CN103516483B - Long-distance wired data transmission device with adjustable transmission rate - Google Patents
Long-distance wired data transmission device with adjustable transmission rate Download PDFInfo
- Publication number
- CN103516483B CN103516483B CN201310390719.6A CN201310390719A CN103516483B CN 103516483 B CN103516483 B CN 103516483B CN 201310390719 A CN201310390719 A CN 201310390719A CN 103516483 B CN103516483 B CN 103516483B
- Authority
- CN
- China
- Prior art keywords
- data
- nrzi
- module
- clock
- code
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 145
- 238000011084 recovery Methods 0.000 claims abstract description 52
- 238000001514 detection method Methods 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 230000003139 buffering effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 21
- 238000005516 engineering process Methods 0.000 abstract description 10
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
Landscapes
- Communication Control (AREA)
Abstract
Description
技术领域technical field
本发明属于地球物理勘探领域,具体讲,涉及传输速率可按需调节的远距离有线数据传输装置。The invention belongs to the field of geophysical exploration, in particular, relates to a long-distance wired data transmission device whose transmission rate can be adjusted as required.
技术背景technical background
阵列探测系统在声呐、地震勘探、工程勘探等中有着广泛的应用;阵列探测系统中的采集节点呈链式结构分布在线状拖缆中。采集节点一方面负责将模拟的探测信号转换成探测数据,另一方面负责将探测数据以接力的方式传输到上一级采集节点。The array detection system is widely used in sonar, seismic exploration, engineering exploration, etc.; the acquisition nodes in the array detection system are distributed in the linear streamer in a chain structure. On the one hand, the collection node is responsible for converting the analog detection signal into detection data, and on the other hand, it is responsible for transmitting the detection data to the upper-level collection node in a relay manner.
一方面,阵列探测系统中采集节点的数量与阵列探测系统工作的可靠性有着密切的联系;假设采集节点之间数据的传输误码率不变且阵列探测系统信号探测段的长度不变,则采集节点的数量越少,阵列探测系统工作的可靠性就越高,然而这样产生的结果是采集节点之间的传输距离变远了。为了减少阵列探测系统中采集节点的数量以提高系统工作的可靠性,就必须研究采集节点之间的远距离有线传输方法,以保证在远距离有线传输条件下采集节点之间的数据传输误码率依然能满足系统设计要求。On the one hand, the number of acquisition nodes in the array detection system is closely related to the reliability of the array detection system; assuming that the bit error rate of data transmission between the acquisition nodes is constant and the length of the signal detection segment of the array detection system is constant, then The fewer the number of collection nodes, the higher the reliability of the array detection system, but the result is that the transmission distance between the collection nodes becomes longer. In order to reduce the number of acquisition nodes in the array detection system and improve the reliability of the system, it is necessary to study the long-distance wired transmission method between the acquisition nodes to ensure the data transmission error between the acquisition nodes under the condition of long-distance wired transmission The rate can still meet the system design requirements.
另一方面,现有的主流阵列探测系统一般基于级联的方式进行探测数据的传输,这种级联传输方式的特点是:采集节点的数量与采集节点之间的数据传输速率呈正比例关系。在一般的小型工程勘探系统中,采集节点的数量较少,因此,采集节点之间的数据传输速率只需较低速率就能满足要求;而在大型的地震勘探系统或声呐探测系统中,采集节点的数量巨大,因此,采集节点之间要求较高或很高的数据传输速率。现有的主流阵列探测系统中采集节点之间的传输速率是固定不可调节的,且其硬件接口也不支持传输速率可调节的功能,也就是说其硬件接口对传输速率不具有通用性。On the other hand, the existing mainstream array detection systems generally transmit detection data based on the cascading method. The characteristic of this cascading transmission method is that the number of collection nodes is proportional to the data transmission rate between the collection nodes. In a general small-scale engineering exploration system, the number of acquisition nodes is small, so the data transmission rate between acquisition nodes only needs a low rate to meet the requirements; while in a large-scale seismic exploration system or sonar detection system, acquisition The number of nodes is huge, therefore, a high or very high data transmission rate is required between the collection nodes. The transmission rate between acquisition nodes in the existing mainstream array detection system is fixed and cannot be adjusted, and its hardware interface does not support the function of adjustable transmission rate, that is to say, its hardware interface does not have universality for transmission rate.
再一方面,现有的有线传输技术中主要有以下几种:(1)基于RS485接口的有线传输技术:此技术采用异步传输的方式,最大传输速率只能达到10Mbps,且传输速率与传输距离呈反比例关系;由于采用异步传输方式,所以传输效率较低;此外,传输速率受传输距离的制约较大。(2)基于以太网物理层接口的同步传输技术:现有以太网物理层接口芯片主要支持两种固定的传输速率,即10Mbps和100Mbps。在10Mbps的传输速率时,采用曼彻斯特编码方式;在100Mbps的传输速率时,采用NRZ到NRZI再到MLT-3的编码方式。如果将以太网物理层接口芯片直接运用于阵列探测系统节点之间的数据传输中,则会存在以下缺点:(1)以太网接口芯片的传输速率只有10Mbps和100Mbps两种速率可选择,而且在10Mbps的传输速率下,以太网接口芯片固定为曼彻斯特编码方式,此编码方式的编码效率只有50%,从而大大降低了数据的传输效率和传输距离;(2)一般的小型工程勘探系统中,采集节点之间的传输速率可能比10Mbps要低,例如HTI公司的SeaMUX Digital Array系统中采集节点之间的传输速率只有4.096Mbps,如果采用以太网接口芯片的10Mbps速率去传输低于10Mbps速率要求的数据的话,势必会限制数据的传输距离,因为传输距离与传输速率是呈反比的;(3)一般的大型地震勘探系统或声呐探测系统中,采集节点之间的传输速率可能只需要几十兆bps就能满足要求,如果采用以太网接口芯片的100Mbps速率去传输低于100Mbps速率要求的数据的话,势必会限制数据的传输距离,因为传输距离与传输速率是呈反比的;(4)一般的超大型地震勘探系统或声呐探测系统中,采集节点之间的传输速率可能超过100Mbps,如果采用以太网接口芯片的100Mbps速率去传输的话,在速率上就不能满足要求;(5)基于以太网接口芯片的传输距离最大为100米,当采集节点间的传输距离超过100米时,以太网接口芯片也将不能被使用。On the other hand, the existing wired transmission technologies mainly contain the following: (1) Wired transmission technology based on RS485 interface: this technology adopts the mode of asynchronous transmission, and the maximum transmission rate can only reach 10Mbps, and the transmission rate and transmission distance It is inversely proportional; due to the asynchronous transmission method, the transmission efficiency is low; in addition, the transmission rate is greatly restricted by the transmission distance. (2) Synchronous transmission technology based on Ethernet physical layer interface: the existing Ethernet physical layer interface chip mainly supports two fixed transmission rates, namely 10Mbps and 100Mbps. When the transmission rate is 10Mbps, the Manchester encoding method is adopted; when the transmission rate is 100Mbps, the encoding method from NRZ to NRZI to MLT-3 is adopted. If the Ethernet physical layer interface chip is directly used in the data transmission between the nodes of the array detection system, there will be the following disadvantages: (1) the transmission rate of the Ethernet interface chip is only 10Mbps and 100Mbps. At a transmission rate of 10Mbps, the Ethernet interface chip is fixed to the Manchester coding method, and the coding efficiency of this coding method is only 50%, which greatly reduces the data transmission efficiency and transmission distance; (2) In general small-scale engineering exploration systems, acquisition The transmission rate between nodes may be lower than 10Mbps. For example, the transmission rate between acquisition nodes in HTI’s SeaMUX Digital Array system is only 4.096Mbps. If the 10Mbps rate of the Ethernet interface chip is used to transmit data lower than the required rate of 10Mbps If so, the data transmission distance is bound to be limited, because the transmission distance is inversely proportional to the transmission rate; (3) In a general large-scale seismic exploration system or sonar detection system, the transmission rate between acquisition nodes may only need tens of megabits per second If the 100Mbps rate of the Ethernet interface chip is used to transmit data lower than the 100Mbps rate requirement, the transmission distance of the data will be limited, because the transmission distance is inversely proportional to the transmission rate; (4) general super In large-scale seismic exploration systems or sonar detection systems, the transmission rate between acquisition nodes may exceed 100Mbps. If the 100Mbps rate of the Ethernet interface chip is used for transmission, the rate cannot meet the requirements; (5) Based on the Ethernet interface chip The maximum transmission distance is 100 meters. When the transmission distance between collection nodes exceeds 100 meters, the Ethernet interface chip will not be used.
最后一方面,市场上主流的地震勘探和工程勘探系统,即HTI公司的SeaMUX DigitalArray系统的采集节点之间采用同步传输的方式进行数据传输,且采用编码效率只有50%的曼彻斯特编码方式;由于编码效率低,所以为了增加传输距离,它只能进一步的降低传输速率以保证传输误码率的要求,同时,为了满足总的传输速率的要求,它必须采用多根并行通路来进行数据传输,这样不仅增加了系统的硬件成本,还降低了系统的可靠性。In the last aspect, the mainstream seismic exploration and engineering exploration systems on the market, that is, the acquisition nodes of HTI’s SeaMUX DigitalArray system adopt the method of synchronous transmission for data transmission, and adopt the Manchester encoding method with only 50% encoding efficiency; The efficiency is low, so in order to increase the transmission distance, it can only further reduce the transmission rate to ensure the requirements of the transmission bit error rate. At the same time, in order to meet the requirements of the total transmission rate, it must use multiple parallel paths for data transmission. It not only increases the hardware cost of the system, but also reduces the reliability of the system.
发明内容Contents of the invention
为克服现有技术的不足,本发明旨在:For overcoming the deficiencies in the prior art, the present invention aims to:
(1)提供一种采集节点之间的传输速率能根据实际应用要求进行最优调节的一种通用的传输方法,且采用此传输方法后,采集节点之间的数据传输与接收接口具有通用性,即在要求不同传输速率的不同阵列探测系统中,不用再改变采集节点之间的数据传输与接收接口,而只需要根据数据传输要求进行速率调节即可,即传输速率可按需调节的远距离有线数据传输装置。(1) Provide a general-purpose transmission method in which the transmission rate between collection nodes can be optimally adjusted according to actual application requirements, and after adopting this transmission method, the data transmission and reception interfaces between collection nodes are universal , that is, in different array detection systems that require different transmission rates, there is no need to change the data transmission and reception interfaces between the acquisition nodes, but only need to adjust the rate according to the data transmission requirements, that is, the transmission rate can be adjusted as needed. Distance wired data transmission device.
(2)提供一种编码效率更高、传输带宽更低的传输技术,以进一步提高采集节点之间的数据传输距离。(2) Provide a transmission technology with higher encoding efficiency and lower transmission bandwidth, so as to further increase the data transmission distance between collection nodes.
(3)提供一种在相同有效数据传输的条件下,能实现更远距离数据的可靠传输的装置。(3) Provide a device capable of realizing reliable transmission of longer-distance data under the condition of the same effective data transmission.
为达到上述目的,本发明采用的技术方案是,传输速率可按需调节的远距离有线数据传输装置,由数据接收接口、数据接收与转发模块、数据发送接口组成,In order to achieve the above object, the technical solution adopted by the present invention is that the long-distance wired data transmission device whose transmission rate can be adjusted on demand is composed of a data receiving interface, a data receiving and forwarding module, and a data sending interface.
数据接收接口主要由变压器、MLT-3/NRZI解码器、接口电平匹配网络、时钟和数据恢复、NRZI/NRZ解码器、串并转换器、8B/10B解码器组成;进一步,变压器接收来自上一个采集节点传来的MLT-3码的数据,然后通过MLT-3/NRZI解码器将MLT-3码转换成NRZI码,NRZI码经过接口电平匹配网络进行电平匹配后,输入到时钟和数据恢复中,时钟和数据恢复一方面从输入的NRZI码中恢复出位同步定时时钟,另一方面恢复出NRZI码数据;然后,恢复出的时钟和数据被继续送入到NRZI/NRZ解码器中,NRZI/NRZ解码器将NRZI码解码成NRZ码后,输入到串并转换器进行由串行数据流到并行数据流的转换,然后将并行的10B码数据经8B/10B解码器解码后输入到数据接收与转发模块中;The data receiving interface is mainly composed of transformer, MLT-3/NRZI decoder, interface level matching network, clock and data recovery, NRZI/NRZ decoder, serial-to-parallel converter, 8B/10B decoder; further, the transformer receives from the upper A collection node transmits MLT-3 code data, and then converts the MLT-3 code into NRZI code through the MLT-3/NRZI decoder. After the NRZI code is level-matched by the interface level matching network, it is input to the clock and In data recovery, the clock and data recovery recovers the bit synchronization timing clock from the input NRZI code on the one hand, and recovers the NRZI code data on the other hand; then, the recovered clock and data are continuously sent to the NRZI/NRZ decoder Among them, after the NRZI/NRZ decoder decodes the NRZI code into NRZ code, it is input to the serial-to-parallel converter for conversion from the serial data stream to the parallel data stream, and then the parallel 10B code data is decoded by the 8B/10B decoder input into the data receiving and forwarding module;
数据接收与转发模块同时还接收通过本地数据接收接口上传的探测数据,然后再将接收到的上一级采集节点的数据与本地上传的数据进行打包后,转发至下一个采集节点中去,再一方面,通过速率调节模块来对时钟和数据恢复模块的接收速率进行配置;The data receiving and forwarding module also receives the detection data uploaded through the local data receiving interface, and then packages the received data of the upper-level collection node and the data uploaded locally, and forwards it to the next collection node, and then On the one hand, configure the receiving rate of the clock and data recovery module through the rate adjustment module;
数据发送接口主要由8B/10B编码器、并串转换、NRZ/NRZI编码器、本地时钟、接口电平匹配网络、NRZI/MLT-3编码器和变压器组成;进一步,数据接收与转发模块首先通过8B/10B编码器将发送的8B原始数据编码成10B码数据,然后通过并串转换将并行的10B码转换成串行的数据流后,输入到NRZ/NRZI编码器中,NRZ/NRZI编码器在本地时钟的节拍下将NRZ码数据流编码成NRZI码数据流,NRZI码数据流再经过接口电平匹配网络后,输入到NRZI/MLT-3编码器中,NRZI/MLT-3编码器将NRZI码编成MLT-3码后,通过变压器输出到上一个采集节点中去。The data transmission interface is mainly composed of 8B/10B encoder, parallel-to-serial conversion, NRZ/NRZI encoder, local clock, interface level matching network, NRZI/MLT-3 encoder and transformer; further, the data receiving and forwarding module first passes The 8B/10B encoder encodes the sent 8B original data into 10B code data, and then converts the parallel 10B code into a serial data stream through parallel-to-serial conversion, and then inputs it into the NRZ/NRZI encoder. NRZ/NRZI encoder Under the beat of the local clock, the NRZ code data stream is encoded into an NRZI code data stream, and the NRZI code data stream is input to the NRZI/MLT-3 encoder after passing through the interface level matching network, and the NRZI/MLT-3 encoder will After the NRZI code is encoded into the MLT-3 code, it is output to the previous collection node through the transformer.
进一步,本地时钟的输出信号频率与采集节点发送数据的速率有一一对应的关系;与此同时,时钟和数据恢复具有如下功能:(1)时钟和数据恢复能自适应地从接收到的数据流中判断出数据流的传输速率V,然后将自身的工作状态调整至与传输速率为V的数据流相匹配,以实现接收速率的自适应调节;(2)时钟和数据恢复也能接收来自速率调节模块的配置信息,实现自身数据接收速率的匹配,也就是说,当采集节点的数据发送速率为V时,数据接收与转发模块可控制速率调节模块输出相应的配置信息到时钟和数据恢复,将时钟和数据恢复的数据接收速率配置为V。Further, there is a one-to-one relationship between the frequency of the output signal of the local clock and the rate at which the data is sent by the collection node; at the same time, the clock and data recovery have the following functions: (1) The clock and data recovery can adaptively recover from the received data Judging the transmission rate V of the data stream in the stream, and then adjusting its own working state to match the data stream with a transmission rate of V, so as to realize the adaptive adjustment of the receiving rate; (2) clock and data recovery can also receive data from The configuration information of the rate adjustment module realizes the matching of its own data reception rate, that is, when the data transmission rate of the collection node is V, the data receiving and forwarding module can control the rate adjustment module to output the corresponding configuration information to the clock and data recovery , configure the data receive rate for clock and data recovery as V.
进一步,数据接收与转发模块由数据发送模块、级联数据接收模块、级联数据缓存模块、本地数据缓存模块、本地数据接收模块和速率调节控制模块组成;本地数据接收接口上传的数据经本地数据接收模块接收后,缓存在本地数据缓存模块中,与此同时,来自于8B/10B解码器的数据经级联数据接收模块接收后,缓存在级联数据缓存模块中;数据发送模块然后将本地数据缓存模块和级联数据缓存模块中数据发送到8B/10B编码器中;速率调节控制模块被使用去控制速率调节模块传递数据传输速率匹配参数到时钟和数据恢复模块中。Further, the data receiving and forwarding module is composed of a data sending module, a cascaded data receiving module, a cascading data caching module, a local data caching module, a local data receiving module, and a rate adjustment control module; the data uploaded by the local data receiving interface passes through the local data After the receiving module receives it, it is buffered in the local data buffer module. At the same time, after the data from the 8B/10B decoder is received by the cascaded data receiving module, it is buffered in the cascaded data buffer module; the data sending module then sends the local The data in the data buffer module and the cascaded data buffer module are sent to the 8B/10B encoder; the rate adjustment control module is used to control the rate adjustment module to pass the data transmission rate matching parameters to the clock and data recovery module.
本发明具备下列技术效果:The present invention has the following technical effects:
(1)克服现有技术中采集节点之间的数据传输速率不能根据实际应用需要进行调节的缺点;提供一种采集节点之间的传输速率能根据实际应用要求进行最优调节的一种通用的传输方法,且采用此传输方法后,采集节点之间的数据传输与接收接口具有通用性,即在要求不同传输速率的不同阵列探测系统中,不用再改变采集节点之间的数据传输与接收接口,而只需要根据数据传输要求进行速率调节即可,即传输速率可按需调节的远距离有线数据传输装置。(1) To overcome the disadvantage that the data transmission rate between the acquisition nodes in the prior art cannot be adjusted according to the actual application needs; to provide a general-purpose method in which the transmission rate between the acquisition nodes can be optimally adjusted according to the actual application requirements The transmission method, and after adopting this transmission method, the data transmission and reception interface between the collection nodes is universal, that is, in different array detection systems that require different transmission rates, there is no need to change the data transmission and reception interface between the collection nodes , but only needs to adjust the rate according to the data transmission requirements, that is, a long-distance wired data transmission device whose transmission rate can be adjusted as needed.
(2)克服现有技术中采用曼彻斯特编码方式进行数据传输时,效率低、传输带宽高的缺点,提供一种编码效率更高、传输带宽更低的传输技术,以进一步提高采集节点之间的数据传输距离。(2) To overcome the disadvantages of low efficiency and high transmission bandwidth when Manchester encoding is used for data transmission in the prior art, a transmission technology with higher encoding efficiency and lower transmission bandwidth is provided to further improve the communication between acquisition nodes Data transmission distance.
(3)由于采用了编码效率更高、传输带宽更低的传输技术,所以在相同有效数据传输的条件下,本发明能实现更远距离数据的可靠传输。(3) Since the transmission technology with higher coding efficiency and lower transmission bandwidth is adopted, the present invention can realize reliable transmission of longer-distance data under the condition of the same effective data transmission.
附图说明Description of drawings
图1示出本发明的采集节点之间进行数据传输接口的主要功能框图。FIG. 1 shows a main functional block diagram of data transmission interfaces between collection nodes in the present invention.
图1中:1为采集节点(i)(i=1,2,…);2为数据流;3为变压器;4为MLT-3/NRZI解码器;5为接口电平匹配网络;6为时钟和数据恢复;7为恢复时钟;8为恢复数据;9为NRZI/NRZ解码器;10为串并转换器,11为8B/10B解码器,12为数据接收与转发模块,13为8B/10B编码器,14为并串转换,15为本地数据接收接口,16为本地时钟,17为NRZ/NRZI编码器,18为接口电平匹配网络,19为NRZI/MLT-3编码器,20为变压器,21为FPGA,22为传输线。In Figure 1: 1 is the collection node (i) (i=1,2,...); 2 is the data stream; 3 is the transformer; 4 is the MLT-3/NRZI decoder; 5 is the interface level matching network; 6 is Clock and data recovery; 7 is clock recovery; 8 is data recovery; 9 is NRZI/NRZ decoder; 10 is serial-to-parallel converter; 11 is 8B/10B decoder; 12 is data receiving and forwarding module; 10B encoder, 14 for parallel-to-serial conversion, 15 for local data receiving interface, 16 for local clock, 17 for NRZ/NRZI encoder, 18 for interface level matching network, 19 for NRZI/MLT-3 encoder, 20 for A transformer, 21 is an FPGA, and 22 is a transmission line.
图2示出本发明的数据接收与转发模块的工作流程图。Fig. 2 shows the working flow chart of the data receiving and forwarding module of the present invention.
图2中:24为数据发送模块,25为级联数据接收模块,26为级联数据缓存模块,27为本地数据缓存模块,28为要地数据接收模块,29为速率调节控制模块。In Fig. 2: 24 is a data sending module, 25 is a cascading data receiving module, 26 is a cascading data caching module, 27 is a local data caching module, 28 is an important data receiving module, and 29 is a rate adjustment control module.
具体实施方式detailed description
为克服现有技术的不足,做到(1)克服现有技术中采集节点之间的数据传输速率不能根据实际应用需要进行调节的缺点;提供一种采集节点之间的传输速率能根据实际应用要求进行最优调节的一种通用的传输方法,且采用此传输方法后,采集节点之间的数据传输与接收接口具有通用性,即在要求不同传输速率的不同阵列探测系统中,不用再改变采集节点之间的数据传输与接收接口,而只需要根据数据传输要求进行速率调节即可,即传输速率可按需调节的远距离有线数据传输装置。In order to overcome the deficiencies in the prior art, accomplish (1) overcome the shortcoming that the data transmission rate between the collection nodes in the prior art cannot be adjusted according to actual application needs; provide a transmission rate between the collection nodes that can be adjusted according to the actual application A universal transmission method that requires optimal adjustment, and after adopting this transmission method, the data transmission and receiving interface between the acquisition nodes is universal, that is, in different array detection systems that require different transmission rates, there is no need to change The data transmission and receiving interfaces between the collection nodes only need to adjust the rate according to the data transmission requirements, that is, the long-distance wired data transmission device whose transmission rate can be adjusted as needed.
(2)克服现有技术中采用曼彻斯特编码方式进行数据传输时,效率低、传输带宽高的缺点,提供一种编码效率更高、传输带宽更低的传输技术,以进一步提高采集节点之间的数据传输距离。(2) To overcome the disadvantages of low efficiency and high transmission bandwidth when Manchester encoding is used for data transmission in the prior art, a transmission technology with higher encoding efficiency and lower transmission bandwidth is provided to further improve the communication between acquisition nodes Data transmission distance.
(3)由于采用了编码效率更高、传输带宽更低的传输技术,所以在相同有效数据传输的条件下,本发明专利能实现更远距离数据的可靠传输。(3) Since the transmission technology with higher coding efficiency and lower transmission bandwidth is adopted, under the same effective data transmission conditions, the patent of the present invention can realize reliable transmission of longer-distance data.
为达到上述目标,本发明采取的技术方案是,传输速率可按需调节的远距离有线数据传输装置,包括:In order to achieve the above goals, the technical solution adopted by the present invention is a long-distance wired data transmission device whose transmission rate can be adjusted on demand, including:
变压器:数据接收端的变压器与MLT-3/NRZI解码器相连接,数据发送端的变压器与NRZI/MLT-3编码器相连接,变压器对信号起隔离和耦合作用;Transformer: The transformer at the data receiving end is connected to the MLT-3/NRZI decoder, the transformer at the data sending end is connected to the NRZI/MLT-3 encoder, and the transformer isolates and couples the signal;
进一步,MLT-3/NRZI解码器与变压器和接口电平匹配网络相连接,它用于将MLT-3码转换成NRZI码;Further, the MLT-3/NRZI decoder is connected with the transformer and the interface level matching network, and it is used to convert the MLT-3 code into the NRZI code;
进一步,NRZI/MLT-3编码器与变压器和接口电平匹配网络相连接,它用于将NRZI码转换成MLT-3码;Further, the NRZI/MLT-3 coder is connected with the transformer and the interface level matching network, which is used to convert the NRZI code into the MLT-3 code;
进一步,接口电平匹配网络用于不同接口电平之间的匹配,如果两个接口之间的电平本身符合匹配条件时,此接口电平匹配网络可以不使用;Furthermore, the interface level matching network is used for matching between different interface levels. If the level between two interfaces itself meets the matching conditions, this interface level matching network may not be used;
进一步,NRZI/NRZ解码器用于将NRZI码转换成NRZ码;串并转换器用于将串行的数据码流转换成并行的数据码流;Further, the NRZI/NRZ decoder is used to convert NRZI codes into NRZ codes; the serial-to-parallel converter is used to convert serial data streams into parallel data streams;
进一步,8B/10B解码器用于将10B码转换成8B码;8B/10B编码器用于将8B码转换成10B码;并串转换用于将并行的数据码流转换成串行的数据码流;NRZ/NRZI编码器用于将将NRZ码转换成NRZI码;本地时钟为每个采集节点数据的发送提供基准时钟;NRZI/MLT-3编码器用于将NRZI码转换成MLT-3码;Further, the 8B/10B decoder is used to convert 10B codes into 8B codes; the 8B/10B encoder is used to convert 8B codes into 10B codes; the parallel-to-serial conversion is used to convert parallel data streams into serial data streams; NRZ/NRZI encoder is used to convert NRZ code into NRZI code; local clock provides reference clock for data transmission of each collection node; NRZI/MLT-3 encoder is used to convert NRZI code into MLT-3 code;
进一步,本发明中,时钟和数据恢复模块具有如下特点:(1)能从数据流中提取位同步定时时钟,(2)能从比特速率在100Kbps-500Mbps之间的串行数据流中恢复出定时时钟和数据;此时钟和数据恢复模块可以通过集成芯片实现或软件编程实现,且此时钟和数据恢复模块具有自适应能力,能经过人为调节或自动地从速率在100Kbps-500Mbps之间的串行数据流中恢复出定时时钟和数据;此时钟和数据恢复模块是实现传输速率可按需调节功能的关键模块;Further, in the present invention, the clock and data recovery module has the following characteristics: (1) can extract the bit synchronous timing clock from the data stream, (2) can recover the serial data stream from the bit rate between 100Kbps-500Mbps Timing clock and data; this clock and data recovery module can be realized by integrated chip or software programming, and this clock and data recovery module has self-adaptive ability, can be artificially adjusted or automatically from the serial rate between 100Kbps-500Mbps Recover the timing clock and data from the serial data stream; this clock and data recovery module is the key module to realize the function of adjusting the transmission rate on demand;
进一步地,本发明首先通过8B10B编码一方面增加更多的定时信号到数据流中,另一方面使传出的数据具有更好的直流平衡特性,然后再通过NRZ/NRZI编码的方法将所传数据的带宽降低50%,然后再通过NRZI/MLT-3编码的方法一方面将所传数据的带宽进一步再次降低50%,另一方面通过NRZI/MLT-3编码保证传输线路上的数据流具有更好的直流平衡特性;Furthermore, the present invention first adds more timing signals to the data stream through 8B10B encoding, and on the other hand, makes the transmitted data have better DC balance characteristics, and then transmits the transmitted data through NRZ/NRZI encoding. The bandwidth of the data is reduced by 50%, and then the method of NRZI/MLT-3 encoding further reduces the bandwidth of the transmitted data by 50%. Good DC balance characteristics;
进一步地,采集节点的数据传输通路由数据接收接口、数据发送接口、数据接收与转发模块和本地数据接收接口组成;数据接收接口主要由变压器、MLT-3/NRZI解码器、接口电平匹配网络、时钟和数据恢复、NRZI/NRZ解码器、串并转换器、8B/10B解码器组成;数据发送接口主要由8B/10B编码器、并串转换、NRZ/NRZI编码器、本地时钟、接口电平匹配网络、NRZI/MLT-3编码器和变压器组成;数据接收与转发模块一方面接收数据接收接口传来的数据,另一方面接收通过本地数据接收接口上传的探测数据,然后再将数据接收接口传来的数据与本地数据接收接口上传的数据进行组合打包后,通过数据发送接口转发至下一个采集节点中去;Furthermore, the data transmission path of the acquisition node is composed of a data receiving interface, a data sending interface, a data receiving and forwarding module and a local data receiving interface; the data receiving interface is mainly composed of a transformer, an MLT-3/NRZI decoder, and an interface level matching network , clock and data recovery, NRZI/NRZ decoder, serial-to-parallel converter, 8B/10B decoder; the data transmission interface is mainly composed of 8B/10B encoder, parallel-to-serial conversion, NRZ/NRZI encoder, local clock, interface circuit It is composed of flat matching network, NRZI/MLT-3 encoder and transformer; the data receiving and forwarding module receives the data from the data receiving interface on the one hand, and receives the detection data uploaded through the local data receiving interface on the other hand, and then receives the data After the data from the interface is combined and packaged with the data uploaded by the local data receiving interface, it is forwarded to the next collection node through the data sending interface;
进一步,时钟和数据恢复能从数据流中提取位同步定时时钟和数据,此时钟和数据恢复模块可以通过集成芯片实现或软件编程实现,且此时钟和数据恢复模块具有自适应能力,能经过人为调节或自动地从速率在100Kbps-500Mbps之间的串行数据流中恢复出定时时钟和数据,此时钟和数据恢复模块是实现传输速率可按需调节功能的关键模块。Further, the clock and data recovery can extract the bit-synchronous timing clock and data from the data stream. This clock and data recovery module can be realized by integrated chip or software programming, and this clock and data recovery module has self-adaptive ability, which can be artificially Regulate or automatically recover the timing clock and data from the serial data stream with a rate between 100Kbps-500Mbps. This clock and data recovery module is a key module to realize the function of adjusting the transmission rate on demand.
下面结合附图和具体实施方式进一步详细说明本发明:Below in conjunction with accompanying drawing and specific embodiment further describe the present invention in detail:
本发明中,时钟和数据恢复模块具有如下特点:(1)能从数据流中提取位同步定时时钟,(2)能从比特速率在100Kbps-500Mbps之间的串行数据流中恢复出定时时钟和数据;此时钟和数据恢复模块可以通过集成芯片实现或软件编程实现,且此时钟和数据恢复模块具有自适应能力,能经过人为调节或自动地从速率在100Kbps-500Mbps之间的串行数据流中恢复出定时时钟和数据。此时钟和数据恢复模块是实现传输速率可按需调节功能的关键模块。In the present invention, the clock and data recovery module has the following characteristics: (1) can extract the bit synchronous timing clock from the data stream, (2) can recover the timing clock from the serial data stream with a bit rate between 100Kbps-500Mbps and data; this clock and data recovery module can be realized by integrated chip or software programming, and this clock and data recovery module has self-adaptive ability, can be artificially adjusted or automatically from the serial data rate between 100Kbps-500Mbps The timing clock and data are recovered from the stream. This clock and data recovery module is a key module to realize the function of adjusting the transmission rate on demand.
进一步地,本发明首先通过8B10B编码一方面增加更多的定时信号到数据流中,另一方面使传出的数据具有更好的直流平衡特性,然后再通过NRZ/NRZI编码的方法将所传数据的带宽降低50%,然后再通过NRZI/MLT-3编码的方法一方面将所传数据的带宽进一步再次降低50%,另一方面通过NRZI/MLT-3编码保证传输线路上的数据流具有更好的直流平衡特性。Furthermore, the present invention first adds more timing signals to the data stream through 8B10B encoding, and on the other hand, makes the transmitted data have better DC balance characteristics, and then transmits the transmitted data through NRZ/NRZI encoding. The bandwidth of the data is reduced by 50%, and then the method of NRZI/MLT-3 encoding further reduces the bandwidth of the transmitted data by 50%. Good DC balance characteristics.
进一步地,采集节点的数据传输通路由数据接收接口、数据发送接口、数据接收与转发模块和本地数据接收接口组成。数据接收接口主要由变压器、MLT-3/NRZI解码器、接口电平匹配网络、时钟和数据恢复、NRZI/NRZ解码器、串并转换器、8B/10B解码器组成;数据发送接口主要由8B/10B编码器、并串转换、NRZ/NRZI编码器、本地时钟、接口电平匹配网络、NRZI/MLT-3编码器和变压器组成。数据接收与转发模块一方面接收数据接收接口传来的数据,另一方面接收通过本地数据接收接口上传的探测数据,然后再将数据接收接口传来的数据与本地数据接收接口上传的数据进行组合打包后,通过数据发送接口转发至下一个采集节点中去,再一方面,通过速率调节模块来对时钟和数据恢复模块的接收速率进行配置;Further, the data transmission path of the collection node is composed of a data receiving interface, a data sending interface, a data receiving and forwarding module and a local data receiving interface. The data receiving interface is mainly composed of a transformer, MLT-3/NRZI decoder, interface level matching network, clock and data recovery, NRZI/NRZ decoder, serial-parallel converter, 8B/10B decoder; the data sending interface is mainly composed of 8B /10B encoder, parallel-to-serial conversion, NRZ/NRZI encoder, local clock, interface level matching network, NRZI/MLT-3 encoder and transformer. The data receiving and forwarding module receives the data from the data receiving interface on the one hand, and receives the detection data uploaded through the local data receiving interface on the other hand, and then combines the data from the data receiving interface with the data uploaded from the local data receiving interface After packaging, it is forwarded to the next collection node through the data sending interface. On the other hand, the receiving rate of the clock and data recovery module is configured through the rate adjustment module;
变压器对信号起隔离和耦合作用;MLT-3/NRZI解码器用于将MLT-3码转换成NRZI码;The transformer isolates and couples the signal; the MLT-3/NRZI decoder is used to convert the MLT-3 code into NRZI code;
接口电平匹配网络用于不同接口电平之间的匹配,如果两个接口之间的电平本身符合匹配条件时,此接口电平匹配网络可以不使用;The interface level matching network is used for matching between different interface levels. If the level between two interfaces itself meets the matching conditions, this interface level matching network may not be used;
时钟和数据恢复能从数据流中提取位同步定时时钟和数据,此时钟和数据恢复模块可以通过集成芯片实现或软件编程实现,且此时钟和数据恢复模块具有自适应能力,能经过人为调节或自动地从速率在100Kbps-500Mbps之间的串行数据流中恢复出定时时钟和数据;此时钟和数据恢复模块是实现传输速率可按需调节功能的关键模块;Clock and data recovery can extract bit-synchronous timing clock and data from the data stream. This clock and data recovery module can be realized by integrated chip or software programming, and this clock and data recovery module has self-adaptive ability, which can be adjusted manually or Automatically recover the timing clock and data from the serial data stream whose rate is between 100Kbps-500Mbps; this clock and data recovery module is the key module to realize the function of adjusting the transmission rate on demand;
NRZI/NRZ解码器用于将NRZI码转换成NRZ码;串并转换器用于将串行的数据码流转换成并行的数据码流;8B/10B解码器用于将10B码转换成8B码;NRZI/NRZ decoder is used to convert NRZI code into NRZ code; serial-to-parallel converter is used to convert serial data stream into parallel data stream; 8B/10B decoder is used to convert 10B code into 8B code;
8B/10B编码器用于将8B码转换成10B码;并串转换用于将并行的数据码流转换成串行的数据码流;NRZ/NRZI编码器用于将将NRZ码转换成NRZI码;本地时钟为每个采集节点数据的发送提供基准时钟;NRZI/MLT-3编码器用于将NRZI码转换成MLT-3码;8B/10B encoder is used to convert 8B code into 10B code; parallel-serial conversion is used to convert parallel data stream into serial data stream; NRZ/NRZI encoder is used to convert NRZ code into NRZI code; local The clock provides a reference clock for the data transmission of each collection node; NRZI/MLT-3 encoder is used to convert NRZI code into MLT-3 code;
下面结合附图和实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
本发明中,每个采集节点一方面通过数据接收接口接收来自上一个采集节点的数据,另一方面接收来自本地数据接收接口的数据,然后再将这些数据进行相应处理后,通过数据发送接口转发到下一个采集节点。In the present invention, each collection node receives data from the previous collection node through the data receiving interface on the one hand, and receives data from the local data receiving interface on the other hand, and then processes the data accordingly and forwards them through the data sending interface to the next collection node.
进一步地,数据接收接口主要由变压器3、MLT-3/NRZI解码器4、接口电平匹配网络5、时钟和数据恢复6、NRZI/NRZ解码器9、串并转换器10、8B/10B解码器11组成。进一步,变压器3接收来自上一个采集节点传来的MLT-3码的数据,然后通过MLT-3/NRZI解码器4将MLT-3码转换成NRZI码,NRZI码经过接口电平匹配网络5进行电平匹配后,输入到时钟和数据恢复6中,时钟和数据恢复6一方面从输入的NRZI码中恢复出位同步定时时钟,另一方面恢复出NRZI码数据;然后,恢复出的时钟和数据被继续送入到FPGA内部的NRZI/NRZ解码器9中,NRZI/NRZ解码器9将NRZI码解码成NRZ码后,输入到串并转换器10进行由串行数据流到并行数据流的转换,然后将并行的10B码数据经8B/10B解码器11解码后输入到数据接收与转发模块12中。Further, the data receiving interface is mainly composed of transformer 3, MLT-3/NRZI decoder 4, interface level matching network 5, clock and data recovery 6, NRZI/NRZ decoder 9, serial-to-parallel converter 10, and 8B/10B decoding Device 11 is composed. Further, the transformer 3 receives the data of the MLT-3 code from the previous collection node, and then converts the MLT-3 code into NRZI code through the MLT-3/NRZI decoder 4, and the NRZI code is carried out through the interface level matching network 5 After the level is matched, it is input to the clock and data recovery 6, and the clock and data recovery 6 recovers the bit synchronous timing clock from the input NRZI code on the one hand, and recovers the NRZI code data on the other hand; then, the recovered clock and The data is continuously sent to the NRZI/NRZ decoder 9 inside the FPGA. After the NRZI/NRZ decoder 9 decodes the NRZI code into an NRZ code, it is input to the serial-to-parallel converter 10 for conversion from the serial data stream to the parallel data stream. Convert, and then input the parallel 10B code data into the data receiving and forwarding module 12 after being decoded by the 8B/10B decoder 11 .
进一步地,数据接收与转发模块12同时还接收通过本地数据接收接口15上传的探测数据,然后再将接收到的上一级采集节点的数据与本地上传的数据进行打包后,转发至下一个采集节点中去。Further, the data receiving and forwarding module 12 also receives the detection data uploaded through the local data receiving interface 15, and then packages the received data of the upper-level collection node and the data uploaded locally, and then forwards it to the next collection node to go.
进一步地,数据发送接口主要由8B/10B编码器13、并串转换14、NRZ/NRZI编码器17、本地时钟16、接口电平匹配网络18、NRZI/MLT-3编码器19和变压器20组成。进一步,数据接收与转发模块12首先通过8B/10B编码器13将发送的8B原始数据编码成10B码数据,然后通过并串转换14将并行的10B码转换成串行的数据流后,输入到NRZ/NRZI编码器17中,NRZ/NRZI编码器17在本地时钟16的节拍下将NRZ码数据流编码成NRZI码数据流,NRZI码数据流再经过接口电平匹配网络18后,输入到NRZI/MLT-3编码器19中,NRZI/MLT-3编码器19将NRZI码编成MLT-3码后,通过变压器20输出到上一个采集节点中去。Further, the data transmission interface is mainly composed of 8B/10B encoder 13, parallel-to-serial conversion 14, NRZ/NRZI encoder 17, local clock 16, interface level matching network 18, NRZI/MLT-3 encoder 19 and transformer 20 . Further, the data receiving and forwarding module 12 first encodes the sent 8B original data into 10B code data through the 8B/10B encoder 13, and then converts the parallel 10B code into a serial data stream through the parallel-to-serial conversion 14, and then inputs it to In the NRZ/NRZI encoder 17, the NRZ/NRZI encoder 17 encodes the NRZ code data stream into an NRZI code data stream under the beat of the local clock 16, and the NRZI code data stream passes through the interface level matching network 18 and is input to the NRZI In the /MLT-3 encoder 19, the NRZI/MLT-3 encoder 19 encodes the NRZI code into an MLT-3 code, and outputs it to the previous collection node through the transformer 20.
进一步地,采集节点之间的传输线采用双绞线或同轴电缆。Further, the transmission line between the collection nodes adopts twisted pair or coaxial cable.
进一步地,接口电平匹配网络5或接口电平匹配网络11可以根据电平类型的特点通过电阻网络实现或电平转换芯片实现或电阻网络与电平转换芯片的共同作用实现。例如,当MLT-3/NRZI解码器4输出信号的电平为PECL电平,而时钟和数据恢复6输入接口电平为LVPECL电平时,就可以采用电平转换芯片MAX9375实现接口电平匹配网络5的功能,更多的接口电平匹配网络可参见文献:罗德玉,黄德云,LVDS、ECL、CML逻辑电平电路的特点及应用[J],贵阳学院学报(自然科学版),2009,4(4):17-21。Further, the interface level matching network 5 or the interface level matching network 11 can be realized by a resistor network or a level shifting chip or a combination of a resistor network and a level shifting chip according to the characteristics of the level type. For example, when the output signal level of MLT-3/NRZI decoder 4 is PECL level, and the input interface level of clock and data recovery 6 is LVPECL level, the level conversion chip MAX9375 can be used to realize the interface level matching network 5, more interface level matching networks can be found in the literature: Luo Luoyu, Huang Deyun, characteristics and applications of LVDS, ECL, CML logic level circuits [J], Journal of Guiyang University (Natural Science Edition), 2009,4( 4): 17-21.
进一步地,本地时钟16的输出信号频率与采集节点(i)1发送数据的速率有一一对应的关系;对于不同传输速率要求的阵列探测系统,可通过对本地时钟16输出的信号进行不同的分频,以实现不同数据传输速率采集节点的设计;与此同时,时钟和数据恢复6具有如下功能:(1)时钟和数据恢复6能自适应地从接收到的数据流中判断出数据流的传输速率V,然后将自身的工作状态调整至与传输速率为V的数据流相匹配,以实现接收速率的自适应调节;(2)时钟和数据恢复6也能接收来自速率调节模块23的配置信息,实现自身数据接收速率的匹配,也就是说,当采集节点的数据发送速率为V时,数据接收与转发模块12可控制速率调节模块23输出相应的配置信息到时钟和数据恢复6,将时钟和数据恢复6的数据接收速率配置为V。Further, the frequency of the output signal of the local clock 16 has a one-to-one correspondence with the rate at which data is sent by the collection node (i) 1; for array detection systems with different transmission rate requirements, the signals output by the local clock 16 can be differently Frequency division to realize the design of acquisition nodes with different data transmission rates; at the same time, the clock and data recovery 6 has the following functions: (1) the clock and data recovery 6 can adaptively judge the data flow from the received data flow transmission rate V, and then adjust its own working state to match the data flow with transmission rate V, so as to realize the adaptive adjustment of the receiving rate; (2) the clock and data recovery 6 can also receive the data from the rate adjustment module 23 Configuration information, to realize the matching of the data receiving rate of itself, that is to say, when the data sending rate of the collection node is V, the data receiving and forwarding module 12 can control the rate adjustment module 23 to output corresponding configuration information to the clock and data recovery 6, Configure the data receive rate of Clock and Data Recovery 6 as V.
进一步地,数据接收与转发模块12的工作流程如图2所示;数据接收与转发模块12由数据发送模块24、级联数据接收模块25、级联数据缓存模块26、本地数据缓存模块27、本地数据接收模块28和速率调节控制模块29组成;本地数据接收接口15上传的数据经本地数据接收模块28接收后,缓存在本地数据缓存模块27中,与此同时,来自于8B/10B解码器11的数据经级联数据接收模块25接收后,缓存在级联数据缓存模块26中;数据发送模块24然后将本地数据缓存模块27和级联数据缓存模块26中数据发送到8B/10B编码器13中;速率调节控制模块29被使用去控制速率调节模块23传递数据传输速率匹配参数到时钟和数据恢复模块6中。Further, the workflow of data receiving and forwarding module 12 is as shown in Figure 2; The local data receiving module 28 and the rate adjustment control module 29 are composed; after the data uploaded by the local data receiving interface 15 is received by the local data receiving module 28, it is buffered in the local data buffering module 27, and at the same time, the data from the 8B/10B decoder After the data of 11 is received by the cascade data receiving module 25, it is cached in the cascade data cache module 26; the data sending module 24 then sends the data in the local data cache module 27 and the cascade data cache module 26 to the 8B/10B encoder In 13; the rate adjustment control module 29 is used to control the rate adjustment module 23 to deliver data transmission rate matching parameters to the clock and data recovery module 6.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310390719.6A CN103516483B (en) | 2013-08-29 | 2013-08-29 | Long-distance wired data transmission device with adjustable transmission rate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310390719.6A CN103516483B (en) | 2013-08-29 | 2013-08-29 | Long-distance wired data transmission device with adjustable transmission rate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103516483A CN103516483A (en) | 2014-01-15 |
CN103516483B true CN103516483B (en) | 2016-08-10 |
Family
ID=49898580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310390719.6A Active CN103516483B (en) | 2013-08-29 | 2013-08-29 | Long-distance wired data transmission device with adjustable transmission rate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103516483B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104158636B (en) * | 2014-08-12 | 2017-12-22 | 烽火通信科技股份有限公司 | A kind of multichannel FC business remote transmission methods based on FPGA |
CN104601422B (en) * | 2015-02-03 | 2018-01-19 | 合肥国为电子有限公司 | The efficient long-range data Transmission systems of RS485 and method for geophysical exploration |
CN108964836B (en) * | 2017-05-27 | 2021-07-20 | 龙芯中科(北京)信息技术有限公司 | Data decoding method and device |
CN108092722B (en) * | 2017-12-14 | 2020-05-12 | 武汉电信器件有限公司 | Circuit of C-RAN multi-path transmission module and control method thereof |
CN112995725B (en) * | 2021-05-10 | 2021-09-07 | 中勍科技有限公司 | Method and device for dynamically changing coding rate of video coder-decoder |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005081232A1 (en) * | 2004-02-24 | 2005-09-01 | Matsushita Electric Industrial Co., Ltd. | Communication device, signal encoding/decoding method |
CN101309263A (en) * | 2008-06-02 | 2008-11-19 | 华为技术有限公司 | Data transmission method, apparatus and system |
CN203618004U (en) * | 2013-08-29 | 2014-05-28 | 天津大学 | Remote wired data transmission apparatus with transmission rate adjustable based on requirement |
-
2013
- 2013-08-29 CN CN201310390719.6A patent/CN103516483B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005081232A1 (en) * | 2004-02-24 | 2005-09-01 | Matsushita Electric Industrial Co., Ltd. | Communication device, signal encoding/decoding method |
CN101309263A (en) * | 2008-06-02 | 2008-11-19 | 华为技术有限公司 | Data transmission method, apparatus and system |
CN203618004U (en) * | 2013-08-29 | 2014-05-28 | 天津大学 | Remote wired data transmission apparatus with transmission rate adjustable based on requirement |
Also Published As
Publication number | Publication date |
---|---|
CN103516483A (en) | 2014-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103516483B (en) | Long-distance wired data transmission device with adjustable transmission rate | |
US9338040B2 (en) | Use of multi-level modulation signaling for short reach data communications | |
US10075189B2 (en) | Techniques for variable forward error correction | |
US10652008B2 (en) | Overclocked line rate for communication with PHY Interfaces | |
US12206531B2 (en) | Methods and systems for high bandwidth communications interface | |
CN102710240B (en) | Signal processing apparatus, method, SERDES and processor | |
CN103401656B (en) | Spaceborne phased array receiving antenna data transmission system | |
CN107919873A (en) | Receiving circuit and semiconductor integrated circuit | |
CN104656129A (en) | Data transmission method applied to distributed earthquake collection stations | |
CN203618004U (en) | Remote wired data transmission apparatus with transmission rate adjustable based on requirement | |
CN107288624A (en) | A kind of underground high speed data bus device suitable for acoustic logging instrument | |
CN110708119A (en) | Multi-path 1553B bus optical fiber relay device and method | |
CN1639982A (en) | Multiplexing an additional bit stream with a primary bit stream | |
CN101547054B (en) | Data receiving device and data processing method of parallel optical interconnection system based on programmable device | |
CN202602676U (en) | A CAN signal transmission circuit | |
CN111475447B (en) | A device and data transmission method for high-speed serial transmission based on LVDS | |
CN100499464C (en) | Ethernet receiving and transmission device based on TV coaxial line | |
CN206533388U (en) | Logging cable transmitting device based on channel preequalization | |
CN203422478U (en) | Geophysical detection data transmission node | |
CN109194682A (en) | A kind of double one-way isolation switching technology implementation methods | |
CN204013602U (en) | A kind of implement device of OFDM double modulation demodulation mode | |
CN201504295U (en) | Video coder of EPON | |
CN104865615A (en) | RS code-based distributed wireless meteorological monitoring method, monitoring station and system | |
CN103780781A (en) | Expansion-rate symmetrical high bite digital subscriber line (SHDSL) transmission module | |
CN104618040A (en) | Data transmission module and method based on load ground detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210601 Address after: 300382 office building 451-04, Xiqing Xuefu Industrial Park Management Committee, Xiqing District, Tianjin Patentee after: SMARTMENS (TIANJIN) TECHNOLOGY Co.,Ltd. Address before: 300072 Tianjin City, Nankai District Wei Jin Road No. 92 Patentee before: Tianjin University |