚀部分厚度所述堆叠结构,形成若干第四开口;Step S204, using the first plasma etching process to etch the first material layer along the second opening to form a third opening exposing the surface of the semiconductor substrate, and at the same time, etching a part of the thickness of the first opening along several first openings. stacking structures to form a plurality of fourth openings;

步骤S205,采用第二等离子体刻蚀工艺沿第三开口刻蚀所述半导体衬底,在半导体衬底中形成第一凹槽,同时沿若干第四开口刻蚀所述堆叠结构和半导体衬底,在半导体衬底中形成若干第二凹槽,相邻第二凹槽之间为鳍部,第二凹槽深度小于第一凹槽的深度;Step S205, using a second plasma etching process to etch the semiconductor substrate along the third opening, forming a first groove in the semiconductor substrate, and simultaneously etching the stack structure and the semiconductor substrate along several fourth openings , forming a plurality of second grooves in the semiconductor substrate, fins are formed between adjacent second grooves, and the depth of the second grooves is smaller than the depth of the first grooves;

步骤S206,对第一凹槽的开口进行圆弧化处理;Step S206, performing arc processing on the opening of the first groove;

步骤S207,在第一凹槽和第二凹槽中填充满隔离材料,形成第一隔离结构和第二隔离结构。Step S207, filling the first groove and the second groove with an isolation material to form a first isolation structure and a second isolation structure.

图6~图11为本发明半导体结构的形成过程的剖面结构示意图。6 to 11 are schematic cross-sectional structure diagrams of the formation process of the semiconductor structure of the present invention.

参考图6,提供半导体衬底300,所述半导体衬底300具有第一区域Ⅰ和第一区域Ⅰ相邻的第二区域Ⅱ;形成覆盖所述半导体衬底300表面的第一材料层301;在第一区域Ⅰ的第一材料层301表面形成第二材料层302,第一区域Ⅰ的第一材料层301和第二材料层302构成堆叠结构。Referring to FIG. 6, a semiconductor substrate 300 is provided, the semiconductor substrate 300 has a first region I and a second region II adjacent to the first region I; a first material layer 301 covering the surface of the semiconductor substrate 300 is formed; A second material layer 302 is formed on the surface of the first material layer 301 in the first region I, and the first material layer 301 and the second material layer 302 in the first region I form a stacked structure.

所述半导体衬底300的材料可以为单晶硅(Si)、单晶锗(Ge)、或硅锗(GeSi)、碳化硅(SiC);也可以是绝缘体上硅(SOI),绝缘体上锗(GOI);或者还可以为其它的材料,例如砷化镓等Ⅲ-Ⅴ族化合物。The material of the semiconductor substrate 300 can be single crystal silicon (Si), single crystal germanium (Ge), or silicon germanium (GeSi), silicon carbide (SiC); it can also be silicon on insulator (SOI), germanium on insulator (GOI); or other materials, such as III-V compounds such as gallium arsenide.

本实施例中所述半导体衬底300的材料为单晶硅,第一区域Ⅰ的半导体衬底300用于形成鳍式场效应晶体管,第二区域Ⅱ的半导体衬底300用于形成第一隔离结构,第一隔离结构用于隔离相邻的有源区,防止相邻有源区内形成的鳍式场效应晶体管电连接。The material of the semiconductor substrate 300 in this embodiment is single crystal silicon, the semiconductor substrate 300 in the first region I is used to form a fin field effect transistor, and the semiconductor substrate 300 in the second region II is used to form the first isolation structure, the first isolation structure is used for isolating adjacent active regions and preventing the fin field effect transistors formed in the adjacent active regions from being electrically connected.

所述第一材料层301和第二材料层302在后续刻蚀时,用于控制半导体衬底300中形成的第一凹槽和第二凹槽的深度,使第一凹槽和第二凹槽的深度不一样,由于后续刻蚀的第一凹槽和第二凹槽的深度较深,当作为掩膜层的光刻胶层消耗时,第一材料层301和第二材料层302还可以作为继续刻蚀时的掩膜。The first material layer 301 and the second material layer 302 are used to control the depth of the first groove and the second groove formed in the semiconductor substrate 300 during subsequent etching, so that the first groove and the second groove The depth of the groove is not the same, because the depth of the first groove and the second groove of the subsequent etching is relatively deep, when the photoresist layer used as the mask layer is consumed, the first material layer 301 and the second material layer 302 are still It can be used as a mask when etching continues.

所述第一材料层301和第二材料层302的材料不相同,所述第一材料层相对于第二材料层的刻蚀选择比为大于1:1小于等于5:1,在进行第一等离子刻蚀时,较准确的控制第一区域Ⅰ的第一材料层301和第二材料层302的堆叠结构剩余的厚度,从而在第二等离子刻蚀工艺时,较准确的控制第一区域Ⅰ的半导体衬底内形成第二凹槽的深度与第二区域Ⅱ的半导体衬底内形成的第一凹槽的深度之间的差值。The materials of the first material layer 301 and the second material layer 302 are different, and the etching selectivity ratio of the first material layer relative to the second material layer is greater than 1:1 and less than or equal to 5:1. During plasma etching, the remaining thickness of the stacked structure of the first material layer 301 and the second material layer 302 in the first region I is more accurately controlled, so that during the second plasma etching process, the first region I is more accurately controlled The difference between the depth of the second groove formed in the semiconductor substrate of the second region II and the depth of the first groove formed in the semiconductor substrate of the second region II.

所述半导体衬底相对于第一材料层和第二材料层的刻蚀选择比2:1~15:1,因此第二等离子体刻蚀工艺开始刻蚀第一区域Ⅰ的半导体衬底300时,第二区域Ⅱ的刻蚀形成的凹槽已经具有一定的深度,并且这个深度要大于堆叠结构剩余的厚度,从而使最终在第一区域Ⅰ的半导体衬底内形成第二凹槽的深度小于第二区域Ⅱ的半导体衬底内形成的第一凹槽的深度。The etching selectivity ratio of the semiconductor substrate relative to the first material layer and the second material layer is 2:1 to 15:1, so when the second plasma etching process starts to etch the semiconductor substrate 300 in the first region I , the groove formed by etching in the second region II already has a certain depth, and this depth is greater than the remaining thickness of the stack structure, so that the depth of the second groove formed in the semiconductor substrate in the first region I is finally less than The depth of the first groove formed in the semiconductor substrate in the second region II.

本实施例中,第一材料层301的材料为氧化硅,第二材料层302的材料为氮化硅,第一材料层301的厚度为20~100纳米,第二材料层的厚度为20~100纳米,在第一等离子刻蚀时,第一区域Ⅰ的第一材料层301和第二材料层302的堆叠结构剩余足够的厚度,从而在第二等离子体刻蚀时,使得在第一区域Ⅰ的半导体衬底内形成第二凹槽的深度小于第二区域Ⅱ的半导体衬底内形成的第一凹槽的深度,并且使第一凹槽深度与第二凹槽深度的差值大于等于50纳米。In this embodiment, the material of the first material layer 301 is silicon oxide, the material of the second material layer 302 is silicon nitride, the thickness of the first material layer 301 is 20~100 nanometers, and the thickness of the second material layer is 20~100 nanometers. 100 nanometers, during the first plasma etching, the stacked structure of the first material layer 301 and the second material layer 302 in the first region I remains with sufficient thickness, so that during the second plasma etching, the first region The depth of the second groove formed in the semiconductor substrate of I is less than the depth of the first groove formed in the semiconductor substrate of the second region II, and the difference between the depth of the first groove and the depth of the second groove is greater than or equal to 50 nm.

第一材料层301的形成工艺为热氧化工艺或化学气相沉积工艺,第二材料层302的形成工艺为化学气相沉积工艺。The formation process of the first material layer 301 is a thermal oxidation process or a chemical vapor deposition process, and the formation process of the second material layer 302 is a chemical vapor deposition process.

参考图7,在堆叠结构和第二区域Ⅱ的第一材料层301表面形成掩膜层303,第一区域Ⅰ的掩膜层303具有若干暴露堆叠结构表面的第一开口304,第二区域Ⅱ的掩膜层303具有暴露第一材料层301表面的第二开口305。第一开口304的位置与后续在第一区域Ⅰ的半导体衬底300内形成的第二凹槽的位置对应,第二开口305与后续在第二区域Ⅱ的半导体衬底300内形成的第一凹槽的位置对应。Referring to Fig. 7, a mask layer 303 is formed on the surface of the first material layer 301 in the stacked structure and the second region II, the mask layer 303 in the first region I has a plurality of first openings 304 exposing the surface of the stacked structure, and the second region II The mask layer 303 has a second opening 305 exposing the surface of the first material layer 301 . The position of the first opening 304 corresponds to the position of the second groove subsequently formed in the semiconductor substrate 300 in the first region I, and the second opening 305 corresponds to the position of the first recess formed subsequently in the semiconductor substrate 300 in the second region II. corresponding to the position of the groove.

所述掩膜层303的材料为光刻胶层,通过曝光和显影工艺在掩膜层303中形成第一开口304和第二开口305。The material of the mask layer 303 is a photoresist layer, and the first opening 304 and the second opening 305 are formed in the mask layer 303 through exposure and development processes.

参考图8,采用第一等离子体刻蚀工艺沿第二开口305刻蚀所述第一材料层301,形成暴露所述半导体衬底表面300的第三开口306,同时沿若干第一开口304,刻蚀部分厚度所述堆叠结构,形成若干第四开口307。Referring to FIG. 8, the first material layer 301 is etched along the second opening 305 by using a first plasma etching process to form a third opening 306 exposing the surface 300 of the semiconductor substrate, and simultaneously along several first openings 304, A partial thickness of the stack structure is etched to form a plurality of fourth openings 307 .

所述第一等离子刻蚀工艺采用的气体为CHF3和Ar,刻蚀腔压力为5~20毫托,射频功率为200~400瓦,偏置功率为20~40瓦,刻蚀温度为5~30摄氏度,通过调节刻蚀温度,使得第一材料层301相对于第二材料层302具有不同的刻蚀选择比,所述第一材料层301相对于第二材料层302的刻蚀选择比大于1:1小于等于5:1,在形成第三开口306时,可以很准确的控制第四开口307的深度,使得第四开口307的深度可以小于第二材料层302的厚度,也可以等于第二材料层302的厚度,还可以大于第二材料层302的厚度,即可以准确的控制第四开口307底部剩余的堆叠结构的厚度,第四开口307底部剩余的堆叠结构的厚度与后续形成的第一凹槽和第二凹槽的深度差直接有关,剩余的堆叠结构的厚度越厚,第一凹槽和第二凹槽的深度差越大,剩余的堆叠结构的厚度越薄,第一凹槽和第二凹槽的深度差越小,从而可以准确的控制第一凹槽和第二凹槽的深度差,以提高形成的半导体结构的性能。本实施例中,所述第四开口307的深度等于第二材料层的厚度。The gas used in the first plasma etching process is CHF 3 and Ar, the etching chamber pressure is 5-20 millitorr, the radio frequency power is 200-400 watts, the bias power is 20-40 watts, and the etching temperature is 5 ~30 degrees Celsius, by adjusting the etching temperature, the first material layer 301 has different etching selectivity relative to the second material layer 302, and the etching selectivity ratio of the first material layer 301 relative to the second material layer 302 Greater than 1:1 and less than or equal to 5:1, when forming the third opening 306, the depth of the fourth opening 307 can be accurately controlled, so that the depth of the fourth opening 307 can be less than the thickness of the second material layer 302, or can be equal to The thickness of the second material layer 302 can also be greater than the thickness of the second material layer 302, that is, the thickness of the remaining stacked structure at the bottom of the fourth opening 307 can be accurately controlled, and the thickness of the remaining stacked structure at the bottom of the fourth opening 307 is related to the subsequent formation. The depth difference between the first groove and the second groove is directly related, the thicker the thickness of the remaining stacked structure is, the larger the depth difference between the first groove and the second groove is, the thinner the thickness of the remaining stacked structure is, and the thickness of the remaining stacked structure is thinner. The smaller the depth difference between the first groove and the second groove, the smaller the depth difference between the first groove and the second groove can be accurately controlled, so as to improve the performance of the formed semiconductor structure. In this embodiment, the depth of the fourth opening 307 is equal to the thickness of the second material layer.

参考图9,采用第二等离子体刻蚀工艺沿第三开口306刻蚀所述半导体衬底300,在半导体衬底中形成第一凹槽308,同时沿若干第四开口307刻蚀所述堆叠结构和半导体衬底300,在半导体衬底300中形成若干第二凹槽309,相邻第二凹槽309之间为鳍部,第二凹槽309深度小于第一凹槽308的深度。Referring to FIG. 9 , the semiconductor substrate 300 is etched along the third opening 306 by a second plasma etching process, a first groove 308 is formed in the semiconductor substrate, and the stack is etched along several fourth openings 307 at the same time. structure and a semiconductor substrate 300 , several second grooves 309 are formed in the semiconductor substrate 300 , fins are formed between adjacent second grooves 309 , and the depth of the second grooves 309 is smaller than that of the first grooves 308 .

由于第四开口307底部还具有部分厚度的堆叠结构,当第二等离子体刻蚀工艺刻蚀第二区域Ⅱ的半导体衬底300时,同时会刻蚀第一区域Ⅰ剩余的部分厚度的堆叠结构,在刻蚀完剩余的部分厚度的堆叠结构,暴露第一区域Ⅰ的半导体衬底300时,第二区域Ⅱ的半导体衬底300内已形成一定深度的凹槽,接着继续刻蚀第一区域Ⅰ和第二区域Ⅱ的半导体衬底300,直至在第一区域Ⅰ半导体衬底300内形成第二凹槽309,在第二区域Ⅱ的半导体衬底300内形成第一凹槽308,第二凹槽309的深度小于第一凹槽308的深度。后续在第一凹槽308中填充隔离材料形成第一隔离结构,第一隔离结构用于隔离相邻的有源区,在第二凹槽309中填充隔离材料形成第二隔离结构,第二隔离结构用于相邻鳍部之间的隔离以及鳍式场效应晶体管的栅极与半导体衬底300之间的隔离,第一隔离结构的深度大于第二隔离结构的深度,以更好的隔离相邻的有源区。Since the bottom of the fourth opening 307 also has a partial-thickness stack structure, when the semiconductor substrate 300 in the second region II is etched by the second plasma etching process, the remaining partial-thickness stack structure in the first region I will be etched simultaneously. , after etching the remaining part of the stack structure and exposing the semiconductor substrate 300 in the first region I, a groove with a certain depth has been formed in the semiconductor substrate 300 in the second region II, and then continue to etch the first region I and the semiconductor substrate 300 in the second region II, until the second groove 309 is formed in the semiconductor substrate 300 in the first region I, the first groove 308 is formed in the semiconductor substrate 300 in the second region II, and the second groove 308 is formed in the semiconductor substrate 300 in the second region II. The depth of the groove 309 is smaller than the depth of the first groove 308 . Subsequently, an isolation material is filled in the first groove 308 to form a first isolation structure, and the first isolation structure is used to isolate adjacent active regions, and an isolation material is filled in the second groove 309 to form a second isolation structure, and the second isolation The structure is used for the isolation between adjacent fins and the isolation between the gate of the fin field effect transistor and the semiconductor substrate 300. The depth of the first isolation structure is greater than the depth of the second isolation structure, so as to better isolate the phase adjacent active area.

所述第二等离子体刻蚀工艺采用的气体为CCl4和Ar,刻蚀腔压力为5~20毫托,射频功率为500~700瓦,偏置功率为20~40瓦,刻蚀温度为5~30摄氏度,通过调节刻蚀的温度可以使得半导体衬底相对于第一材料和第二材料的刻蚀选择比2:1~15:1,在第四开口307底部剩余的堆叠结构的厚度一定的情况下,可以调节第一凹槽308和第二凹槽309的深度差,并与第四开口307底部剩余的堆叠结构的厚度的大小,从而准确的控制第一凹槽308和第二凹槽309的深度差。The gases used in the second plasma etching process are CCl4 and Ar, the etching chamber pressure is 5-20 millitorr, the radio frequency power is 500-700 watts, the bias power is 20-40 watts, and the etching temperature is 5~30 degrees Celsius, by adjusting the etching temperature, the etching selectivity ratio of the semiconductor substrate relative to the first material and the second material can be 2:1~15:1, and the remaining thickness of the stacked structure at the bottom of the fourth opening 307 Under certain circumstances, the depth difference between the first groove 308 and the second groove 309 can be adjusted, and the thickness of the remaining stacked structure at the bottom of the fourth opening 307 can be adjusted, so as to accurately control the first groove 308 and the second groove 308. The depth of the groove 309 is different.

所述第一凹槽309的深度为100~500纳米,第二凹槽308的深度为50~300纳米,相邻第二凹槽308之间的鳍部的宽度为10~50纳米,相邻鳍部之间的距离为10~60纳米。The depth of the first groove 309 is 100-500 nanometers, the depth of the second groove 308 is 50-300 nanometers, the width of the fin between the adjacent second grooves 308 is 10-50 nanometers, adjacent The distance between the fins is 10-60 nm.

参考图10,在第一区域Ⅰ的第二材料层表面302形成光刻胶层310,所述光刻胶层310填充第一开口、第四开口、第二凹槽;对所述第二区域Ⅱ的半导体衬底300内的第一凹槽308(请参考图9)的开口进行圆弧化处理,形成具有圆弧开口311的第一凹槽314。Referring to Fig. 10, a photoresist layer 310 is formed on the surface 302 of the second material layer in the first region I, and the photoresist layer 310 fills the first opening, the fourth opening, and the second groove; for the second region The opening of the first groove 308 (please refer to FIG. 9 ) in the semiconductor substrate 300 of II is rounded to form a first groove 314 with an arc opening 311 .

当第一凹槽308的开口为直角开口,当鳍式场效应晶体管工作时,电荷会集聚在直角处的半导体衬底内,电荷的密度较大,后续形成第一隔离结构时,第一凹槽308开口两端积聚的电荷易通过第一隔离结构的表面在相邻的有源区之间形成漏电流,使得第一隔离结构的电性隔离的效果减弱,对第一凹槽308的开口进行圆弧化处理,形成圆弧开口311,当鳍式场效应晶体管工作时,积聚的电荷会沿圆弧开口311的弧度均匀分布,圆弧开口311处的半导体衬底内积聚的电荷的密度较小,从而避免漏电流的产生。When the opening of the first groove 308 is a right-angle opening, when the fin field effect transistor is working, the charge will accumulate in the semiconductor substrate at the right angle, and the charge density is relatively high. When the first isolation structure is subsequently formed, the first concave The charges accumulated at both ends of the opening of the groove 308 are likely to form a leakage current between adjacent active regions through the surface of the first isolation structure, so that the effect of the electrical isolation of the first isolation structure is weakened, and the opening of the first groove 308 Carry out arc treatment to form arc opening 311. When the fin field effect transistor is working, the accumulated charge will be evenly distributed along the arc of the arc opening 311. The density of the charge accumulated in the semiconductor substrate at the arc opening 311 is Smaller, so as to avoid the generation of leakage current.

所述圆弧化处理采用的工艺为各向同性的微波干法刻蚀功率,微波干法刻蚀工艺的频率为2.3~2.5吉赫兹,功率为900~1100瓦,刻蚀气体为CF4、O2和N2,以较好的控制开口的弧度,使开口处积聚的电荷更均匀。The process used in the arcing treatment is isotropic microwave dry etching power, the frequency of the microwave dry etching process is 2.3-2.5 GHz, the power is 900-1100 watts, and the etching gas is CF 4 , O 2 and N 2 , to better control the radian of the opening, so that the charge accumulated at the opening is more uniform.

参考图11,去除光刻胶层310(请参考图10);形成覆盖所述第二材料层302(请参考图10)和第一材料层301(请参考图10)表面的隔离材料层,隔离材料填充满第一凹槽和第二凹槽;化学机械研磨所述隔离材料层、第二材料层302和第一材料层301,以半导体衬底表面300为停止层,在第一区域Ⅰ的半导体衬底300内形成第二隔离结构312,在第二区域的半导体衬底300内形成第一隔离结构313。Referring to FIG. 11 , removing the photoresist layer 310 (please refer to FIG. 10 ); forming an isolation material layer covering the surface of the second material layer 302 (please refer to FIG. 10 ) and the first material layer 301 (please refer to FIG. 10 ), The isolation material fills the first groove and the second groove; chemical mechanical grinding the isolation material layer, the second material layer 302 and the first material layer 301, with the semiconductor substrate surface 300 as a stop layer, in the first region I A second isolation structure 312 is formed in the semiconductor substrate 300 in the second region, and a first isolation structure 313 is formed in the semiconductor substrate 300 in the second region.

第二隔离结构312的深度小于第一隔离结构313的深度,第二隔离结构313用于鳍部之间的隔离以及后续形成的鳍式场效应晶体管的栅极与半导体衬底300之间的电性隔离,第一隔离结构313用于有源区之间的电性隔离。The depth of the second isolation structure 312 is smaller than the depth of the first isolation structure 313, and the second isolation structure 313 is used for the isolation between the fins and the electrical connection between the gate of the subsequently formed FinFET and the semiconductor substrate 300. Electrical isolation, the first isolation structure 313 is used for electrical isolation between the active regions.

在形成第一隔离结构313和第二隔离结构312后,还包括:回刻蚀部分厚度的所述第二隔离结构312,暴露部分高度的鳍部;形成横跨所述若干鳍部的栅极结构,所述栅极结构包括位于鳍部表面和侧壁的栅氧化层和位于栅氧化层表面的栅电极;在鳍部两端形成鳍式场效应晶体管的源/漏区。After forming the first isolation structure 313 and the second isolation structure 312, it also includes: etching back the second isolation structure 312 with a partial thickness to expose the fins with a partial height; forming a gate across the several fins The gate structure includes a gate oxide layer on the surface and side walls of the fin and a gate electrode on the surface of the gate oxide layer; source/drain regions of the fin field effect transistor are formed at both ends of the fin.

综上,本发明实施例提供的半导体结构的形成方法,利用第一材料层和第二材料层,第一区域的半导体衬底上为第一材料层和第二材料层的堆叠结构,第二区域为第一材料层的单层结构,第一等离子刻蚀工艺刻蚀第二区域的第一材料层,形成暴露所述半导体衬底表面的第三开口时,同时所述第一区域的堆叠结构只会被刻蚀去除部分厚度,采用第二等离子体刻蚀工艺沿第三开口刻蚀第一区域的所述半导体衬底,在半导体衬底中形成第一凹槽,同时刻蚀第一区域剩余的堆叠结构和半导体衬底,在半导体衬底中形成若干第二凹槽,第二等离子体刻蚀工艺时,由于剩余的堆叠结构的阻挡,使得第二凹槽深度小于第一凹槽的深度,第一凹槽和第二凹槽在同一刻蚀工艺中同时形成,相对于现有的多次硬掩膜、刻蚀和光刻工艺,工艺过程简单。To sum up, the method for forming a semiconductor structure provided by the embodiment of the present invention utilizes the first material layer and the second material layer, and the semiconductor substrate in the first region has a stacked structure of the first material layer and the second material layer, and the second material layer The region is a single-layer structure of the first material layer, and the first plasma etching process etches the first material layer of the second region to form a third opening exposing the surface of the semiconductor substrate, while the stack of the first region The structure will only be etched to remove part of the thickness, and the second plasma etching process is used to etch the semiconductor substrate in the first region along the third opening to form a first groove in the semiconductor substrate, and at the same time etch the first The rest of the stacked structure and the semiconductor substrate in the region form several second grooves in the semiconductor substrate. During the second plasma etching process, due to the blocking of the remaining stacked structure, the depth of the second grooves is smaller than that of the first grooves. The depth of the first groove and the second groove are simultaneously formed in the same etching process. Compared with the existing multiple hard mask, etching and photolithography processes, the process is simple.

进一步,所述第一材料层和第二材料层的材料不相同时,所述第一材料层相对于第二材料层的刻蚀选择比为大于1:1小于等于5:1,在进行第一等离子刻蚀时,较准确的控制第一区域Ⅰ的第一材料层和第二材料层的堆叠结构剩余的厚度,从而在第二等离子刻蚀工艺时,较准确的控制第一区域的半导体衬底内形成第二凹槽的深度与第二区域的半导体衬底内形成的第一凹槽的深度之间的差值。Further, when the materials of the first material layer and the second material layer are different, the etching selectivity ratio of the first material layer relative to the second material layer is greater than 1:1 and less than or equal to 5:1. During plasma etching, the remaining thickness of the stacked structure of the first material layer and the second material layer in the first region I is more accurately controlled, so that during the second plasma etching process, the semiconductor in the first region is more accurately controlled The difference between the depth of the second groove formed in the substrate and the depth of the first groove formed in the semiconductor substrate in the second region.

更进一步,对第一凹槽的开口进行圆弧化处理,形成圆弧开口,当鳍式场效应晶体管工作时,积聚的电荷会沿圆弧开口的弧度均匀分布,圆弧开口处的半导体衬底内积聚的电荷的密度较小,从而避免漏电流的产生。Furthermore, the opening of the first groove is rounded to form an arc opening. When the fin field effect transistor is working, the accumulated charges will be evenly distributed along the arc of the arc opening, and the semiconductor substrate at the arc opening will The density of charges accumulated in the bottom is small, thereby avoiding the generation of leakage current.

本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention, and any person skilled in the art can use the methods disclosed above and technical content to analyze the present invention without departing from the spirit and scope of the present invention. Possible changes and modifications are made in the technical solution. Therefore, any simple modification, equivalent change and modification made to the above embodiments according to the technical essence of the present invention, which do not depart from the content of the technical solution of the present invention, all belong to the technical solution of the present invention. protected range.

Claims (16)

1.一种半导体结构的形成方法,其特征在于,包括:1. A method for forming a semiconductor structure, comprising: 提供半导体衬底,所述半导体衬底具有第一区域和第一区域相邻的第二区域;providing a semiconductor substrate having a first region and a second region adjacent to the first region; 形成覆盖所述半导体衬底表面的第一材料层;forming a first material layer covering the surface of the semiconductor substrate; 在第一区域的第一材料层表面形成第二材料层,第一区域的第一材料层和第二材料层构成堆叠结构;forming a second material layer on the surface of the first material layer in the first region, the first material layer and the second material layer in the first region form a stacked structure; 在堆叠结构和第二区域的第一材料层表面形成掩膜层,第一区域的掩膜层具有若干暴露堆叠结构表面的第一开口,第二区域的掩膜层具有暴露第一材料层表面的第二开口;A mask layer is formed on the stack structure and the surface of the first material layer in the second region, the mask layer in the first region has a plurality of first openings exposing the surface of the stack structure, and the mask layer in the second region has a surface exposed to the first material layer the second opening of 采用第一等离子体刻蚀工艺沿第二开口刻蚀所述第一材料层,形成暴露所述半导体衬底表面的第三开口,同时沿若干第一开口,刻蚀部分厚度所述堆叠结构,形成若干第四开口;Etching the first material layer along the second opening by using a first plasma etching process to form a third opening exposing the surface of the semiconductor substrate, and etching the stacked structure partially thick along the first openings, forming a plurality of fourth openings; 采用第二等离子体刻蚀工艺沿第三开口刻蚀所述半导体衬底,在半导体衬底中形成第一凹槽,同时沿若干第四开口刻蚀所述堆叠结构和半导体衬底,在半导体衬底中形成若干第二凹槽,相邻第二凹槽之间为鳍部,第二凹槽深度小于第一凹槽的深度。Etching the semiconductor substrate along the third opening by using a second plasma etching process to form a first groove in the semiconductor substrate, and simultaneously etching the stacked structure and the semiconductor substrate along a plurality of fourth openings, forming the semiconductor substrate in the semiconductor substrate Several second grooves are formed in the substrate, fins are formed between adjacent second grooves, and the depth of the second grooves is smaller than that of the first grooves. 2.如权利要求1所述的半导体结构的形成方法,其特征在于,所述第一材料层和第二材料层的材料不相同,第一材料层相对于第二材料层的刻蚀选择比大于1:1小于等于5:1。2. The method for forming a semiconductor structure according to claim 1, wherein the materials of the first material layer and the second material layer are different, and the etching selectivity ratio of the first material layer relative to the second material layer Greater than 1:1 and less than or equal to 5:1. 3.如权利要求2所述的半导体结构的形成方法,其特征在于,所述半导体衬底相对于第一材料层和第二材料层的刻蚀选择比2:1~15:1。3. The method for forming a semiconductor structure according to claim 2, wherein the etching selectivity ratio of the semiconductor substrate relative to the first material layer and the second material layer is 2:1˜15:1. 4.如权利要求2所述的半导体结构的形成方法,其特征在于,所述第一材料层的材料为二氧化硅,第二材料层的材料为氮化硅。4. The method for forming a semiconductor structure according to claim 2, wherein the material of the first material layer is silicon dioxide, and the material of the second material layer is silicon nitride. 5.如权利要求4所述的半导体结构的形成方法,其特征在于,所述第一材料层的厚度为20~100纳米,第二材料层的厚度为20~100纳米。5. The method for forming a semiconductor structure according to claim 4, wherein the thickness of the first material layer is 20-100 nanometers, and the thickness of the second material layer is 20-100 nanometers. 6.如权利要求3或4所述的半导体结构的形成方法,其特征在于,所述第一等离子刻蚀工艺采用的气体为CHF3和Ar,刻蚀腔压力为5~20毫托,射频功率为200~400瓦,偏置功率为20~40瓦,刻蚀温度为5~30摄氏度。6. The method for forming a semiconductor structure as claimed in claim 3 or 4, wherein the gas used in the first plasma etching process is CHF 3 and Ar, the etching chamber pressure is 5-20 mTorr, radio frequency The power is 200-400 watts, the bias power is 20-40 watts, and the etching temperature is 5-30 degrees Celsius. 7.如权利要求3或4所述的半导体结构的形成方法,其特征在于,所述第二等离子体刻蚀工艺采用的气体为CCl4和Ar,刻蚀腔压力为5~20毫托,射频功率为500~700瓦,偏置功率为20~40瓦,刻蚀温度为5~30摄氏度。7. The method for forming a semiconductor structure as claimed in claim 3 or 4, wherein the gases used in the second plasma etching process are CCl4 and Ar, and the etching chamber pressure is 5 to 20 millitorr, The RF power is 500-700 watts, the bias power is 20-40 watts, and the etching temperature is 5-30 degrees Celsius. 8.如权利要求1所述的半导体结构的形成方法,其特征在于,所述第一凹槽的深度为100~500纳米。8. The method for forming a semiconductor structure according to claim 1, wherein the depth of the first groove is 100-500 nanometers. 9.如权利要求1所述的半导体结构的形成方法,其特征在于,所述第二凹槽的深度为50~300纳米。9. The method for forming a semiconductor structure according to claim 1, wherein the depth of the second groove is 50-300 nanometers. 10.如权利要求8或9所述的半导体结构的形成方法,其特征在于,所述第一凹槽深度与第二凹槽深度的差值大于等于50纳米。10. The method for forming a semiconductor structure according to claim 8 or 9, wherein the difference between the depth of the first groove and the depth of the second groove is greater than or equal to 50 nanometers. 11.如权利要求1所述的半导体结构的形成方法,其特征在于,所述鳍部的宽度为10~50纳米,相邻鳍部之间的距离为10~60纳米。11. The method for forming a semiconductor structure according to claim 1, wherein the width of the fins is 10-50 nanometers, and the distance between adjacent fins is 10-60 nanometers. 12.如权利要求1所述的半导体结构的形成方法,其特征在于,还包括:对第一凹槽的开口进行圆弧化处理。12 . The method for forming a semiconductor structure according to claim 1 , further comprising: rounding the opening of the first groove. 13.如权利要求12所述的半导体结构的形成方法,其特征在于,所述圆弧化处理采用的工艺为各向同性的微波干法刻蚀功率。13 . The method for forming a semiconductor structure according to claim 12 , characterized in that, the circularization process adopts isotropic microwave dry etching power. 14 . 14.如权利要求13所述的半导体结构的形成方法,其特征在于,所述微波干法刻蚀工艺的频率为2.3~2.5吉赫兹,功率为900~1100瓦,刻蚀气体为CF4、O2和N214. The method for forming a semiconductor structure according to claim 13, wherein the frequency of the microwave dry etching process is 2.3-2.5 GHz, the power is 900-1100 watts, and the etching gas is CF 4 , O2 and N2 . 15.如权利要求1所述的半导体结构的形成方法,其特征在于,还包括:在第一凹槽和第二凹槽中填充满隔离材料,形成第一隔离结构和第二隔离结构。15. The method for forming a semiconductor structure according to claim 1, further comprising: filling the first groove and the second groove with an isolation material to form the first isolation structure and the second isolation structure. 16.如权利要求1所述的半导体结构的形成方法,其特征在于,所述掩膜层材料为光刻胶。16. The method for forming a semiconductor structure according to claim 1, wherein the material of the mask layer is photoresist.
CN201210253734.1A 2012-07-20 2012-07-20 The forming method of semiconductor structure Active CN103579074B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210253734.1A CN103579074B (en) 2012-07-20 2012-07-20 The forming method of semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210253734.1A CN103579074B (en) 2012-07-20 2012-07-20 The forming method of semiconductor structure

Publications (2)

Publication Number Publication Date
CN103579074A true CN103579074A (en) 2014-02-12
CN103579074B CN103579074B (en) 2016-07-06

Family

ID=50050564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210253734.1A Active CN103579074B (en) 2012-07-20 2012-07-20 The forming method of semiconductor structure

Country Status (1)

Country Link
CN (1) CN103579074B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655286A (en) * 2016-02-04 2016-06-08 上海华虹宏力半导体制造有限公司 Forming method of semiconductor structure
CN107293491A (en) * 2016-04-12 2017-10-24 北大方正集团有限公司 The preparation method of VDMOS device
CN110416151A (en) * 2019-06-06 2019-11-05 德淮半导体有限公司 Semiconductor device and method of forming the same
CN110875186A (en) * 2018-08-31 2020-03-10 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method of forming the same
CN111295742A (en) * 2017-12-22 2020-06-16 德州仪器公司 Selective Etching to Reduce Tapering in Shallow Trench Isolation
CN112420722A (en) * 2019-08-22 2021-02-26 长鑫存储技术有限公司 Buried gate structure and method for forming semiconductor memory
EP3809455A1 (en) * 2019-10-16 2021-04-21 STMicroelectronics (Rousset) SAS Method for manufacturing an integrated circuit comprising a phase for forming trenches in a substrate and corresponding integrated circuit
CN112908840A (en) * 2019-12-03 2021-06-04 长鑫存储技术有限公司 Semiconductor structure, forming method thereof and memory
CN112992899A (en) * 2021-02-08 2021-06-18 中国科学院微电子研究所 Semiconductor device and manufacturing method thereof
CN114623777A (en) * 2022-02-21 2022-06-14 武汉大学 Construction method and measurement method of measurement model of stacked nanosheet structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660068A (en) * 1982-08-24 1987-04-21 Nippon Telegraph & Telephone Corporation Substrate structure of semiconductor device and method of manufacturing the same
US20020197795A1 (en) * 2001-06-22 2002-12-26 Kenji Saito Method of manufacturing non-volatile semiconductor memory device
CN1606146A (en) * 2003-10-10 2005-04-13 旺宏电子股份有限公司 Method for simultaneously fabricating isolation structures of various sizes
US20070004167A1 (en) * 2005-06-30 2007-01-04 Hynix Semiconductor Inc. Method of manufacturing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660068A (en) * 1982-08-24 1987-04-21 Nippon Telegraph & Telephone Corporation Substrate structure of semiconductor device and method of manufacturing the same
US20020197795A1 (en) * 2001-06-22 2002-12-26 Kenji Saito Method of manufacturing non-volatile semiconductor memory device
CN1606146A (en) * 2003-10-10 2005-04-13 旺宏电子股份有限公司 Method for simultaneously fabricating isolation structures of various sizes
US20070004167A1 (en) * 2005-06-30 2007-01-04 Hynix Semiconductor Inc. Method of manufacturing semiconductor device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655286A (en) * 2016-02-04 2016-06-08 上海华虹宏力半导体制造有限公司 Forming method of semiconductor structure
CN107293491A (en) * 2016-04-12 2017-10-24 北大方正集团有限公司 The preparation method of VDMOS device
CN111295742A (en) * 2017-12-22 2020-06-16 德州仪器公司 Selective Etching to Reduce Tapering in Shallow Trench Isolation
CN111295742B (en) * 2017-12-22 2024-05-03 德州仪器公司 Selective etching for reducing taper formation in shallow trench isolation
US11908729B2 (en) 2017-12-22 2024-02-20 Texas Instruments Incorporated Selective etches for reducing cone formation in shallow trench isolations
CN110875186B (en) * 2018-08-31 2023-08-11 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN110875186A (en) * 2018-08-31 2020-03-10 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method of forming the same
CN110416151A (en) * 2019-06-06 2019-11-05 德淮半导体有限公司 Semiconductor device and method of forming the same
CN112420722A (en) * 2019-08-22 2021-02-26 长鑫存储技术有限公司 Buried gate structure and method for forming semiconductor memory
CN112420722B (en) * 2019-08-22 2022-06-10 长鑫存储技术有限公司 Embedded grid structure and method for forming semiconductor memory
US11640921B2 (en) 2019-10-16 2023-05-02 Stmicroelectronics (Rousset) Sas Process for fabricating an integrated circuit comprising a phase of forming trenches in a substrate and corresponding integrated circuit
FR3102296A1 (en) * 2019-10-16 2021-04-23 Stmicroelectronics (Rousset) Sas Integrated circuit manufacturing method comprising a phase of forming trenches in a substrate and corresponding integrated circuit.
EP3809455A1 (en) * 2019-10-16 2021-04-21 STMicroelectronics (Rousset) SAS Method for manufacturing an integrated circuit comprising a phase for forming trenches in a substrate and corresponding integrated circuit
US12198973B2 (en) 2019-10-16 2025-01-14 Stmicroelectronics (Rousset) Sas Integrated circuit comprising trenches formed in a substrate
CN112908840A (en) * 2019-12-03 2021-06-04 长鑫存储技术有限公司 Semiconductor structure, forming method thereof and memory
CN112908840B (en) * 2019-12-03 2025-04-01 长鑫存储技术有限公司 Semiconductor structure and method for forming the same, and memory
CN112992899A (en) * 2021-02-08 2021-06-18 中国科学院微电子研究所 Semiconductor device and manufacturing method thereof
CN112992899B (en) * 2021-02-08 2023-02-28 中国科学院微电子研究所 A kind of semiconductor device and its manufacturing method
CN114623777A (en) * 2022-02-21 2022-06-14 武汉大学 Construction method and measurement method of measurement model of stacked nanosheet structure
CN114623777B (en) * 2022-02-21 2022-11-18 武汉大学 A measurement model construction method and measurement method for a stacked nanosheet structure

Also Published As

Publication number Publication date
CN103579074B (en) 2016-07-06

Similar Documents

Publication Publication Date Title
CN103579074B (en) The forming method of semiconductor structure
US9209178B2 (en) finFET isolation by selective cyclic etch
TWI416634B (en) Method of forming an integrated circuit structure
US10431671B2 (en) Fin field-effect transistor
US9117909B2 (en) Non-planar transistor
CN107785315B (en) Method of forming a semiconductor structure
CN108574005B (en) Semiconductor device and method of forming the same
CN108321090A (en) Semiconductor devices and forming method thereof
CN108630611A (en) Semiconductor structure and forming method thereof
US10522619B2 (en) Three-dimensional transistor
US9947588B1 (en) Method for manufacturing fins
CN103426757B (en) The formation method of Ω shape fin formula field effect transistor
CN107919287A (en) The forming method of semiconductor devices
CN103515229B (en) The formation method of fin and fin field effect pipe
CN103779220A (en) Fin field effect transistor and forming method thereof
CN104701262B (en) A kind of forming method of semiconductor devices
CN108206159B (en) Semiconductor structure and method of forming the same
CN107516674B (en) Method for forming fin field effect transistor
CN103681336B (en) The formation method of semiconductor structure
US10651092B2 (en) Semiconductor device and fabrication method thereof
CN107623034B (en) Semiconductor device, preparation method and electronic device
CN107492501B (en) Method for forming fin field effect transistor
CN119364846A (en) Semiconductor structure and forming method thereof
CN111785772A (en) Semiconductor structure and method of forming the same
CN108155148A (en) The forming method of semiconductor structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant