CN103578958A - Semiconductor grid structure and forming method thereof - Google Patents
Semiconductor grid structure and forming method thereof Download PDFInfo
- Publication number
- CN103578958A CN103578958A CN201310553722.5A CN201310553722A CN103578958A CN 103578958 A CN103578958 A CN 103578958A CN 201310553722 A CN201310553722 A CN 201310553722A CN 103578958 A CN103578958 A CN 103578958A
- Authority
- CN
- China
- Prior art keywords
- layer
- gesn
- gate structure
- semiconductor gate
- structure according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体制造领域,具体涉及一种半导体栅结构及其形成方法。The invention relates to the field of semiconductor manufacturing, in particular to a semiconductor gate structure and a forming method thereof.
背景技术Background technique
半导体Ge具有较高的电子和空穴迁移率,有望在极小尺寸下实现性能更高的晶体管,这使得它被视作先进器件的沟道材料而受到大量关注。但是,将Ge应用于金属-氧化物-半导体场效应晶体管(MOSFET)中时必须面临栅极电介质的选择问题。Ge的氧化物具有热不稳定性,且溶于水,电学性能较差,和传统Si基器件中理想的Si/SiO2界面特性不同。因而对于Ge基MOSFET器件应采用高k电介质来克服这一困难,并同时实现等效氧化层厚度的减薄。The semiconductor Ge has high electron and hole mobility and is expected to realize higher-performance transistors at extremely small sizes, which has attracted a lot of attention as a channel material for advanced devices. However, the choice of gate dielectric must be faced when Ge is applied in metal-oxide-semiconductor field-effect transistors (MOSFETs). Ge oxides are thermally unstable, soluble in water, and have poor electrical properties, which are different from the ideal Si/SiO 2 interface characteristics in traditional Si-based devices. Therefore, for Ge-based MOSFET devices, high-k dielectrics should be used to overcome this difficulty, and at the same time realize the reduction of the equivalent oxide layer thickness.
然而将高k电介质直接沉积在用稀HF清洗过的Ge表面后,通常表现出较高的界面电荷陷阱密度和很差的泄漏电流特性,这主要是由高k电介质和Ge之间较差的界面特性引起的,Ge和高k电介质之间有时也会相互作用使界面特性更加恶化,因此高k电介质和Ge衬底间的界面钝化问题一直是实现先进Ge MOS器件的关键。However, direct deposition of high-k dielectrics on Ge surfaces cleaned with dilute HF usually exhibit high interfacial charge trap density and poor leakage current characteristics, which are mainly caused by the poor relationship between high-k dielectrics and Ge Due to the interface characteristics, Ge and the high-k dielectric sometimes interact to make the interface characteristics worse. Therefore, the interface passivation between the high-k dielectric and the Ge substrate has always been the key to the realization of advanced Ge MOS devices.
人们提出了很多方法来解决这一问题,例如在Ge和高k电介质之间增加GeO2、GeOxNy、AlN等界面层以实现Ge表面的钝化和与高k电介质的隔离,但这些方法中或者其界面电荷陷阱密度和泄漏电流特性的改善仍然不够理想,又或者实现界面钝化效果时往往其界面层厚度较大,且介电常数一般不高,因而影响了等效氧化层厚度的减小,不适合于极小尺寸下的器件应用。Many methods have been proposed to solve this problem, such as adding GeO 2 , GeO x N y , AlN and other interfacial layers between Ge and high-k dielectrics to achieve passivation of the Ge surface and isolation from high-k dielectrics, but these In the method, the improvement of the interface charge trap density and leakage current characteristics is still not ideal, or when the interface passivation effect is realized, the thickness of the interface layer is often large, and the dielectric constant is generally not high, thus affecting the thickness of the equivalent oxide layer. The reduction is not suitable for device applications in extremely small sizes.
发明内容Contents of the invention
本发明旨在至少在一定程度上解决上述技术问题之一或至少提供一种有用的技术选择。The present invention aims to solve one of the above technical problems at least to a certain extent or at least provide a useful technical option.
为此,本发明的一个目的在于提出一种具有GeSnSx钝化层、电学性质好的半导体栅结构形成方法。Therefore, an object of the present invention is to provide a method for forming a semiconductor gate structure with a GeSnSx passivation layer and good electrical properties.
本发明的另一个目的在于提出一种具有GeSnSx钝化层、电学性质好的半导体栅结构。Another object of the present invention is to provide a semiconductor gate structure with GeSnSx passivation layer and good electrical properties.
根据本发明实施例的半导体栅结构形成方法,包括以下步骤:提供以Ge层为表面的衬底;在所述Ge层之上形成Sn层,其中,所述Ge层与所述Sn层之间的界面为GeSn层;去除所述Sn层以暴露所述GeSn层;对所述GeSn层进行硫化处理以形成GeSnSx钝化层;以及在所述GeSnSx钝化层之上形成栅堆叠结构。The method for forming a semiconductor gate structure according to an embodiment of the present invention includes the following steps: providing a substrate with a Ge layer as a surface; forming a Sn layer on the Ge layer, wherein the gap between the Ge layer and the Sn layer is The interface of the GeSn layer is a GeSn layer; the Sn layer is removed to expose the GeSn layer; the GeSn layer is sulfurized to form a GeSnSx passivation layer; and a gate stack structure is formed on the GeSnSx passivation layer.
根据本发明实施例的半导体栅结构形成方法,能够提高Ge基上栅堆叠结构的电学性能,例如低界面陷阱密度和极低的栅泄漏电流密度,具有简便易行、成本低的优点。The method for forming the semiconductor gate structure according to the embodiment of the present invention can improve the electrical performance of the gate stack structure on the Ge base, such as low interface trap density and extremely low gate leakage current density, and has the advantages of simplicity and low cost.
另外,根据本发明实施例的半导体栅结构形成方法还可以具有如下附加技术特征:In addition, the method for forming a semiconductor gate structure according to an embodiment of the present invention may also have the following additional technical features:
在本发明的一个实施例中,在去除所述Sn层之前进一步包括:通过退火处理强化所述GeSn层。In one embodiment of the present invention, before removing the Sn layer, it further includes: strengthening the GeSn layer by annealing.
在本发明的一个实施例中,所述硫化处理为:在硫蒸汽中退火硫化,以使所述GeSn层部分或全部变成GeSnSx钝化层。In one embodiment of the present invention, the sulfidation treatment is: annealing sulfidation in sulfur vapor, so that part or all of the GeSn layer becomes a GeSnSx passivation layer.
在本发明的一个实施例中,所述退火硫化的温度为100-400℃。In one embodiment of the present invention, the annealing and vulcanization temperature is 100-400°C.
在本发明的一个实施例中,所述硫化处理为:浸泡在含有硫离子的溶液中进行湿化学硫化,以使所述GeSn层部分或全部变成GeSnSx钝化层。In one embodiment of the present invention, the sulfidation treatment is: soaking in a solution containing sulfide ions for wet chemical sulfidation, so that part or all of the GeSn layer becomes a GeSnSx passivation layer.
在本发明的一个实施例中,所述含有硫离子的溶液中包含有硫化铵、硫化氢、硫化钠中的一种或多种的组合。In one embodiment of the present invention, the solution containing sulfide ions contains one or more of ammonium sulfide, hydrogen sulfide, and sodium sulfide in combination.
在本发明的一个实施例中,利用对GeSn和Sn具有高腐蚀选择比的溶液清洗以去除所述Sn层以暴露所述GeSn层。In one embodiment of the present invention, the Sn layer is removed by cleaning with a solution having a high etch selectivity to GeSn and Sn to expose the GeSn layer.
在本发明的一个实施例中,所述清洗后保留下来的所述GeSn层的厚度为0.5-40nm。In one embodiment of the present invention, the thickness of the GeSn layer remaining after the cleaning is 0.5-40 nm.
在本发明的一个实施例中,所述以Ge层为表面的衬底包括:纯Ge衬底或表层为Ge薄膜的衬底。In one embodiment of the present invention, the substrate with the Ge layer as the surface includes: a pure Ge substrate or a substrate with a Ge thin film on the surface.
根据本发明实施例的半导体栅结构,可以包括:以Ge层为表面的衬底;位于所述Ge层之上的GeSn层;位于所述GeSn层之上的GeSnSx钝化层;以及位于所述GeSnSx钝化层之上的栅堆叠结构。The semiconductor gate structure according to an embodiment of the present invention may include: a substrate having a Ge layer as a surface; a GeSn layer located on the Ge layer; a GeSnSx passivation layer located on the GeSn layer; and a GeSn layer located on the GeSn layer; The gate stack structure above the GeSnS x passivation layer.
根据本发明实施例的半导体栅结构,能够提高Ge基上栅堆叠结构的电学性能,例如低界面陷阱密度和极低的栅泄漏电流密度,具有结构简单、成本低的优点。The semiconductor gate structure according to the embodiment of the present invention can improve the electrical performance of the Ge-based gate stack structure, such as low interface trap density and extremely low gate leakage current density, and has the advantages of simple structure and low cost.
另外,根据本发明实施例的半导体栅结构还可以具有如下附加技术特征:In addition, the semiconductor gate structure according to the embodiment of the present invention may also have the following additional technical features:
在本发明的一个实施例中,所述GeSn层是首先在所述Ge层上形成Sn层,然后在所述Ge层和所述Sn层之间的界面处自然形成或者通过退火处理强化得到的。In one embodiment of the present invention, the GeSn layer is obtained by first forming a Sn layer on the Ge layer, and then forming naturally at the interface between the Ge layer and the Sn layer or strengthened by annealing .
在本发明的一个实施例中,所述GeSnSx钝化层是所述GeSn层的部分或全部在硫蒸汽中退火硫化得到的。In one embodiment of the present invention, the GeSnS x passivation layer is obtained by annealing and sulfiding part or all of the GeSn layer in sulfur vapor.
在本发明的一个实施例中,所述退火硫化的温度为100-400℃。In one embodiment of the present invention, the annealing and vulcanization temperature is 100-400°C.
在本发明的一个实施例中,所述GeSnSx钝化层是所述GeSn层的部分或全部浸泡在含有硫离子的溶液中进行湿化学硫化得到的。In one embodiment of the present invention, the GeSnS x passivation layer is obtained by soaking part or all of the GeSn layer in a solution containing sulfide ions and performing wet chemical vulcanization.
在本发明的一个实施例中,所述含有硫离子的溶液中包含有硫化铵、硫化氢、硫化钠中的一种或多种的组合。In one embodiment of the present invention, the solution containing sulfide ions contains one or more of ammonium sulfide, hydrogen sulfide, and sodium sulfide in combination.
在本发明的一个实施例中,所述GeSn层的厚度为0.5-40nm。In one embodiment of the present invention, the thickness of the GeSn layer is 0.5-40 nm.
在本发明的一个实施例中,所述以Ge层为表面的衬底包括:纯Ge衬底或表层为Ge薄膜的衬底。In one embodiment of the present invention, the substrate with the Ge layer as the surface includes: a pure Ge substrate or a substrate with a Ge thin film on the surface.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and comprehensible from the description of the embodiments in conjunction with the following drawings, wherein:
图1是本发明实施例的半导体栅结构形成方法的流程图;1 is a flowchart of a method for forming a semiconductor gate structure according to an embodiment of the present invention;
图2是本发明实施例的半导体栅结构的结构示意图;2 is a schematic structural diagram of a semiconductor gate structure according to an embodiment of the present invention;
图3为Ge/GeSnSx/HfO2/Al结构的MOS电容的Cg-Vg曲线;和Fig. 3 is the Cg-Vg curve of the MOS electric capacity of Ge/GeSnS x /HfO 2 /Al structure; With
图4为Ge/GeSnSx/HfO2/Al结构的MOS结构的Jg-Vg特性曲线。Fig. 4 is a Jg-Vg characteristic curve of the MOS structure of Ge/GeSnS x /HfO 2 /Al structure.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary and are intended to explain the present invention and should not be construed as limiting the present invention.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, a first feature being "on" or "under" a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them. Moreover, "above", "above" and "above" the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature. "Below", "beneath" and "under" the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
如图1所示,根据本发明实施例的半导体栅结构形成方法,包括如下步骤:As shown in FIG. 1, the method for forming a semiconductor gate structure according to an embodiment of the present invention includes the following steps:
S1.提供以Ge层为表面的衬底。S1. Provide a substrate having a Ge layer as a surface.
具体地,提供的以Ge层为表面的衬底可以是纯Ge衬底或表层为Ge薄膜的衬底,例如在Si基体上具有Ge薄膜表层的衬底。Specifically, the provided substrate with the Ge layer as the surface can be a pure Ge substrate or a substrate with a Ge thin film on the surface, for example, a substrate with a Ge thin film surface on a Si substrate.
S2.在Ge层之上形成Sn层,其中,Ge层与Sn层之间的界面为GeSn层。S2. Forming a Sn layer on the Ge layer, wherein the interface between the Ge layer and the Sn layer is a GeSn layer.
通常可以采用磁控溅射、电子束蒸发等工艺在Ge层之上形成Sn层。在这些工艺中,衬底温度可控制在室温至200℃之间。工艺过程中,由于原子在两种材料界面间的扩散作用,在Ge/Sn界面自然形成GeSn层。在本发明的一个优选实施例中,还可以通过退火处理来强化该GeSn层。退火的温度范围为50-200℃,温度越高,则形成的GeSn层越厚。Generally, the Sn layer can be formed on the Ge layer by magnetron sputtering, electron beam evaporation and other processes. In these processes, the substrate temperature can be controlled between room temperature and 200°C. During the process, a GeSn layer is naturally formed at the Ge/Sn interface due to the diffusion of atoms between the two material interfaces. In a preferred embodiment of the present invention, the GeSn layer can also be strengthened by annealing. The temperature range of the annealing is 50-200° C., the higher the temperature, the thicker the GeSn layer formed.
扩散形成的GeSn层是一种固溶体,具有与Ge相同的晶体结构,并具有很好半导体特性,如GeSn具有比Ge更高的空穴迁移率。因此,Ge表面形成GeSn层通常不会恶化Ge器件的性能。The GeSn layer formed by diffusion is a solid solution, has the same crystal structure as Ge, and has good semiconductor properties, such as GeSn has higher hole mobility than Ge. Therefore, forming a GeSn layer on the Ge surface usually does not deteriorate the performance of Ge devices.
S3.去除Sn层以暴露GeSn层。S3. Removing the Sn layer to expose the GeSn layer.
具体地,利用对GeSn和Sn具有高腐蚀选择比的溶液清洗以去除Sn层以露出GeSn层。常见的清洗溶液包括稀盐酸、稀硫酸、氨水或氢氧化钠溶液。清洗后保留下来的GeSn层的厚度为0.5-40nm,优选地,GeSn层厚度为0.5-10nm。Specifically, the Sn layer is removed by cleaning with a solution having a high etch selectivity to GeSn and Sn to expose the GeSn layer. Common cleaning solutions include dilute hydrochloric acid, dilute sulfuric acid, ammonia or sodium hydroxide solutions. The GeSn layer remaining after cleaning has a thickness of 0.5-40 nm, preferably, the GeSn layer has a thickness of 0.5-10 nm.
S4.对GeSn层进行硫化处理以形成GeSnSx钝化层。S4. Sulfide the GeSn layer to form a GeSnSx passivation layer.
具体地,硫化处理可以为在硫蒸汽中退火硫化,以使GeSn层部分或全部变成GeSnSx钝化层。由于GeSn层具有很好的半导体特性,即便在Ge层与GeSnSx钝化层之间存在有未硫化的GeSn层,通常不仅不会恶化Ge器件的性能,还可能会改善器件性能。Specifically, the sulfidation treatment may be annealing sulfidation in sulfur vapor, so that part or all of the GeSn layer becomes a GeSnSx passivation layer. Because the GeSn layer has good semiconductor properties, even if there is an unsulfurized GeSn layer between the Ge layer and the GeSnS x passivation layer, it usually not only does not deteriorate the performance of the Ge device, but may also improve the device performance.
具体地,退火硫化的温度为100-400℃,优化温度范围为200-300℃。Specifically, the annealing and vulcanization temperature is 100-400°C, and the optimum temperature range is 200-300°C.
硫化处理还可以为浸泡在含有硫离子的溶液中进行湿化学硫化,以使GeSn层变成GeSnSx钝化层。含有硫离子的溶液中可以是硫化铵、硫化氢、硫化钠中的一种或多种的组合的水溶液。例如,可以选取0.1-20wt.%的硫化铵水溶液,反应温度可以选取20-80℃。The sulfidation treatment can also be wet chemical sulfidation by immersion in a solution containing sulfide ions, so that the GeSn layer becomes a GeSnSx passivation layer. The solution containing sulfide ions may be an aqueous solution of one or more combinations of ammonium sulfide, hydrogen sulfide, and sodium sulfide. For example, 0.1-20wt.% ammonium sulfide aqueous solution can be selected, and the reaction temperature can be selected at 20-80°C.
S5.在GeSnSx钝化层之上形成栅堆叠结构。S5. Forming a gate stack structure on the GeSnSx passivation layer.
具体地,可以先形成介质层后形成栅电极层,以形成栅堆叠结构。在本发明的一个实施例中,介质层为高k材料HfO2、Al2O3或ZrO2,栅电极层为TiN或TaN。需要说明的是,除以上举例外,介质层和栅电极层的材料的选择与匹配可以根据实际情况灵活搭配其他,这属于本领域技术人员公知常识的范围。Specifically, the dielectric layer may be formed first and then the gate electrode layer may be formed to form a gate stack structure. In one embodiment of the present invention, the dielectric layer is made of high-k material HfO 2 , Al 2 O 3 or ZrO 2 , and the gate electrode layer is made of TiN or TaN. It should be noted that, in addition to the above examples, the selection and matching of the materials of the dielectric layer and the gate electrode layer can be flexibly matched according to the actual situation, which belongs to the common knowledge of those skilled in the art.
根据本发明实施例的半导体栅结构形成方法,首先在Ge表面上溅射Sn金属层,再用稀盐酸等湿法工艺去除上层Sn层得到GeSn层,该超薄GeSn层通过硫化处理部分或全部转变为GeSnSx钝化层,从而提高Ge基上栅堆叠结构的电学性能,例如低界面陷阱密度和极低的栅泄漏电流密度,本方法还具有简便易行的优点。According to the method for forming the semiconductor gate structure of the embodiment of the present invention, a Sn metal layer is first sputtered on the Ge surface, and then the upper Sn layer is removed by a wet process such as dilute hydrochloric acid to obtain a GeSn layer, and the ultra-thin GeSn layer is partially or completely sulfurized. It is converted into a GeSnS x passivation layer, thereby improving the electrical properties of the Ge-based gate stack structure, such as low interface trap density and extremely low gate leakage current density. This method also has the advantage of simplicity and ease of implementation.
如图2所示,根据本发明实施例的半导体栅结构,包括:以Ge层100为表面的衬底;位于Ge层100之上的GeSn层200;位于GeSn层200之上的GeSnSx钝化层300;以及位于GeSnSx钝化层300之上的栅堆叠结构400(包括栅介质410和栅电极420)。As shown in Figure 2, the semiconductor gate structure according to the embodiment of the present invention includes: a substrate with a
其中,以Ge层100为表面的衬底包括:纯Ge衬底或表层为Ge薄膜的衬底,例如在Si基体上具有Ge薄膜表层的衬底。Wherein, the substrate with the
其中,GeSn层200可以是通过在Ge层100上形成Sn层(该Sn层最终被牺牲掉,故图2中未绘出),然后在Ge层100和Sn层之间的界面处自然形成或者通过退火处理强化得到的。退火的温度范围可为50-200℃,温度越高,则形成的GeSn层200越厚。因为扩散形成的GeSn层是一种固溶体,具有与Ge相同的晶体结构并具有很好半导体特性(如GeSn具有比Ge更高的空穴迁移率),所以Ge表面形成的GeSn层通常不仅不会恶化Ge器件的性能,还可能会改善器件性能。Wherein, the
其中,GeSnSx钝化层300是GeSn层200的表层部分硫化得到的。Wherein, the GeSnS x passivation layer 300 is obtained by partially sulfiding the surface layer of the
在本发明一个实施例中,该GeSnSx钝化层300可以是GeSn层200的表层部分在硫蒸汽中退火硫化得到的。例如,在温度为100-500℃的硫蒸汽中退火,优化温度范围为200-400℃。In an embodiment of the present invention, the GeSnS x passivation layer 300 may be obtained by annealing and sulfiding the surface layer of the
在本发明一个实施例中,该GeSnSx钝化层300也可以是GeSn层200的表层部分浸泡在含有硫离子的溶液中进行湿化学硫化得到的。含有硫离子的溶液中可以是硫化铵、硫化氢、硫化钠中的一种或多种的组合的水溶液。例如,可以选取0.1-20wt.%的硫化铵水溶液,反应温度可以选取20-80℃。In an embodiment of the present invention, the GeSnS x passivation layer 300 may also be obtained by soaking the surface layer of the
需要说明的是,与GeSnSx钝化层300相接触的GeSn层200的顶部部分可以是利用对GeSn和Sn具有高腐蚀选择比的溶液(例如稀盐酸、稀硫酸、氨水或氢氧化钠溶液等等)清洗以去除GeSn层200之上的Sn层后暴露出来的。可选地,清洗后保留下来的GeSn层200的厚度为0.5-40nm,即最终得到的半导体栅结构中GeSn层200的厚度为0.5-40nm。It should be noted that the top portion of the
其中,栅堆叠结构400通常包括介质层410和栅电极层420。在本发明的一个实施例中,介质层可以为高k材料HfO2、Al2O3或ZrO2,栅电极层可以为TiN或TaN。需要说明的是,除以上举例外,介质层和栅电极层的材料可以根据实际情况灵活选择与匹配,这属于本领域技术人员公知常识的范围。Wherein, the
根据本发明实施例的半导体栅结构,具有GeSnSx钝化层,同时在Ge与GeSnSx之间还形成有高性能的GeSn半导体层,GeSn和GeSnSx层的厚度可控,从而提高Ge基上栅堆叠结构的电学性能,例如低界面陷阱密度和极低的栅泄漏电流密度,该实施例的半导体栅结构还具有结构简单、成本较低的优点。According to the semiconductor gate structure of the embodiment of the present invention, there is a GeSnSx passivation layer, and a high-performance GeSn semiconductor layer is also formed between Ge and GeSnSx , and the thickness of the GeSn and GeSnSx layers is controllable, thereby improving The electrical properties of the gate stack structure, such as low interface trap density and extremely low gate leakage current density, the semiconductor gate structure of this embodiment also has the advantages of simple structure and low cost.
为使本领域技术人员更好地理解本发明,发明人结合图3-图4阐述一个具体实施例如下:在下面的实施例中,通过引入超薄GeSnSx层来钝化高k电介质和Ge衬底间的界面。在Ge衬底上溅射Sn,然后用稀HCl移除顶部Sn层,再对GeSn层进行硫化,得到GeSnSx层。这一技术可以得到一层超薄GeSnSx层,厚约1nm。结果发现,与无该钝化层的Ge/HfO2MOS电容器件相比,引入GeSnSx层的MOS栅堆叠结构具有更好的电学性能。测量结果显示,Ge/GeSnSx/HfO2MOS电容的等效氧化层厚度(EOT)和界面态密度(Dit)分别为2.4nm和5.3×1011cm-2·eV-1。具体地:In order for those skilled in the art to better understand the present invention, the inventor elaborates a specific embodiment as follows in conjunction with Fig. 3-Fig. 4: In the following embodiment, the high- k dielectric and Ge interface between substrates. Sn was sputtered on the Ge substrate, then the top Sn layer was removed with dilute HCl, and the GeSn layer was sulfided to obtain a GeSnSx layer. This technique yields an ultrathin layer of GeSnSx , about 1nm thick. It was found that, compared with the Ge/HfO 2 MOS capacitor device without the passivation layer, the MOS gate stack structure with GeSnS x layer has better electrical performance. The measurement results show that the equivalent oxide thickness (EOT) and interface state density (D it ) of Ge/GeSnS x /HfO 2 MOS capacitors are 2.4nm and 5.3×10 11 cm -2 ·eV -1 , respectively. specifically:
首先,提供的衬底为掺Sb的(100)面的n型Ge晶圆,电阻率为0.09Ω·cm。用稀HF(1:50)和去离子水循环冲洗Ge衬底后,将Sn磁控溅射在Ge衬底上,然后将晶圆浸入稀HCl(10%)中3分钟,去除顶部Sn层,在Ge表面上留下一层超薄GeSn层。再将晶片浸泡在浓度为20%的硫化铵溶液中30分钟以实现表面的硫化处理,这层超薄GeSn层会转化成GeSnSx层。随后,用四双(乙基甲基氨)铪(TEMAH)和水作为前驱体,通过ALD沉积5.5nm厚的HfO2层。最后,蒸栅电极Al并图形化得到MOS电容。对该MOS电容的表征手段主要包括用安捷伦B1500A半导体器件分析仪测量该MOS电容的电容-电压(Cg-Vg)特性曲线和泄漏电流密度-电压(Jg-Vg)特性曲线,分析其电学特性。First, the provided substrate is a Sb-doped (100) plane n-type Ge wafer with a resistivity of 0.09Ω·cm. After rinsing the Ge substrate with dilute HF (1:50) and deionized water circulation, Sn was magnetron sputtered on the Ge substrate, and then the wafer was immersed in dilute HCl (10%) for 3 min to remove the top Sn layer, An ultrathin GeSn layer is left on the Ge surface. The wafer is then immersed in a 20% ammonium sulfide solution for 30 minutes to achieve surface sulfide treatment, and this ultra-thin GeSn layer will be converted into a GeSnSx layer. Subsequently, a 5.5 nm thick HfO2 layer was deposited by ALD using tetrabis(ethylmethylammonia) hafnium (TEMAH) and water as precursors. Finally, the gate electrode Al is evaporated and patterned to obtain a MOS capacitor. The characterization method of the MOS capacitor mainly includes measuring the capacitance-voltage (Cg-Vg) characteristic curve and the leakage current density-voltage (Jg-Vg) characteristic curve of the MOS capacitor with the Agilent B1500A semiconductor device analyzer, and analyzing its electrical characteristics.
图3为Ge/GeSnSx/HfO2/Al MOS电容的Cg-Vg曲线。对Ge/GeSnSx/HfO2/Al电容样品,Cg-Vg曲线在反转区出现带有极少翘曲的尖锐陡坡,表明界面态密度较低。由此可知,在Ge衬底上高k电介质结构中引入的GeSnSx层可以起到较好的钝化效果。经电导测量和分析,Ge/GeSnSx/HfO2/Al电容样品的界面态密度约为5.3×1011cm-2·eV-1。Fig. 3 is a Cg-Vg curve of Ge/GeSnS x /HfO 2 /Al MOS capacitor. For the Ge/GeSnS x /HfO 2 /Al capacitor sample, the Cg-Vg curve presents a sharp slope with little warping in the inversion region, indicating that the interface state density is low. It can be seen that the GeSnS x layer introduced into the high-k dielectric structure on the Ge substrate can have a better passivation effect. The interface state density of the Ge/GeSnS x /HfO 2 /Al capacitor sample is about 5.3×10 11 cm -2 ·eV -1 through conductometric measurement and analysis.
图4为Ge/GeSnSx/HfO2/Al MOS结构的Jg-Vg特性曲线。Ge/GeSnSx/HfO2/Al样品的泄漏电流密度在-1~1V电压范围内均低于2.2×10-7A/cm2。总的来说,本发明通过引入一层超薄的GeSnSx层,对高k电介质和Ge衬底间界面进行电学钝化。其中GeSnSx的制备方法如下:在Ge衬底上溅射Sn层得到GeSn层,用稀盐酸去除Sn层,GeSn层经硫化处理生成GeSnSx层。这与在Ge衬底上直接沉积高k材料相比,Ge/GeSnSx/HfO2/Al MOS电容的Dit和泄漏电流密度降低,分别为5.3×1011eV-1·cm-2和2.2×10-7A/cm2由此可知,在Ge衬底上高k电介质结构中引入的GeSnSx层可以起到较好的钝化效果。Fig. 4 is a Jg-Vg characteristic curve of the Ge/GeSnS x /HfO 2 /Al MOS structure. The leakage current density of Ge/GeSnS x /HfO 2 /Al samples is lower than 2.2×10 -7 A/cm 2 in the voltage range of -1~1V. In general, the present invention electrically passivates the interface between the high-k dielectric and the Ge substrate by introducing an ultra-thin GeSnSx layer. The preparation method of GeSnS x is as follows: a GeSn layer is obtained by sputtering a Sn layer on a Ge substrate, the Sn layer is removed with dilute hydrochloric acid, and the GeSn layer is sulfurized to form a GeSnS x layer. Compared with direct deposition of high-k materials on Ge substrates, the D it and leakage current density of Ge/GeSnS x /HfO 2 /Al MOS capacitors are reduced, which are 5.3×10 11 eV -1 cm -2 and 2.2 ×10 -7 A/cm 2 It can be seen that the GeSnS x layer introduced into the high-k dielectric structure on the Ge substrate can have a better passivation effect.
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。Any process or method descriptions in flowcharts or otherwise described herein may be understood to represent modules, segments or portions of code comprising one or more executable instructions for implementing specific logical functions or steps of the process , and the scope of preferred embodiments of the invention includes alternative implementations in which functions may be performed out of the order shown or discussed, including substantially concurrently or in reverse order depending on the functions involved, which shall It is understood by those skilled in the art to which the embodiments of the present invention pertain.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and cannot be construed as limitations to the present invention. Variations, modifications, substitutions, and modifications to the above-described embodiments are possible within the scope of the present invention.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310553722.5A CN103578958A (en) | 2013-11-08 | 2013-11-08 | Semiconductor grid structure and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310553722.5A CN103578958A (en) | 2013-11-08 | 2013-11-08 | Semiconductor grid structure and forming method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103578958A true CN103578958A (en) | 2014-02-12 |
Family
ID=50050479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310553722.5A Pending CN103578958A (en) | 2013-11-08 | 2013-11-08 | Semiconductor grid structure and forming method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103578958A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103811304A (en) * | 2014-02-25 | 2014-05-21 | 清华大学 | GeSn layer and forming method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070093074A1 (en) * | 2005-10-26 | 2007-04-26 | International Business Machines Corporation | Ge-based semiconductor structure fabricated using a non-oxygen chalcogen passivation step |
CN103151255A (en) * | 2013-04-01 | 2013-06-12 | 清华大学 | Semiconductor grid structure and formation method thereof |
-
2013
- 2013-11-08 CN CN201310553722.5A patent/CN103578958A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070093074A1 (en) * | 2005-10-26 | 2007-04-26 | International Business Machines Corporation | Ge-based semiconductor structure fabricated using a non-oxygen chalcogen passivation step |
CN103151255A (en) * | 2013-04-01 | 2013-06-12 | 清华大学 | Semiconductor grid structure and formation method thereof |
Non-Patent Citations (1)
Title |
---|
MEI ZHAO,ET AL: "Effects of Sulfur Passivation on Ge/GeSn MOS Capacitors with HfO2 Gate Dielectric", 《ECS MEETING ABSTRACTS, MA2013-02》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103811304A (en) * | 2014-02-25 | 2014-05-21 | 清华大学 | GeSn layer and forming method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Ultrathin Al2O3 and HfO2 gate dielectrics on surface-nitrided Ge | |
CN1956147A (en) | Germanium-based semiconductor structure and manufacturing method thereof | |
CN101425457A (en) | Method for forming high-k gate dielectric material and semiconductor device | |
CN101838812B (en) | Method for cleaning surface of passivated Ge substrate | |
Zhao et al. | Effects of sulfur passivation on GaSb metal–oxide–semiconductor capacitors with neutralized and unneutralized (NH4) 2S solutions of varied concentrations | |
CN105514168A (en) | Semiconductor structure, forming method thereof and field effect transistor | |
CN103151255B (en) | A kind of semiconductor gate structure and forming method thereof | |
Nigro et al. | Surface treatments on AlGaN/GaN heterostructures for gate dielectric Al2O3 thin films grown by Atomic Layer Deposition | |
CN103451611A (en) | Preparation method of low leakage current HfO2 film suitable for gate dielectric layer | |
CN103578958A (en) | Semiconductor grid structure and forming method thereof | |
US9780172B2 (en) | Method of removing oxide from substrate and method of manufacturing semiconductor device using the same | |
CN105513963A (en) | Semiconductor structure, forming method thereof and field effect transistor | |
JP6006328B2 (en) | Metal film oxidation | |
Kim et al. | Trap Reduction through O3 Post‐Deposition Treatment of Y2O3 Thin Films Grown by Atomic Layer Deposition on Ge Substrates | |
CN106129106A (en) | Mos field effect transistor and preparation method thereof | |
CN104716191A (en) | Double-gate and double-pole graphene field effect transistor and manufacturing method thereof | |
Tan et al. | Interfacial and electrical properties of HfAlO/GaSb metal-oxide-semiconductor capacitors with sulfur passivation | |
CN107248527A (en) | The high low In components InGaAs of K/AlN/ mos capacitance preparation method | |
US9006088B2 (en) | Method for forming semiconductor gate structure and semiconductor gate structure | |
Yuge et al. | Influence of post-deposition annealing on interface characteristics at Al 2 O 3/n-GaN | |
CN103165433B (en) | A kind of semiconductor gate structure and forming method thereof | |
CN103943476B (en) | Semiconductor gate stacking structure and forming method thereof | |
Cheng et al. | Improved electrical and surface characteristics of metal-oxide-semiconductor device with gate hafnium oxynitride by chemical dry etching | |
US20180047826A1 (en) | Semiconductor structure and method for forming the same | |
CN105679661A (en) | Method for reducing leakage current of hafnium oxide gate dielectric |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140212 |
|
RJ01 | Rejection of invention patent application after publication |