CN103516179B - Switching Regulator Control Circuit with Multiple Clock Signal Frequency Setting Modes - Google Patents
Switching Regulator Control Circuit with Multiple Clock Signal Frequency Setting Modes Download PDFInfo
- Publication number
- CN103516179B CN103516179B CN201210219976.9A CN201210219976A CN103516179B CN 103516179 B CN103516179 B CN 103516179B CN 201210219976 A CN201210219976 A CN 201210219976A CN 103516179 B CN103516179 B CN 103516179B
- Authority
- CN
- China
- Prior art keywords
- control
- coupled
- signal
- resistance
- control pin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001360 synchronised effect Effects 0.000 claims abstract description 77
- 238000001514 detection method Methods 0.000 claims abstract description 16
- 230000000737 periodic effect Effects 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000003381 stabilizer Substances 0.000 claims description 4
- 230000005611 electricity Effects 0.000 claims 7
- 238000000465 moulding Methods 0.000 claims 2
- 239000003990 capacitor Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 230000000630 rising effect Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Toys (AREA)
Abstract
Description
技术领域technical field
本发明有关切换式稳压器的控制电路,尤指一种具有多重时脉信号频率设定模式的控制电路。The present invention relates to a control circuit of a switching voltage stabilizer, especially a control circuit with multiple clock signal frequency setting modes.
背景技术Background technique
有些切换式稳压器的控制电路会同时设置一频率设定引脚和一同步信号引脚,其中,频率设定引脚用以连接决定控制电路的内部时脉信号频率的外部电阻,而同步信号引脚则用以接收一外部同步信号,以供控制电路将内部时脉信号设置成与外部同步信号同步之用。The control circuit of some switching regulators will set a frequency setting pin and a synchronization signal pin at the same time. The signal pin is used to receive an external synchronous signal for the control circuit to set the internal clock signal to be synchronous with the external synchronous signal.
虽然在控制电路上设置两个引脚对于控制电路的时脉信号频率设定方式能提供较高的选择弹性,但却需要占用较多的芯片封装面积。若要使切换式稳压器的控制电路的芯片封装面积能进一步缩小,则显然必需进一步精简控制电路的引脚数量。Although arranging two pins on the control circuit can provide a higher selection flexibility for the frequency setting method of the clock signal of the control circuit, it needs to occupy more chip packaging area. If the chip packaging area of the control circuit of the switching regulator can be further reduced, it is obviously necessary to further reduce the number of pins of the control circuit.
发明内容Contents of the invention
有鉴于此,如何有效精简切换式稳压器的控制电路的引脚数量,又不会影响到对于控制电路的内部时脉信号的频率设定方式的选择弹性,实为业界有待解决的问题。In view of this, how to effectively reduce the number of pins of the control circuit of the switching regulator without affecting the selection flexibility of the frequency setting method of the internal clock signal of the control circuit is a problem to be solved in the industry.
本发明提供了一种用于切换式稳压器的控制电路的实施例,其包含有:一控制引脚,用于耦接一外部电阻;一电阻侦测器,耦接于该控制引脚,用于在该控制引脚耦接于该外部电阻时,侦测该外部电阻的电阻值;一电流产生模组,耦接于该电阻侦测器,用于依据该电阻侦测器的侦测结果产生一相对应的控制电流;一振荡器,耦接于该控制引脚和该电流产生模组,用于产生一时脉信号;以及一模式切换电路,耦接于该控制引脚与该振荡器;其中当该模式切换电路设置该振荡器操作于一电阻控制模式时,该振荡器会依据该控制电流产生该时脉信号,使该时脉信号的频率对应于该外部电阻的电阻值,而当该模式切换电路设置该振荡器操作于一信号控制模式时,该振荡器会依据该控制引脚所耦接的一外部同步信号产生该时脉信号,使该时脉信号同步于该外部同步信号。The present invention provides an embodiment of a control circuit for a switching regulator, which includes: a control pin for coupling an external resistor; a resistance detector coupled to the control pin , for detecting the resistance value of the external resistor when the control pin is coupled to the external resistor; a current generating module, coupled to the resistance detector, for detecting according to the resistance detector The test result generates a corresponding control current; an oscillator, coupled to the control pin and the current generation module, is used to generate a clock signal; and a mode switching circuit, coupled to the control pin and the current generation module. An oscillator; wherein when the mode switching circuit sets the oscillator to operate in a resistance control mode, the oscillator generates the clock signal according to the control current, so that the frequency of the clock signal corresponds to the resistance value of the external resistor , and when the mode switching circuit sets the oscillator to operate in a signal control mode, the oscillator will generate the clock signal according to an external synchronization signal coupled to the control pin, so that the clock signal is synchronized with the external synchronization signal.
上述控制电路的优点之一是,模式切换电路会自动侦测是否有外部同步信号被耦接到控制引脚,并相对应地切换振荡器的操作模式。One of the advantages of the above control circuit is that the mode switching circuit can automatically detect whether an external synchronization signal is coupled to the control pin, and switch the operation mode of the oscillator accordingly.
上述控制电路的另一优点,是只需设置单一控制引脚,便能提供两种不同的时脉信号频率设定方式,不仅赋予控制电路更高的使用弹性,还能有效精简所需的芯片封装面积。Another advantage of the above control circuit is that it only needs to set a single control pin to provide two different clock signal frequency setting methods, which not only endows the control circuit with higher flexibility in use, but also effectively simplifies the required chips package area.
上述控制电路的另一优点,是可有效避免模式切换电路因控制引脚上的噪声而错误切换振荡器之操作模式的情况发生。Another advantage of the above-mentioned control circuit is that it can effectively prevent the operation mode of the oscillator from being incorrectly switched by the mode switching circuit due to noise on the control pin.
附图说明Description of drawings
图1为本发明的电源转换器的一实施例简化后的功能方块图。FIG. 1 is a simplified functional block diagram of an embodiment of the power converter of the present invention.
图2为图1中的控制电路的一实施例简化后的功能方块图。FIG. 2 is a simplified functional block diagram of an embodiment of the control circuit in FIG. 1 .
图3至图4为图2中的控制电路的不同运作实施例简化后的时序图。3 to 4 are simplified timing diagrams of different operation embodiments of the control circuit in FIG. 2 .
图5为图1中的控制电路的另一实施例简化后的功能方块图。FIG. 5 is a simplified functional block diagram of another embodiment of the control circuit in FIG. 1 .
图6为图5中的控制电路的一运作实施例简化后的时序图。FIG. 6 is a simplified timing diagram of an operation embodiment of the control circuit in FIG. 5 .
具体实施方式detailed description
以下将配合相关附图来说明本发明之实施例。在这些附图中,相同的标号表示相同或类似的元件或流程/步骤。Embodiments of the present invention will be described below with reference to the accompanying drawings. In these drawings, the same reference numerals represent the same or similar elements or processes/steps.
在说明书及后续的权利要求当中使用了某些词汇来指称特定的元件。所属领域中具有通常知识者应可理解,同样的元件可能会用不同的名词来称呼。本说明书及后续的权利要求并不以名称的差异来作为区分元件的方式,而是以元件在功能上的差异来作为区分的基准。在通篇说明书及后续的权利要求当中所提及的「包含」为一开放式的用语,故应解释成「包含但不限定于…」。另外,「耦接」一词在此包含任何直接及间接的连接手段。因此,若文中描述一第一元件耦接于一第二元件,则代表该第一元件可直接(包含通过电性连接或无线传输、光学传输等信号连接方式)连接于该第二元件,或通过其它元件或连接手段间接地电性或信号连接至该第二元件。Certain terms are used in the specification and following claims to refer to particular elements. It should be understood by those skilled in the art that the same element may be referred to by different names. This description and the subsequent claims do not use the difference in name as the way to distinguish components, but the difference in function of the components as the basis for distinction. "Includes" mentioned throughout the specification and subsequent claims is an open term, so it should be interpreted as "including but not limited to...". In addition, the term "coupled" herein includes any direct and indirect means of connection. Therefore, if it is described in the text that a first element is coupled to a second element, it means that the first element can be directly (including through electrical connection or wireless transmission, optical transmission and other signal connection methods) connected to the second element, or It is indirectly electrically or signally connected to the second element through other elements or connection means.
在此所使用的「及/或」的描述方式,包含所列举的其中之一或多个项目的任意组合。另外,除非本说明书中有特别指明,否则任何单数格的用语都同时包含复数格的涵义。The description of "and/or" used herein includes any combination of one or more of the listed items. In addition, unless otherwise specified in this specification, any singular term also includes plural meanings.
图1为本发明一实施例之电源转换器100简化后的功能方块图。电源转换器100包含有控制电路110、切换式稳压器120、电阻130、外部开关140、以及开关控制器150。控制电路110耦接于切换式稳压器120,用于控制切换式稳压器120对输入电压进行稳压处理,以提供后级电路所需的操作电压。电阻130及开关140耦接于控制电路110,而开关控制器150则耦接于开关140,用于控制开关140的运作。在运作时,电源转换器100可利用开关控制器150来决定是否将外部的同步信号EXT耦接到控制电路110,以改变控制电路110产生时脉信号CLK的方式。当开关控制器150截止(turn off)开关140时,控制电路110产生的时脉信号CLK的频率,会取决于外部电阻130的电阻值大小。当开关控制器150导通(turn on)开关140以将外部的同步信号EXT耦接到控制电路110时,控制电路110会将时脉信号CLK与外部的同步信号EXT进行同步。FIG. 1 is a simplified functional block diagram of a power converter 100 according to an embodiment of the present invention. The power converter 100 includes a control circuit 110 , a switching regulator 120 , a resistor 130 , an external switch 140 , and a switch controller 150 . The control circuit 110 is coupled to the switching regulator 120 for controlling the switching regulator 120 to stabilize the input voltage so as to provide the operating voltage required by the subsequent circuit. The resistor 130 and the switch 140 are coupled to the control circuit 110 , and the switch controller 150 is coupled to the switch 140 for controlling the operation of the switch 140 . During operation, the power converter 100 can use the switch controller 150 to determine whether to couple the external synchronization signal EXT to the control circuit 110 to change the way the control circuit 110 generates the clock signal CLK. When the switch controller 150 turns off the switch 140 , the frequency of the clock signal CLK generated by the control circuit 110 depends on the resistance value of the external resistor 130 . When the switch controller 150 turns on the switch 140 to couple the external synchronization signal EXT to the control circuit 110 , the control circuit 110 will synchronize the clock signal CLK with the external synchronization signal EXT.
在本实施例中,控制电路110包含有控制引脚(control pin)111、电阻侦测器112、电流产生模组113、振荡器114、模式切换电路(mode-switchingcircuit)115、以及脉宽调变器(PWM modulator)116。控制引脚111用于耦接外部电阻130与外部开关140。电阻侦测器112耦接于控制引脚111,用于在控制引脚111耦接于电阻130时,侦测电阻130的电阻值。电流产生模组113耦接于电阻侦测器112,用于依据电阻侦测器112的侦测结果产生相对应的控制电流Iosc。振荡器114耦接于控制引脚111和电流产生模组113,用于产生时脉信号CLK。模式切换电路115则耦接于控制引脚111和振荡器114,用于将振荡器114在电阻控制模式(resistor-controlled mode)与信号控制模式(signal-controlled mode)间进行切换。脉宽调变器116耦接于振荡器114,用于依据振荡器114输出的时脉信号CLK产生脉宽调变信号PWM,以控制切换式稳压器120的切换频率。In this embodiment, the control circuit 110 includes a control pin (control pin) 111, a resistance detector 112, a current generating module 113, an oscillator 114, a mode-switching circuit (mode-switching circuit) 115, and a pulse width modulation inverter (PWM modulator) 116 . The control pin 111 is used for coupling the external resistor 130 and the external switch 140 . The resistance detector 112 is coupled to the control pin 111 for detecting the resistance value of the resistor 130 when the control pin 111 is coupled to the resistor 130 . The current generation module 113 is coupled to the resistance detector 112 for generating a corresponding control current Iosc according to the detection result of the resistance detector 112 . The oscillator 114 is coupled to the control pin 111 and the current generating module 113 for generating the clock signal CLK. The mode switching circuit 115 is coupled to the control pin 111 and the oscillator 114 for switching the oscillator 114 between a resistor-controlled mode and a signal-controlled mode. The pulse width modulator 116 is coupled to the oscillator 114 for generating a pulse width modulation signal PWM according to the clock signal CLK output by the oscillator 114 to control the switching frequency of the switching regulator 120 .
当模式切换电路115设置振荡器114操作于电阻控制模式时,振荡器114会依据控制电流Iosc产生时脉信号CLK,使时脉信号CLK的频率对应于外部电阻130的电阻值。当模式切换电路115设置振荡器114操作于信号控制模式时,振荡器114会依据外部同步信号EXT来产生时脉信号CLK,使时脉信号CLK同步于外部同步信号EXT。When the mode switching circuit 115 sets the oscillator 114 to operate in the resistance control mode, the oscillator 114 generates the clock signal CLK according to the control current Iosc, so that the frequency of the clock signal CLK corresponds to the resistance value of the external resistor 130 . When the mode switching circuit 115 sets the oscillator 114 to operate in the signal control mode, the oscillator 114 generates the clock signal CLK according to the external synchronization signal EXT, so that the clock signal CLK is synchronized with the external synchronization signal EXT.
实作上,控制电路110中的不同功能方块可整合在单一电路芯片中,或是以不同的电路芯片来实现。例如,可将控制电路110中的脉宽调变器116分离出来以独立的电路芯片实现,并将控制电路110中的其它功能方块整合在另一电路芯片中。In practice, different functional blocks in the control circuit 110 can be integrated into a single circuit chip, or implemented with different circuit chips. For example, the pulse width modulator 116 in the control circuit 110 can be separated and implemented as an independent circuit chip, and other functional blocks in the control circuit 110 can be integrated in another circuit chip.
图2为图1中的控制电路110的一实施例简化后的功能方块图。在本实施例中,电阻侦测器112包含有第一比较器223、晶体管225、和第一开关227。晶体管225和开关227耦接于电流产生模组113与控制引脚111之间。比较器223的输出端耦接于晶体管225的控制端,且比较器223的输入端耦接于控制引脚111和第一参考电压Vf1。比较器223用于将控制引脚111上的电压VP与第一参考电压Vf1进行比较,并依据比较的结果控制流经晶体管225的感应电流Ir。模式切换电路115耦接于开关227的控制端,用以控制开关227的切换。FIG. 2 is a simplified functional block diagram of an embodiment of the control circuit 110 in FIG. 1 . In this embodiment, the resistance detector 112 includes a first comparator 223 , a transistor 225 , and a first switch 227 . The transistor 225 and the switch 227 are coupled between the current generating module 113 and the control pin 111 . The output terminal of the comparator 223 is coupled to the control terminal of the transistor 225 , and the input terminal of the comparator 223 is coupled to the control pin 111 and the first reference voltage Vf1 . The comparator 223 is used to compare the voltage VP on the control pin 111 with the first reference voltage Vf1, and control the sense current Ir flowing through the transistor 225 according to the comparison result. The mode switching circuit 115 is coupled to the control end of the switch 227 for controlling switching of the switch 227 .
本实施例中的振荡器114包含有第一电容241、第二开关243、第二比较器245、以及组合逻辑电路247。开关243耦接于电容241与电流产生模组113之间,且开关243的控制端耦接于模式切换电路115。开关243用于依据模式切换电路115的控制,选择性地将控制电流Iosc导通到电容241。比较器245耦接于电容241和第二参考电压Vf2,用于将电容241的跨压与第二参考电压Vf2进行比较,以产生比较信号CMP。组合逻辑电路247耦接于控制引脚111、模式切换电路115、脉宽调变器116、以及比较器245,用于依据模式切换电路115的控制,来决定时脉信号CLK的产生方式。The oscillator 114 in this embodiment includes a first capacitor 241 , a second switch 243 , a second comparator 245 , and a combinational logic circuit 247 . The switch 243 is coupled between the capacitor 241 and the current generating module 113 , and the control terminal of the switch 243 is coupled to the mode switching circuit 115 . The switch 243 is used for selectively conducting the control current Iosc to the capacitor 241 according to the control of the mode switching circuit 115 . The comparator 245 is coupled to the capacitor 241 and the second reference voltage Vf2 for comparing the voltage across the capacitor 241 with the second reference voltage Vf2 to generate a comparison signal CMP. The combinational logic circuit 247 is coupled to the control pin 111 , the mode switching circuit 115 , the pulse width modulator 116 , and the comparator 245 , and is used to determine the generation mode of the clock signal CLK according to the control of the mode switching circuit 115 .
在图2的实施例中,模式切换电路115包含有同步信号侦测器(sync signaldetector)251和同相信号产生器(in-phase signal)253。同步信号侦测器251耦接于控制引脚111、电阻侦测器112、和振荡器114,用于侦测控制引脚111上的电压VP,并控制电阻侦测器112和振荡器114的运作。同相信号产生器253耦接于同步信号侦测器251和振荡器114,用于依据振荡器114输出的时脉信号CLK产生与时脉信号CLK相位相同的同相信号WS。例如,同相信号产生器253可于每次时脉信号CLK的上升缘触发时,产生一脉宽较窄的对应脉波,以作为同相信号WS。In the embodiment of FIG. 2 , the mode switching circuit 115 includes a sync signal detector (sync signal detector) 251 and an in-phase signal generator (in-phase signal) 253 . The synchronous signal detector 251 is coupled to the control pin 111, the resistance detector 112, and the oscillator 114, and is used for detecting the voltage VP on the control pin 111, and controlling the resistance detector 112 and the oscillator 114 operate. The in-phase signal generator 253 is coupled to the synchronous signal detector 251 and the oscillator 114 for generating the in-phase signal WS with the same phase as the clock signal CLK according to the clock signal CLK output by the oscillator 114 . For example, the in-phase signal generator 253 can generate a corresponding pulse wave with a narrower pulse width as the in-phase signal WS each time the rising edge of the clock signal CLK is triggered.
以下将搭配图3~图4来进一步说明控制电路110的运作方式。The operation of the control circuit 110 will be further described below with reference to FIGS. 3-4 .
图3为图2中的控制电路110的一运作实施例简化后的时序图300。如图3所示,当开关控制器150将控制信号CS设置成低电位以截止开关140时,例如,在时间T1之前的时段,外部同步信号EXT并不会被耦接至控制引脚111。此时,控制引脚111上的电压VP会等于比较器223的参考电压Vf1。在此阶段中,模式切换电路115中的同步信号侦测器251会将振荡器114设置成操作于电阻控制模式,并将控制信号RCM设置成高电位,以导通开关227。此时,比较器223、晶体管225和开关227会形成一负反馈路径,使得流经晶体管225的感应电流Ir的大小会与外部电阻130的电阻值呈反比。FIG. 3 is a simplified timing diagram 300 of an operational embodiment of the control circuit 110 in FIG. 2 . As shown in FIG. 3 , when the switch controller 150 sets the control signal CS to a low level to turn off the switch 140 , for example, in a period before time T1 , the external synchronization signal EXT is not coupled to the control pin 111 . At this moment, the voltage VP on the control pin 111 is equal to the reference voltage Vf1 of the comparator 223 . In this phase, the synchronous signal detector 251 in the mode switching circuit 115 sets the oscillator 114 to operate in the resistance control mode, and sets the control signal RCM to a high level to turn on the switch 227 . At this time, the comparator 223 , the transistor 225 and the switch 227 form a negative feedback path, so that the magnitude of the induced current Ir flowing through the transistor 225 is inversely proportional to the resistance of the external resistor 130 .
因此,可利用电阻侦测器112来侦测外部电阻130的电阻值大小,以决定相对应的感应电流Ir。电流产生模组113则会产生与流经晶体管225的电流Ir大小相对应的控制电流Iosc。由于电流Ir的大小与外部电阻130的电阻值大小相对应,故控制电流Iosc的大小也会与外部电阻130的电阻值大小相对应。Therefore, the resistance detector 112 can be used to detect the resistance value of the external resistor 130 to determine the corresponding induced current Ir. The current generation module 113 generates a control current Iosc corresponding to the magnitude of the current Ir flowing through the transistor 225 . Since the magnitude of the current Ir corresponds to the resistance of the external resistor 130 , the magnitude of the control current Iosc also corresponds to the resistance of the external resistor 130 .
实作上,电流产生模组113可用各种架构的电流镜电路实现,用以复制电流Ir以产生与电流Ir大小相同或成比例关系的控制电流Iosc。例如,在图3的实施例中,电流产生模组113包含有晶体管231、233,以及第二电容235。晶体管231的第一端耦接于晶体管233的第一端,并且耦接于一固定电位VCC。晶体管231的第二端和控制端耦接于电阻侦测器112。晶体管233的控制端则耦接于晶体管231的控制端以形成一电流镜架构,用以将流经电阻侦测器112的电流Ir复制到晶体管233的第二端,以产生控制电流Iosc。电容235的一端耦接于晶体管231的第一端,而电容235的另外一端耦接于晶体管231和233两者的控制端。In practice, the current generating module 113 can be realized by current mirror circuits of various structures, and is used to copy the current Ir to generate the control current Iosc which is the same or proportional to the current Ir. For example, in the embodiment of FIG. 3 , the current generating module 113 includes transistors 231 , 233 , and a second capacitor 235 . The first end of the transistor 231 is coupled to the first end of the transistor 233 and is coupled to a fixed potential VCC. The second terminal and the control terminal of the transistor 231 are coupled to the resistance detector 112 . The control terminal of the transistor 233 is coupled to the control terminal of the transistor 231 to form a current mirror structure for replicating the current Ir flowing through the resistance detector 112 to the second terminal of the transistor 233 to generate the control current Iosc. One terminal of the capacitor 235 is coupled to the first terminal of the transistor 231 , and the other terminal of the capacitor 235 is coupled to the control terminals of both the transistors 231 and 233 .
当模式切换电路115中的同步信号侦测器251将振荡器114设置成操作于电阻控制模式时,同步信号侦测器251会将控制信号SCM设置为低电位,以导通振荡器114中的开关243,使控制电流Iosc导通到振荡器114中的电容241。此时,同步信号侦测器251还会利用控制信号SCM,将振荡器114中的组合逻辑电路247设置成依据比较器245输出的比较信号CMP来产生时脉信号CLK,使得时脉信号CLK的频率会对应于控制电流Iosc的大小。由于控制电流Iosc的大小与外部电阻130的电阻值大小相对应,因此,组合逻辑电路247产生的时脉信号CLK此时的频率取决于外部电阻130的电阻值大小。When the synchronous signal detector 251 in the mode switching circuit 115 sets the oscillator 114 to operate in the resistance control mode, the synchronous signal detector 251 will set the control signal SCM to a low potential to turn on the oscillator 114 The switch 243 conducts the control current Iosc to the capacitor 241 in the oscillator 114 . At this time, the synchronous signal detector 251 also uses the control signal SCM to set the combinational logic circuit 247 in the oscillator 114 to generate the clock signal CLK according to the comparison signal CMP output by the comparator 245, so that the clock signal CLK The frequency will correspond to the magnitude of the control current Iosc. Since the control current Iosc corresponds to the resistance of the external resistor 130 , the frequency of the clock signal CLK generated by the combinational logic circuit 247 depends on the resistance of the external resistor 130 .
为了自动切换时脉信号CLK的产生方式,模式切换电路115中的同步信号侦测器251会侦测控制引脚111上的电压VP的变化。一旦电压VP偏离一预定范围,例如,偏离Vt1~Vt2的范围,同步信号侦测器251便会对电压VP进行一段时间的监测,以进一步判断电压VP的变化是起因于外部同步信号EXT被耦接到控制引脚111,还是因为噪声所造成。In order to automatically switch the generation mode of the clock signal CLK, the synchronous signal detector 251 in the mode switching circuit 115 detects the change of the voltage VP on the control pin 111 . Once the voltage VP deviates from a predetermined range, for example, from the range of Vt1-Vt2, the synchronous signal detector 251 will monitor the voltage VP for a period of time to further determine whether the change of the voltage VP is caused by the external synchronous signal EXT being coupled. Received to the control pin 111, it is still caused by noise.
在图3的实施例中,当开关控制器150于时间T1将控制信号CS切换至高电位,以将外部同步信号EXT通过开关140耦接至控制引脚111时,控制引脚111上的电压VP会受到外部同步信号EXT的波形影响而上升并开始呈现周期性的变化。当同步信号侦测器251于时间T1侦测到控制引脚111上的电压VP超出预设上限Vt1后,会进入一观察期(observation period),并监测电压VP是否开始出现周期性的高低电位转换(transition)。In the embodiment of FIG. 3, when the switch controller 150 switches the control signal CS to a high potential at time T1 to couple the external synchronization signal EXT to the control pin 111 through the switch 140, the voltage VP on the control pin 111 It will rise under the influence of the waveform of the external synchronization signal EXT and begin to show periodic changes. When the synchronous signal detector 251 detects that the voltage VP on the control pin 111 exceeds the preset upper limit Vt1 at time T1, it will enter an observation period (observation period), and monitor whether the voltage VP begins to appear periodic high and low potentials Transition.
在同步信号侦测器251处于观察期之际,为了避免控制引脚111上的电压VP的变化影响到电流产生模组113产生的控制电流Iosc的稳定性,同步信号侦测器251可于进入观察期时(亦即侦测到电压VP偏离预定范围时),将控制信号RCM切换至低电位,以截止开关227。此时,藉由电容235的放电,可使得控制电流Iosc维持不变。如此一来,便可使振荡器114输出的时脉信号CLK的频率,维持在与振荡器114操作电阻控制模式时相同或接近的水平。When the synchronous signal detector 251 is in the observation period, in order to prevent the change of the voltage VP on the control pin 111 from affecting the stability of the control current Iosc generated by the current generating module 113, the synchronous signal detector 251 can enter During the observation period (that is, when it is detected that the voltage VP deviates from the predetermined range), the control signal RCM is switched to a low potential to turn off the switch 227 . At this time, the control current Iosc can be kept constant by discharging the capacitor 235 . In this way, the frequency of the clock signal CLK output by the oscillator 114 can be maintained at the same level or close to that when the oscillator 114 operates in the resistance control mode.
同步信号侦测器251可于侦测到电压VP出现一或多次周期性的高低电位转换时,判定有外部同步信号EXT被耦接到控制引脚111。例如,本实施例中的同步信号侦测器251会于侦测到电压VP出现4次高低电位转换时,判定有外部同步信号EXT被耦接到控制引脚111的情况发生。等到电压VP的方波与同相信号产生器253产生的同相信号WS两者的相位相同或是差距小于一临界值时,同步信号侦测器251便会离开观察期。实作上,同步信号侦测器251可于电压VP的方波与同相信号WS两者的上升缘对齐时,判定两者的相位相同,或是于电压VP的方波的上升缘落在同相信号WS的脉波宽度范围内时,派定电压VP的方波与同相信号WS两者的相位差距小于临界值。The synchronous signal detector 251 can determine that the external synchronous signal EXT is coupled to the control pin 111 when detecting one or more periodic high-to-low level transitions of the voltage VP. For example, the synchronous signal detector 251 in this embodiment will determine that the external synchronous signal EXT is coupled to the control pin 111 when it detects that the voltage VP has 4 high-to-low transitions. When the phases of the square wave of the voltage VP and the in-phase signal WS generated by the in-phase signal generator 253 are the same or the difference is smaller than a threshold value, the synchronization signal detector 251 will leave the observation period. In practice, the synchronization signal detector 251 can determine that the phases of the two are the same when the rising edges of the square wave of the voltage VP and the in-phase signal WS are aligned, or when the rising edges of the square wave of the voltage VP fall on When the pulse width of the in-phase signal WS is within the range, the phase difference between the square wave of the dispatch voltage VP and the in-phase signal WS is smaller than a critical value.
在图3的实施例中,当同步信号侦测器251于时间T2侦测到电压VP的方波与同相信号WS两者的上升缘对齐时,便会离开观察期。同步信号侦测器251离开观察期时,会将振荡器114切换至信号控制模式。如时序图300所示,同步信号侦测器251此时会将控制信号SCM切换至高电位,以将振荡器114中的组合逻辑电路247设置成改依据外部同步信号EXT来产生同步的时脉信号CLK,而停止依据比较器245的输出来产生时脉信号CLK,以使得振荡器114在信号控制模式下产生的时脉信号CLK会与外部同步信号EXT同步。In the embodiment of FIG. 3 , when the synchronization signal detector 251 detects that the rising edges of the square wave of the voltage VP and the in-phase signal WS are aligned at time T2 , the observation period will be left. When the synchronization signal detector 251 leaves the observation period, it will switch the oscillator 114 to the signal control mode. As shown in the timing diagram 300, the synchronous signal detector 251 will switch the control signal SCM to a high potential at this time, so as to set the combinational logic circuit 247 in the oscillator 114 to generate a synchronous clock signal according to the external synchronous signal EXT CLK, and stop generating the clock signal CLK according to the output of the comparator 245, so that the clock signal CLK generated by the oscillator 114 in the signal control mode will be synchronized with the external synchronization signal EXT.
当同步信号侦测器251将振荡器114切换至信号控制模式时,同步信号侦测器251可利用控制信号SCM截止振荡器114中的开关243,使控制电流Iosc停止导通到振荡器114中的电容241,藉以节省振荡器114及控制电路110在信号控制模式下的电流消耗。另外,模式切换电路115中的同相信号产生器253也可以只在同步信号侦测器251处于观察期的时段内,才产生同相信号WS,以进一步提升控制电路110的省电效果。When the synchronous signal detector 251 switches the oscillator 114 to the signal control mode, the synchronous signal detector 251 can use the control signal SCM to turn off the switch 243 in the oscillator 114, so that the control current Iosc stops conducting into the oscillator 114 The capacitor 241 is used to save the current consumption of the oscillator 114 and the control circuit 110 in the signal control mode. In addition, the in-phase signal generator 253 in the mode switching circuit 115 can also generate the in-phase signal WS only when the synchronization signal detector 251 is in the observation period, so as to further improve the power saving effect of the control circuit 110 .
图4为图2中的控制电路110的另一运作实施例简化后的时序图400。图4的实施例与图3的实施例很类似,差别在于当开关控制器150于时间T3将控制信号CS切换至高电位,以将外部同步信号EXT通过开关140耦接至控制引脚111时,控制引脚111上的电压VP会受到外部同步信号EXT的波形影响而下降并开始呈现周期性的变化。FIG. 4 is a simplified timing diagram 400 of another operational embodiment of the control circuit 110 in FIG. 2 . The embodiment of FIG. 4 is very similar to the embodiment of FIG. 3 , the difference is that when the switch controller 150 switches the control signal CS to a high potential at time T3 to couple the external synchronization signal EXT to the control pin 111 through the switch 140, The voltage VP on the control pin 111 will drop under the influence of the waveform of the external synchronous signal EXT and begin to show periodic changes.
当模式切换电路115中的同步信号侦测器251于时间T3侦测到控制引脚111上的电压VP超出预设下限Vt2后,会进入观察期,并监测电压VP是否开始出现周期性的高低电位转换。When the synchronous signal detector 251 in the mode switching circuit 115 detects that the voltage VP on the control pin 111 exceeds the preset lower limit Vt2 at time T3, it will enter the observation period and monitor whether the voltage VP begins to periodically rise and fall. Potential conversion.
本实施例中的同步信号侦测器251于时间T4侦测到电压VP出现第5次周期性的高低电位转换时,会判定有外部同步信号EXT被耦接到控制引脚111的情况发生。等到电压VP的方波与同相信号产生器253产生的同相信号WS两者的相位相同(例如,两者的上升缘对齐时)或是差距小于一临界值时,同步信号侦测器251便会离开观察期。When the synchronous signal detector 251 in this embodiment detects the fifth periodic high-to-low transition of the voltage VP at time T4 , it will determine that the external synchronous signal EXT is coupled to the control pin 111 . When the phases of the square wave of the voltage VP and the in-phase signal WS generated by the in-phase signal generator 253 are the same (for example, when the rising edges of the two are aligned) or the difference is less than a threshold value, the synchronous signal detector 251 will leave the observation period.
在图4的实施例中,当同步信号侦测器251于时间T5时侦测到电压VP的方波的上升缘落在同相信号WS的脉波宽度范围内时,便会离开观察期。In the embodiment of FIG. 4 , when the synchronous signal detector 251 detects at time T5 that the rising edge of the square wave of the voltage VP falls within the pulse width range of the in-phase signal WS, the observation period will be left.
有关控制电路110在前述实施例中的其它运作说明,也适用于图4的实施例,故在此不重复叙述。Other descriptions about the operation of the control circuit 110 in the above-mentioned embodiments are also applicable to the embodiment of FIG. 4 , so they will not be repeated here.
在某些实施例中,也可以将模式切换电路115中的同相信号产生器253省略。在这些实施例中,当同步信号侦测器251侦测到控制引脚111上的电压VP偏离预定范围而进入观察期后,同步信号侦测器251可于侦测到电压VP出现一或多次周期性的高低电位转换时,判定有外部同步信号EXT被耦接到控制引脚111。此时,同步信号侦测器251即可离开观察期,而无需等到电压VP的方波与同相信号产生器253产生的同相信号WS两者的边缘对齐。In some embodiments, the in-phase signal generator 253 in the mode switching circuit 115 can also be omitted. In these embodiments, after the synchronization signal detector 251 detects that the voltage VP on the control pin 111 deviates from a predetermined range and enters an observation period, the synchronization signal detector 251 may detect that the voltage VP appears for one or more times. During the sub-periodic high-low potential transition, it is determined that the external synchronous signal EXT is coupled to the control pin 111 . At this point, the synchronization signal detector 251 can leave the observation period without waiting for the edges of the square wave of the voltage VP to be aligned with the in-phase signal WS generated by the in-phase signal generator 253 .
在前述图2的实施例中,电阻侦测器112的中的晶体管225是设置于电流产生模组113与控制引脚111之间的电流路径上,而开关227则是设置于晶体管225与控制引脚111之间的电流路径上。但这只是一实施例,而非局限电阻侦测器112的实际实施方式。实作上,亦可将开关227改设置于电流产生模组113与晶体管225之间的电流路径上。另外,电阻侦测器112中的开关个数也可依据电路设计的需要而增加,并不局限于图2实施例中的个数。In the aforementioned embodiment of FIG. 2, the transistor 225 in the resistance detector 112 is arranged on the current path between the current generating module 113 and the control pin 111, and the switch 227 is arranged between the transistor 225 and the control pin 111. on the current path between pins 111. But this is just an example, not an actual implementation of the localized resistance detector 112 . In practice, the switch 227 can also be arranged on the current path between the current generating module 113 and the transistor 225 . In addition, the number of switches in the resistance detector 112 can also be increased according to the needs of the circuit design, and is not limited to the number in the embodiment shown in FIG. 2 .
模式切换电路115设定观察期的方式可以依据电路设计的需求而调整,并不局限于前述实施例的方式。例如,模式切换电路115也可以将观察期设定成固定时间长度。The method of setting the observation period by the mode switching circuit 115 can be adjusted according to the requirements of the circuit design, and is not limited to the method of the foregoing embodiments. For example, the mode switching circuit 115 may set the observation period to a fixed time length.
图5为图1中的控制电路110的另一实施例简化后的功能方块图。图5中的控制电路110与图2中的控制电路110很类似,两实施例的差异之一在于图5中的电流产生模组113另包含有偏压电路537,但省略了电容235。偏压电路537耦接于晶体管233的控制端和模式切换电路115,用于依据模式切换电路115的控制,选择性地对晶体管233的控制端施加一预定偏压。FIG. 5 is a simplified functional block diagram of another embodiment of the control circuit 110 in FIG. 1 . The control circuit 110 in FIG. 5 is very similar to the control circuit 110 in FIG. 2 . One of the differences between the two embodiments is that the current generating module 113 in FIG. 5 further includes a bias circuit 537 , but the capacitor 235 is omitted. The bias circuit 537 is coupled to the control terminal of the transistor 233 and the mode switching circuit 115 , and is used for selectively applying a predetermined bias voltage to the control terminal of the transistor 233 according to the control of the mode switching circuit 115 .
图5中的模式切换电路115另包含有通知信号产生器555,耦接于控制引脚111和同步信号侦测器251,用于侦测控制引脚111上的电压VP的方波周期,且当通知信号产生器555侦测到电压VP的方波周期超过一预定长度时,会产生对应的通知信号Tout给同步信号侦测器251。The mode switching circuit 115 in FIG. 5 further includes a notification signal generator 555, coupled to the control pin 111 and the synchronous signal detector 251, for detecting the square wave period of the voltage VP on the control pin 111, and When the notification signal generator 555 detects that the period of the square wave of the voltage VP exceeds a predetermined length, it generates a corresponding notification signal Tout to the synchronization signal detector 251 .
当模式切换电路115中的同步信号侦测器251将振荡器114设置成操作在信号控制模式时,通知信号产生器555会记录电压VP的多个方波周期个别的时间长度,且同步信号侦测器251会将控制信号SCM切换至高电位,以控制偏压电路537开始对晶体管233的控制端施加预定偏压。When the synchronization signal detector 251 in the mode switching circuit 115 sets the oscillator 114 to operate in the signal control mode, the notification signal generator 555 will record the individual time lengths of a plurality of square wave cycles of the voltage VP, and the synchronization signal detection The detector 251 switches the control signal SCM to a high potential to control the bias circuit 537 to start applying a predetermined bias voltage to the control terminal of the transistor 233 .
以下将搭配图6来进一步说明图5中的控制电路110的运作方式。The operation of the control circuit 110 in FIG. 5 will be further described below with reference to FIG. 6 .
如图6所示,开关控制器150于时间T6将控制信号CS设置成低电位以截止开关140后,外部同步信号EXT便停止耦接至控制引脚111。当通知信号产生器555于时间T7侦测到电压VP的某个方波周期的长度比前一个方波周期长时,会产生通知信号Tout以通知同步信号侦测器251。As shown in FIG. 6 , after the switch controller 150 sets the control signal CS to a low level at time T6 to turn off the switch 140 , the external synchronous signal EXT stops being coupled to the control pin 111 . When the notification signal generator 555 detects that the length of a square wave cycle of the voltage VP is longer than the previous square wave cycle at time T7 , it generates a notification signal Tout to notify the synchronization signal detector 251 .
当收到通知信号Tout时,同步信号侦测器251会进入观察期,并将控制信号SCM切换至低电位,以导通振荡器114中的开关243,并将振荡器114中的组合逻辑电路247设置成改依据比较器245输出的比较信号CMP来产生时脉信号CLK。此时,控制电流Iosc会导通到振荡器114中的电容241,且控制电流Iosc的大小是由偏压电路537对晶体管233的控制端所施加的偏压大小来决定。因此,振荡器114输出的时脉信号CLK的频率大小,也会取决于偏压电路537对晶体管233的控制端所施加的偏压大小。When receiving the notification signal Tout, the synchronization signal detector 251 will enter the observation period, and switch the control signal SCM to a low potential to turn on the switch 243 in the oscillator 114, and the combinational logic circuit in the oscillator 114 247 is configured to generate the clock signal CLK according to the comparison signal CMP output by the comparator 245 . At this time, the control current Iosc is conducted to the capacitor 241 in the oscillator 114 , and the magnitude of the control current Iosc is determined by the bias voltage applied by the bias circuit 537 to the control terminal of the transistor 233 . Therefore, the frequency of the clock signal CLK output by the oscillator 114 also depends on the bias voltage applied by the bias circuit 537 to the control terminal of the transistor 233 .
若电压VP持续落在一预定范围内的时间,超过时脉信号CLK的一预定数量的周期,则同步信号侦测器251便可判定外部同步信号EXT已停止耦接到控制引脚111。If the voltage VP falls within a predetermined range continuously for more than a predetermined number of cycles of the clock signal CLK, the sync signal detector 251 can determine that the external sync signal EXT has stopped being coupled to the control pin 111 .
例如,在图6实施例中,同步信号侦测器251会于侦测到电压VP持续落在电压范围Vp1~Vp2内的时间超过时脉信号CLK的2个周期时,例如在时间T8时,判定外部同步信号EXT已被停止耦接到控制引脚111。此时,如时序图600所示,同步信号侦测器251会离开观察期,并将振荡器114切换至电阻控制模式。同时,同步信号侦测器251会将控制信号RCM切换至高电位,以控制偏压电路537停止对晶体管233的控制端施加偏压,并导通电阻侦测器112中的开关227,使电阻侦测器112开始侦测外部电阻130的电阻值大小,以决定电流Ir和控制电流Iosc的大小。For example, in the embodiment shown in FIG. 6 , when the synchronous signal detector 251 detects that the voltage VP continuously falls within the voltage range Vp1˜Vp2 for more than two periods of the clock signal CLK, for example, at time T8, It is determined that the external synchronization signal EXT has been decoupled from the control pin 111 . At this time, as shown in the timing diagram 600 , the sync signal detector 251 leaves the observation period and switches the oscillator 114 to the resistance control mode. At the same time, the synchronous signal detector 251 will switch the control signal RCM to a high potential to control the bias circuit 537 to stop applying bias voltage to the control terminal of the transistor 233, and turn on the switch 227 in the resistance detector 112, so that the resistance detector 112 The detector 112 starts to detect the resistance value of the external resistor 130 to determine the magnitude of the current Ir and the control current Iosc.
在图6的实施例中,由于振荡器114于同步信号侦测器251进入观察期时(亦即时间T7)即已开始运作,所以当同步信号侦测器251离开观察期时(亦即时间T8),振荡器114即可迅速达到稳态运作,使得振荡器114输出的时脉信号CLK的频率会对应于外部电阻130的电阻值大小。In the embodiment of FIG. 6, since the oscillator 114 has already started to operate when the synchronization signal detector 251 enters the observation period (that is, time T7), so when the synchronization signal detector 251 leaves the observation period (that is, time T7) T8 ), the oscillator 114 can quickly reach a steady state operation, so that the frequency of the clock signal CLK output by the oscillator 114 will correspond to the resistance value of the external resistor 130 .
如前所述,同步信号侦测器251会在振荡器114操作于信号控制模式时,控制偏压电路537对晶体管233的控制端施加预定偏压,直到振荡器114被切换至电阻控制模式时才停止。此外,利用偏压电路537对晶体管233的控制端施加预定偏压的方式,也可使振荡器114从信号控制模式切换到电阻控制模式的过程中所产生的时脉信号CLK的频率保持稳定,避免影响到后级的脉宽调变器116发生误作动。As mentioned above, the synchronous signal detector 251 will control the bias voltage circuit 537 to apply a predetermined bias voltage to the control terminal of the transistor 233 when the oscillator 114 operates in the signal control mode until the oscillator 114 is switched to the resistance control mode. only to stop. In addition, by using the bias circuit 537 to apply a predetermined bias voltage to the control terminal of the transistor 233, the frequency of the clock signal CLK generated during the switching of the oscillator 114 from the signal control mode to the resistance control mode can also be kept stable. This avoids malfunctioning of the pulse width modulator 116 affecting the subsequent stage.
在图6的实施例中,偏压电路537对晶体管233的控制端所施加的偏压,会使得振荡器114一开始被切换到电阻控制模式时所接收到的控制电流Iosc,略高于振荡器114达到稳态运作时的大小。实作上,也可以将偏压电路537对晶体管233的控制端所施加的偏压,设计成使得振荡器114一开始被切换到电阻控制模式时所接收到的控制电流Iosc略低于振荡器114达到稳态运作时的大小。In the embodiment of FIG. 6 , the bias voltage applied by the bias circuit 537 to the control terminal of the transistor 233 will cause the control current Iosc received by the oscillator 114 when it is initially switched to the resistance control mode to be slightly higher than the oscillation 114 reaches the size at which it operates in steady state. In practice, the bias voltage applied by the bias circuit 537 to the control terminal of the transistor 233 can also be designed so that the control current Iosc received by the oscillator 114 when it is initially switched to the resistance control mode is slightly lower than that of the oscillator 114. 114 to reach the size of steady-state operation.
有关前述图2的控制电路110在振荡器114从电阻控制模式被切换至信号控制模式的过程的运作说明,也适用于图5的实施例,故在此不重复叙述。实作上,同步信号侦测器251也可以在将振荡器114从电阻控制模式切换到信号控制模式间的观察期中,控制偏压电路537对晶体管233的控制端施加预定偏压的方式,以使振荡器114从电阻控制模式切换到信号控制模式的过程中所产生的时脉信号CLK的频率能保持稳定,避免影响到后级的脉宽调变器116发生误作动。The description about the operation of the control circuit 110 in FIG. 2 when the oscillator 114 is switched from the resistance control mode to the signal control mode is also applicable to the embodiment of FIG. 5 , so it will not be repeated here. In practice, the synchronous signal detector 251 can also control the bias circuit 537 to apply a predetermined bias voltage to the control terminal of the transistor 233 during the observation period when the oscillator 114 is switched from the resistance control mode to the signal control mode, so as to The frequency of the clock signal CLK generated during the switching of the oscillator 114 from the resistance control mode to the signal control mode can be kept stable, so as to avoid malfunctioning of the subsequent pulse width modulator 116 .
在前述的说明中,通知信号产生器555只要侦测到电压VP的某个方波周期的长度比前一个方波周期长时,便会发出通知信号Tout给同步信号侦测器251。这只是一实施例,而非局限通知信号产生器555的实际实施方式。例如,通知信号产生器555也可以在侦测到电压VP的某个方波周期的长度比前一个方波周期长超过一预定程度时,例如,比前一个方波周期长复数倍时,才发出通知信号Tout给同步信号侦测器251。或者,通知信号产生器555也可以在侦测到电压VP的某个方波周期的长度超过控制电路110的设计规格能接受的限度时,才发出通知信号Tout给同步信号侦测器251。In the foregoing description, the notification signal generator 555 will send the notification signal Tout to the synchronous signal detector 251 as long as it detects that the length of a certain square wave cycle of the voltage VP is longer than the previous square wave cycle. This is just an example, and does not limit the actual implementation of the notification signal generator 555 . For example, the notification signal generator 555 may also detect that the length of a certain square wave cycle of the voltage VP is longer than the previous square wave cycle by a predetermined degree, for example, when it is multiple times longer than the previous square wave cycle. Send the notification signal Tout to the sync signal detector 251 . Alternatively, the notification signal generator 555 can also send the notification signal Tout to the synchronous signal detector 251 when it detects that the length of a certain square wave period of the voltage VP exceeds the acceptable limit of the design specification of the control circuit 110 .
在前述的各实施例中,开关140、开关227和偏压电路537等部分功能方块的控制信号是以高态有效(active high)的形式表示,而开关243等部分功能方块的控制信号是以低态有效(active low)的形式表示,但这只是为了方便举例说明,并非局限这些功能方块的控制信号的实际实施方式。In the foregoing embodiments, the control signals of some functional blocks such as the switch 140, the switch 227, and the bias circuit 537 are expressed in the form of active high, while the control signals of some functional blocks such as the switch 243 are represented by The form of active low (active low) is only for the convenience of illustration, and does not limit the actual implementation of the control signals of these functional blocks.
另外,前述实施例中用来实现电流产生模组113的电流镜架构,只是用来产生控制电流Iosc的许多方式之一,而非局限电流产生模组113的实际实施方式。实作上,也可以利用更多的晶体管来组成不同架构的电流镜,以实现前述电流产生模组113的功能。In addition, the current mirror architecture used to implement the current generating module 113 in the foregoing embodiments is only one of many ways to generate the control current Iosc, rather than limiting the actual implementation of the current generating module 113 . In practice, more transistors can also be used to form current mirrors with different architectures, so as to realize the function of the aforementioned current generating module 113 .
由前述说明可知,即便开关控制器150在切换外部开关140时不主动通知控制电路110,前述控制电路110中的模式切换电路115也会自动侦测是否有外部同步信号EXT被耦接到控制引脚111,并相对应地切换振荡器114的操作模式。因此,本案提出的控制电路110只需设置单一控制引脚111,便能提供两种不同的时脉信号频率设定方式,不仅赋予控制电路110更高的使用弹性,还能有效精简所需的芯片封装面积。It can be seen from the foregoing description that even if the switch controller 150 does not actively notify the control circuit 110 when switching the external switch 140, the mode switching circuit 115 in the aforementioned control circuit 110 will automatically detect whether there is an external synchronization signal EXT coupled to the control lead. pin 111, and switch the operating mode of the oscillator 114 accordingly. Therefore, the control circuit 110 proposed in this case only needs to set a single control pin 111 to provide two different clock signal frequency setting methods, which not only endows the control circuit 110 with higher flexibility in use, but also effectively simplifies the required chip package area.
此外,当振荡器114操作在信号控制模式下时,是利用组合逻辑电路247直接依据外部同步信号EXT来产生同步的时脉信号CLK,而不是利用锁相回路(PLL)或延迟锁定回路(DLL)之类的反馈控制架构来锁定外部同步信号EXT。因此,当模式切换电路115将振荡器114切换至信号控制模式时,振荡器114可以迅速地将时脉信号CLK与外部同步信号EXT进行同步,并达到更佳的省电效果。而且,前述振荡器114所需的电路面积也远比采用锁相回路或延迟锁定回路实现的时脉产生器来得小,更有利于精简控制电路110所需的电路面积。In addition, when the oscillator 114 operates in the signal control mode, the combinational logic circuit 247 is used to generate the synchronous clock signal CLK directly according to the external synchronous signal EXT, instead of using a phase-locked loop (PLL) or a delay-locked loop (DLL). ) and the like feedback control architecture to lock the external synchronization signal EXT. Therefore, when the mode switch circuit 115 switches the oscillator 114 to the signal control mode, the oscillator 114 can quickly synchronize the clock signal CLK with the external synchronization signal EXT, and achieve better power saving effect. Moreover, the circuit area required by the aforementioned oscillator 114 is much smaller than that of a clock generator implemented by using a phase-locked loop or a delay-locked loop, which is more conducive to reducing the circuit area required by the control circuit 110 .
再者,由于前述的模式切换电路115是在控制引脚111上的电压VP偏离预定范围时,才会进入观察期进一步监测电压VP的变化态样,且只有在侦测到电压VP出现一或多次周期性的高低电位转换时,模式切换电路才会判定有外部同步信号EXT被耦接到控制引脚111。因此,可有效避免模式切换电路115因控制引脚111上的噪声而错误切换振荡器114之操作模式的情况发生。Furthermore, since the aforementioned mode switching circuit 115 enters the observation period to further monitor the variation of the voltage VP when the voltage VP on the control pin 111 deviates from the predetermined range, and only when it detects that the voltage VP appears one or The mode switching circuit will determine that the external synchronous signal EXT is coupled to the control pin 111 when there are multiple periodic high-low potential transitions. Therefore, it is possible to effectively prevent the mode switching circuit 115 from erroneously switching the operation mode of the oscillator 114 due to the noise on the control pin 111 .
以上所述仅为本发明的较佳实施例,凡依本发明权利要求所做的等同变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210219976.9A CN103516179B (en) | 2012-06-27 | 2012-06-27 | Switching Regulator Control Circuit with Multiple Clock Signal Frequency Setting Modes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210219976.9A CN103516179B (en) | 2012-06-27 | 2012-06-27 | Switching Regulator Control Circuit with Multiple Clock Signal Frequency Setting Modes |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103516179A CN103516179A (en) | 2014-01-15 |
CN103516179B true CN103516179B (en) | 2016-12-21 |
Family
ID=49898394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210219976.9A Active CN103516179B (en) | 2012-06-27 | 2012-06-27 | Switching Regulator Control Circuit with Multiple Clock Signal Frequency Setting Modes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103516179B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105450052B (en) * | 2014-08-20 | 2018-03-30 | 台达电子工业股份有限公司 | Converter, controller and control method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102132628A (en) * | 2008-08-25 | 2011-07-20 | 美信集成产品公司 | Power factor correction in and dimming of solid state lighting devices |
EP2410821A2 (en) * | 2010-07-20 | 2012-01-25 | Panasonic Electric Works Co., Ltd. | Lighting device of semiconductor light-emitting element and illumination fixture using the same |
-
2012
- 2012-06-27 CN CN201210219976.9A patent/CN103516179B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102132628A (en) * | 2008-08-25 | 2011-07-20 | 美信集成产品公司 | Power factor correction in and dimming of solid state lighting devices |
EP2410821A2 (en) * | 2010-07-20 | 2012-01-25 | Panasonic Electric Works Co., Ltd. | Lighting device of semiconductor light-emitting element and illumination fixture using the same |
Also Published As
Publication number | Publication date |
---|---|
CN103516179A (en) | 2014-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4542978B2 (en) | Power supply voltage control device | |
TWI430078B (en) | Power control circuitry, circuitry for analysing a switched power rail, and method of controlling connection of a power source to a switched power rail | |
US9714966B2 (en) | Circuit aging sensor | |
JP4437541B2 (en) | Reset control circuit and reset control method | |
US8525603B2 (en) | Oscillating signal generating device and related method | |
TW201444258A (en) | Method and apparatus of current balancing for multiple phase power converter | |
TWI452458B (en) | Switching regulator control circuit with multiple clock frequency setting modes | |
US6977828B2 (en) | DC-DC converter applied to semiconductor device | |
CN106656044A (en) | Systems and methods for tuning an oscillator frequency | |
CN101154892A (en) | Synchronous rectification power supply unit and its control circuit and control method | |
JP4518344B2 (en) | Apparatus and dynamic random access memory (DRAM) chip for controlling a voltage generation circuit in a multiple voltage generation circuit chip | |
TWI404338B (en) | Phase interleaving control method for a multi-channel regulator system | |
CN103516179B (en) | Switching Regulator Control Circuit with Multiple Clock Signal Frequency Setting Modes | |
US7235958B2 (en) | Apparatus and method to synchronize switching frequencies of multiple power regulators | |
JP2012196050A (en) | Soft start circuit | |
CN102347759B (en) | Delay phase-locked loop system and method with self-calibration | |
TW201014131A (en) | Capacitance switching electric pump device | |
JP4445677B2 (en) | Semiconductor integrated circuit | |
US9197054B2 (en) | Circuit for controlling a latch mode of a pulse width modulation circuit and method thereof | |
CN103427627A (en) | Voltage doubling device and oscillation control signal generator therein | |
US20210286400A1 (en) | Semiconductor circuit apparatus and system equipped with semiconductor circuit apparatus | |
US9535101B2 (en) | Reverse current detector circuit | |
US20180226335A1 (en) | Semiconductor integrated circuit | |
TW201929400A (en) | Charge pump and phase-locked loop | |
JPH05336736A (en) | Internal voltage generating device for semiconductor integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |