[go: up one dir, main page]

CN103484418A - Gluconobacter oxydans gene engineering bacteria for producing 2-KLG and its application - Google Patents

Gluconobacter oxydans gene engineering bacteria for producing 2-KLG and its application Download PDF

Info

Publication number
CN103484418A
CN103484418A CN201310466179.5A CN201310466179A CN103484418A CN 103484418 A CN103484418 A CN 103484418A CN 201310466179 A CN201310466179 A CN 201310466179A CN 103484418 A CN103484418 A CN 103484418A
Authority
CN
China
Prior art keywords
sndh
sdh
klg
oxydans
genetically engineered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310466179.5A
Other languages
Chinese (zh)
Inventor
陈坚
周景文
高丽丽
堵国成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201310466179.5A priority Critical patent/CN103484418A/en
Publication of CN103484418A publication Critical patent/CN103484418A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种生产2-KLG的氧化葡萄糖酸杆菌基因工程菌及其应用,本发明通过基因工程技术,将来源于普通生酮基古龙酸菌(Ketogulonigenium vulgare)的山梨糖脱氢酶(SDH)、山梨酮脱氢酶(SNDH)基因,通过连接肽连接后表达于氧化葡萄糖酸杆菌中,获得了高效生产2-KLG的G.oxydans工程菌。G.oxydans是二步发酵法生产2-KLG中第一步发酵过程常用菌种,将sdh、sndh基因表达于G.oxydans中,可以解除小菌对伴生菌依赖的问题,实现了从D-山梨醇到2-KLG的直接转化,简化了维生素C生产工艺,2-KLG的产量可达32.4g/L,具有很好的应用前景。The invention discloses a genetic engineering bacterium of Gluconobacter oxydans producing 2-KLG and its application. The invention uses genetic engineering technology to synthesize sorbose dehydrogenase ( SDH) and sorbone dehydrogenase (SNDH) genes were expressed in Gluconobacter oxydans after linking with peptides, and G.oxydans engineering bacteria that efficiently produced 2-KLG were obtained. G.oxydans is a commonly used strain in the first step of the fermentation process in the production of 2-KLG by the two-step fermentation method. Expressing the sdh and sndh genes in G.oxydans can relieve the problem of the dependence of the small bacteria on the accompanying bacteria and realize the transformation from D- The direct conversion of sorbitol to 2-KLG simplifies the production process of vitamin C, and the output of 2-KLG can reach 32.4g/L, which has a good application prospect.

Description

一种生产2-KLG的氧化葡萄糖酸杆菌基因工程菌及其应用A kind of genetically engineered bacterium of Gluconobacter oxydans producing 2-KLG and its application

技术领域technical field

本发明涉及一种氧化葡萄糖酸杆菌工程菌及其应用,特别是一种生产2-KLG的氧化葡萄糖酸杆菌工程菌及其应用,属于遗传工程领域。The invention relates to an engineering bacterium of Gluconobacter oxydans and its application, in particular to an engineering bacterium of Gluconobacter oxydans producing 2-KLG and its application, belonging to the field of genetic engineering.

背景技术Background technique

维生素C(Vitamin C,VC),又称为抗坏血酸(Ascorbic acid),是一种人体必需的维生素和抗氧化剂,广泛应用于医药、食品、饲料和化妆品等工业。目前国内维生素C工业化生产采用二步发酵法,在第二步混合菌发酵体系中,执行糖酸转化的微生物只有小菌,小菌单独生长很困难,需要与大菌共同培养才能正常生长。两种菌的发酵控制为生产工艺增加了很大困难,且小菌产酸性状不稳定,因而导致生产不稳定,经常因菌种退化造成倒罐,导致生产上屡屡遭受重大损失。我国维生素C发酵技术从山梨醇到2-KLG的发酵过程由3种细菌参与,势必在微生物代谢过程中造成底物和培养基的大量浪费,发酵过程分为两步不但延长了生产周期还造成能源和人力的大量浪费。因此,现有维生素C两步发酵工艺尚存在巨大技术进步的潜力。G.oxydans是二步发酵法生产2-KLG中第一步发酵过程常用菌种,通过基因工程手段将维生素C两步发酵有关基因转化到G.oxydans中构建得到一步发酵菌株,实现由山梨醇经单菌一步发酵生成2-KLG,解除了小菌对伴生菌依赖的问题,简化了维生素C生产工艺。Vitamin C (Vitamin C, VC), also known as Ascorbic acid (Ascorbic acid), is an essential vitamin and antioxidant, widely used in industries such as medicine, food, feed and cosmetics. At present, the industrial production of vitamin C in China adopts a two-step fermentation method. In the second-step mixed-bacteria fermentation system, only small bacteria perform sugar-acid conversion. It is difficult for small bacteria to grow alone, and they need to be co-cultured with large bacteria to grow normally. The fermentation control of the two kinds of bacteria has added great difficulties to the production process, and the acid-producing properties of the small bacteria are unstable, resulting in unstable production, and the tanks are often inverted due to the degradation of the bacteria, resulting in repeated heavy losses in production. The fermentation process of my country's vitamin C fermentation technology from sorbitol to 2-KLG involves three kinds of bacteria, which will inevitably cause a lot of waste of substrate and medium in the process of microbial metabolism. The fermentation process is divided into two steps, which not only prolongs the production cycle but also causes A huge waste of energy and manpower. Therefore, the existing vitamin C two-step fermentation process still has great potential for technological progress. G.oxydans is a commonly used strain in the first step of fermentation in the production of 2-KLG by the two-step fermentation method. Through genetic engineering, the genes related to the two-step fermentation of vitamin C are transformed into G.oxydans to construct a one-step fermentation strain, which realizes the production of sorbitol 2-KLG is produced by one-step fermentation of a single bacterium, which solves the problem of the dependence of small bacteria on associated bacteria and simplifies the production process of vitamin C.

采用连接肽工程改造G.oxydans一步菌生产维生素C合成前体2-KLG国内未见有相关报道。There is no relevant report in China on the production of vitamin C synthetic precursor 2-KLG by using connecting peptide engineering to transform G.oxydans one-step bacteria.

发明内容Contents of the invention

本发明的目的是提供一种生产2-KLG的氧化葡萄糖酸杆菌工程菌。The object of the present invention is to provide a 2-KLG-producing Gluconobacter oxydans engineering bacteria.

所述工程菌表达sdh、sndh基因,sdh、sndh基因通过连接肽进行连接。The engineering bacterium expresses sdh and sndh genes, and the sdh and sndh genes are connected through connecting peptides.

所述sdh、sndh基因核苷酸序列如KVU-0203、NCBI登陆号为AEM40042.1,KVU-0095NCBI登陆号为AEM39934.1所示。The nucleotide sequences of the sdh and sndh genes are shown as KVU-0203, whose NCBI accession number is AEM40042.1, and KVU-0095, whose NCBI accession number is AEM39934.1.

所述sdh、sndh融合基因克隆于G.oxydans-E.coli穿梭质粒载体pGUC1上。The sdh and sndh fusion genes are cloned on the G.oxydans-E.coli shuttle plasmid vector pGUC1.

本发明要解决的另一个技术问题是提供一种生产2-KLG的G.oxydans基因工程菌的构建方法。Another technical problem to be solved by the present invention is to provide a method for constructing a 2-KLG-producing G.oxydans genetically engineered bacterium.

为解决上述技术问题,本发明的具体方案为:In order to solve the problems of the technologies described above, the specific solutions of the present invention are:

1)根据本实验室对K.vulgare WSH-001的全基因组测序结果中注释的sdh、sndh(NCBI登陆号为AEM40042.1、AEM39934.1)基因序列设计引物克隆sdh/sndh基因或通过化学全合成获得基因,通过融合PCR将sdh和sndh以不同的连接肽进行连接;1) Design primers to clone sdh/sndh gene according to the gene sequence of sdh and sndh (NCBI accession numbers are AEM40042.1 and AEM39934.1) annotated in the whole genome sequencing results of K.vulgare WSH-001 in our laboratory or through chemical whole The gene is synthesized, and sdh and sndh are connected with different connecting peptides by fusion PCR;

2)将sdh、sndh融合基因与载体连接得到重组表达载体;2) Connect the sdh and sndh fusion genes to the vector to obtain a recombinant expression vector;

3)将得到的重组表达载体转化氧化葡萄糖酸杆菌(Gluconobacter oxydans)后得到重组菌株。3) Transform the obtained recombinant expression vector into Gluconobacter oxydans to obtain a recombinant strain.

下面是本发明技术方案的具体描述:Below is the concrete description of technical scheme of the present invention:

质粒及重组菌的构建Construction of plasmids and recombinant bacteria

将本实验室对K.vulgare WSH-001的全基因组测序结果中注释的sdh及sndh基因序列分别以连有10种连接肽(GGGGS、GGGGSGGGGS、GGGGSGGGGSGGGGS、PTPTP、PTPTPTPTP、PTPTPTPTPTPTPTP、EAAAK、EAAAKEAAAK、EAAAKEAAAKEAAAK及SSSNNNNNNNNNN)的引物进行扩增,通过PCR融合后连接到克隆载体pMD19-T测序,同时将来源于G.oxydans的强启动子tufB进行扩增连接到克隆载体pMD19-T测序,获得正确的转化子后进行双酶切连接到E.coli-G.oxydans穿梭质粒载体pGUC1,构建得到10个融合表达载体pGUC-tufB-sdh-GS-sndh、pGUC-tufB-sdh-GS2-sndh、pGUC-tufB-sdh-GS3-sndh、pGUC-tufB-sdh-PT-sndh、pGUC-tufB-sdh-PT4-sndh、pGUC-tufB-sdh-PT7-sndh、pGUC-tufB-sdh-EAK-sndh、pGUC-tufB-sdh-EAK2-sndh、pGUC-tufB-sdh-EAK3-sndh及pGUC-tufB-sdh-S3N10-sndh。将构建好的重组表达载体转化E.coli JM109,菌落PCR验证阳性转化子(出现约3027bp的条带),通过三亲本杂交的方法将重组表达载体转移至G.oxydansWSH-003中。The sdh and sndh gene sequences annotated in the whole genome sequencing results of K. vulgare WSH-001 in our laboratory were connected with 10 kinds of connecting peptides (GGGGS, GGGGSGGGGS, GGGGSGGGGSGGGGS, PTPTP, PTPTPTPTP, PTPTPTPTPTPTPTP, EAAAK, EAAAKEAAAK, EAAAKEAAAKEAAAK and SSSNNNNNNNNNNNN) primers were amplified, and then connected to the cloning vector pMD19-T for sequencing after fusion by PCR. At the same time, the strong promoter tufB derived from G.oxydans was amplified and connected to the cloning vector pMD19-T for sequencing to obtain the correct transformation Afterwards, double enzyme digestion was performed and connected to the E.coli-G.oxydans shuttle plasmid vector pGUC1 to construct 10 fusion expression vectors pGUC-tufB-sdh-GS-sndh, pGUC-tufB-sdh-GS 2 -sndh, pGUC- tufB-sdh-GS 3 -sndh, pGUC-tufB-sdh-PT-sndh, pGUC-tufB-sdh-PT 4 -sndh, pGUC-tufB-sdh-PT 7 -sndh, pGUC-tufB-sdh-EAK-sndh , pGUC-tufB-sdh-EAK 2 -sndh, pGUC-tufB-sdh-EAK 3 -sndh and pGUC-tufB-sdh-S 3 N 10 -sndh. The constructed recombinant expression vector was transformed into E.coli JM109, the positive transformant was verified by colony PCR (a band of about 3027bp appeared), and the recombinant expression vector was transferred to G.oxydansWSH-003 by the method of three-parent hybridization.

重组菌的种子培养及发酵Seed culture and fermentation of recombinant bacteria

种子培养基(g/L):山梨醇15,酵母粉1.0,pH4.8~5.1,琼脂20(固体培养基),121℃灭菌15min,氨苄青霉素终浓度100μg/mL。Seed medium (g/L): sorbitol 15, yeast powder 1.0, pH 4.8-5.1, agar 20 (solid medium), sterilized at 121°C for 15 minutes, final concentration of ampicillin 100 μg/mL.

发酵培养基(g/L):山梨醇15,酵母粉1.2,氯化钙0.2,初始pH5.1~5.4,121℃灭菌15min,氨苄青霉素终浓度100μg/mL。Fermentation medium (g/L): sorbitol 15, yeast powder 1.2, calcium chloride 0.2, initial pH 5.1-5.4, sterilized at 121°C for 15 minutes, final concentration of ampicillin 100 μg/mL.

培养条件:从固体平板上刮取几环菌体接种于装有50mL液体培养基(加入终浓度75μg/mL氨苄青霉素)的500mL双刺摇瓶中,30℃旋转式摇床200r/min振荡培养至对数生长期(30h左右),按15%(v/v)接种量转接至终浓度75μg/mL氨苄青霉素的新鲜培养基,再培养至对数生长期,按15%(v/v)接种量转接发酵培养基,30℃,200r/min,发酵168h。Culture conditions: Scrape a few rings of bacteria from the solid plate and inoculate them into a 500mL double-thorn shaker flask filled with 50mL of liquid medium (added with a final concentration of 75μg/mL ampicillin), and culture in a rotary shaker at 30°C at 200r/min When reaching the logarithmic growth phase (about 30h), transfer it to a fresh medium with a final concentration of 75 μg/mL ampicillin according to 15% (v/v) inoculation amount, and then culture until the logarithmic growth phase. ) inoculum amount was transferred to the fermentation medium, 30°C, 200r/min, and fermented for 168h.

山梨醇、2-KLG含量测定:液相色谱(LC)Determination of sorbitol and 2-KLG content: liquid chromatography (LC)

发酵样品用流动相十倍稀释,0.45μm滤膜过滤。Agilent1100system,RioRad公司AminexHPX-87H色谱柱;流动相:2.75μmol/L浓硫酸;柱温:35℃;流速:0.6mL/min;进样量:5μL;检测器:示差折光检测器。Fermentation samples were diluted tenfold with mobile phase and filtered through a 0.45 μm filter membrane. Agilent1100system, Aminex HPX-87H chromatographic column of RioRad Company; mobile phase: 2.75 μmol/L concentrated sulfuric acid; column temperature: 35°C; flow rate: 0.6mL/min; injection volume: 5 μL; detector: differential refractive index detector.

本发明通过基因工程改造,将来源于普通生酮基古龙酸菌(Ketogulonigenium vulgare)的sdh、sndh基因以不同的连接肽融合后表达于氧化G.oxydans WSH-003中,获得了10株利用山梨醇生产2-KLG的G.oxydans工程菌。采用G.oxydans工程菌利用山梨醇一步发酵生产2-KLG,解除了小菌对伴生菌依赖的问题,简化了维生素C生产工艺。2-KLG的产量可达34.8g/L,具有很好的应用前景。本发明提供的构建方法简单,适于标准化。In the present invention, sdh and sndh genes derived from Ketogulonigenium vulgare are expressed in oxidized G. oxydans WSH-003 after fusion with different linking peptides through genetic engineering transformation, and 10 strains using Sorbus Alcohol-producing 2-KLG engineered bacteria of G.oxydans. G.oxydans engineering bacteria are used to produce 2-KLG by one-step fermentation of sorbitol, which solves the problem of the dependence of small bacteria on accompanying bacteria and simplifies the production process of vitamin C. The output of 2-KLG can reach 34.8g/L, which has a good application prospect. The construction method provided by the invention is simple and suitable for standardization.

附图说明Description of drawings

图1采用10种连接肽将山梨糖脱氢酶和山梨酮脱氢酶进行融合后2-KLG产量。G.oxydans/pGUC-t-sdh-GS-sndh(1),G.oxydans/pGUC-t-sdh-(GS)2-sndh(2),G.oxydans/pGUC-t-sdh-(GS)3-sndh(3),G.oxydans/pGUC-t-sdh-(PT)2P-sndh(4),G.oxydans/pGUC-t-sdh-(PT)4P-sndh(5),G.oxydans/pGUC-t-sdh-(PT)7P-sndh(6),G.oxydans/pGUC-t-sdh-EAK-sndh(7),G.oxydans/pGUC-t-sdh-(EAK)2-sndh(8),G.oxydans/pGUC-t-sdh-(EAK)3-sndh(9),G.oxydans/pGUC-t-sdh-S3N10-sndh(10)。Fig. 1 2-KLG yield after fusion of sorbose dehydrogenase and sorbone dehydrogenase by using 10 kinds of connecting peptides. G.oxydans/pGUC-t-sdh-GS-sndh(1), G.oxydans/pGUC-t-sdh-(GS) 2- sndh(2), G.oxydans/pGUC-t-sdh-(GS) 3- sndh(3), G.oxydans/pGUC-t-sdh-(PT) 2 P-sndh(4), G.oxydans/pGUC-t-sdh-(PT) 4 P-sndh(5), G .oxydans/pGUC-t-sdh-(PT) 7 P-sndh(6), G.oxydans/pGUC-t-sdh-EAK-sndh(7), G.oxydans/pGUC-t-sdh-(EAK) 2 -sndh (8), G.oxydans/pGUC-t-sdh-(EAK) 3 -sndh (9), G.oxydans/pGUC-t-sdh-S 3 N 10 -sndh (10).

具体实施方式Detailed ways

实施例1表达载体的构建The construction of embodiment 1 expression vector

将本实验室对K.vulgare WSH-001的全基因组测序结果中注释的sdh及sndh基因序列分别以连有10种连接肽(GGGGS、GGGGSGGGGS、GGGGSGGGGSGGGGS、PTPTP、PTPTPTPTP、PTPTPTPTPTPTPTP、EAAAK、EAAAKEAAAK、EAAAKEAAAKEAAAK及SSSNNNNNNNNNN)的引物进行扩增,通过PCR融合后连接克隆载体pMD19-T进行测序,同时将来源于G.oxydans的强启动子tufB进行扩增连接到克隆载体pMD19-T测序,获得正确的转化子后进行双酶切连接到E.coli-G.oxydans穿梭质粒载体pGUC1,构建到10个融合表达载体pGUC-tufB-sdh-GS-sndh、pGUC-tufB-sdh-GS2-sndh、pGUC-tufB-sdh-GS3-sndh、pGUC-tufB-sdh-PT-sndh、pGUC-tufB-sdh-PT4-sndh、pGUC-tufB-sdh-PT7-sndh、pGUC-tufB-sdh-EAK-sndh、pGUC-tufB-sdh-EAK2-sndh、pGUC-tufB-sdh-EAK3-sndh及pGUC-tufB-sdh-S3N10-sndh。The sdh and sndh gene sequences annotated in the whole genome sequencing results of K. vulgare WSH-001 in our laboratory were connected with 10 kinds of connecting peptides (GGGGS, GGGGSGGGGS, GGGGSGGGGSGGGGS, PTPTP, PTPTPTPTP, PTPTPTPTPTPTPTP, EAAAK, EAAAKEAAAK, EAAAKEAAAKEAAAK and SSSNNNNNNNNNNNN) primers were amplified, and sequenced by connecting the cloning vector pMD19-T after PCR fusion. At the same time, the strong promoter tufB derived from G.oxydans was amplified and connected to the cloning vector pMD19-T for sequencing to obtain the correct transformation After double enzyme digestion, it was connected to the E.coli-G.oxydans shuttle plasmid vector pGUC1, and 10 fusion expression vectors pGUC-tufB-sdh-GS-sndh, pGUC-tufB-sdh-GS 2 -sndh, pGUC- tufB-sdh-GS 3 -sndh, pGUC-tufB-sdh-PT-sndh, pGUC-tufB-sdh-PT 4 -sndh, pGUC-tufB-sdh-PT 7 -sndh, pGUC-tufB-sdh-EAK-sndh , pGUC-tufB-sdh-EAK 2 -sndh, pGUC-tufB-sdh-EAK 3 -sndh and pGUC-tufB-sdh-S 3 N 10 -sndh.

实施例2G.oxydans工程菌的构建The construction of embodiment 2G.oxydans engineering bacteria

将构建好的表达载体转化到E.coli JM109,涂布到含有氨苄青霉素的LB培养基上(酵母膏5g/L,蛋白胨10g/L,NaCl10g/L,固体培养基加20g/L琼脂,121℃灭菌15min),挑取转化后平板上的转化子进行PCR验证,出现约3027bp的条带,证明已成功转化到E.coliJM109中,再通过三亲本杂交的方法转移至G.oxydans WSH-003中,得到10株G.oxydans工程菌。The constructed expression vector was transformed into E.coli JM109, spread on the LB medium containing ampicillin (yeast extract 5g/L, peptone 10g/L, NaCl10g/L, solid medium plus 20g/L agar, 121 ℃ sterilized for 15 min), pick the transformant on the transformed plate for PCR verification, and a band of about 3027bp appears, which proves that it has been successfully transformed into E.coliJM109, and then transferred to G.oxydans WSH- In 003, 10 strains of G.oxydans engineering bacteria were obtained.

实施例3发酵生产2-KLGEmbodiment 3 fermentation produces 2-KLG

种子培养基(g/L):山梨醇15,酵母粉1,pH4.8~5.1,琼脂20(固体培养基),121℃灭菌15min,氨苄青霉素终浓度100μg/mL。Seed medium (g/L): sorbitol 15, yeast powder 1, pH 4.8-5.1, agar 20 (solid medium), sterilized at 121°C for 15 minutes, final concentration of ampicillin 100 μg/mL.

发酵培养基(g/L):山梨醇15,酵母膏1.2,氯化钙0.2,初始pH5.1~5.4,121℃灭菌15min,氨苄青霉素终浓度100μg/mL。Fermentation medium (g/L): sorbitol 15, yeast extract 1.2, calcium chloride 0.2, initial pH 5.1-5.4, sterilized at 121°C for 15 minutes, final concentration of ampicillin 100 μg/mL.

培养条件:从固体平板上刮取几环菌体接种于装有50mL液体培养基(加入终浓度75μg/mL氨苄青霉素)的500mL双刺摇瓶中,30℃旋转式摇床200r/min振荡培养至对数生长期(30h左右),按15%(v/v)接种量转接至终浓度75μg/mL氨苄青霉素的新鲜培养基,再培养至对数生长期,按15%(v/v)接种量转接发酵培养基,30℃,200r/min,发酵168h。10株工程菌中得到2-KLG最高产量为32.4g/L(Fig.1)。Culture conditions: Scrape a few rings of bacteria from the solid plate and inoculate them into a 500mL double-thorn shaker flask filled with 50mL of liquid medium (added with a final concentration of 75μg/mL ampicillin), and culture in a rotary shaker at 30°C at 200r/min When reaching the logarithmic growth phase (about 30h), transfer it to a fresh medium with a final concentration of 75 μg/mL ampicillin according to 15% (v/v) inoculation amount, and then culture until the logarithmic growth phase. ) inoculum amount was transferred to the fermentation medium, 30°C, 200r/min, and fermented for 168h. The highest yield of 2-KLG was 32.4g/L among the 10 engineered strains (Fig.1).

虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore The scope of protection of the present invention should be defined by the claims.

Claims (6)

1.一种生产2-KLG的氧化葡萄糖酸杆菌(Gluconobacter oxydans)基因工程菌,其特征在于表达外源sdh、sndh基因,所述外源sdh、sndh基因通过连接肽连接。1. a gluconobacter oxydans (Gluconobacter oxydans) genetically engineered bacterium producing 2-KLG is characterized in that expressing exogenous sdh, sndh gene, and described exogenous sdh, sndh gene are connected by connecting peptide. 2.权利要求1所述的基因工程菌,其特征在于所述sdh、sndh基因核苷酸序列如KVU-0203、NCBI登陆号为AEM40042.1,KVU-0095NCBI登陆号为AEM39934.1所示。2. The genetically engineered bacterium according to claim 1, characterized in that said sdh, sndh gene nucleotide sequence is shown in KVU-0203, NCBI accession number is AEM40042.1, and KVU-0095NCBI accession number is AEM39934.1. 3.权利要求1所述的氧化葡萄糖酸杆菌基因工程菌,其特征在于所述连接肽为GGGGS、GGGGSGGGGS、GGGGSGGGGSGGGGS、PTPTP、PTPTPTPTP、PTPTPTPTPTPTPTP、EAAAK、EAAAKEAAAK、EAAAKEAAAKEAAAK或SSSNNNNNNNNNN。3. The genetically engineered bacterium of Gluconobacter oxidans according to claim 1, characterized in that the connecting peptide is GGGGS, GGGGSGGGGS, GGGGSGGGGSGGGGS, PTPTP, PTPTPTPTP, PTPTPTPTPTPTPTP, EAAAK, EAAAKEAAAK, EAAAKEAAAKEAAAK or SSSNNNNNNNNNNNN. 4.权利要求1所述基因工程菌的构建方法,其特征在于包括如下步骤:4. the construction method of genetic engineering bacterium described in claim 1 is characterized in that comprising the steps: 1)根据本NCBI公开的sdh(NCBI登陆号为AEM40042.1)、sndh(NCBI登陆号为AEM39934.1)基因序列设计引物克隆或采用化学全合成法sdh、sndh基因,通过融合PCR将sdh和sndh以不同的连接肽进行连接;1) According to the sdh (NCBI accession number: AEM40042.1) and sndh (NCBI accession number: AEM39934.1) gene sequences disclosed by this NCBI, primers were designed to clone or the sdh and sndh genes were synthesized by chemical synthesis, and the sdh and sndh genes were synthesized by fusion PCR. sndh connects with different connecting peptides; 2)将融合后的基因与载体连接得到重组表达载体;2) connecting the fused gene to the vector to obtain a recombinant expression vector; 3)将得到的重组表达载体转化氧化葡萄糖酸杆菌后得到产2-KLG的氧化葡萄糖酸杆菌基因工程菌。3) Transforming the obtained recombinant expression vector into Gluconobacter oxidans to obtain 2-KLG-producing Gluconobacter oxidans genetically engineered bacteria. 5.权利要求1所述氧化葡萄糖酸杆菌基因工程菌在发酵生产2-KLG中的应用。5. the application of the gluconobacter oxydans genetically engineered bacterium described in claim 1 in the fermentative production of 2-KLG. 6.根据权利要求5所述的方法,其特征在于具体步骤为:将所述氧化葡萄糖酸杆菌基因工程菌接种于装有50mL液体培养基(含有终浓度75μg/mL氨苄青霉素)的500mL双刺摇瓶中,30℃旋转式摇床200r/min振荡培养至对数生长期,按15%(v/v)接种量转接至终浓度75μg/mL氨苄青霉素的新鲜培养基,再培养至对数生长期,按15%(v/v)接种量转接发酵培养基,30℃,200r/min,发酵168h。6. The method according to claim 5, characterized in that the specific steps are: inoculate the genetically engineered bacterium of Gluconobacter oxydans in the 500mL double-thorned 500mL liquid culture medium (containing final concentration 75 μg/mL ampicillin) In a shaker flask, culture on a rotary shaker at 30°C at 200r/min until the logarithmic growth phase, transfer to a fresh medium with a final concentration of 75 μg/mL ampicillin according to 15% (v/v) inoculation amount, and then culture until the right In the several growth period, transfer to the fermentation medium according to 15% (v/v) inoculation amount, 30°C, 200r/min, and ferment for 168h.
CN201310466179.5A 2013-10-08 2013-10-08 Gluconobacter oxydans gene engineering bacteria for producing 2-KLG and its application Pending CN103484418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310466179.5A CN103484418A (en) 2013-10-08 2013-10-08 Gluconobacter oxydans gene engineering bacteria for producing 2-KLG and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310466179.5A CN103484418A (en) 2013-10-08 2013-10-08 Gluconobacter oxydans gene engineering bacteria for producing 2-KLG and its application

Publications (1)

Publication Number Publication Date
CN103484418A true CN103484418A (en) 2014-01-01

Family

ID=49825014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310466179.5A Pending CN103484418A (en) 2013-10-08 2013-10-08 Gluconobacter oxydans gene engineering bacteria for producing 2-KLG and its application

Country Status (1)

Country Link
CN (1) CN103484418A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104357529A (en) * 2014-10-15 2015-02-18 沈阳药科大学 Method for improving production capacity of 2-KGA (2-keto-L-gulonic acid) through enhancement of Ketogulonogeniumvulgarum carbon metabolism level
CN104357347A (en) * 2014-09-23 2015-02-18 虞龙 Gluconobacter oxydans and application of gluconobacter oxydans in production of VC precursor by fermentation
CN104673736A (en) * 2015-03-11 2015-06-03 江南大学 Method for improving gluconobacter oxydans for producing 2-keto-L-gulconic acid
CN106282084A (en) * 2016-09-29 2017-01-04 江南大学 A kind of genetic engineering bacterium of the Gluconobacter oxvdans producing 2 ketone group L 2-KLGs
CN108342405A (en) * 2017-01-23 2018-07-31 复旦大学 IL21 fusion proteins and preparation method thereof and the purposes in preparing targeting therapy on tumor drug
CN112111437A (en) * 2020-05-25 2020-12-22 江南大学 Recombinant bacillus subtilis with improved 2' -fucosyllactose yield and construction method thereof
CN114480236A (en) * 2022-02-23 2022-05-13 江南大学 A kind of construction method of Gluconobacter one-step bacteria chassis cell bank producing 2-KLG

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102250821A (en) * 2011-06-01 2011-11-23 江南大学 Method for producing 2-keto-L-gulonic acid vitamin C precursor by modifying Escherichia coli
CN102250822A (en) * 2011-06-01 2011-11-23 江南大学 Reconstruction method for producing Vitamin C precursor 2-keto-L-gulonic acid (2-KLG) with gluconobacter oxydans
CN102851252A (en) * 2012-08-03 2013-01-02 江南大学 Gluconobacter oxydans engineering bacterium for producing sorbic ketone in high yield mode and construction method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102250821A (en) * 2011-06-01 2011-11-23 江南大学 Method for producing 2-keto-L-gulonic acid vitamin C precursor by modifying Escherichia coli
CN102250822A (en) * 2011-06-01 2011-11-23 江南大学 Reconstruction method for producing Vitamin C precursor 2-keto-L-gulonic acid (2-KLG) with gluconobacter oxydans
CN102851252A (en) * 2012-08-03 2013-01-02 江南大学 Gluconobacter oxydans engineering bacterium for producing sorbic ketone in high yield mode and construction method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PING LU ET AL: "Bifunctional enhancement of a β-glucanase-xylanase fusion enzyme by optimization of peptide linkers", 《APPL MICROBIOL BIOTECHNOL 》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104357347A (en) * 2014-09-23 2015-02-18 虞龙 Gluconobacter oxydans and application of gluconobacter oxydans in production of VC precursor by fermentation
CN104357529A (en) * 2014-10-15 2015-02-18 沈阳药科大学 Method for improving production capacity of 2-KGA (2-keto-L-gulonic acid) through enhancement of Ketogulonogeniumvulgarum carbon metabolism level
CN104673736A (en) * 2015-03-11 2015-06-03 江南大学 Method for improving gluconobacter oxydans for producing 2-keto-L-gulconic acid
CN106282084A (en) * 2016-09-29 2017-01-04 江南大学 A kind of genetic engineering bacterium of the Gluconobacter oxvdans producing 2 ketone group L 2-KLGs
CN106282084B (en) * 2016-09-29 2019-07-02 江南大学 A kind of genetic engineering bacteria of gluconobacterium oxydans producing 2-keto-L-guronic acid
CN108342405A (en) * 2017-01-23 2018-07-31 复旦大学 IL21 fusion proteins and preparation method thereof and the purposes in preparing targeting therapy on tumor drug
CN112111437A (en) * 2020-05-25 2020-12-22 江南大学 Recombinant bacillus subtilis with improved 2' -fucosyllactose yield and construction method thereof
CN112111437B (en) * 2020-05-25 2023-09-05 江南大学 Recombinant bacillus subtilis with improved yield of 2' -fucosyllactose and construction method thereof
CN114480236A (en) * 2022-02-23 2022-05-13 江南大学 A kind of construction method of Gluconobacter one-step bacteria chassis cell bank producing 2-KLG
CN114480236B (en) * 2022-02-23 2023-10-03 江南大学 Construction method of one-step bacillus gluconate chassis cell bank for producing 2-KLG

Similar Documents

Publication Publication Date Title
CN103484418A (en) Gluconobacter oxydans gene engineering bacteria for producing 2-KLG and its application
CN105255925B (en) A kind of high efficiency preparation method and its genetic engineering bacterium of sucrose isomerase
CN102250822A (en) Reconstruction method for producing Vitamin C precursor 2-keto-L-gulonic acid (2-KLG) with gluconobacter oxydans
CN110257312B (en) Recombinant gene engineering bacterium and application thereof in producing vanillin by fermentation
CN106148265A (en) A kind of recombined bacillus subtilis producing chondroitinase and application thereof
CN103088041B (en) Cutinase gene capable of efficiently producing cutinase and application thereof
CN104673736A (en) Method for improving gluconobacter oxydans for producing 2-keto-L-gulconic acid
CN102286415A (en) Bacterial strain for high yield of succinic acid and application thereof
CN112175849A (en) Recombinant yeast with improved L-menthol yield
CN102851252B (en) Gluconobacter oxydans engineering bacterium for producing sorbic ketone in high yield mode and construction method thereof
CN102250821B (en) Method for producing 2-keto-L-gulonic acid vitamin C precursor by modifying Escherichia coli
CN116855487A (en) Enzyme combination, genetically engineered bacterium and application thereof in production of D-psicose
CN103484417B (en) Gluconobacter oxydans improving 2-KLG fermentation yield and application thereof
CN105274153A (en) Method for increasing yield of itaconic acid produced by fermentation of aspergillus terreus
CN103710274B (en) The genetic engineering bacterium that the outer output of pyruvic acid of a kind of born of the same parents improves and application thereof
CN101613707B (en) A method for producing glutathione with metabolic engineering bacteria
CN105400831A (en) Method for joint production of 1,3-propanediol and glutamic acid by recombinant Corynebacterium glutamicum
CN103320373B (en) Arthrobacter for overexpression of hypoxanthine phosphoribosyltransferase gene and construction method and application thereof
CN106591158A (en) Method for improving L-malic acid synthesis through fermentation of starch by using Aspergillus oryzae
CN106282084B (en) A kind of genetic engineering bacteria of gluconobacterium oxydans producing 2-keto-L-guronic acid
CN105462868A (en) Method for improving yield and production intensity of pyruvic acid
CN116024150A (en) Genetic engineering strain for producing acetoin and construction method and application thereof
CN114561301A (en) Recombinant Schizochytrium and its construction method and application
CN108504616A (en) A kind of recombination Clostridium beijerinckii of high-efficiency fermenting sucrose and the method for improving Clostridium beijerinckii sucrose fermenting property
CN110305917B (en) Application of rex gene of bacillus in improving yield of poly-gamma-glutamic acid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140101