CN103579074A - Semiconductor structure forming method - Google Patents
Semiconductor structure forming method Download PDFInfo
- Publication number
- CN103579074A CN103579074A CN201210253734.1A CN201210253734A CN103579074A CN 103579074 A CN103579074 A CN 103579074A CN 201210253734 A CN201210253734 A CN 201210253734A CN 103579074 A CN103579074 A CN 103579074A
- Authority
- CN
- China
- Prior art keywords
- material layer
- forming
- semiconductor substrate
- groove
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
- H01L21/76229—Concurrent filling of a plurality of trenches having a different trench shape or dimension, e.g. rectangular and V-shaped trenches, wide and narrow trenches, shallow and deep trenches
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Element Separation (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
一种半导体结构的形成方法,包括:提供半导体衬底,所述半导体衬底具有第一区域和第二区域;形成覆盖所述半导体衬底表面的第一材料层;在第一区域的第一材料层表面形成第二材料层,第一区域的第一材料层和第二材料层构成堆叠结构;在堆叠结构和第二区域的第一材料层表面形成掩膜层;采用第一等离子体刻蚀工艺刻蚀所述第一材料层,形成暴露所述半导体衬底表面的第三开口,同时刻蚀部分厚度所述堆叠结构,形成若干第四开口;采用第二等离子体刻蚀工艺刻蚀所述半导体衬底,形成第一凹槽,同时刻蚀所述堆叠结构和半导体衬底,形成若干第二凹槽,第二凹槽深度小于第一凹槽的深度。第一凹槽和第二凹槽同一刻蚀步骤形成,工艺过程简单。
A method for forming a semiconductor structure, comprising: providing a semiconductor substrate, the semiconductor substrate having a first region and a second region; forming a first material layer covering the surface of the semiconductor substrate; A second material layer is formed on the surface of the material layer, and the first material layer and the second material layer in the first region form a stacked structure; a mask layer is formed on the stacked structure and the surface of the first material layer in the second region; Etching the first material layer by an etching process to form a third opening exposing the surface of the semiconductor substrate, and at the same time etching a partial thickness of the stacked structure to form a number of fourth openings; using a second plasma etching process to etch In the semiconductor substrate, a first groove is formed, and the stacked structure and the semiconductor substrate are etched simultaneously to form a plurality of second grooves, and the depth of the second grooves is smaller than that of the first grooves. The first groove and the second groove are formed in the same etching step, and the process is simple.
Description
技术领域 technical field
本发明涉及半导体制作领域,特别涉及一种半导体结构的形成方法。The invention relates to the field of semiconductor manufacturing, in particular to a method for forming a semiconductor structure.
背景技术 Background technique
随着半导体工艺技术的不断发展,工艺节点逐渐减小,后栅(gate-last)工艺得到了广泛应用,以获得理想的阈值电压,改善器件性能。但是当器件的特征尺寸(CD,Critical Dimension)进一步下降时,即使采用后栅工艺,常规的MOS场效应管的结构也已经无法满足对器件性能的需求,多栅器件作为常规器件的替代得到了广泛的关注。With the continuous development of semiconductor process technology, the process node is gradually reduced, and the gate-last (gate-last) process has been widely used to obtain an ideal threshold voltage and improve device performance. But when the feature size (CD, Critical Dimension) of the device is further reduced, even if the gate-last process is adopted, the structure of the conventional MOS field effect transistor can no longer meet the requirements for device performance, and the multi-gate device has been adopted as a substitute for the conventional device. Widespread concern.
鳍式场效应晶体管(Fin FET)是一种常见的多栅器件,图1~图4为现有的鳍式场效应晶体管形成过程的剖面结构示意图。Fin field effect transistor (Fin FET) is a common multi-gate device. Figures 1 to 4 are schematic cross-sectional structure diagrams of the formation process of the existing fin field effect transistor.
参考图1,提供半导体衬底100,所述半导体衬底100包括第一区域Ⅰ和第二区域Ⅱ;在所述半导体衬底100上形成第一硬掩膜层101,第二区域Ⅱ的第一硬掩膜层101具有第一开口102,沿第一开口102刻蚀部分所述半导体衬底100,形成第一凹槽103。Referring to FIG. 1 , a
参考图2,在所述第一硬掩膜层101(参考图1)表面形成第一隔离材料层(图未示出),所述第一隔离材料层填充满第一开口102和第一凹槽103(参考图1);化学机械研磨所述第一隔离材料层和第一硬掩膜层101,以半导体衬底100表面为停止层,在第一凹槽103中形成第一隔离结构104,所述第一隔离结构104用于隔离相邻的有源区。Referring to FIG. 2 , a first isolation material layer (not shown) is formed on the surface of the first hard mask layer 101 (refer to FIG. 1 ), and the first isolation material layer fills the
参考图3,在所述半导体衬底100上形成第二硬掩膜层105,第一区域Ⅰ的硬掩膜层105具有若干第二开口106,沿所述第二开口106刻蚀所述半导体衬底100形成若干鳍部108,相邻的鳍部108之间以及鳍部与半导体衬底100之间具有第二凹槽107,第二凹槽107的位置与第二开口106的位置相对应,第二凹槽107的深度小于第一凹槽103(参考图1)的深度,后续在第二凹槽107中填充第二隔离材料层形成第二隔离结构,用于相邻鳍部之间的电性隔离。Referring to FIG. 3, a second hard mask layer 105 is formed on the
参考图4,在所述第二硬掩膜层105(参考图3)上形成第二隔离材料层(图中未示出),所述第二隔离材料层填充满所述第二开口106和第二凹槽107(参考图3);化学机械研磨所述第二隔离材料层和第二硬掩膜层105,在第二凹槽107中形成第二隔离结构109,所述第二隔离结构109用于电性隔离相邻的鳍部108。Referring to FIG. 4 , a second isolation material layer (not shown in the figure) is formed on the second hard mask layer 105 (refer to FIG. 3 ), and the second isolation material layer fills the second opening 106 and The second groove 107 (refer to FIG. 3 ); the second isolation material layer and the second hard mask layer 105 are chemically mechanically polished to form a
现有工艺形成第一隔离结构104和第二隔离结构109时,第一隔离结构104和第二隔离结构109及其所应的第一凹槽103和第二凹槽107,均在不同工艺步骤形成,工艺过程相对复杂。When forming the
更多关于鳍式场效应晶体管的介绍请参考公开号为US2011/0068431A1的美国专利。For more information about FinFETs, please refer to US Patent Publication No. US2011/0068431A1.
发明内容 Contents of the invention
本发明解决的问题是提供一种半导体结构的形成方法,工艺过程简单。The problem to be solved by the present invention is to provide a method for forming a semiconductor structure with a simple process.
为解决上述问题,本发明提供了一种半导体结构的形成方法,包括:In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, comprising:
提供半导体衬底,所述半导体衬底具有第一区域和第一区域相邻的第二区域;形成覆盖所述半导体衬底表面的第一材料层;在第一区域的第一材料层表面形成第二材料层,第一区域的第一材料层和第二材料层构成堆叠结构;在堆叠结构和第二区域的第一材料层表面形成掩膜层,第一区域的掩膜层具有若干暴露堆叠结构表面的第一开口,第二区域的掩膜层具有暴露第一材料层表面的第二开口;采用第一等离子体刻蚀工艺沿第二开口刻蚀所述第一材料层,形成暴露所述半导体衬底表面的第三开口,同时沿若干第一开口,刻蚀部分厚度所述堆叠结构,形成若干第四开口;采用第二等离子体刻蚀工艺沿第三开口刻蚀所述半导体衬底,在半导体衬底中形成第一凹槽,同时沿若干第四开口刻蚀所述堆叠结构和半导体衬底,在半导体衬底中形成若干第二凹槽,相邻第二凹槽之间为鳍部,第二凹槽深度小于第一凹槽的深度。A semiconductor substrate is provided, the semiconductor substrate has a first region and a second region adjacent to the first region; forming a first material layer covering the surface of the semiconductor substrate; forming on the surface of the first material layer in the first region The second material layer, the first material layer and the second material layer in the first region constitute a stacked structure; a mask layer is formed on the surface of the stacked structure and the first material layer in the second region, and the mask layer in the first region has several exposures. The first opening on the surface of the stack structure, the mask layer in the second region has a second opening exposing the surface of the first material layer; the first material layer is etched along the second opening by using the first plasma etching process to form an exposed The third opening on the surface of the semiconductor substrate is simultaneously etched along a plurality of first openings to form a partial thickness of the stack structure to form a plurality of fourth openings; the second plasma etching process is used to etch the semiconductor along the third opening. substrate, forming first grooves in the semiconductor substrate, and simultaneously etching the stacked structure and the semiconductor substrate along several fourth openings, forming several second grooves in the semiconductor substrate, between adjacent second grooves There are fins in between, and the depth of the second groove is smaller than that of the first groove.
可选的,所述第一材料层和第二材料层的材料不相同,第一材料层相对于第二材料层的刻蚀选择比大于1:1小于等于5:1。Optionally, the materials of the first material layer and the second material layer are different, and the etching selectivity ratio of the first material layer relative to the second material layer is greater than 1:1 and less than or equal to 5:1.
可选的,所述半导体衬底相对于第一材料层和第二材料层的刻蚀选择比2:1~15:1。Optionally, the etching selectivity ratio of the semiconductor substrate relative to the first material layer and the second material layer is 2:1˜15:1.
可选的,所述第一材料层的材料为二氧化硅,第二材料层的材料为氮化硅。Optionally, the material of the first material layer is silicon dioxide, and the material of the second material layer is silicon nitride.
可选的,所述第一材料层的厚度为20~100纳米,第二材料层的厚度为20~100纳米。Optionally, the thickness of the first material layer is 20-100 nanometers, and the thickness of the second material layer is 20-100 nanometers.
可选的,所述第一等离子刻蚀工艺采用的气体为CHF3和Ar,刻蚀腔压力为5~20毫托,射频功率为200~400瓦,偏置功率为20~40瓦,刻蚀温度为5~30摄氏度。Optionally, the gases used in the first plasma etching process are CHF3 and Ar, the etching chamber pressure is 5-20 mTorr, the radio frequency power is 200-400 watts, the bias power is 20-40 watts, and the engraving The corrosion temperature is 5-30 degrees Celsius.
可选的,所述第二等离子体刻蚀工艺采用的气体为CCl4和Ar,刻蚀腔压力为5~20毫托,射频功率为500~700瓦,偏置功率为20~40瓦,刻蚀温度为5~30摄氏度。Optionally, the gases used in the second plasma etching process are CCl4 and Ar, the etching chamber pressure is 5-20 mtorr, the radio frequency power is 500-700 watts, and the bias power is 20-40 watts, The etching temperature is 5-30 degrees Celsius.
可选的,所述第一凹槽的深度为100~500纳米。Optionally, the depth of the first groove is 100-500 nanometers.
可选的,所述第二凹槽的深度为50~300纳米。Optionally, the second groove has a depth of 50-300 nanometers.
可选的,所述鳍部的宽度为10~50纳米,相邻鳍部之间的距离为10~60纳米。Optionally, the width of the fins is 10-50 nanometers, and the distance between adjacent fins is 10-60 nanometers.
可选的,还包括:对第一凹槽的开口进行圆弧化处理。Optionally, the method further includes: rounding the opening of the first groove.
可选的,所述圆弧化处理采用的工艺为各向同性的微波干法刻蚀功率。Optionally, the arcing treatment adopts isotropic microwave dry etching power.
可选的,所述微波干法刻蚀工艺的频率为2.3~2.5吉赫兹,功率为900~1100瓦,刻蚀气体为CF4、O2和N2。Optionally, the frequency of the microwave dry etching process is 2.3-2.5 GHz, the power is 900-1100 watts, and the etching gas is CF 4 , O 2 and N 2 .
可选的,还包括:在第一凹槽和第二凹槽中填充满隔离材料,形成第一隔离结构和第二隔离结构。Optionally, the method further includes: filling the first groove and the second groove with an isolation material to form a first isolation structure and a second isolation structure.
可选的,所述掩膜层材料为光刻胶。Optionally, the material of the mask layer is photoresist.
与现有技术相比,本发明技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
利用第一材料层和第二材料层,第一区域的半导体衬底上为第一材料层和第二材料层的堆叠结构,第二区域为第一材料层的单层结构,第一等离子刻蚀工艺刻蚀第二区域的第一材料层,形成暴露所述半导体衬底表面的第三开口时,同时所述第一区域的堆叠结构只会被刻蚀去除部分厚度,采用第二等离子体刻蚀工艺沿第三开口刻蚀第一区域的所述半导体衬底,在半导体衬底中形成第一凹槽,同时刻蚀第一区域剩余的堆叠结构和半导体衬底,在半导体衬底中形成若干第二凹槽,第二等离子体刻蚀工艺时,由于剩余的堆叠结构的阻挡,使得第二凹槽深度小于第一凹槽的深度,第一凹槽和第二凹槽在同一刻蚀工艺中同时形成,相对于现有的多次硬掩膜、刻蚀和光刻工艺,工艺过程简单。Using the first material layer and the second material layer, the semiconductor substrate in the first region has a stacked structure of the first material layer and the second material layer, the second region has a single-layer structure of the first material layer, and the first plasma etching When the etching process etches the first material layer in the second region to form a third opening exposing the surface of the semiconductor substrate, at the same time, the stacked structure in the first region will only be etched to remove part of the thickness, using the second plasma The etching process etches the semiconductor substrate in the first region along the third opening, forming a first groove in the semiconductor substrate, and simultaneously etching the remaining stacked structure and the semiconductor substrate in the first region, in the semiconductor substrate Several second grooves are formed. During the second plasma etching process, due to the obstruction of the remaining stack structure, the depth of the second grooves is smaller than the depth of the first grooves. The first grooves and the second grooves are formed at the same moment. It is formed simultaneously in the etching process. Compared with the existing multiple hard mask, etching and photolithography processes, the process is simple.
进一步,所述第一材料层和第二材料层的材料不相同时,所述第一材料层相对于第二材料层的刻蚀选择比为大于1:1小于等于5:1,在进行第一等离子刻蚀时,较准确的控制第一区域Ⅰ的第一材料层和第二材料层的堆叠结构剩余的厚度,从而在第二等离子刻蚀工艺时,较准确的控制第一区域Ⅰ的半导体衬底内形成第二凹槽的深度与第二区域Ⅱ的半导体衬底内形成的第一凹槽的深度之间的差值。Further, when the materials of the first material layer and the second material layer are different, the etching selectivity ratio of the first material layer relative to the second material layer is greater than 1:1 and less than or equal to 5:1. During plasma etching, more accurately control the remaining thickness of the stacked structure of the first material layer and the second material layer in the first region I, so that during the second plasma etching process, more accurately control the thickness of the first region I The difference between the depth of the second groove formed in the semiconductor substrate and the depth of the first groove formed in the semiconductor substrate of the second region II.
更进一步,对第一凹槽的开口进行圆弧化处理,形成圆弧开口,当鳍式场效应晶体管工作时,积聚的电荷会沿圆弧开口的弧度均匀分布,圆弧开口处的半导体衬底内积聚的电荷的密度较小,从而避免漏电流的产生。Furthermore, the opening of the first groove is rounded to form an arc opening. When the fin field effect transistor is working, the accumulated charges will be evenly distributed along the arc of the arc opening, and the semiconductor substrate at the arc opening will The density of charges accumulated in the bottom is small, thereby avoiding the generation of leakage current.
附图说明 Description of drawings
图1~图4为现有的鳍式场效应晶体管形成过程的剖面结构示意图;1 to 4 are schematic cross-sectional structural diagrams of the formation process of an existing fin field effect transistor;
图5为本发明实施例半导体结构的形成方法的流程示意图;5 is a schematic flowchart of a method for forming a semiconductor structure according to an embodiment of the present invention;
图6~图11为本发明半导体结构的形成过程的剖面结构示意图。6 to 11 are schematic cross-sectional structure diagrams of the formation process of the semiconductor structure of the present invention.
具体实施方式 Detailed ways
现有在制作相邻有源区的第一隔离结构和鳍式场效应晶体管的鳍部之间的第二隔离结构时,为了达到相邻有源区之间的更好的隔离效果,第一隔离结构对应的第一凹槽的深度要大于第二隔离结构对应的第二凹槽的深度,由于第一凹槽的深度和第二凹槽的深度不一样,因此需要两次硬掩膜工艺、硬掩膜图形化对应的光刻工艺以及两次沉积工艺,工艺步骤较为复杂,增加了制作成本。In order to achieve a better isolation effect between adjacent active regions, the first The depth of the first groove corresponding to the isolation structure is greater than the depth of the second groove corresponding to the second isolation structure. Since the depth of the first groove is different from the depth of the second groove, two hard mask processes are required. 1. The photolithography process corresponding to the patterning of the hard mask and the two deposition processes, the process steps are relatively complicated, which increases the production cost.
为解决上述问题,发明人提出一种半导体结构的形成方法,利用第一材料层和第二材料层,第一区域的半导体衬底上为第一材料层和第二材料层的堆叠结构,第二区域为第一材料层的单层结构,第一等离子刻蚀工艺刻蚀第二区域的第一材料层,形成暴露所述半导体衬底表面的第三开口时,同时所述第一区域的堆叠结构只会被刻蚀去除部分厚度,采用第二等离子体刻蚀工艺沿第三开口刻蚀第一区域的所述半导体衬底,在半导体衬底中形成第一凹槽,同时刻蚀第一区域剩余的堆叠结构和半导体衬底,在半导体衬底中形成若干第二凹槽,第二等离子体刻蚀工艺时,由于剩余的堆叠结构的阻挡,使得第二凹槽深度小于第一凹槽的深度,第一凹槽和第二凹槽在同一刻蚀工艺中同时形成,相对于现有的多次硬掩膜、刻蚀和光刻工艺,工艺过程简单。In order to solve the above problems, the inventor proposes a method for forming a semiconductor structure, using a first material layer and a second material layer, the semiconductor substrate in the first region is a stacked structure of the first material layer and the second material layer, the second The second region is a single-layer structure of the first material layer, and the first plasma etching process etches the first material layer in the second region to form a third opening exposing the surface of the semiconductor substrate, while the first region The stacked structure will only be etched to remove part of the thickness, and the second plasma etching process is used to etch the semiconductor substrate in the first region along the third opening to form a first groove in the semiconductor substrate, and at the same time etch the second The remaining stacked structure and the semiconductor substrate in a region form several second grooves in the semiconductor substrate. During the second plasma etching process, due to the blocking of the remaining stacked structure, the depth of the second grooves is smaller than that of the first grooves. The depth of the groove, the first groove and the second groove are simultaneously formed in the same etching process. Compared with the existing multiple hard mask, etching and photolithography processes, the process is simple.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings.
参考图5,图5为本发明实施例半导体结构的形成方法的流程示意图,包括:Referring to FIG. 5, FIG. 5 is a schematic flowchart of a method for forming a semiconductor structure according to an embodiment of the present invention, including:
步骤S201,提供半导体衬底,所述半导体衬底具有第一区域和第一区域相邻的第二区域;Step S201, providing a semiconductor substrate, the semiconductor substrate has a first region and a second region adjacent to the first region;
步骤S202,形成覆盖所述半导体衬底表面的第一材料层;在第一区域的第一材料层表面形成第二材料层,第一区域的第一材料层和第二材料层构成堆叠结构;Step S202, forming a first material layer covering the surface of the semiconductor substrate; forming a second material layer on the surface of the first material layer in the first region, where the first material layer and the second material layer in the first region form a stacked structure;
步骤S203,在堆叠结构和第二区域的第一材料层表面形成掩膜层,第一区域的掩膜层具有若干暴露堆叠结构表面的第一开口,第二区域的掩膜层具有暴露第一材料层表面的第二开口;Step S203, forming a mask layer on the stack structure and the surface of the first material layer in the second region, the mask layer in the first region has several first openings exposing the surface of the stack structure, and the mask layer in the second region has a number of first openings exposing the first a second opening in the surface of the material layer;
步骤S204,采用第一等离子体刻蚀工艺沿第二开口刻蚀所述第一材料层,形成暴露所述半导体衬底表面的第三开口,同时沿若干第一开口,刻蚀部分厚度所述堆叠结构,形成若干第四开口;Step S204, using the first plasma etching process to etch the first material layer along the second opening to form a third opening exposing the surface of the semiconductor substrate, and at the same time, etching a part of the thickness of the first opening along several first openings. stacking structures to form a plurality of fourth openings;
步骤S205,采用第二等离子体刻蚀工艺沿第三开口刻蚀所述半导体衬底,在半导体衬底中形成第一凹槽,同时沿若干第四开口刻蚀所述堆叠结构和半导体衬底,在半导体衬底中形成若干第二凹槽,相邻第二凹槽之间为鳍部,第二凹槽深度小于第一凹槽的深度;Step S205, using a second plasma etching process to etch the semiconductor substrate along the third opening, forming a first groove in the semiconductor substrate, and simultaneously etching the stack structure and the semiconductor substrate along several fourth openings , forming a plurality of second grooves in the semiconductor substrate, fins are formed between adjacent second grooves, and the depth of the second grooves is smaller than the depth of the first grooves;
步骤S206,对第一凹槽的开口进行圆弧化处理;Step S206, performing arc processing on the opening of the first groove;
步骤S207,在第一凹槽和第二凹槽中填充满隔离材料,形成第一隔离结构和第二隔离结构。Step S207, filling the first groove and the second groove with an isolation material to form a first isolation structure and a second isolation structure.
图6~图11为本发明半导体结构的形成过程的剖面结构示意图。6 to 11 are schematic cross-sectional structure diagrams of the formation process of the semiconductor structure of the present invention.
参考图6,提供半导体衬底300,所述半导体衬底300具有第一区域Ⅰ和第一区域Ⅰ相邻的第二区域Ⅱ;形成覆盖所述半导体衬底300表面的第一材料层301;在第一区域Ⅰ的第一材料层301表面形成第二材料层302,第一区域Ⅰ的第一材料层301和第二材料层302构成堆叠结构。Referring to FIG. 6, a
所述半导体衬底300的材料可以为单晶硅(Si)、单晶锗(Ge)、或硅锗(GeSi)、碳化硅(SiC);也可以是绝缘体上硅(SOI),绝缘体上锗(GOI);或者还可以为其它的材料,例如砷化镓等Ⅲ-Ⅴ族化合物。The material of the
本实施例中所述半导体衬底300的材料为单晶硅,第一区域Ⅰ的半导体衬底300用于形成鳍式场效应晶体管,第二区域Ⅱ的半导体衬底300用于形成第一隔离结构,第一隔离结构用于隔离相邻的有源区,防止相邻有源区内形成的鳍式场效应晶体管电连接。The material of the
所述第一材料层301和第二材料层302在后续刻蚀时,用于控制半导体衬底300中形成的第一凹槽和第二凹槽的深度,使第一凹槽和第二凹槽的深度不一样,由于后续刻蚀的第一凹槽和第二凹槽的深度较深,当作为掩膜层的光刻胶层消耗时,第一材料层301和第二材料层302还可以作为继续刻蚀时的掩膜。The
所述第一材料层301和第二材料层302的材料不相同,所述第一材料层相对于第二材料层的刻蚀选择比为大于1:1小于等于5:1,在进行第一等离子刻蚀时,较准确的控制第一区域Ⅰ的第一材料层301和第二材料层302的堆叠结构剩余的厚度,从而在第二等离子刻蚀工艺时,较准确的控制第一区域Ⅰ的半导体衬底内形成第二凹槽的深度与第二区域Ⅱ的半导体衬底内形成的第一凹槽的深度之间的差值。The materials of the
所述半导体衬底相对于第一材料层和第二材料层的刻蚀选择比2:1~15:1,因此第二等离子体刻蚀工艺开始刻蚀第一区域Ⅰ的半导体衬底300时,第二区域Ⅱ的刻蚀形成的凹槽已经具有一定的深度,并且这个深度要大于堆叠结构剩余的厚度,从而使最终在第一区域Ⅰ的半导体衬底内形成第二凹槽的深度小于第二区域Ⅱ的半导体衬底内形成的第一凹槽的深度。The etching selectivity ratio of the semiconductor substrate relative to the first material layer and the second material layer is 2:1 to 15:1, so when the second plasma etching process starts to etch the
本实施例中,第一材料层301的材料为氧化硅,第二材料层302的材料为氮化硅,第一材料层301的厚度为20~100纳米,第二材料层的厚度为20~100纳米,在第一等离子刻蚀时,第一区域Ⅰ的第一材料层301和第二材料层302的堆叠结构剩余足够的厚度,从而在第二等离子体刻蚀时,使得在第一区域Ⅰ的半导体衬底内形成第二凹槽的深度小于第二区域Ⅱ的半导体衬底内形成的第一凹槽的深度,并且使第一凹槽深度与第二凹槽深度的差值大于等于50纳米。In this embodiment, the material of the
第一材料层301的形成工艺为热氧化工艺或化学气相沉积工艺,第二材料层302的形成工艺为化学气相沉积工艺。The formation process of the
参考图7,在堆叠结构和第二区域Ⅱ的第一材料层301表面形成掩膜层303,第一区域Ⅰ的掩膜层303具有若干暴露堆叠结构表面的第一开口304,第二区域Ⅱ的掩膜层303具有暴露第一材料层301表面的第二开口305。第一开口304的位置与后续在第一区域Ⅰ的半导体衬底300内形成的第二凹槽的位置对应,第二开口305与后续在第二区域Ⅱ的半导体衬底300内形成的第一凹槽的位置对应。Referring to Fig. 7, a
所述掩膜层303的材料为光刻胶层,通过曝光和显影工艺在掩膜层303中形成第一开口304和第二开口305。The material of the
参考图8,采用第一等离子体刻蚀工艺沿第二开口305刻蚀所述第一材料层301,形成暴露所述半导体衬底表面300的第三开口306,同时沿若干第一开口304,刻蚀部分厚度所述堆叠结构,形成若干第四开口307。Referring to FIG. 8, the
所述第一等离子刻蚀工艺采用的气体为CHF3和Ar,刻蚀腔压力为5~20毫托,射频功率为200~400瓦,偏置功率为20~40瓦,刻蚀温度为5~30摄氏度,通过调节刻蚀温度,使得第一材料层301相对于第二材料层302具有不同的刻蚀选择比,所述第一材料层301相对于第二材料层302的刻蚀选择比大于1:1小于等于5:1,在形成第三开口306时,可以很准确的控制第四开口307的深度,使得第四开口307的深度可以小于第二材料层302的厚度,也可以等于第二材料层302的厚度,还可以大于第二材料层302的厚度,即可以准确的控制第四开口307底部剩余的堆叠结构的厚度,第四开口307底部剩余的堆叠结构的厚度与后续形成的第一凹槽和第二凹槽的深度差直接有关,剩余的堆叠结构的厚度越厚,第一凹槽和第二凹槽的深度差越大,剩余的堆叠结构的厚度越薄,第一凹槽和第二凹槽的深度差越小,从而可以准确的控制第一凹槽和第二凹槽的深度差,以提高形成的半导体结构的性能。本实施例中,所述第四开口307的深度等于第二材料层的厚度。The gas used in the first plasma etching process is CHF 3 and Ar, the etching chamber pressure is 5-20 millitorr, the radio frequency power is 200-400 watts, the bias power is 20-40 watts, and the etching temperature is 5 ~30 degrees Celsius, by adjusting the etching temperature, the
参考图9,采用第二等离子体刻蚀工艺沿第三开口306刻蚀所述半导体衬底300,在半导体衬底中形成第一凹槽308,同时沿若干第四开口307刻蚀所述堆叠结构和半导体衬底300,在半导体衬底300中形成若干第二凹槽309,相邻第二凹槽309之间为鳍部,第二凹槽309深度小于第一凹槽308的深度。Referring to FIG. 9 , the
由于第四开口307底部还具有部分厚度的堆叠结构,当第二等离子体刻蚀工艺刻蚀第二区域Ⅱ的半导体衬底300时,同时会刻蚀第一区域Ⅰ剩余的部分厚度的堆叠结构,在刻蚀完剩余的部分厚度的堆叠结构,暴露第一区域Ⅰ的半导体衬底300时,第二区域Ⅱ的半导体衬底300内已形成一定深度的凹槽,接着继续刻蚀第一区域Ⅰ和第二区域Ⅱ的半导体衬底300,直至在第一区域Ⅰ半导体衬底300内形成第二凹槽309,在第二区域Ⅱ的半导体衬底300内形成第一凹槽308,第二凹槽309的深度小于第一凹槽308的深度。后续在第一凹槽308中填充隔离材料形成第一隔离结构,第一隔离结构用于隔离相邻的有源区,在第二凹槽309中填充隔离材料形成第二隔离结构,第二隔离结构用于相邻鳍部之间的隔离以及鳍式场效应晶体管的栅极与半导体衬底300之间的隔离,第一隔离结构的深度大于第二隔离结构的深度,以更好的隔离相邻的有源区。Since the bottom of the
所述第二等离子体刻蚀工艺采用的气体为CCl4和Ar,刻蚀腔压力为5~20毫托,射频功率为500~700瓦,偏置功率为20~40瓦,刻蚀温度为5~30摄氏度,通过调节刻蚀的温度可以使得半导体衬底相对于第一材料和第二材料的刻蚀选择比2:1~15:1,在第四开口307底部剩余的堆叠结构的厚度一定的情况下,可以调节第一凹槽308和第二凹槽309的深度差,并与第四开口307底部剩余的堆叠结构的厚度的大小,从而准确的控制第一凹槽308和第二凹槽309的深度差。The gases used in the second plasma etching process are CCl4 and Ar, the etching chamber pressure is 5-20 millitorr, the radio frequency power is 500-700 watts, the bias power is 20-40 watts, and the etching temperature is 5~30 degrees Celsius, by adjusting the etching temperature, the etching selectivity ratio of the semiconductor substrate relative to the first material and the second material can be 2:1~15:1, and the remaining thickness of the stacked structure at the bottom of the
所述第一凹槽309的深度为100~500纳米,第二凹槽308的深度为50~300纳米,相邻第二凹槽308之间的鳍部的宽度为10~50纳米,相邻鳍部之间的距离为10~60纳米。The depth of the
参考图10,在第一区域Ⅰ的第二材料层表面302形成光刻胶层310,所述光刻胶层310填充第一开口、第四开口、第二凹槽;对所述第二区域Ⅱ的半导体衬底300内的第一凹槽308(请参考图9)的开口进行圆弧化处理,形成具有圆弧开口311的第一凹槽314。Referring to Fig. 10, a
当第一凹槽308的开口为直角开口,当鳍式场效应晶体管工作时,电荷会集聚在直角处的半导体衬底内,电荷的密度较大,后续形成第一隔离结构时,第一凹槽308开口两端积聚的电荷易通过第一隔离结构的表面在相邻的有源区之间形成漏电流,使得第一隔离结构的电性隔离的效果减弱,对第一凹槽308的开口进行圆弧化处理,形成圆弧开口311,当鳍式场效应晶体管工作时,积聚的电荷会沿圆弧开口311的弧度均匀分布,圆弧开口311处的半导体衬底内积聚的电荷的密度较小,从而避免漏电流的产生。When the opening of the
所述圆弧化处理采用的工艺为各向同性的微波干法刻蚀功率,微波干法刻蚀工艺的频率为2.3~2.5吉赫兹,功率为900~1100瓦,刻蚀气体为CF4、O2和N2,以较好的控制开口的弧度,使开口处积聚的电荷更均匀。The process used in the arcing treatment is isotropic microwave dry etching power, the frequency of the microwave dry etching process is 2.3-2.5 GHz, the power is 900-1100 watts, and the etching gas is CF 4 , O 2 and N 2 , to better control the radian of the opening, so that the charge accumulated at the opening is more uniform.
参考图11,去除光刻胶层310(请参考图10);形成覆盖所述第二材料层302(请参考图10)和第一材料层301(请参考图10)表面的隔离材料层,隔离材料填充满第一凹槽和第二凹槽;化学机械研磨所述隔离材料层、第二材料层302和第一材料层301,以半导体衬底表面300为停止层,在第一区域Ⅰ的半导体衬底300内形成第二隔离结构312,在第二区域的半导体衬底300内形成第一隔离结构313。Referring to FIG. 11 , removing the photoresist layer 310 (please refer to FIG. 10 ); forming an isolation material layer covering the surface of the second material layer 302 (please refer to FIG. 10 ) and the first material layer 301 (please refer to FIG. 10 ), The isolation material fills the first groove and the second groove; chemical mechanical grinding the isolation material layer, the
第二隔离结构312的深度小于第一隔离结构313的深度,第二隔离结构313用于鳍部之间的隔离以及后续形成的鳍式场效应晶体管的栅极与半导体衬底300之间的电性隔离,第一隔离结构313用于有源区之间的电性隔离。The depth of the second isolation structure 312 is smaller than the depth of the first isolation structure 313, and the second isolation structure 313 is used for the isolation between the fins and the electrical connection between the gate of the subsequently formed FinFET and the
在形成第一隔离结构313和第二隔离结构312后,还包括:回刻蚀部分厚度的所述第二隔离结构312,暴露部分高度的鳍部;形成横跨所述若干鳍部的栅极结构,所述栅极结构包括位于鳍部表面和侧壁的栅氧化层和位于栅氧化层表面的栅电极;在鳍部两端形成鳍式场效应晶体管的源/漏区。After forming the first isolation structure 313 and the second isolation structure 312, it also includes: etching back the second isolation structure 312 with a partial thickness to expose the fins with a partial height; forming a gate across the several fins The gate structure includes a gate oxide layer on the surface and side walls of the fin and a gate electrode on the surface of the gate oxide layer; source/drain regions of the fin field effect transistor are formed at both ends of the fin.
综上,本发明实施例提供的半导体结构的形成方法,利用第一材料层和第二材料层,第一区域的半导体衬底上为第一材料层和第二材料层的堆叠结构,第二区域为第一材料层的单层结构,第一等离子刻蚀工艺刻蚀第二区域的第一材料层,形成暴露所述半导体衬底表面的第三开口时,同时所述第一区域的堆叠结构只会被刻蚀去除部分厚度,采用第二等离子体刻蚀工艺沿第三开口刻蚀第一区域的所述半导体衬底,在半导体衬底中形成第一凹槽,同时刻蚀第一区域剩余的堆叠结构和半导体衬底,在半导体衬底中形成若干第二凹槽,第二等离子体刻蚀工艺时,由于剩余的堆叠结构的阻挡,使得第二凹槽深度小于第一凹槽的深度,第一凹槽和第二凹槽在同一刻蚀工艺中同时形成,相对于现有的多次硬掩膜、刻蚀和光刻工艺,工艺过程简单。To sum up, the method for forming a semiconductor structure provided by the embodiment of the present invention utilizes the first material layer and the second material layer, and the semiconductor substrate in the first region has a stacked structure of the first material layer and the second material layer, and the second material layer The region is a single-layer structure of the first material layer, and the first plasma etching process etches the first material layer of the second region to form a third opening exposing the surface of the semiconductor substrate, while the stack of the first region The structure will only be etched to remove part of the thickness, and the second plasma etching process is used to etch the semiconductor substrate in the first region along the third opening to form a first groove in the semiconductor substrate, and at the same time etch the first The rest of the stacked structure and the semiconductor substrate in the region form several second grooves in the semiconductor substrate. During the second plasma etching process, due to the blocking of the remaining stacked structure, the depth of the second grooves is smaller than that of the first grooves. The depth of the first groove and the second groove are simultaneously formed in the same etching process. Compared with the existing multiple hard mask, etching and photolithography processes, the process is simple.
进一步,所述第一材料层和第二材料层的材料不相同时,所述第一材料层相对于第二材料层的刻蚀选择比为大于1:1小于等于5:1,在进行第一等离子刻蚀时,较准确的控制第一区域Ⅰ的第一材料层和第二材料层的堆叠结构剩余的厚度,从而在第二等离子刻蚀工艺时,较准确的控制第一区域的半导体衬底内形成第二凹槽的深度与第二区域的半导体衬底内形成的第一凹槽的深度之间的差值。Further, when the materials of the first material layer and the second material layer are different, the etching selectivity ratio of the first material layer relative to the second material layer is greater than 1:1 and less than or equal to 5:1. During plasma etching, the remaining thickness of the stacked structure of the first material layer and the second material layer in the first region I is more accurately controlled, so that during the second plasma etching process, the semiconductor in the first region is more accurately controlled The difference between the depth of the second groove formed in the substrate and the depth of the first groove formed in the semiconductor substrate in the second region.
更进一步,对第一凹槽的开口进行圆弧化处理,形成圆弧开口,当鳍式场效应晶体管工作时,积聚的电荷会沿圆弧开口的弧度均匀分布,圆弧开口处的半导体衬底内积聚的电荷的密度较小,从而避免漏电流的产生。Furthermore, the opening of the first groove is rounded to form an arc opening. When the fin field effect transistor is working, the accumulated charges will be evenly distributed along the arc of the arc opening, and the semiconductor substrate at the arc opening will The density of charges accumulated in the bottom is small, thereby avoiding the generation of leakage current.
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention, and any person skilled in the art can use the methods disclosed above and technical content to analyze the present invention without departing from the spirit and scope of the present invention. Possible changes and modifications are made in the technical solution. Therefore, any simple modification, equivalent change and modification made to the above embodiments according to the technical essence of the present invention, which do not depart from the content of the technical solution of the present invention, all belong to the technical solution of the present invention. protected range.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210253734.1A CN103579074B (en) | 2012-07-20 | 2012-07-20 | The forming method of semiconductor structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210253734.1A CN103579074B (en) | 2012-07-20 | 2012-07-20 | The forming method of semiconductor structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103579074A true CN103579074A (en) | 2014-02-12 |
CN103579074B CN103579074B (en) | 2016-07-06 |
Family
ID=50050564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210253734.1A Active CN103579074B (en) | 2012-07-20 | 2012-07-20 | The forming method of semiconductor structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103579074B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105655286A (en) * | 2016-02-04 | 2016-06-08 | 上海华虹宏力半导体制造有限公司 | Forming method of semiconductor structure |
CN107293491A (en) * | 2016-04-12 | 2017-10-24 | 北大方正集团有限公司 | The preparation method of VDMOS device |
CN110416151A (en) * | 2019-06-06 | 2019-11-05 | 德淮半导体有限公司 | Semiconductor device and method of forming the same |
CN110875186A (en) * | 2018-08-31 | 2020-03-10 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method of forming the same |
CN111295742A (en) * | 2017-12-22 | 2020-06-16 | 德州仪器公司 | Selective Etching to Reduce Tapering in Shallow Trench Isolation |
CN112420722A (en) * | 2019-08-22 | 2021-02-26 | 长鑫存储技术有限公司 | Buried gate structure and method for forming semiconductor memory |
EP3809455A1 (en) * | 2019-10-16 | 2021-04-21 | STMicroelectronics (Rousset) SAS | Method for manufacturing an integrated circuit comprising a phase for forming trenches in a substrate and corresponding integrated circuit |
CN112908840A (en) * | 2019-12-03 | 2021-06-04 | 长鑫存储技术有限公司 | Semiconductor structure, forming method thereof and memory |
CN112992899A (en) * | 2021-02-08 | 2021-06-18 | 中国科学院微电子研究所 | Semiconductor device and manufacturing method thereof |
CN114623777A (en) * | 2022-02-21 | 2022-06-14 | 武汉大学 | Construction method and measurement method of measurement model of stacked nanosheet structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4660068A (en) * | 1982-08-24 | 1987-04-21 | Nippon Telegraph & Telephone Corporation | Substrate structure of semiconductor device and method of manufacturing the same |
US20020197795A1 (en) * | 2001-06-22 | 2002-12-26 | Kenji Saito | Method of manufacturing non-volatile semiconductor memory device |
CN1606146A (en) * | 2003-10-10 | 2005-04-13 | 旺宏电子股份有限公司 | Method for simultaneously fabricating isolation structures of various sizes |
US20070004167A1 (en) * | 2005-06-30 | 2007-01-04 | Hynix Semiconductor Inc. | Method of manufacturing semiconductor device |
-
2012
- 2012-07-20 CN CN201210253734.1A patent/CN103579074B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4660068A (en) * | 1982-08-24 | 1987-04-21 | Nippon Telegraph & Telephone Corporation | Substrate structure of semiconductor device and method of manufacturing the same |
US20020197795A1 (en) * | 2001-06-22 | 2002-12-26 | Kenji Saito | Method of manufacturing non-volatile semiconductor memory device |
CN1606146A (en) * | 2003-10-10 | 2005-04-13 | 旺宏电子股份有限公司 | Method for simultaneously fabricating isolation structures of various sizes |
US20070004167A1 (en) * | 2005-06-30 | 2007-01-04 | Hynix Semiconductor Inc. | Method of manufacturing semiconductor device |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105655286A (en) * | 2016-02-04 | 2016-06-08 | 上海华虹宏力半导体制造有限公司 | Forming method of semiconductor structure |
CN107293491A (en) * | 2016-04-12 | 2017-10-24 | 北大方正集团有限公司 | The preparation method of VDMOS device |
CN111295742A (en) * | 2017-12-22 | 2020-06-16 | 德州仪器公司 | Selective Etching to Reduce Tapering in Shallow Trench Isolation |
CN111295742B (en) * | 2017-12-22 | 2024-05-03 | 德州仪器公司 | Selective etching for reducing taper formation in shallow trench isolation |
US11908729B2 (en) | 2017-12-22 | 2024-02-20 | Texas Instruments Incorporated | Selective etches for reducing cone formation in shallow trench isolations |
CN110875186B (en) * | 2018-08-31 | 2023-08-11 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN110875186A (en) * | 2018-08-31 | 2020-03-10 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method of forming the same |
CN110416151A (en) * | 2019-06-06 | 2019-11-05 | 德淮半导体有限公司 | Semiconductor device and method of forming the same |
CN112420722A (en) * | 2019-08-22 | 2021-02-26 | 长鑫存储技术有限公司 | Buried gate structure and method for forming semiconductor memory |
CN112420722B (en) * | 2019-08-22 | 2022-06-10 | 长鑫存储技术有限公司 | Embedded grid structure and method for forming semiconductor memory |
US11640921B2 (en) | 2019-10-16 | 2023-05-02 | Stmicroelectronics (Rousset) Sas | Process for fabricating an integrated circuit comprising a phase of forming trenches in a substrate and corresponding integrated circuit |
FR3102296A1 (en) * | 2019-10-16 | 2021-04-23 | Stmicroelectronics (Rousset) Sas | Integrated circuit manufacturing method comprising a phase of forming trenches in a substrate and corresponding integrated circuit. |
EP3809455A1 (en) * | 2019-10-16 | 2021-04-21 | STMicroelectronics (Rousset) SAS | Method for manufacturing an integrated circuit comprising a phase for forming trenches in a substrate and corresponding integrated circuit |
US12198973B2 (en) | 2019-10-16 | 2025-01-14 | Stmicroelectronics (Rousset) Sas | Integrated circuit comprising trenches formed in a substrate |
CN112908840A (en) * | 2019-12-03 | 2021-06-04 | 长鑫存储技术有限公司 | Semiconductor structure, forming method thereof and memory |
CN112908840B (en) * | 2019-12-03 | 2025-04-01 | 长鑫存储技术有限公司 | Semiconductor structure and method for forming the same, and memory |
CN112992899A (en) * | 2021-02-08 | 2021-06-18 | 中国科学院微电子研究所 | Semiconductor device and manufacturing method thereof |
CN112992899B (en) * | 2021-02-08 | 2023-02-28 | 中国科学院微电子研究所 | A kind of semiconductor device and its manufacturing method |
CN114623777A (en) * | 2022-02-21 | 2022-06-14 | 武汉大学 | Construction method and measurement method of measurement model of stacked nanosheet structure |
CN114623777B (en) * | 2022-02-21 | 2022-11-18 | 武汉大学 | A measurement model construction method and measurement method for a stacked nanosheet structure |
Also Published As
Publication number | Publication date |
---|---|
CN103579074B (en) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103579074B (en) | The forming method of semiconductor structure | |
US9209178B2 (en) | finFET isolation by selective cyclic etch | |
TWI416634B (en) | Method of forming an integrated circuit structure | |
US10431671B2 (en) | Fin field-effect transistor | |
US9117909B2 (en) | Non-planar transistor | |
CN107785315B (en) | Method of forming a semiconductor structure | |
CN108574005B (en) | Semiconductor device and method of forming the same | |
CN108321090A (en) | Semiconductor devices and forming method thereof | |
CN108630611A (en) | Semiconductor structure and forming method thereof | |
US10522619B2 (en) | Three-dimensional transistor | |
US9947588B1 (en) | Method for manufacturing fins | |
CN103426757B (en) | The formation method of Ω shape fin formula field effect transistor | |
CN107919287A (en) | The forming method of semiconductor devices | |
CN103515229B (en) | The formation method of fin and fin field effect pipe | |
CN103779220A (en) | Fin field effect transistor and forming method thereof | |
CN104701262B (en) | A kind of forming method of semiconductor devices | |
CN108206159B (en) | Semiconductor structure and method of forming the same | |
CN107516674B (en) | Method for forming fin field effect transistor | |
CN103681336B (en) | The formation method of semiconductor structure | |
US10651092B2 (en) | Semiconductor device and fabrication method thereof | |
CN107623034B (en) | Semiconductor device, preparation method and electronic device | |
CN107492501B (en) | Method for forming fin field effect transistor | |
CN119364846A (en) | Semiconductor structure and forming method thereof | |
CN111785772A (en) | Semiconductor structure and method of forming the same | |
CN108155148A (en) | The forming method of semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |