CN103497954B - A kind of regulate and control the protein of low temperature lower blade color and gene thereof and application - Google Patents
A kind of regulate and control the protein of low temperature lower blade color and gene thereof and application Download PDFInfo
- Publication number
- CN103497954B CN103497954B CN201310387533.5A CN201310387533A CN103497954B CN 103497954 B CN103497954 B CN 103497954B CN 201310387533 A CN201310387533 A CN 201310387533A CN 103497954 B CN103497954 B CN 103497954B
- Authority
- CN
- China
- Prior art keywords
- gene
- ywl1
- protein
- mutant
- rice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
一种调控低温下叶片颜色的蛋白质及其基因和应用,属于基因工程技术领域。本发明公开了一种调控低温下叶片颜色蛋白质的基因核苷酸序列及该蛋白的氨基酸序列;并提供了该基因的应用。本发明利用水稻苗期温度敏感突变体,通过图位克隆法克隆到了YWL1基因,该基因编码定位于叶绿体的假尿嘧啶合酶家族蛋白蛋白。通过转基因互补实验鉴定了YWL1基因的功能。因而本发明能调节水稻叶绿体发育获得苗期叶片改变表型。为该基因的进一步利用打下基础。
A protein regulating the color of leaves at low temperature and its gene and application belong to the technical field of genetic engineering. The invention discloses a nucleotide sequence of a gene regulating the leaf color protein at low temperature and an amino acid sequence of the protein; and provides an application of the gene. The invention utilizes the rice seedling stage temperature-sensitive mutant to clone the YWL1 gene through the map-site cloning method, and the gene encodes a pseudouracil synthase family protein located in the chloroplast. The function of YWL1 gene was identified by transgene complementation experiment. Therefore, the invention can regulate the development of rice chloroplasts to obtain leaf change phenotypes at the seedling stage. Lay the foundation for the further utilization of this gene.
Description
技术领域 technical field
本发明属于基因工程技术领域,具体涉及一种调控低温下叶片颜色的蛋白质及其基因和应用。 The invention belongs to the technical field of genetic engineering, and in particular relates to a protein for regulating the color of leaves at low temperature, its gene and application.
背景技术 Background technique
叶片是植物进行光合作用的主要器官,水稻籽粒中2/3以上的干物质是开花后通过光合作用获得的(王旭军,徐庆国,杨志建(2005)水稻叶片衰老生理的研究进展,中国农学通报21:187-190),光合作用的效率与叶绿体结构和功能是否完整、光合作用复合体的稳定性、叶绿素含量的高低都有着复杂的关系。近年来,叶色的应用价值备受关注,叶色变异可以作为标记性状,在水稻杂交育种和良种繁育发挥重要作用,不但可以用于苗期剔除受外源花粉污染的种子和假杂种,还可以用于测定种子纯度(章志兴,陈善福(2001)叶片标记技术在杂交水稻种子生产中的应用,种子科技19:33-34)。另外,叶色突变体的研究对有效利用基因工程提高水稻的光合能力,培育高光效水稻,增加水稻产量具有重要的理论意义和应用价值。 Leaf is the main organ for photosynthesis in plants, and more than 2/3 of the dry matter in rice grains is obtained through photosynthesis after flowering (Wang Xujun, Xu Qingguo, Yang Zhijian (2005) Research progress in rice leaf senescence physiology, China Agricultural Science Bulletin 21: 187-190), the efficiency of photosynthesis has a complex relationship with the integrity of chloroplast structure and function, the stability of photosynthetic complex, and the level of chlorophyll content. In recent years, the application value of leaf color has attracted much attention. Leaf color variation can be used as a marker trait, which plays an important role in rice hybrid breeding and improved rice breeding. It can be used to determine the purity of seeds (Zhang Zhixing, Chen Shanfu (2001) Application of leaf marker technology in hybrid rice seed production, Seed Science and Technology 19: 33-34). In addition, the study of leaf color mutants has important theoretical significance and application value for the effective use of genetic engineering to improve the photosynthetic ability of rice, cultivate rice with high light efficiency, and increase rice yield.
目前,利用水稻叶色突变体,已经克隆出多个参与或调控叶绿素代谢和叶绿体发育的基因,通过分析基因功能、表达模式、基因间互作以及核-质信号传导,初步了解了水稻叶色形成及调控机理。目前为止,在拟南芥叶绿素合成过程中的关键酶都已鉴定出来(Nagata N(2005)Identification of a Vinyl Reductase Gene for Chlorophy11 Synthesis in Arabidopsis thabliana and Implications for the Evolution of Prochlorococcus Species. The Plant Cell Online 17:233-240 ),但在水稻中只有少数基因被鉴定出来,其他基因还有待进一步发现。此外,叶绿素降解的调控机制尚未明朗,核-质互作的机理尚不清晰,有待深入进一步研究。 At present, using rice leaf color mutants, several genes involved in or regulating chlorophyll metabolism and chloroplast development have been cloned. Through the analysis of gene function, expression pattern, gene interaction and nuclear-cytoplasmic signal transduction, we have a preliminary understanding of rice leaf color. Formation and regulation mechanism. So far, key enzymes in the process of chlorophyll synthesis in Arabidopsis have been identified (Nagata N (2005) Identification of a Vinyl Reductase Gene for Chlorophy11 Synthesis in Arabidopsis thabliana and Implications for the Evolution of Prochlorococcus Species. The Plant Cell Online 17:233-240 ), but only a few genes have been identified in rice, and other genes have yet to be further discovered. In addition, the regulatory mechanism of chlorophyll degradation is still unclear, and the mechanism of nucleoplasmic interaction is still unclear, which needs to be further studied.
发明内容 Contents of the invention
针对现有技术存在的问题,本发明的目的在于设计提供一种调控低温下叶片颜色的蛋白质及其基因和应用的技术方案。 Aiming at the problems existing in the prior art, the purpose of the present invention is to design and provide a technical solution for regulating the protein, gene and application of the color of leaves at low temperature.
所述的一种编码调控低温下叶片颜色的基因,其特征在于是下列核苷酸序列之一: The gene encoding and regulating the color of leaves at low temperature is characterized in that it is one of the following nucleotide sequences:
1)其是SEQ ID No.1所述的核苷酸序列; 1) It is the nucleotide sequence described in SEQ ID No.1;
2)其是编码由SEQ ID No.3所示的氨基酸序列组成的蛋白质。 2) It encodes a protein composed of the amino acid sequence shown in SEQ ID No.3.
所述的一种调控低温下叶片颜色的蛋白质,其特征在于该蛋白质具有SEQ ID No.3所示的氨基酸序列。 The protein regulating the color of leaves at low temperature is characterized in that the protein has the amino acid sequence shown in SEQ ID No.3.
所述的一种转基因细胞系,其特征在于含有如SEQ ID No.1所示的核苷酸序列。 The said transgenic cell line is characterized by containing the nucleotide sequence shown in SEQ ID No.1.
所述的一种转基因重组菌,其特征在于含有如SEQ ID No.1所示的核苷酸序列。 The said one kind of transgenic recombinant bacterium is characterized in that it contains the nucleotide sequence shown in SEQ ID No.1.
所述的编码调控低温下叶片颜色的基因在培育叶绿体发育状况变化的转基因植物中的应用。 Application of the gene encoding and regulating leaf color at low temperature in cultivating transgenic plants with changes in chloroplast development.
所述的编码调控低温下叶片颜色的基因在培育苗期叶片白化的转基因植株中的应用。 The application of the gene encoding and regulating the color of leaves at low temperature in cultivating transgenic plants with albino leaves at seedling stage.
本发明的具体实施步骤如下: Concrete implementation steps of the present invention are as follows:
一、水稻苗期温度敏感突变体ywl1的分离和遗传分析 1. Isolation and genetic analysis of rice seedling temperature-sensitive mutant ywl1
叶绿素含量分析结果表明ywl1突变体在23℃条件下叶片在生长发育过程中叶绿素积累速度较野生型慢,随着叶片的成熟,叶绿素含量与野生型趋于一致;25℃条件下突变体两叶一心前叶片黄白色,叶绿素含量显著低于野生型,叶绿素荧光参数差异不显著;28℃条件下突变体叶片表型及生理指标与野生型趋于一致(图1)。叶绿体超微结构分析表明,ywl1突变体叶条纹叶白色部分大部分细胞内部尚未分化出类囊体片层结构及基粒,只有个别细胞能观察到成熟的叶绿体,整个叶绿体表现发育不良,但随着叶片的发育,基粒片层垛叠数目增加(图4)。 The results of chlorophyll content analysis showed that the chlorophyll accumulation rate of the ywl1 mutant was slower than that of the wild type during the growth and development of leaves at 23°C, and the chlorophyll content tended to be consistent with that of the wild type as the leaves matured; The anterior leaves of Yixin were yellowish-white, the chlorophyll content was significantly lower than that of the wild type, and the chlorophyll fluorescence parameters were not significantly different; the phenotype and physiological indicators of the mutant leaves were consistent with those of the wild type at 28°C (Figure 1). Chloroplast ultrastructural analysis showed that thylakoid lamellar structure and grana had not been differentiated in most cells of the white part of ywl1 mutant leaves, and mature chloroplasts could be observed in only a few cells. With the development of leaves, the number of stacked grana lamina increases (Fig. 4).
为了确定ywl1突变体的表型是否由单基因控制,本发明对ywl1进行了相应的遗传分析。在ywl1突变体与粳稻02428杂交得到的株F2单株中,分别获得了株正常表型单株和株ywl1突变表型单株,正常表型和突变表型单株的分离比符合分离比3:1(见表1)。此外,ywl1突变体与野生型93-11杂交,以及ywl1突变体与粳稻02428杂交得到的F1植株均表现为正常表型。遗传分析结果表明ywl1突变体的表型是由单隐性核基因突变体引起的。 In order to determine whether the phenotype of the ywl1 mutant is controlled by a single gene, the present invention carried out corresponding genetic analysis on ywl1. In the F2 individual plants obtained by crossing the ywl1 mutant with japonica rice 02428, the normal phenotype individual plants and the ywl1 mutant phenotype individual plants were obtained respectively, and the segregation ratio of the normal phenotype and mutant phenotype individuals was consistent with the segregation ratio of 3 :1 (see Table 1). In addition, the F1 plants obtained by crossing the ywl1 mutant with wild-type 93-11 and crossing the ywl1 mutant with japonica rice 02428 showed normal phenotypes. The results of genetic analysis indicated that the phenotype of the ywl1 mutant was caused by a single recessive nuclear gene mutant.
表1 F2群体中白条纹叶植株和正常叶色植株的分离情况 Table 1 Separation of white-striped leaf plants and normal leaf-color plants in F2 population
二、不同温度环境下ywl1突变体叶片叶绿绿含量和光和特性分析 2. Analysis of chlorophyll content and light characteristics of ywl1 mutant leaves under different temperature environments
为了明确ywl1叶色动态变化过程,我们分别测量了植株一叶期至五叶期叶片叶绿素含量(图2)。从测量结果可以看出,该突变体叶绿素含量随着植株的生长而逐渐增加。23℃条件下,野生型中叶绿素a、叶绿素b及叶绿素总量始终高于突变体;25℃条件下三叶期以前,野生型叶绿素a、叶绿素b及叶绿素总量高于突变体,三叶期以后二者叶绿素含量趋于一致;28℃条件下,二者叶绿素a、叶绿素b及叶绿素总量基本一致,与表型结果一致。 In order to clarify the dynamic change process of ywl1 leaf color, we measured the chlorophyll content of leaves from the one-leaf stage to the five-leaf stage (Fig. 2). It can be seen from the measurement results that the chlorophyll content of the mutant increases gradually with the growth of the plants. At 23°C, the total amount of chlorophyll a, chlorophyll b, and chlorophyll in the wild type was always higher than that in the mutant; at 25°C, the total amount of chlorophyll a, chlorophyll b, and chlorophyll in the wild type was higher than that in the mutant, and the amount of chlorophyll in the three-leaf The chlorophyll content of the two tended to be the same after the period; at 28°C, the chlorophyll a, chlorophyll b and the total amount of chlorophyll were basically the same, which was consistent with the phenotype results.
由图3可见,23℃环境下的ywl1突变体在苗期净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)比野生型显著下降,表现出较严重的光和能力下降特征,抽穗期恢复与野生型一致;25℃环境下的ywl1突变体,苗期除净光合速率(Pn)比野生型显著下降外,气孔导度(Gs)和蒸腾速率(Tr)与野生型没有显著差异,抽穗期时三项指标均与野生型一致;28℃环境下的ywl1突变体无论苗期或是抽穗期,净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均与野生型一致。 It can be seen from Figure 3 that the net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of the ywl1 mutant at the 23°C environment were significantly lower than those of the wild type, showing a more serious decrease in light and capacity characteristics, heading stage recovery was consistent with that of the wild type; in the ywl1 mutant at 25 °C, the net photosynthetic rate (Pn) at the seedling stage was significantly lower than that of the wild type, and the stomatal conductance (Gs) and transpiration rate (Tr) were similar to those of the wild type There was no significant difference, and the three indicators at the heading stage were consistent with those of the wild type; the net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr ) are consistent with the wild type.
三、图位克隆YWL1基因 3. Map-based cloning of the YWL1 gene
1.YWL1基因的分子定位: 1. Molecular localization of YWL1 gene:
遗传分析表明,ywl1突变体白条纹叶表型是由一对隐形核基因控制。利用ywl1突变体与粳稻02428杂交衍生的F2群体的184株极端个体进行初定位,将ywl1基因定位在第3条染色体短臂上RM14327和RM5474之间。随后通过扩大定位群体,根据已经公布的SSR和自行开发的Indel标记,构建了ywl1基因位点区域高密度连锁图谱,最终将突变基因精细定位在37.1kb区间内,如图5所示。 Genetic analysis revealed that the white-striped leaf phenotype of the ywl1 mutant is controlled by a pair of recessive nuclear genes. Using 184 extreme individuals of the F2 population derived from crossing the ywl1 mutant with japonica rice 02428, the ywl1 gene was located between RM14327 and RM5474 on the short arm of the third chromosome. Then, by expanding the mapping population, a high-density linkage map of the ywl1 gene locus region was constructed based on the published SSR and self-developed Indel markers, and finally the mutant gene was finely mapped within the 37.1kb interval, as shown in Figure 5.
2. YWL1基因的鉴定和功能分析 2. Identification and functional analysis of YWL1 gene
利用基因分析与预测软件对定位的37.1kb区域进行预测,发现共有5个开放阅读框(ORFs),其中ORF5编码(LOC_Os03g05806)假尿嘧啶核苷合酶家族蛋白,该基因编码的蛋白序列与拟南芥SVR1编码的假尿嘧啶合酶家族蛋白序列有59%的相似性,半定量RT-PCR结果显示ywl1突变体中ORF5(LOC_Os03g05806)的表达量显著增加;拟南芥svr1突变后导致叶绿体蛋白翻译和rRNA加工功能缺失,表型为var2突变体的斑叶表型的抑制。测序结果发现LOC_Os03g05806 ORF区存在18bp碱基的缺失,造成该基因蛋白质序列中Asp214-Ser219位 6个氨基酸的缺失。因此,确定YWL1基因为ywl1突变基因的候选基因。野生型品种扩增的基因序列为SEQ ID NO.1,命名为YWL1基因。 Using gene analysis and prediction software to predict the located 37.1kb region, it was found that there were 5 open reading frames (ORFs), among which ORF5 coded (LOC_Os03g05806) pseudouridine synthase family protein, and the protein sequence encoded by the gene was similar to that of the proposed The pseudouracil synthase family protein sequence encoded by Arabidopsis SVR1 has 59% similarity. The semi-quantitative RT-PCR results showed that the expression of ORF5 (LOC_Os03g05806) was significantly increased in the ywl1 mutant; Arabidopsis svr1 mutation resulted in chloroplast protein Loss of translation and rRNA processing, phenotype suppression of the variegated phenotype of var2 mutants. Sequencing results found LOC_Os03g05806 There is a deletion of 18 bp bases in the ORF region, resulting in a deletion of 6 amino acids at positions Asp214-Ser219 in the protein sequence of the gene. Therefore, the YWL1 gene was identified as a candidate gene for the ywl1 mutant gene. The gene sequence amplified by the wild-type variety is SEQ ID NO.1, named YWL1 gene.
为了观察YWL1蛋白(SEQ ID NO.3)的亚细胞定位功能,将YWL1基因的CDS序列(SEQ ID NO.2)构建到PAN580-GFP 表达载体内,得到融合表达载体,然后用水稻前质体瞬时表达系统观察YWL1 (SEQ ID NO.2的蛋白表达)。首先,提取融合表达载体及无基因融合空载体PAN580-GFP的质体,用金粉分别包裹后,基因枪轰击至水稻前质体细胞。暗环境下培养16小时后,激光共聚焦显微镜下观察。结果表明,无基因融合的对照载体的绿色荧光均匀地表达于整个水稻前质体细胞,而融合蛋白则特异性地分布于叶绿体内(图6)。 In order to observe the subcellular localization function of YWL1 protein (SEQ ID NO.3), the CDS sequence of YWL1 gene (SEQ ID NO.2) was constructed into PAN580-GFP In the expression vector, the fusion expression vector was obtained, and then YWL1 (SEQ ID NO.2 protein expression). First, the plastids of the fusion expression vector and the gene-free fusion empty vector PAN580-GFP were extracted, respectively wrapped with gold powder, and bombarded with a gene gun into rice preplastid cells. After culturing for 16 hours in a dark environment, observe under a confocal laser microscope. The results showed that the green fluorescence of the control vector without gene fusion was uniformly expressed in the whole rice preplastid cells, while the fusion protein was specifically distributed in the chloroplast (Figure 6).
本发明利用水稻苗期温度敏感突变体,通过图位克隆法克隆到了YWL1基因,该基因编码定位于叶绿体的假尿嘧啶合酶家族蛋白蛋白。通过转基因互补实验鉴定了YWL1基因的功能。因而本发明能调节水稻叶绿体发育获得苗期叶片改变表型。为该基因的进一步利用打下基础。 The invention utilizes the rice seedling stage temperature-sensitive mutant to clone the YWL1 gene through the map-site cloning method, and the gene encodes a pseudouracil synthase family protein located in the chloroplast. The function of YWL1 gene was identified by transgene complementation experiment. Therefore, the invention can regulate the development of rice chloroplasts to obtain leaf change phenotypes at the seedling stage. Lay the foundation for the further utilization of this gene.
附图说明 Description of drawings
图1是粳稻品种Asominori野生型和苗期温度敏感突变体ywl1各温度下的表型; Figure 1 shows the phenotypes of the japonica rice variety Asominori wild type and the seedling temperature-sensitive mutant ywl1 at various temperatures;
图2是不同温度条件下不同发育时期ywl1突变体与野生型叶绿素含量; Figure 2 shows the chlorophyll content of the ywl1 mutant and wild type at different developmental stages under different temperature conditions;
图3是不同温度条件下ywl1突变体与野生型叶片的光和特性; Figure 3 is the light and characteristics of ywl1 mutant and wild-type leaves under different temperature conditions;
图4为野生型和突变体的透射电镜观察图,A,D 野生型93-11的叶肉细胞和叶绿体结构;B,E ywl1突变体白条纹叶白叶部分的叶肉细胞核叶绿体结构;C,F ywl1突变体白条纹叶绿叶部分的叶肉细胞核叶绿体结构; Figure 4 is the transmission electron microscope observation of wild type and mutant, A, D the mesophyll cell and chloroplast structure of the wild type 93-11; B, the mesophyll nucleus chloroplast structure of the white leaf part of the white striped leaf of the Eywl1 mutant; C, F The mesophyll nuclei and chloroplast structure of the green leaf part of the white-striped leaf of the ywl1 mutant;
图5为YWL1基因在水稻第3染色体上的精细定位; Figure 5 shows the fine mapping of the YWL1 gene on the rice chromosome 3;
图6是35S:: YWL1::GFP融合蛋白在水稻前质体细胞中瞬时表达结果图;上行为35S::GFP空载体的定位结果,下行为35S:: YWL1::GFP融合载体的定位结果;左边为白光图,中间为GFP荧光图,右边为前二者的融合图。 Figure 6 is 35S:: The results of transient expression of YWL1::GFP fusion protein in rice preplastid cells; the upper row is the localization result of 35S::GFP empty vector, the lower row is the localization result of 35S::YWL1::GFP fusion vector; the left is the white light map, The middle is the GFP fluorescence image, and the right is the fusion image of the former two.
具体实施方式 detailed description
为了理解本发明,下面以实施例进一步说明本发明,但不限制本发明。 In order to understand the present invention, the present invention is further illustrated below with examples, but the present invention is not limited.
实施例1:ywl1突变体的表型分析 Example 1: Phenotypic analysis of ywl1 mutants
a)水稻材料 a) Rice material
水稻(Oryza sativa L)突变体ywl1,原始野生型材料为籼稻品种93-11. Rice (Oryza sativa L) mutant ywl1, the original wild-type material is indica variety 93-11.
b)叶绿素含量及光合特性的测定 b) Determination of chlorophyll content and photosynthetic characteristics
选饱满的突变体和野生型种子浸种催芽,把已发芽的突变体和野生型93-11的种子种植在钵子中,在人工气候箱中设定日恒温分别为23℃、25℃和28℃,光长12h,暗处理12h,光强为5Lax的环境条件下培养。观察并记录突变体表型。分别于转绿前后的五个时期(一叶期、二叶期、三叶期、四叶期及五叶期)取叶片测定叶绿素含量。 Select plump mutant and wild-type seeds to soak and accelerate germination, plant the germinated mutant and wild-type 93-11 seeds in pots, and set the daily constant temperature in the artificial climate box to 23°C, 25°C and 28°C respectively , the light length was 12h, the dark treatment was 12h, and the light intensity was 5Lax. Observe and record mutant phenotypes. The chlorophyll content of leaves was measured at five stages (one-leaf stage, two-leaf stage, three-leaf stage, four-leaf stage and five-leaf stage) before and after greening.
叶绿素含量的测定:取待测样品0.1g-0.2g浸泡于10ml95%的乙醇,放置于4℃的冰箱中浸提色素48h左右。取上述提取液少许倒入1cm的比色皿内,以95%乙醇为参比液,在Beckman Du80型分光光度计下分别读取665nm、649nm、470nm波光下的光密度。利用Lichtenthaler法进行修正的公式计算叶绿素a(Chla)、叶绿素b(Chlb)、类胡萝卜素(Caro)的含量。 Determination of chlorophyll content: Take 0.1g-0.2g of the sample to be tested and soak it in 10ml of 95% ethanol, and place it in a refrigerator at 4°C to extract the pigment for about 48 hours. Take a little of the above extract and pour it into a 1cm cuvette, use 95% ethanol as the reference solution, and read the optical densities at 665nm, 649nm, and 470nm under a Beckman Du80 spectrophotometer. The contents of chlorophyll a (Chla), chlorophyll b (Chlb) and carotenoids (Caro) were calculated using the modified formula of Lichtenthaler method.
Chla含量(mg/g)=(13.95O.D665-6.88O.D649)V/1000W Chla content (mg/g) = (13.95O.D665-6.88O.D649) V/1000W
Chlb含量(mg/g)=(24.96O.D649-7.32O.D665)V/1000W Chlb content (mg/g) = (24.96O.D649-7.32O.D665) V/1000W
Caro含量(mg/g)=(1000O.D470+811.74O.D665-2851.32O.D649)/245 Caro content (mg/g) = (1000O.D470+811.74O.D665-2851.32O.D649)/245
注:O.D:测定波长下的光密度值。 Note: O.D: Optical density value at the measured wavelength.
V:叶绿素提取液总体积(mL)。若测定用的是稀释液,应乘以稀释倍数。 V: total volume of chlorophyll extract (mL). If a diluent is used for the determination, it should be multiplied by the dilution factor.
W:材料鲜重(g)。 W: fresh weight of material (g).
光合特性的测定:采用美国Li-COR公司生产的Li-6400型便携式光合测定仪,开放系统,使用红蓝光源,光量子密度1 200μmol m-2 s-1,流速500μmol s-1,在晴天上9:00~11:00 时分别测定三个环境条件下各材料的净光合速率。每处理测定3片具代表性的剑叶,每叶重复测定3次(取其平均值作为1次重复)。测定指标包括叶片净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和胞间CO2浓度(Ci)。 Determination of photosynthetic characteristics: Li-6400 portable photosynthetic measuring instrument produced by Li-COR Company of the United States is used, which is an open system, using red and blue light sources, with an optical quantum density of 1 200 μmol m -2 s -1 , and a flow rate of 500 μmol s -1 , on a sunny day From 9:00 to 11:00, the net photosynthetic rate of each material under three environmental conditions was measured respectively. Three representative flag leaves were measured for each treatment, and each leaf was repeatedly measured three times (the average value was taken as one repetition). The measurement indexes include leaf net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) and intercellular CO2 concentration (Ci).
由图2可见,该突变体叶绿素含量随着植株的生长而逐渐增加。23℃条件下,野生型中叶绿素a、叶绿素b及叶绿素总量始终高于突变体;25℃条件下三叶期以前,野生型叶绿素a、叶绿素b及叶绿素总量高于突变体,三叶期以后二者叶绿素含量趋于一致;28℃条件下,二者叶绿素a、叶绿素b及叶绿素总量基本一致,与表型结果一致。 It can be seen from Figure 2 that the chlorophyll content of the mutant gradually increases with the growth of the plants. At 23°C, the total amount of chlorophyll a, chlorophyll b, and chlorophyll in the wild type was always higher than that in the mutant; at 25°C, the total amount of chlorophyll a, chlorophyll b, and chlorophyll in the wild type was higher than that in the mutant, and the amount of chlorophyll in the three-leaf The chlorophyll content of the two tended to be the same after the period; at 28°C, the chlorophyll a, chlorophyll b and the total amount of chlorophyll were basically the same, which was consistent with the phenotype results.
由图3可见,23℃环境下的ywl1突变体在苗期净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)比野生型显著下降,表现出较严重的光和能力下降特征,抽穗期恢复与野生型一致;25℃环境下的ywl1突变体,苗期除净光合速率(Pn)比野生型显著下降外,气孔导度(Gs)和蒸腾速率(Tr)与野生型没有显著差异,抽穗期时三项指标均与野生型一致;28℃环境下的ywl1突变体无论苗期或是抽穗期,净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均与野生型一致。 It can be seen from Figure 3 that the net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of the ywl1 mutant at the 23°C environment were significantly lower than those of the wild type, showing a more serious decrease in light and capacity characteristics, heading stage recovery was consistent with that of the wild type; in the ywl1 mutant at 25 °C, the net photosynthetic rate (Pn) at the seedling stage was significantly lower than that of the wild type, and the stomatal conductance (Gs) and transpiration rate (Tr) were similar to those of the wild type There was no significant difference, and the three indicators at the heading stage were consistent with those of the wild type; the net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr ) are consistent with the wild type.
c)电镜观察 c) Electron microscope observation
利用透射电镜(TEM)观察23℃条件下野生型和ywl1第三片叶的叶绿体超微结构,结果发现ywl1突变体叶条纹叶白色部分大部分细胞内部尚未分化出类囊体片层结构及基粒,只有个别细胞能观察到成熟的叶绿体,整个叶绿体表现发育不良,但随着叶片的发育,基粒片层垛叠数目增加,如图4。 Using transmission electron microscope (TEM) to observe the chloroplast ultrastructure of the third leaf of the wild type and ywl1 at 23°C, it was found that most of the cells in the white part of the ywl1 mutant leaves had not yet differentiated thylakoid sheet structure and basal cells. Granules, mature chloroplasts can only be observed in a few cells, and the entire chloroplast is underdeveloped, but with the development of leaves, the number of stacked grana lamellae increases, as shown in Figure 4.
实施例2:YWL1基因的克隆 Embodiment 2: Cloning of YWL1 gene
a)遗传分析和定位群体 a) Genetic analysis and mapping populations
利用正反杂交确定ywl1为隐性突变体,选取突变体和粳稻02428进行杂交,F1代自交,单株收种种植F2群体,从有分离的群体中选出4391个隐性个体作为定位群体。在三叶期每株取1克左右的嫩叶,用来提取总DNA进行基因定位。 The positive and negative hybridization was used to confirm that ywl1 was a recessive mutant, and the mutant was selected for hybridization with japonica rice 02428, the F1 generation was self-crossed, and a single plant was harvested to plant the F2 population, and 4391 recessive individuals were selected from the segregated population as the positioning population . At the three-leaf stage, about 1 gram of young leaves were taken from each plant to extract total DNA for gene mapping.
b)YWL1基因的初步定位和精细定位 b) Preliminary and fine mapping of the YWL1 gene
采用水稻微量DNA的快速提取方法从水稻叶片中提取用于基因定位的基因组DNA,该DNA抽提的方法为SDS法(Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version Ⅱ. Plant Mol Bio Rep 1:19-21)。取大约100mg水稻叶片剪碎后放入2ml 离心管,加入钢珠经液氮冷冻后,在磨样机上粉碎,然后提取DNA,获得的DNA沉淀溶解于400μL超纯水中,每一个PCR反应用1μLDNA样品。 The rapid extraction method of rice trace DNA was used to extract genomic DNA for gene localization from rice leaves, and the DNA extraction method was SDS method (Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version Ⅱ. Plant Mol Bio Rep 1:19-21). Take about 100mg of rice leaves, cut them into pieces and put them into a 2ml centrifuge tube, add steel balls, freeze them with liquid nitrogen, grind them on a mill, and then extract DNA. sample.
在YWL1基因的初步定位中,用由30个具有突变表型的F2(ywl1突变体与粳稻02428杂交得到的株F2)个体进行SSR分析。首先根据公布的粳稻和籼稻创建的分子遗传图谱,选取近似均匀分布于各染色体上的SSR引物进行PCR扩增(反应体系如下)。通过8%的聚丙烯酰胺凝胶(凝胶配置方法如下)电泳分离,通过检测条带的多态性,将基因初步定位到第3染色体的短臂上,并介于RM14327和RM5474两SSR标记之间。 In the preliminary mapping of YWL1 gene, SSR analysis was carried out with 30 F2 individuals with mutant phenotype (strain F2 obtained by crossing ywl1 mutant with japonica rice 02428). Firstly, according to the published molecular genetic maps of japonica and indica rice, select SSR primers approximately evenly distributed on each chromosome for PCR amplification (the reaction system is as follows). Separation by electrophoresis on 8% polyacrylamide gel (gel configuration method is as follows), and by detecting the polymorphism of the band, the gene is initially located on the short arm of chromosome 3, between the two SSR markers RM14327 and RM5474 between.
PCR反应体系: PCR reaction system:
8%聚丙烯酰胺凝胶配方: 8% polyacrylamide gel formula:
聚丙烯酰胺凝胶显色液配方: Polyacrylamide gel chromogenic solution formula:
注:甲醛是临用前现加,其他三个按相应量提前配好。 Note: Formaldehyde is added before use, and the other three are prepared in advance according to the corresponding amount.
然后通过对RM14327和RM5474两标记之间的BAC序列进行分析,发展了新的Indel标记,最后将F2定位群体扩大到4291个进行精细定位,将YWL1精确定位于BAC克隆OSJNBa0016I15上的标记RM6829和RM14400间37.1kb的范围之内,如图5所示,通过分析此区段开放阅读框(ORF)推测候选基因并基因测序分析,寻找突变位点。 Then, by analyzing the BAC sequence between the two markers RM14327 and RM5474, a new Indel marker was developed, and finally the F2 mapping population was expanded to 4291 for fine mapping, and YWL1 was precisely located on the markers RM6829 and RM14400 on the BAC clone OSJNBa0016I15 Within the range of 37.1 kb, as shown in Figure 5, the candidate gene was deduced by analyzing the open reading frame (ORF) of this segment and sequenced to find the mutation site.
Indel标记引物序列: Indel marker primer sequence:
f)基因预测和比较分析 f) Gene prediction and comparative analysis
根据精细定位的结果,在37.1kb范围内根据RiceGAAS(Rice Automat ed Systrm,http://ricegaas.dna.affrc.go.jp/)和TIGR(http://rice.plantbiology.msu.edu/)的预测,发现在此区间内共有5个候选基因,对其进行序列比对分析分析,发现ORF5的1029-1046位18bp碱基缺失,进而造成该基因蛋白质序列中Asp214-Ser219位 6个氨基酸的缺失。野生型品种扩增的基因序列为SEQ ID NO.1,命名为YWL1基因,其编码的蛋白质测序得到的核苷酸序列为SEQ ID NO.2。 According to the results of fine positioning, in the range of 37.1kb according to RiceGAAS (Rice According to the prediction of Automat ed Systrm, http://ricegaas.dna.affrc.go.jp/) and TIGR (http://rice.plantbiology.msu.edu/), there are 5 candidate genes in this interval. It performed sequence comparison analysis and found that 1029-1046 18bp bases of ORF5 were missing, which in turn caused the deletion of 6 amino acids at Asp214-Ser219 in the protein sequence of the gene. The gene sequence amplified by the wild-type variety is SEQ ID NO.1, named YWL1 gene, the nucleotide sequence obtained by sequencing the encoded protein is SEQ ID NO.2.
实施例3:YWL1(SEQ ID NO.3)的叶绿体定位实验 Example 3: Chloroplast localization experiment of YWL1 (SEQ ID NO.3)
根据YWL1的全长CDS序列(SEQ ID NO.2)设计含BamHI的酶切识别位点,设计重组引物,其序列为: According to the full-length CDS sequence of YWL1 (SEQ ID NO.2), a restriction recognition site containing BamHI was designed, and recombinant primers were designed. The sequence is:
PGXhF: TTTCTCGAGATAAACCCCCTCCCACACTCTCCAC(SEQ ID NO.14) PGXhF: TTTCTCGAGATAAACCCCCTCCCACTCTCCAC (SEQ ID NO.14)
PGSalR: TTTGTCGAGCCAAATTTGATATTGCACAATGGGA(SEQ ID NO.15) PGSalR: TTTGTCGAGCCAAATTTGATATTGCACAATGGGA (SEQ ID NO.15)
以野生型cDNA为模板,用PrimeSTAR高保真酶扩增出YWL1基因的CDS序列(SEQ ID NO.2),扩增产物经测序验证序列正确后,与PAN580-GFP载体连接,得到融合表达载体35S::YWL1::GFP。 Using the wild-type cDNA as a template, the CDS sequence (SEQ ID NO.2) of the YWL1 gene was amplified with PrimeSTAR high-fidelity enzyme. After the sequence was verified to be correct, the amplified product was ligated with the PAN580-GFP vector to obtain the fusion expression vector 35S ::YWL1::GFP.
提取构建好融合表达载体35S::YWL1::GFP的质粒及无基因融合的35S::GFP对照质粒分别用金粉包裹,用Bio-rad公司的PDS-1000/He型基因枪在1100psi的氦压下轰击水稻前质体细胞。轰击后的水稻前质体细胞至于高渗培养基中暗培养16小时,然后置于荧光显微镜观察,YWL1::GFP融合蛋白定位在叶绿体内,而空载体GFP在整个细胞表达(图6)。该结果证明了YWL1 (SEQ ID NO.2)的功能,它是一个叶绿体定位蛋白。 Extract and construct the fusion expression vector 35S::YWL1::GFP plasmid and the 35S::GFP control plasmid without gene fusion respectively wrapped with gold powder, and use the PDS-1000/He type gene gun of Bio-rad company under the helium pressure of 1100psi Bombardment of rice preplastid cells. The rice preplastid cells after bombardment were cultured in hypertonic medium in the dark for 16 hours, and then observed under a fluorescent microscope. The YWL1::GFP fusion protein was localized in the chloroplast, while the empty vector GFP was expressed in the whole cell (Figure 6). This result demonstrates that YWL1 (SEQ ID NO.2) function, it is a chloroplast-localized protein.
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。 Finally, it should be noted that the above examples are only some specific embodiments of the present invention. Obviously, the present invention is not limited to the above embodiments, and many variations are possible. All deformations that can be directly derived or associated by those skilled in the art from the content disclosed in the present invention should be considered as the protection scope of the present invention.
序列表sequence listing
<110> 中国水稻研究所<110> China Rice Research Institute
<120>一种调控低温下叶片颜色的蛋白质及其基因和应用<120> A protein that regulates leaf color at low temperature and its gene and application
<130><130>
<160> 1 <160> 1
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 2402<211> 2402
<212> DNA<212> DNA
<213> (水稻) Oryza sativa<213> (Rice) Oryza sativa
<400> 1<400> 1
atccccttct tatccgctct gctctctcca cctcgcctcc ccgaaacgaa atggcagtgg 60atccccttct tatccgctct gctctctcca cctcgcctcc ccgaaacgaa atggcagtgg 60
cgttccactg aaccaggcca agccagacgg acaagacttc gccgcagccg cgtcctcctc 120cgttccactg aaccaggcca agccagacgg acaagacttc gccgcagccg cgtcctcctc 120
accgcgccgc cgtcgcaatg gctacggcca tcgcagcctc cgcgttcctc tcctccgcct 180accgcgccgc cgtcgcaatg gctacggcca tcgcagcctc cgcgttcctc tcctccgcct 180
tcgccaggga caggccgctc ccccgccagc ggcgcgcggc gaggcccgcg acccgccgcg 240tcgccaggga caggccgctc ccccgccagc ggcgcgcggc gaggcccgcg acccgccgcg 240
ccgccgcggg gggcctgtcg gtgcggtgcg agcagagcga gaagcagaag aggcagccgc 300ccgccgcggg gggcctgtcg gtgcggtgcg agcagagcga gaagcagaag aggcagccgc 300
tctccgcgct cgtcccccgc gagcagcgat tcatgttcga aggcgacgag ctctgcggcc 360tctccgcgct cgtcccccgc gagcagcgat tcatgttcga aggcgacgag ctctgcggcc 360
ccgtactaac cctcacctct ctttctctct cccgtataca ttcttctctt tctcagttca 420ccgtactaac cctcacctct ctttctctct cccgtataca ttcttctctt tctcagttca 420
gaaaatgaat agtaatgcta cattccttgg ataaagggaa attttaccgt gatttaggat 480gaaaatgaat agtaatgcta cattccttgg ataaagggaa attttaccgt gatttaggat 480
tgccgcttat ttaggaaagc tcaagattag tcccattcat ttctaaatcc gtaagtcact 540tgccgcttat ttaggaaagc tcaagattag tcccattcat ttctaaatcc gtaagtcact 540
tcatcttgct ctattgggtc aaatcctttc tttacatgaa taatgttagg gaaaatacac 600tcatcttgct ctattgggtc aaatcctttc ttacatgaa taatgttagg gaaaatacac 600
aatgttttta catgttacta taccgtatag accaccatct tattttattt aaagttatct 660aatgttttta catgttacta taccgtatag accaccatct tattttattt aaagttatct 660
agttgtaatt tattacgaaa gaggattcca taaaatgaac tgaaaataac atggagggaa 720agttgtaatt tattacgaaa gaggattcca taaaatgaac tgaaaataac atggagggaa 720
cgttggtctt tctgaattgg tcgctaacat tgtgttgtat tactcaacag tgttcgcacc 780cgttggtctt tctgaattgg tcgctaacat tgtgttgtat tactcaacag tgttcgcacc 780
tacatgacta ccatatcttt ttatctgtgg atgtttaggt ttgtgaagtt agaattcagt 840tacatgacta ccatatcttt ttatctgtgg atgtttaggt ttgtgaagtt agaattcagt 840
acggatacca ttcttgtgtt ctttctctct tttctgtgca acctgttctg tgtagtgatc 900acggatacca ttcttgtgtt ctttctctct tttctgtgca acctgttctg tgtagtgatc 900
ggaccaagga atttaatttg caggacatat ggaacacaac atggtaccct aaggctgcag 960ggaccaagga atttaatttg caggacatat ggaacacaac atggtaccct aaggctgcag 960
atcatgtaac tactgagaag acatggtatg ttgttgatgc aacagacaag attctaggta 1020atcatgtaac tactgagaag acatggtatg ttgttgatgc aacagacaag attctaggta 1020
ggcttgcatc caccattgca gtacacatca gaggaaagaa tgaggccaca tacactccaa 1080ggcttgcatc caccattgca gtacacatca gaggaaagaa tgaggccaca tacactccaa 1080
gtgtggacat gggggctttt gttgttgtgg tatgtatgtt tcttgaaatt aatttataaa 1140gtgtggacat gggggctttt gttgttgtgg tatgtatgtt tcttgaaatt aatttataaa 1140
gttaaatagt gcacacaata agatcctctg tagtcccaca aaaggaaaag aggtttagca 1200gttaaatagt gcacacaata agatcctctg tagtcccaca aaaggaaaag aggtttagca 1200
gcacatacaa ataagcacca aaaggtatct ggaagctgag gtccacctga aggcattttg 1260gcacatacaa ataagcacca aaaggtatct ggaagctgag gtccacctga aggcattttg 1260
aagctgattt catgtatata tatttatgtt actgtgtgct tttaatacta atgcatctct 1320aagctgattt catgtatata tattatgtt actgtgtgct tttaatacta atgcatctct 1320
gaagagtaat tgctacgcat atactattgt aagttcctga actaccatgc tgaactctat 1380gaagagtaat tgctacgcat atactattgt aagttcctga actaccatgc tgaactctat 1380
gttcacatag gttaatgcag agaaggttgc tgtttctggc aaaaagcggt cacagaagct 1440gttcacatag gttaatgcag agaaggttgc tgtttctggc aaaaagcggt cacagaagct 1440
ctacaggagg cactctggac ggcctggtgg aatgaaagaa gaaacttttg atcagcttca 1500cctacaggagg cactctggac ggcctggtgg aatgaaagaa gaaacttttg atcagcttca 1500
gaaaaggatt ccggagagaa ttattgaaca tgcagtgcgt ggcatgcttc ctaagggcag 1560gaaaaggatt ccggagagaa ttattgaaca tgcagtgcgt ggcatgcttc ctaagggcag 1560
agtaagacat catctcttag agctcttatc tagtcagttt catcaagtct ttttgacctt 1620agtaagacat catctcttag agctcttatc tagtcagttt catcaagtct ttttgacctt 1620
aagtcagcct acctgggtat acatatgctc ttatccttat ttttggtcaa tttctaatac 1680aagtcagcct acctgggtat acatatgctc ttatccttat ttttggtcaa tttctaatac 1680
atatctgaaa atgggtatcc tcgttctgtt ccattatact tcattattgt gtataattcc 1740atatctgaaa atgggtatcc tcgttctgtt ccattatact tcattattgt gtataattcc 1740
ccaactttat ataccctgtt catggaaata ttcgctctaa ttgaatgccg aaacggcgtg 1800ccaactttat ataccctgtt catggaaata ttcgctctaa ttgaatgccg aaacggcgtg 1800
ggctaacgaa gtactagatg tattctccca aaactcctat gttgcctgta agacatctta 1860ggctaacgaa gtactagatg tattctccca aaactcctat gttgcctgta agacatctta 1860
tgattgccta aagcctttta cttatgccta agttcattta taaaaaaaaa aaacgtttac 1920tgattgccta aagcctttta cttatgccta agttcattta taaaaaaaaaaaacgtttac 1920
tatgtcaacc tctcaagttc tcatatgtta gtgacactga cacatgtaat ccgaccaact 1980tatgtcaacc tctcaagttc tcatatgtta gtgacactga cacatgtaat ccgaccaact 1980
acagcggttg tacgtgctct atgtagcctt ctcaacattt tgaacatttt gcagctggga 2040acagcggttg tacgtgctct atgtagcctt ctcaacattttgaacatttt gcagctggga 2040
agaagactgt ttacccacct caaggtgtac aagggagcag aacatcccca tgaggctcaa 2100agaagactgt ttacccacct caaggtgtac aagggagcag aacatcccca tgaggctcaa 2100
aaacctgttc cactgcctat caaggataaa agaatacaga agtctgagaa gtagataatt 2160aaacctgttc cactgcctat caaggataaa agaatacaga agtctgagaa gtagataatt 2160
cctgtggaga ctaagaaaga cacaacaatc tcacgtaaat tcctcccctc gagattttgt 2220cctgtggaga ctaagaaaga cacaacaatc tcacgtaaat tcctcccctc gagattttgt 2220
ccaatctttg gaatgtgatg catctgtctg tttggggaat ggagtgtaaa attttttgta 2280ccaatctttg gaatgtgatg catctgtctg tttggggaat ggagtgtaaa attttttgta 2280
atttacttcc tccaaaagtt tgtgtttcta agtcatagtt cttgttgatt acatatcatg 2340atttacttcc tccaaaagtt tgtgtttcta agtcatagtt cttgttgatt acatatcatg 2340
tacctaatac cgtacgattt taagcaatcc gatatttcca tatccaattg agtagtgcaa 2400tacctaatac cgtacgattt taagcaatcc gatatttcca tatccaattg agtagtgcaa 2400
tt 2402tt 2402
<210> 2<210> 2
<211> 702<211> 702
<212> DNA<212> DNA
<213> (水稻)Oryza sativa<213> (Rice) Oryza sativa
<400> 2<400> 2
atggctacgg ccatcgcagc ctccgcgttc ctctcctccg ccttcgccag ggacaggccg 60atggctacgg ccatcgcagc ctccgcgttc ctctcctccg ccttcgccag ggacaggccg 60
ctcccccgcc agcggcgcgc ggcgaggccc gcgacccgcc gcgccgccgc ggggggcctg 120ctcccccgcc agcggcgcgc ggcgaggccc gcgacccgcc gcgccgccgc ggggggcctg 120
tcggtgcggt gcgagcagag cgagaagcag aagaggcagc cgctctccgc gctcgtcccc 180tcggtgcggt gcgagcagag cgagaagcag aagaggcagc cgctctccgc gctcgtcccc 180
cgcgagcagc gattcatgtt cgaaggcgac gagctctgcg gccccgacat atggaacaca 240cgcgagcagc gattcatgtt cgaaggcgac gagctctgcg gccccgacat atggaacaca 240
acatggtacc ctaaggctgc agatcatgta actactgaga agacatggta tgttgttgat 300acatggtacc ctaaggctgc agatcatgta actactgaga agacatggta tgttgttgat 300
gcaacagaca agattctagg taggcttgca tccaccattg cagtacacat cagaggaaag 360gcaacagaca agattctagg taggcttgca tccaccattg cagtacacat cagaggaaag 360
aatgaggcca catacactcc aagtgtggac atgggggctt ttgttgttgt ggttaatgca 420aatgaggcca catacactcc aagtgtggac atggggggctt ttgttgttgt ggttaatgca 420
gagaaggttg ctgtttctgg caaaaagcgg tcacagaagc tctacaggag gcactctgga 480gagaaggttg ctgtttctgg caaaaagcgg tcacagaagc tctacaggag gcactctgga 480
cggcctggtg gaatgaaaga agaaactttt gatcagcttc agaaaaggat tccggagaga 540cggcctggtg gaatgaaaga agaaactttt gatcagcttc agaaaaggat tccggagaga 540
attattgaac atgcagtgcg tggcatgctt cctaagggca gactgggaag aagactgttt 600attattgaac atgcagtgcg tggcatgctt cctaagggca gactgggaag aagactgttt 600
acccacctca aggtgtacaa gggagcagaa catccccatg aggctcaaaa acctgttcca 660accccacctca aggtgtacaa gggagcagaa catccccatg aggctcaaaa acctgttcca 660
ctgcctatca aggataaaag aatacagaag tctgagaagt ag 702ctgcctatca aggataaaag aatacagaag tctgagaagt ag 702
<210> 3<210> 3
<211> 228<211> 228
<212> PRT<212> PRT
<213> (水稻)Oryza sativa<213> (Rice) Oryza sativa
<400> 3<400> 3
Met Ala Thr Ala Ile Ala Ala Ser Ala Phe Leu Ser Ser Ala Phe AlaMet Ala Thr Ala Ile Ala Ala Ser Ala Phe Leu Ser Ser Ala Phe Ala
1 5 10 15 1 5 10 15
Arg Asp Arg Pro Leu Pro Arg Gln Arg Arg Ala Ala Arg Pro Ala ThrArg Asp Arg Pro Leu Pro Arg Gln Arg Arg Ala Ala Arg Pro Ala Thr
20 25 30 20 25 30
Arg Arg Ala Ala Ala Gly Gly Leu Ser Val Arg Cys Glu Gln Ser GluArg Arg Ala Ala Ala Gly Gly Leu Ser Val Arg Cys Glu Gln Ser Glu
35 40 45 35 40 45
Lys Gln Lys Arg Gln Pro Leu Ser Ala Leu Val Pro Arg Glu Gln ArgLys Gln Lys Arg Gln Pro Leu Ser Ala Leu Val Pro Arg Glu Gln Arg
50 55 60 50 55 60
Phe Met Phe Glu Gly Asp Glu Leu Cys Gly Pro Asp Ile Trp Asn ThrPhe Met Phe Glu Gly Asp Glu Leu Cys Gly Pro Asp Ile Trp Asn Thr
65 70 75 80 65 70 75 80
Thr Trp Tyr Pro Lys Ala Ala Asp His Val Thr Thr Glu Lys Thr TrpThr Trp Tyr Pro Lys Ala Ala Asp His Val Thr Thr Glu Lys Thr Trp
85 90 95 85 90 95
Tyr Val Val Asp Ala Thr Asp Lys Ile Leu Gly Arg Leu Ala Ser ThrTyr Val Val Asp Ala Thr Asp Lys Ile Leu Gly Arg Leu Ala Ser Thr
100 105 110 100 105 110
Ile Ala Val His Ile Arg Gly Lys Asn Glu Ala Thr Tyr Thr Pro SerIle Ala Val His Ile Arg Gly Lys Asn Glu Ala Thr Tyr Thr Pro Ser
115 120 125 115 120 125
Val Asp Met Gly Ala Phe Val Val Val Val Ala Val Ser Gly Lys LysVal Asp Met Gly Ala Phe Val Val Val Val Ala Val Ser Gly Lys Lys
130 135 140 130 135 140
Arg Ser Gln Lys Leu Tyr Arg Arg His Ser Gly Arg Pro Gly Gly MetArg Ser Gln Lys Leu Tyr Arg Arg His Ser Gly Arg Pro Gly Gly Met
145 150 155 160145 150 155 160
Lys Glu Glu Thr Phe Asp Gln Leu Gln Lys Arg Ile Pro Glu Arg IleLys Glu Glu Thr Phe Asp Gln Leu Gln Lys Arg Ile Pro Glu Arg Ile
165 170 175 165 170 175
Ile Glu His Ala Val Arg Gly Met Leu Pro Lys Gly Arg Leu Gly ArgIle Glu His Ala Val Arg Gly Met Leu Pro Lys Gly Arg Leu Gly Arg
180 185 190 180 185 190
Arg Leu Phe Thr His Leu Lys Val Tyr Lys Gly Ala Glu His Pro HisArg Leu Phe Thr His Leu Lys Val Tyr Lys Gly Ala Glu His Pro His
195 200 205 195 200 205
Glu Ala Gln Lys Pro Val Pro Leu Pro Ile Lys Asp Lys Arg Ile GlnGlu Ala Gln Lys Pro Val Pro Leu Pro Ile Lys Asp Lys Arg Ile Gln
210 215 220 210 215 220
Lys Ser Glu LysLys Ser Glu Lys
225 225
<210> 4<210> 4
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequence
<400> 4<400> 4
gatgcagtag gaacaccaaa cagcgatgcagtag gaacaccaaa cagc
<210> 5<210> 5
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequence
<400> 5<400> 5
atcgagtacc aagtgcctgt gc atcgagtacc aagtgcctgt gc
<210> 6<210> 6
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequence
<400> 6<400> 6
gtgggtttgt gtttggagag acg gtgggtttgt gtttggagag acg
<210> 7<210> 7
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequence
<400> 7<400> 7
gtgttggtga gcatagcagt tgggtgttggtga gcatagcagt tgg
<210> 8<210> 8
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequence
<400> 8<400> 8
cgatgaagag ccaatccttc agc cgatgaagag ccaatccttc agc
<210> 9<210> 9
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequence
<400> 9<400> 9
tgctcgtccc ttctacaaac aggtgctcgtccc ttctacaaac agg
<210> 10<210> 10
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequence
<400> 10<400> 10
ggcagcgagt aagtgtagat tggggcagcgagt aagtgtagat tgg
<210> 11<210> 11
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequence
<400> 11<400> 11
tgttggtata agacaggtgc atggtgttggtataagacagggtgc atgg
<210> 12<210> 12
<211> 35<211> 35
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequence
<400> 12<400> 12
gcaggtcgac ggatcctatc cgataaccga taaacgcaggtcgac ggatcctatc cgataaccga taaac
<210> 13<210> 13
<211> 35<211> 35
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequence
<400> 13<400> 13
gaattcccgg ggatcccata agcaggtttg agaaggaattcccgg ggatcccata agcaggtttg agaag
<210> 14<210> 14
<211> 35<211> 35
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequence
<400> 14<400> 14
tttctcgaga taaaccccct cccacactct ccactttctcgaga taaaccccct cccacactct ccac
<210> 15<210> 15
<211> 35<211> 35
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequence
<400> 15<400> 15
tttgtcgagc caaatttgat attgcacaat gggatttgtcgagc caaatttgat attgcacaat ggga
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310387533.5A CN103497954B (en) | 2013-08-31 | 2013-08-31 | A kind of regulate and control the protein of low temperature lower blade color and gene thereof and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310387533.5A CN103497954B (en) | 2013-08-31 | 2013-08-31 | A kind of regulate and control the protein of low temperature lower blade color and gene thereof and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103497954A CN103497954A (en) | 2014-01-08 |
CN103497954B true CN103497954B (en) | 2016-08-17 |
Family
ID=49863217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310387533.5A Active CN103497954B (en) | 2013-08-31 | 2013-08-31 | A kind of regulate and control the protein of low temperature lower blade color and gene thereof and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103497954B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104131013A (en) * | 2014-07-28 | 2014-11-05 | 华中农业大学 | Gene OsSWEET5 for regulating and controlling paddy rice leaf blade senility and application thereof |
CN104593395A (en) * | 2014-12-26 | 2015-05-06 | 中国水稻研究所 | Gene YWL1 for controlling rice leaf color at low temperature and application of gene YWL1 |
CN105175520A (en) * | 2015-08-13 | 2015-12-23 | 中国水稻研究所 | Rice ferredoxin coding gene OsFDC2 and its application |
CN105713910B (en) * | 2016-01-28 | 2020-10-16 | 上海师范大学 | A temperature-regulated rice leaf color gene and its detection method and application |
CN106318923B (en) * | 2016-08-19 | 2019-10-01 | 中国水稻研究所 | The protein and its gene of a kind of High Temperature Stress down regulation Development of Chloroplasts and application |
CN110964730B (en) * | 2019-12-11 | 2021-06-18 | 浙江大学 | Application of rice leaf whitening trait gene OsLCD1 in regulation and control of rice leaf color trait |
CN113607124B (en) * | 2021-08-02 | 2022-05-03 | 中国农业大学 | A method for measuring the degree of crop leaf curling based on the comparison of leaf cuticle conductance |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2096177A2 (en) * | 2004-12-17 | 2009-09-02 | Metanomics GmbH | Process for the production of lutein |
CN103290027A (en) * | 2013-04-27 | 2013-09-11 | 中国水稻研究所 | Protein for regulating and controlling chloroplast growth and gene and application thereof |
-
2013
- 2013-08-31 CN CN201310387533.5A patent/CN103497954B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2096177A2 (en) * | 2004-12-17 | 2009-09-02 | Metanomics GmbH | Process for the production of lutein |
CN103290027A (en) * | 2013-04-27 | 2013-09-11 | 中国水稻研究所 | Protein for regulating and controlling chloroplast growth and gene and application thereof |
Non-Patent Citations (2)
Title |
---|
Os01g0749200 [Oryza sativa Japonica Group];Tanaka,T., 等;《NCBI Reference Sequence: NP_001044246.1》;20100608;1 * |
一个水稻"斑马叶"叶色突变体基因zebraleaf2(zl2)的图位克隆;刘胜, 等;《中国水稻科学》;20130510;第27卷(第3期);231-239 * |
Also Published As
Publication number | Publication date |
---|---|
CN103497954A (en) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8637735B2 (en) | Method for improving stress resistance in plants and materials therefor | |
CN103497954B (en) | A kind of regulate and control the protein of low temperature lower blade color and gene thereof and application | |
CN103290027B (en) | A kind of regulation and control Development of Chloroplasts protein and gene thereof and application | |
CN104152463B (en) | Coding sequence of AaMYBL1 protein of artemisia apiacea and application thereof | |
CN110904122B (en) | An apple drought resistance gene MdbHLH130 and its application | |
Wang et al. | Characterization of HAK protein family in Casuarina equisetifolia and the positive regulatory role of CeqHAK6 and CeqHAK11 genes in response to salt tolerance | |
Saravanan et al. | Genetic engineering of sugarcane for drought and salt tolerant transgenic plants expressing the BcZAT12 Gene | |
CN111909941A (en) | A lily transcription factor gene LrWRKY-L1 and its application | |
Li et al. | A novel Populus euphratica DUB gene, PeMINDY3, enhances drought and salt tolerance by promoting ROS scavenging | |
CN114292855A (en) | PagARR9 gene for regulating and controlling growth of xylem of poplar and application thereof | |
CN102250228B (en) | Method for improving rice potassium ion efflux antiporter | |
Yu et al. | Chimeric mutations in grapevine ENHANCED DISEASE RESISTANCE1 improve resistance to powdery mildew without growth penalty | |
CN112029794B (en) | Application of G protein alpha subunit in improving cucumber endogenous hormone salicylic acid content | |
US10689660B2 (en) | Compositions and methods for mediating plant stomatal development in response to carbon dioxide and applications for engineering drought tolerance in plants | |
CN105175520A (en) | Rice ferredoxin coding gene OsFDC2 and its application | |
Jiang et al. | Mutation of rice SM1 enhances solid leaf midrib formation and increases methane emissions | |
Fan et al. | Prunus mume genome research: Current status and prospects | |
CN112899292B (en) | Upland cotton plant height regulation gene GhGA20ox6 and its application | |
CN115074381B (en) | Method for regulating plant height or biomass property of gramineous plants and application thereof | |
CN104592370A (en) | OsPYL9 protein, OsPYL9 protein coding gene and applications of OsPYL9 protein | |
CN106148297B (en) | rice plastid development regulatory gene FLN2 and application thereof | |
CN103509804B (en) | Ammopiptanthus mongolicus low-temperature stress related gene, and expression carrier and applications thereof | |
CN103451191B (en) | Fortunella crassfolia FcSILP gene and application thereof for improving plant adverse resistance | |
CN104593395A (en) | Gene YWL1 for controlling rice leaf color at low temperature and application of gene YWL1 | |
CN106831966A (en) | Strengthen gene and its application of plant salt tolerance alkaline stress ability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |