[go: up one dir, main page]

CN102250822A - Reconstruction method for producing Vitamin C precursor 2-keto-L-gulonic acid (2-KLG) with gluconobacter oxydans - Google Patents

Reconstruction method for producing Vitamin C precursor 2-keto-L-gulonic acid (2-KLG) with gluconobacter oxydans Download PDF

Info

Publication number
CN102250822A
CN102250822A CN 201110146071 CN201110146071A CN102250822A CN 102250822 A CN102250822 A CN 102250822A CN 201110146071 CN201110146071 CN 201110146071 CN 201110146071 A CN201110146071 A CN 201110146071A CN 102250822 A CN102250822 A CN 102250822A
Authority
CN
China
Prior art keywords
klg
sdh
oxydans
genetic engineering
sndh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201110146071
Other languages
Chinese (zh)
Inventor
陈坚
高丽丽
周景文
堵国成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN 201110146071 priority Critical patent/CN102250822A/en
Publication of CN102250822A publication Critical patent/CN102250822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种改造氧化葡萄糖酸杆菌产维生素C前体2-酮基-L-古龙酸的方法,属于遗传工程领域。本发明通过基因工程技术,将来源于普通生酮基古龙酸菌(Ketogulonigenium vulgare)的山梨糖脱氢酶(SDH)、山梨酮脱氢酶(SNDH)基因表达于氧化葡萄糖酸杆菌(Gluconobacter oxydans)中,获得了一株利用山梨醇生产2-KLG的G.oxydans工程菌。G.oxydans是二步发酵法生产2-KLG中第一步发酵过程常用菌种,将sdh、sndh基因表达于G.oxydans中,可以解除小菌对伴生菌依赖的问题,实现了从D-山梨醇到2-KLG的直接转化,简化了维生素C生产工艺,2-KLG的产量可达83g/L,具有很好的应用前景。The invention discloses a method for transforming gluconobacterium oxydans to produce vitamin C precursor 2-keto-L-gulonic acid, which belongs to the field of genetic engineering. The present invention expresses the genes of sorbose dehydrogenase (SDH) and sorbone dehydrogenase (SNDH) derived from Ketogulonigenium vulgare in Gluconobacter oxydans through genetic engineering technology In this study, a strain of G.oxydans engineered strain that utilizes sorbitol to produce 2-KLG was obtained. G.oxydans is a commonly used strain in the first step of the fermentation process in the production of 2-KLG by the two-step fermentation method. Expressing the sdh and sndh genes in G.oxydans can relieve the problem of the dependence of the small bacteria on the accompanying bacteria and realize the transformation from D- The direct conversion of sorbitol to 2-KLG simplifies the production process of vitamin C, and the output of 2-KLG can reach 83g/L, which has a good application prospect.

Description

一种改造氧化葡萄糖酸杆菌产维生素C前体2-酮基-L-古龙酸的方法A method for transforming Gluconobacter oxidans to produce vitamin C precursor 2-keto-L-gulonic acid

技术领域 technical field

本发明涉及一种高产2-KLG的氧化葡萄糖酸杆菌工程菌及其构建方法,采用分子手段引入SDH、SNDH,从而实现代谢山梨醇生产2-KLG,属于遗传工程领域。The invention relates to a high-yielding 2-KLG gluconobacter oxidase engineering bacterium and a construction method thereof, which adopts molecular means to introduce SDH and SNDH to realize the production of 2-KLG by metabolizing sorbitol, and belongs to the field of genetic engineering.

背景技术 Background technique

维生素C(Vitamin C,VC),又称为抗坏血酸(Ascorbic acid),是一种人体必需的维生素和抗氧化剂,广泛应用于医药、食品、饲料和化妆品等工业。目前国内维生素C工业化生产采用二步发酵法,在第二步混合菌发酵体系中,执行糖酸转化的微生物只有小菌,小菌单独生长很困难,需要与大菌共同培养才能正常生长。两种菌的发酵控制为生产工艺增加了很大困难,且小菌产酸性状不稳定,因而导致生产不稳定,经常因菌种退化造成倒罐,导致生产上屡屡遭受重大损失。我国维生素C发酵技术从山梨醇到2-KLG的发酵过程由3种细菌参与,势必在微生物代谢过程中造成底物和培养基的大量浪费,发酵过程分为两步不但延长了生产周期还造成能源和人力的大量浪费。因此,现有维生素C两步发酵工艺尚存在巨大技术进步的潜力。如何简化发酵工艺是一个迫切需要解决的问题。Vitamin C (Vitamin C, VC), also known as Ascorbic acid (Ascorbic acid), is an essential vitamin and antioxidant, widely used in industries such as medicine, food, feed and cosmetics. At present, the industrial production of vitamin C in China adopts a two-step fermentation method. In the second-step mixed-bacteria fermentation system, only small bacteria perform sugar-acid conversion. It is difficult for small bacteria to grow alone, and they need to be co-cultured with large bacteria to grow normally. The fermentation control of the two kinds of bacteria has added great difficulties to the production process, and the acid-producing properties of the small bacteria are unstable, resulting in unstable production, and the tanks are often inverted due to the degradation of the bacteria, resulting in repeated heavy losses in production. The fermentation process of my country's vitamin C fermentation technology from sorbitol to 2-KLG involves three kinds of bacteria, which will inevitably cause a lot of waste of substrate and medium in the process of microbial metabolism. The fermentation process is divided into two steps, which not only prolongs the production cycle but also causes A huge waste of energy and manpower. Therefore, the existing vitamin C two-step fermentation process still has great potential for technological progress. How to simplify the fermentation process is an urgent problem to be solved.

发明内容 Contents of the invention

本发明的目的是提供一种高产2-KLG的G.oxydans工程菌。The purpose of the present invention is to provide a high-yielding 2-KLG G.oxydans engineering bacteria.

所述工程菌可表达sdh、sndh基因。The engineering bacteria can express sdh and sndh genes.

所述sdh、sndh基因核苷酸序列分别如SEQ ID NO.1和SEQ ID NO.2所示。The nucleotide sequences of the sdh and sndh genes are shown in SEQ ID NO.1 and SEQ ID NO.2 respectively.

所述sdh、sndh基因克隆于G.oxydans-E.coli穿梭质粒载体pGUC1上。The sdh and sndh genes are cloned on the G.oxydans-E.coli shuttle plasmid vector pGUC1.

本发明要解决的另一个技术问题是提供一种高产2-KLG的G.oxydans基因工程菌的构建方法。Another technical problem to be solved by the present invention is to provide a method for constructing a high-yield 2-KLG G.oxydans genetically engineered bacterium.

为解决上述技术问题,本发明的具体方案为:In order to solve the problems of the technologies described above, the specific solutions of the present invention are:

1)根据本实验室对K.vulgare DSM 4205的全基因组测序结果中注释的sdh、sndh基因序列设计引物克隆sdh、sndh基因;1) Design primers to clone sdh and sndh genes according to the sdh and sndh gene sequences annotated in the whole genome sequencing results of K.vulgare DSM 4205 in our laboratory;

2)将sdh、sndh基因与载体连接得到重组表达载体;2) connecting the sdh and sndh genes with the vector to obtain a recombinant expression vector;

3)将得到的重组表达载体转化氧化葡萄糖酸杆菌(Gluconobacter oxydans,ATCC 621H)后得到重组菌株。3) Transform the obtained recombinant expression vector into Gluconobacter oxydans (Gluconobacter oxydans, ATCC 621H) to obtain a recombinant strain.

本发明要解决的另一个技术问题是提供一种发酵生产2-KLG的方法,工程菌种子培养后,按15%比例接种5L发酵罐,发酵16h后,流加量碳源2.5g/L.h,发酵参数:转速500rpm,pH 5.1~5.4,通气量1.5vvm,控制罐温34℃,罐压0.05MPa。Another technical problem to be solved by the present invention is to provide a method for fermenting and producing 2-KLG. After the engineered bacteria seeds are cultivated, a 5L fermenter is inoculated at a ratio of 15%, and after 16 hours of fermentation, the feed-in carbon source is 2.5g/L.h. Fermentation parameters: speed 500rpm, pH 5.1~5.4, ventilation 1.5vvm, control tank temperature 34°C, tank pressure 0.05MPa.

种子和斜面培养基(g/L):山梨醇15,酵母膏0.6,碳酸钙0.4,pH 4.8~5.1,琼脂20(斜面培养基),pH 7.0,121℃灭菌15min,氨苄青霉素终浓度100μg/mL。Seed and slant medium (g/L): sorbitol 15, yeast extract 0.6, calcium carbonate 0.4, pH 4.8-5.1, agar 20 (slant medium), pH 7.0, sterilized at 121°C for 15 minutes, final concentration of ampicillin 100 μg /mL.

发酵培养基(g/L):山梨醇25,酵母膏0.2,碳酸钙0.2,初始pH 5.1~5.4,121℃灭菌15min,氨苄青霉素终浓度100μg/mL。Fermentation medium (g/L): sorbitol 25, yeast extract 0.2, calcium carbonate 0.2, initial pH 5.1-5.4, sterilized at 121°C for 15 minutes, final concentration of ampicillin 100 μg/mL.

山梨醇、2-KLG含量测定:液相色谱(LC)Determination of sorbitol and 2-KLG content: liquid chromatography (LC)

发酵样品用流动相十倍稀释,0.45μm滤膜过滤。Agilent 1100system,RioRad公司Aminex HPX-87H色谱柱;流动相:2.75μmol/L浓硫酸;柱温:35℃;流速:0.6mL/min;进样量:5μL;检测器:示差折光检测器。Fermentation samples were diluted tenfold with mobile phase and filtered through a 0.45 μm filter membrane. Agilent 1100system, RioRad Aminex HPX-87H chromatographic column; mobile phase: 2.75 μmol/L concentrated sulfuric acid; column temperature: 35°C; flow rate: 0.6mL/min; injection volume: 5 μL; detector: differential refractive index detector.

本发明通过基因工程改造,将来源于普通生酮基古龙酸菌(Ketogulonigenium vulgare)的sdh、sndh基因表达于氧化葡萄糖酸杆菌(Gluconobacter oxydans)中,获得了一株利用山梨醇生产2-KLG的G.oxydans工程菌。采用G.oxydans工程菌利用山梨醇一步发酵生产2-KLG,解除了小菌对伴生菌依赖的问题,简化了维生素C生产工艺。2-KLG的产量可达83g/L,具有很好的应用前景。本发明提供的构建方法简单,适于标准化。The present invention expresses the sdh and sndh genes derived from Ketogulonigenium vulgare in Gluconobacter oxydans through genetic engineering transformation, and obtains a strain that utilizes sorbitol to produce 2-KLG G.oxydans engineering bacteria. G.oxydans engineering bacteria are used to produce 2-KLG by one-step fermentation of sorbitol, which solves the problem of the dependence of small bacteria on accompanying bacteria and simplifies the production process of vitamin C. The output of 2-KLG can reach 83g/L, which has a good application prospect. The construction method provided by the invention is simple and suitable for standardization.

具体实施方式 Detailed ways

实施例1表达载体的构建The construction of embodiment 1 expression vector

设计引物P1:5’GGAATTCCATATGATGAAACCGACTTCGCTGCTTTGGGC3’;P2:5’CGCGGATCCTTATTGCGGCAGGGCGAAGACGTAGA3’,克隆K.vulgareDSM4205的sdh基因序列扩增后克隆到G.oxydans-E.coli穿梭质粒载体pGUC1上,构建表达载体pGUC1-sdh,将构建好的表达载体转化大肠杆菌JM109后,挑选转化子,提取质粒并经NdeI及BamHI酶切后,出现1740bp的条带,证明已经成功构建表达载体pGUC1-sdh。设计引物P3:5’CGCGGATCCATGTTACCCAAATCATTGAAACATAAGA3’;P4:5’CGAGCTCTCAGCGGG TGGCAGCGG3’,再将本实验室对K.vulgare DSM4205的全基因组测序结果中注释的sndh基因序列扩增后克隆到穿梭质粒载体pGUC1上,构建表达载体pGUC1-sdh-sndh,将构建好的表达载体转化大肠杆菌JM109后,挑选转化子,提取质粒并经BamHI及SacI酶切后,出现1830bp的条带,证明已经成功构建表达载体pGUC1-sdh-sldh。Design primers P1: 5'GGAATTCCATATGATGAAACCGACTTCGCTGCTTTGGGC3'; P2: 5'CGCGGATCCTTATTGCGGCAGGGCGAAGACGTAGA3', clone the sdh gene sequence of K.vulgareDSM4205 after amplification and clone it into the G.oxydans-E.coli shuttle plasmid vector pGUC1, and construct the expression vector pGUC1-sdh. After the constructed expression vector was transformed into Escherichia coli JM109, the transformants were selected, the plasmid was extracted and digested with NdeI and BamHI, a 1740bp band appeared, which proved that the expression vector pGUC1-sdh had been successfully constructed. Primers P3: 5'CGCGGATCCATGTTACCCAAATCATTGAAACATAAGA3'; P4: 5'CGAGCTCTCAGCGGG TGGCAGCGG3' were designed, and the sndh gene sequence annotated in the whole genome sequencing results of K. vulgare DSM4205 in our laboratory was amplified and cloned into the shuttle plasmid vector pGUC1 to construct The expression vector pGUC1-sdh-sndh, after transforming the constructed expression vector into Escherichia coli JM109, selecting the transformant, extracting the plasmid and digesting it with BamHI and SacI, a 1830bp band appeared, proving that the expression vector pGUC1-sdh has been successfully constructed -sldh.

实施例2G.oxydans工程菌的构建The construction of embodiment 2G.oxydans engineering bacteria

将构建好的表达载体转化E.coli JM109。由于重组质粒上带有氨苄青霉素抗性基因,转化E.coli JM109感受态,涂布到含有氨苄青霉素的LB(酵母膏5g/L,蛋白胨10g/L,NaCl 10g/L,固体培养基加20g/L琼脂,调节pH 7.0,121℃灭菌15min),挑取转化后平板上正常生长的转化子,提取质粒PCR验证,分别出现1740bp、1830bp的条带,对照未能PCR出同样条带,证明已成功转化到E.coli中,再将提取的质粒转化G.oxydans,得到G.oxydans-pGUC1-sdh-sndh工程菌。Transform the constructed expression vector into E.coli JM109. Since the recombinant plasmid carries the ampicillin resistance gene, transform E.coli JM109 competent, apply to LB containing ampicillin (yeast extract 5g/L, peptone 10g/L, NaCl 10g/L, solid medium plus 20g /L agar, adjust the pH to 7.0, and sterilize at 121°C for 15 minutes), pick the transformants that grow normally on the plate after transformation, and extract the plasmids for PCR verification. Bands of 1740bp and 1830bp appear respectively, and the same bands cannot be obtained by PCR in the control. It is proved that it has been successfully transformed into E.coli, and then the extracted plasmid is transformed into G.oxydans to obtain G.oxydans-pGUC1-sdh-sndh engineering bacteria.

实施例3发酵生产2-KLGEmbodiment 3 fermentation produces 2-KLG

种子和斜面培养基(g/L):山梨醇20,酵母膏2,碳酸钙0.4,pH 4.8~5.1,琼脂20(斜面培养基),pH 7.0,121℃灭菌15min,氨苄青霉素终浓度100μg/mL。Seed and slant medium (g/L): sorbitol 20, yeast extract 2, calcium carbonate 0.4, pH 4.8-5.1, agar 20 (slant medium), pH 7.0, sterilized at 121°C for 15 minutes, final concentration of ampicillin 100 μg /mL.

发酵培养基(g/L):山梨醇80,酵母膏5,碳酸钙0.2,初始pH 5.1~5.4,121℃灭菌15min,氨苄青霉素终浓度100μg/mL。Fermentation medium (g/L): sorbitol 80, yeast extract 5, calcium carbonate 0.2, initial pH 5.1-5.4, sterilized at 121°C for 15 minutes, final concentration of ampicillin 100 μg/mL.

培养条件:从斜面中接种重组菌于20mL的种子培养基中,30℃、200rpm培养32h后接15%于发酵培养基,于34℃、220rpm进行摇瓶发酵,发酵周期48h。2-KLG产量为52g/L。Culture conditions: inoculate the recombinant bacteria from the slant into 20mL seed medium, culture at 30°C and 200rpm for 32h, then add 15% to the fermentation medium, and carry out shake flask fermentation at 34°C and 220rpm, and the fermentation period is 48h. The yield of 2-KLG was 52g/L.

实施例4发酵生产2-KLGEmbodiment 4 fermentation produces 2-KLG

工程菌种子培养后,按15%比例接种5L发酵罐,发酵16h后流加量碳源2.5g/L.h,发酵参数:转速500rpm,pH 5.1~5.4,通气量1.5vvm,控制罐温34℃,罐压0.05MPa,发酵结束后2-KLG产量达到83g/L。After culturing the engineered bacteria seeds, inoculate a 5L fermenter at a ratio of 15%. After 16 hours of fermentation, the amount of carbon source is 2.5g/L.h. The tank pressure is 0.05MPa, and the 2-KLG yield reaches 83g/L after fermentation.

虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore The scope of protection of the present invention should be defined by the claims.

序列表sequence listing

<110>  江南大学 <110> Jiangnan University

  the

<110>  江南大学 <110> Jiangnan University

  the

<120>  一种改造氧化葡萄糖酸杆菌产维生素C前体2-酮基-L-古龙酸的方法 <120> A method for transforming Gluconobacter oxidans to produce vitamin C precursor 2-keto-L-gulonic acid

  the

<160>  9     <160> 9

  the

<170>  PatentIn version 3.3 <170> PatentIn version 3.3

  the

<210>  1 <210> 1

<211>  1740 <211> 1740

<212>  DNA <212> DNA

<213>  普通生酮基古龙酸菌(Ketogulonigenium vulgareDSM4205) <213> Ketogulonigenium vulgare DSM4205

  the

<400>  1 <400> 1

atgaaaccga cttcgctgct ttgggccagt gctggcgcac ttgcattgct tgccgcaccc      60 atgaaaccga cttcgctgct ttgggccagt gctggcgcac ttgcattgct tgccgcaccc 60

gcctttgctc aagtgacccc cgtcaccgat gaattgctgg cgaacccgcc cgctggtgaa     120 gcctttgctc aagtgacccc cgtcaccgat gaattgctgg cgaacccgcc cgctggtgaa 120

tggatcagct acggtcagaa ccaagaaaac taccgtcact cgcccctgac gcagatcacg     180 tggatcagct acggtcagaa ccaagaaaac taccgtcact cgcccctgac gcagatcacg 180

actgagaacg tcggccaact gcaactggtc tgggcgcgcg gcatgcagcc gggcaaagtc     240 actgagaacg tcggccaact gcaactggtc tgggcgcgcg gcatgcagcc gggcaaagtc 240

caagtcacgc ccctgatcca tgacggcgtc atgtatctgg caaacccggg cgacgtgatc     300 caagtcacgc ccctgatcca tgacggcgtc atgtatctgg caaacccggg cgacgtgatc 300

caggccatcg acgccaaaac tggcgatctg atctgggaac accgccgcca actgccgaac     360 caggccatcg acgccaaaac tggcgatctg atctgggaac accgccgcca actgccgaac 360

atcgccacgc tgaacagctt tggcgagccg acccgcggca tggcgctgta cggcaccaac     420 atcgccacgc tgaacagctt tggcgagccg acccgcggca tggcgctgta cggcaccaac 420

gtttactttg tttcgtggga caaccacctg gtcgccctcg acaccgcaac tggccaagtg     480 gtttactttg tttcgtggga caaccacctg gtcgccctcg acaccgcaac tggccaagtg 480

acgttcgacg tcgaccgcgg ccaaggcgaa gacatggttt cgaactcgtc gggcccgatc     540 acgttcgacg tcgaccgcgg ccaaggcgaa gacatggttt cgaactcgtc gggcccgatc 540

gtggcaaacg gcgtgatcgt tgccggttcg acctgccaat actcgccgtt cggctgcttt     600 gtggcaaacg gcgtgatcgt tgccggttcg acctgccaat actcgccgtt cggctgcttt 600

gtctcgggcc acgactcggc caccggtgaa gagctgtggc gcaactactt catcccgcgc     660 gtctcgggcc acgactcggc caccggtgaa gagctgtggc gcaactactt catcccgcgc 660

gctggcgaag agggtgatga gacttggggc aacgattacg aagcccgttg gatgaccggt     720 gctggcgaag agggtgatga gacttggggc aacgattacg aagcccgttg gatgaccggt 720

gcctggggcc agatcaccta tgaccccgtc accaaccttg tccactacgg ctcgaccgct     780 gcctggggcc agatcaccta tgaccccgtc accaaccttg tccactacgg ctcgaccgct 780

gtgggtccgg cgtcggaaac ccaacgcggc accccgggcg gcacgctgta cggcacgaac     840 gtgggtccgg cgtcggaaac ccaacgcggc accccgggcg gcacgctgta cggcacgaac 840

acccgtttcg ccgtgcgtcc tgacacgggc gagattgtct ggcgtcacca gaccctgccc     900 acccgtttcg ccgtgcgtcc tgacacgggc gagattgtct ggcgtcacca gaccctgccc 900

cgcgacaact gggaccagga atgcacgttc gagatgatgg tcaccaatgt ggatgtccaa     960 cgcgacaact gggaccagga atgcacgttc gagatgatgg tcaccaatgt ggatgtccaa 960

ccctcgaccg agatggaagg tctgcagtcg atcaacccga acgccgcaac tggcgagcgt    1020 ccctcgaccg agatggaagg tctgcagtcg atcaacccga acgccgcaac tggcgagcgt 1020

cgcgtgctga ccggcgttcc gtgcaaaacc ggcaccatgt ggcagttcga cgccgaaacc    1080 cgcgtgctga ccggcgttcc gtgcaaaacc ggcaccatgt ggcagttcga cgccgaaacc 1080

ggcgaattcc tgtgggcccg tgataccaac taccagaaca tgatcgaatc catcgacgaa    1140 ggcgaattcc tgtgggcccg tgataccaac taccagaaca tgatcgaatc catcgacgaa 1140

aacggcatcg tgaccgtgaa cgaagatgcg atcctgaagg aactggatgt tgaatatgac    1200 aacggcatcg tgaccgtgaa cgaagatgcg atcctgaagg aactggatgt tgaatatgac 1200

gtctgcccga ccttcttggg cggccgcgac tggccgtcgg ccgcactgaa ccccgacagc    1260 gtctgcccga ccttcttggg cggccgcgac tggccgtcgg ccgcactgaa ccccgacagc 1260

ggcatctact tcatcccgct gaacaacgtc tgctatgaca tgatggccgt cgatcaggaa    1320 ggcatctact tcatcccgct gaacaacgtc tgctatgaca tgatggccgt cgatcaggaa 1320

ttcacctcga tggacgtcta taacaccagc aacgtgacca agctgccgcc cggcaaggat    1380 ttcacctcga tggacgtcta taacaccagc aacgtgacca agctgccgcc cggcaaggat 1380

atgatcggtc gtattgacgc gatcgacatc agcacgggtc gtacgctgtg gtcggtcgaa    1440 atgatcggtc gtattgacgc gatcgacatc agcacgggtc gtacgctgtg gtcggtcgaa 1440

cgtgctgcgg cgaactattc gcccgtcttg tcgaccggcg gcggcgttct gttcaacggt    1500 cgtgctgcgg cgaactattc gcccgtcttg tcgaccggcg gcggcgttct gttcaacggt 1500

ggtacggatc gttacttccg cgccctcagc caagaaaccg gcgagaccct gtggcagacc    1560 ggtacggatc gttacttccg cgccctcagc caagaaaccg gcgagaccct gtggcagacc 1560

cgccttgcaa ccgtcgcgtc gggccaggcc atctcttacg aggttgacgg catgcaatat    1620 cgccttgcaa ccgtcgcgtc gggccaggcc atctcttacg aggttgacgg catgcaatat 1620

gtcgccatcg caggtggtgg tgtcagctat ggctcgggcc tgaactcggc actggctggc    1680 gtcgccatcg caggtggtgg tgtcagctat ggctcgggcc tgaactcggc actggctggc 1680

gagcgagtcg actcgaccgc catcggtaac gccgtctacg tcttcgccct gccgcaataa    1740 gagcgagtcg actcgaccgc catcggtaac gccgtctacg tcttcgccct gccgcaataa 1740

  the

  the

<210>  2 <210> 2

<211>  1830 <211> 1830

<212>  DNA <212> DNA

<213>  普通生酮基古龙酸菌(Ketogulonigenium vulgareDSM4205) <213> Ketogulonigenium vulgare DSM4205

  the

<400>  2 <400> 2

atgttaccca aatcattgaa acataagaat ggcgccatgc gccttgtcgc agcctcgacc      60 atgttaccca aatcattgaa acataagaat ggcgccatgc gccttgtcgc agcctcgacc 60

cttgcgctga tgatcggcgc gggtgcccat gcgcaggtaa acccggtcga agtgccggtg     120 cttgcgctga tgatcggcgc gggtgcccat gcgcaggtaa acccggtcga agtgccggtg 120

ggcgcgaacg agacctttac ctcgcgcgtg ctgaccaccg gcctgtcgaa cccttgggaa     180 ggcgcgaacg agacctttac ctcgcgcgtg ctgaccaccg gcctgtcgaa cccttgggaa 180

atcacctggg gccccgacaa tatgctgtgg gtgaccgagc gatcttccgg cgaagtgacg     240 atcacctggg gccccgacaa tatgctgtgg gtgaccgagc gatcttccgg cgaagtgacg 240

cgcgtcgacc ccaataccgg cgagcagcag gtcctgctga ccctgaccga tttcagcgtc     300 cgcgtcgacc ccaataccgg cgagcagcag gtcctgctga ccctgaccga tttcagcgtc 300

gatgtgcaac accagggcct acttggcctc gcgctgcatc ctgagtttat gcaagagagc     360 gatgtgcaac accagggcct acttggcctc gcgctgcatc ctgagtttat gcaagagagc 360

ggcaacgact acgtctatat cgtctacact tataacaccg gcaccgaaga agcgcccgat     420 ggcaacgact acgtctatat cgtctacact tataacaccg gcaccgaaga agcgcccgat 420

ccgcatcaaa agctggtgcg ttatgcctat gacgctgccg cgcagcagct ggtcgatccg     480 ccgcatcaaa agctggtgcg ttatgcctat gacgctgccg cgcagcagct ggtcgatccg 480

gttgatctgg tcgcaggcat tcccgcaggc aacgaccaca atggcggtcg catcaaattc     540 gttgatctgg tcgcaggcat tcccgcaggc aacgaccaca atggcggtcg catcaaattc 540

gcccccgatg gccaacacat cttttacacg ctgggcgagc aaggcgcgaa ctttggcggt     600 gcccccgatg gccaacacat cttttacacg ctgggcgagc aaggcgcgaa ctttggcggt 600

aacttccgcc gtccgaacca cgcgcaactg ctgccgacgc aagagcaggt cgacgcgggc     660 aacttccgcc gtccgaacca cgcgcaactg ctgccgacgc aagagcaggt cgacgcgggc 660

gattgggtcg cctattcggg caagatcctg cgcgtgaacc ttgacggcac gatccccgaa     720 gattgggtcg cctattcggg caagatcctg cgcgtgaacc ttgacggcac gatccccgaa 720

gacaaccccg agatcgaggg cgtgcgtagc catatcttta cctatggcca ccgtaacccg     780 gacaaccccg agatcgaggg cgtgcgtagc catatcttta cctatggcca ccgtaacccg 780

cagggcatca cctttggccc cgacggcacc atttatgcca ccgaacacgg ccccgatacg     840 cagggcatca cctttggccc cgacggcacc atttatgcca ccgaacacgg ccccgatacg 840

gatgacgagc tgaacatcat cgccggcggt ggcaactatg ggtggccgaa tgtggccggc     900 gatgacgagc tgaacatcat cgccggcggt ggcaactatg ggtggccgaa tgtggccggc 900

tatcgcgatg gcaaatccta tgtctacgct gattggagcc aagcgcccgc tgaccagcgt     960 tatcgcgatg gcaaatccta tgtctacgct gattggagcc aagcgcccgc tgaccagcgt 960

tacaccggtc gcgccggtat ccccgacacc gtgccgcaat tccccgagct ggaattcgcg    1020 tacaccggtc gcgccggtat ccccgacacc gtgccgcaat tccccgagct ggaattcgcg 1020

cccgagatgg tcgatccgct gacaacctat tggacggtgg ataatgatta cgatttcacc    1080 cccgagatgg tcgatccgct gacaacctat tggacggtgg ataatgatta cgatttcacc 1080

gccaattgcg gctggatctg taatccgacg atcgcgcctt cgtctgccta ttactatgcg    1140 gccaattgcg gctggatctg taatccgacg atcgcgcctt cgtctgccta ttactatgcg 1140

gcgggcgaga gcggtatcgc ggcttgggat aattcgatcc tgatcccgac gctgaaacat    1200 gcgggcgaga gcggtatcgc ggcttgggat aattcgatcc tgatcccgac gctgaaacat 1200

ggcggcatct atgtgcagca cctcagcgat gatggccaat ctgtcgacgg cctgcccgag    1260 ggcggcatct atgtgcagca cctcagcgat gatggccaat ctgtcgacgg cctgcccgag 1260

ctgtggttca gcacccagaa ccgctatcgc gatatcgaga tcagccccga taaccatgtt    1320 ctgtggttca gcacccagaa ccgctatcgc gatatcgaga tcagccccga taaccatgtt 1320

tttgtggcga ccgacaactt tggcacctcg gcgcagaaat atggcgagac cggctttacc    1380 tttgtggcga ccgacaactt tggcacctcg gcgcagaaat atggcgagac cggctttacc 1380

aacgtgctgc ataaccccgg cgcgatcctt gtctttagct atgtcggcga ggatgctgcg    1440 aacgtgctgc ataaccccgg cgcgatcctt gtctttagct atgtcggcga ggatgctgcg 1440

ggtcagaccg gaatgatgac cgcgcccgca ccgcagacgc aatacacgca agtgcccgcc    1500 ggtcagaccg gaatgatgac cgcgcccgca ccgcagacgc aatacacgca agtgcccgcc 1500

gagggtgcag gcgcgggcgc gactgaggtt gcggatgtcg attacgacac gctgttcacc    1560 gagggtgcag gcgcgggcgc gactgaggtt gcggatgtcg attacgacac gctgttcacc 1560

gaaggccaga ccctttatgg cagcgcatgt gccgcgtgcc atggtgccgc tggccaaggt    1620 gaaggccaga ccctttatgg cagcgcatgt gccgcgtgcc atggtgccgc tggccaaggt 1620

gcgcagggcc cgacctttgt gggcgtgccg gatgtgacgg gtgacaagga ctaccttgcc    1680 gcgcagggcc cgacctttgt gggcgtgccg gatgtgacgg gtgacaagga ctaccttgcc 1680

cgcaccatca tccacggttt tggctatatg ccgtcgtttg cgactcggct ggatgacgag    1740 cgcaccatca tccacggttt tggctatatg ccgtcgtttg cgactcggct ggatgacgag 1740

gaggttgccg ccatcgcgac ctttatccgc aacagctggg gcaatgacga aggcatcctg    1800 gaggttgccg ccatcgcgac ctttatccgc aacagctggg gcaatgacga aggcatcctg 1800

accccggccg aggccgctgc cacccgctga                                     1830 accccggccg aggccgctgc cacccgctga 1830

  the

<210>  3 <210> 3

<211>  39 <211> 39

<212>  DNA <212> DNA

<213>  人工合成序列 <213> Synthetic sequences

  the

<220> <220>

<223> 根据基因序列设计,用于基因扩增。 <223> Designed according to gene sequence for gene amplification.

  the

<400>  3 <400> 3

ggaattccat atgatgaaac cgacttcgct gctttgggc                             39 ggaattccat atgatgaaac cgacttcgct gctttgggc 39

  the

<210>  4 <210> 4

<211>  35 <211> 35

<212>  DNA <212> DNA

<213>  人工合成序列 <213> Synthetic sequences

  the

<220> <220>

<223> 根据基因序列设计,用于基因扩增。 <223> Designed according to gene sequence for gene amplification.

  the

<400>  4 <400> 4

cgcggatcct tattgcggca gggcgaagac gtaga                                 35 cgcggatcct tattgcggca gggcgaagac gtaga 35

  the

<210>  5 <210> 5

<211>  37 <211> 37

<212>  DNA <212> DNA

<213>  人工合成序列 <213> Synthetic sequences

  the

<220> <220>

<223> 根据基因序列设计,用于基因扩增。 <223> Designed according to gene sequence for gene amplification.

  the

<400>  5 <400> 5

cgcggatcca tgttacccaa atcattgaaa cataaga                               37 cgcggatcca tgttacccaa atcattgaaa cataaga 37

  the

<210>  6 <210> 6

<211>  24 <211> 24

<212>  DNA <212> DNA

<213>  人工合成序列 <213> Synthetic sequences

  the

<220> <220>

<223> 根据基因序列设计,用于基因扩增。 <223> Designed according to gene sequence for gene amplification.

  the

<400>  6 <400> 6

cgagctctca gcgggtggca gcgg                                             24 cgagctctca gcgggtggca gcgg 24

  the

Claims (7)

1. the oxidizing glucose acidfast bacilli of a high yield 2-KLG (Gluconobacter oxydans) genetic engineering bacterium is characterized in that expressing external source sdh, sndh gene.
2. the described genetic engineering bacterium of claim 1 is characterized in that described sdh gene nucleotide series is shown in SEQ IDNO.1.
3. the described genetic engineering bacterium of claim 1 is characterized in that described sndh gene nucleotide series is shown in SEQID NO.2.
4. the described genetic engineering bacterium of claim 1 is characterized in that described sdh, sndh gene clone are on G.oxydans-E.coli shuttle vector pGUC1.
5. make up the method for the described genetic engineering bacterium of claim 1, it is characterized in that comprising the steps:
1) design primer clone sdh, sndh gene nucleotide series;
2) recombinant expression vector is arrived in sdh, sndh gene clone;
3) will obtain recombinant bacterial strain behind the recombinant expression vector conversion oxidizing glucose acidfast bacilli (Gluconobacter oxydans) that obtain.
6. application rights requires the method that 1 described genetic engineering bacterium is produced 2-KLG, after it is characterized in that the engineering bacteria seed is cultivated, in 15% ratio inoculation 5L fermentor tank, stream dosage carbon source 2.5g/L.h behind the fermentation 16h, fermentation parameter: rotating speed 500rpm, pH 5.1~5.4, air flow 1.5vvm, 34 ℃ of controlling tank temperature, tank pressure 0.05MPa.
7. the described method of claim 6 is characterized in that described carbon source is a sorbyl alcohol.
CN 201110146071 2011-06-01 2011-06-01 Reconstruction method for producing Vitamin C precursor 2-keto-L-gulonic acid (2-KLG) with gluconobacter oxydans Pending CN102250822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110146071 CN102250822A (en) 2011-06-01 2011-06-01 Reconstruction method for producing Vitamin C precursor 2-keto-L-gulonic acid (2-KLG) with gluconobacter oxydans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110146071 CN102250822A (en) 2011-06-01 2011-06-01 Reconstruction method for producing Vitamin C precursor 2-keto-L-gulonic acid (2-KLG) with gluconobacter oxydans

Publications (1)

Publication Number Publication Date
CN102250822A true CN102250822A (en) 2011-11-23

Family

ID=44978394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110146071 Pending CN102250822A (en) 2011-06-01 2011-06-01 Reconstruction method for producing Vitamin C precursor 2-keto-L-gulonic acid (2-KLG) with gluconobacter oxydans

Country Status (1)

Country Link
CN (1) CN102250822A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492762A (en) * 2011-12-09 2012-06-13 天津大学 Application of Gluconobacter oxydans containing sorbosone dehydrogenase gene encoding carrier
CN102653767A (en) * 2012-05-26 2012-09-05 江南大学 Novel gene for L-sorbose/L-sorbosone dehydrogenase and application of novel gene
CN102676552A (en) * 2012-05-25 2012-09-19 江南大学 Novel L-sorbosone dehydrogenase gene and application thereof
CN102816780A (en) * 2012-09-07 2012-12-12 天津大学 Combination gene of gene cluster ABCDEN by synthesizing sorbose dehydrogenase genes, sorbosone dehydrogenase genes and pyrroloquinoline quinone
CN102851252A (en) * 2012-08-03 2013-01-02 江南大学 Gluconobacter oxydans engineering bacterium for producing sorbic ketone in high yield mode and construction method thereof
CN103484417A (en) * 2013-10-08 2014-01-01 江南大学 Gluconobacter oxydans improving 2-KLG fermentation yield and application thereof
CN103484418A (en) * 2013-10-08 2014-01-01 江南大学 Gluconobacter oxydans gene engineering bacteria for producing 2-KLG and its application
CN104357347A (en) * 2014-09-23 2015-02-18 虞龙 Gluconobacter oxydans and application of gluconobacter oxydans in production of VC precursor by fermentation
CN104673736A (en) * 2015-03-11 2015-06-03 江南大学 Method for improving gluconobacter oxydans for producing 2-keto-L-gulconic acid
CN105420222A (en) * 2015-12-04 2016-03-23 帝斯曼江山制药(江苏)有限公司 Mutation screening method of ketogulonigenium vulgare
CN109234350A (en) * 2018-11-15 2019-01-18 江南大学 A kind of method of fermenting and producing vitamin C precursor 2-keto-L-gulonic acid
CN114480237A (en) * 2022-02-23 2022-05-13 江南大学 Two-stage fermentation method for increasing yield of 2-KLG in gluconobacter
CN114480236A (en) * 2022-02-23 2022-05-13 江南大学 A kind of construction method of Gluconobacter one-step bacteria chassis cell bank producing 2-KLG

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101402988A (en) * 2008-11-07 2009-04-08 江南大学 High-efficiency method for accelerating synthesis of 2-keto-L-gulonic acid with additive metal ion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101402988A (en) * 2008-11-07 2009-04-08 江南大学 High-efficiency method for accelerating synthesis of 2-keto-L-gulonic acid with additive metal ion

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《Genbank》 20061003 Tomiyama,N. 登录号AB092515.1 全文 3 , *
《Genbank》 20070424 Yang,X.P. 登录号EF493853.1 全文 2 , *
《中国食品添加剂》 20030630 仪宏,张华峰 维生素C生产技术 78 第6卷, *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492762A (en) * 2011-12-09 2012-06-13 天津大学 Application of Gluconobacter oxydans containing sorbosone dehydrogenase gene encoding carrier
CN102676552A (en) * 2012-05-25 2012-09-19 江南大学 Novel L-sorbosone dehydrogenase gene and application thereof
CN102653767A (en) * 2012-05-26 2012-09-05 江南大学 Novel gene for L-sorbose/L-sorbosone dehydrogenase and application of novel gene
CN102851252A (en) * 2012-08-03 2013-01-02 江南大学 Gluconobacter oxydans engineering bacterium for producing sorbic ketone in high yield mode and construction method thereof
CN102851252B (en) * 2012-08-03 2014-11-26 江南大学 Gluconobacter oxydans engineering bacterium for producing sorbic ketone in high yield mode and construction method thereof
CN102816780A (en) * 2012-09-07 2012-12-12 天津大学 Combination gene of gene cluster ABCDEN by synthesizing sorbose dehydrogenase genes, sorbosone dehydrogenase genes and pyrroloquinoline quinone
CN103484417B (en) * 2013-10-08 2015-06-24 江南大学 Gluconobacter oxydans improving 2-KLG fermentation yield and application thereof
CN103484417A (en) * 2013-10-08 2014-01-01 江南大学 Gluconobacter oxydans improving 2-KLG fermentation yield and application thereof
CN103484418A (en) * 2013-10-08 2014-01-01 江南大学 Gluconobacter oxydans gene engineering bacteria for producing 2-KLG and its application
CN104357347A (en) * 2014-09-23 2015-02-18 虞龙 Gluconobacter oxydans and application of gluconobacter oxydans in production of VC precursor by fermentation
CN104673736A (en) * 2015-03-11 2015-06-03 江南大学 Method for improving gluconobacter oxydans for producing 2-keto-L-gulconic acid
CN105420222A (en) * 2015-12-04 2016-03-23 帝斯曼江山制药(江苏)有限公司 Mutation screening method of ketogulonigenium vulgare
CN109234350A (en) * 2018-11-15 2019-01-18 江南大学 A kind of method of fermenting and producing vitamin C precursor 2-keto-L-gulonic acid
CN109234350B (en) * 2018-11-15 2021-06-04 江南大学 A kind of method for fermentation production of vitamin C precursor 2-keto-L-guronic acid
CN114480237A (en) * 2022-02-23 2022-05-13 江南大学 Two-stage fermentation method for increasing yield of 2-KLG in gluconobacter
CN114480236A (en) * 2022-02-23 2022-05-13 江南大学 A kind of construction method of Gluconobacter one-step bacteria chassis cell bank producing 2-KLG
CN114480236B (en) * 2022-02-23 2023-10-03 江南大学 Construction method of one-step bacillus gluconate chassis cell bank for producing 2-KLG
CN114480237B (en) * 2022-02-23 2023-10-03 江南大学 Two-stage fermentation method for improving yield of 2-KLG in gluconobacter

Similar Documents

Publication Publication Date Title
CN102250822A (en) Reconstruction method for producing Vitamin C precursor 2-keto-L-gulonic acid (2-KLG) with gluconobacter oxydans
CN114507613B (en) Yeast engineering bacteria for producing alpha-santalene by fermentation and application thereof
CN103484418A (en) Gluconobacter oxydans gene engineering bacteria for producing 2-KLG and its application
CN102250821B (en) Method for producing 2-keto-L-gulonic acid vitamin C precursor by modifying Escherichia coli
CN104762239B (en) A kind of Klebsiella pneumoniae and application thereof and a method for producing 1,3-propanediol
CN113684163B (en) Genetically engineered bacterium for improving lactoyl-N-tetraose yield and production method thereof
CN105647844A (en) Recombinant bacteria using xylose to produce glycollic acid and building method and application of recombinant bacteria
CN102851252B (en) Gluconobacter oxydans engineering bacterium for producing sorbic ketone in high yield mode and construction method thereof
CN104673736A (en) Method for improving gluconobacter oxydans for producing 2-keto-L-gulconic acid
CN107217023A (en) Multi-functional clostridium bifermentans and its application
CN104342463B (en) A kind of preparation method of 1 cyanocyclohexanoic guanidine-acetic acid
CN116042425A (en) Yeast engineering bacteria for producing patchouli alcohol and application thereof
CN103484417B (en) Gluconobacter oxydans improving 2-KLG fermentation yield and application thereof
CN103710274B (en) The genetic engineering bacterium that the outer output of pyruvic acid of a kind of born of the same parents improves and application thereof
CN110564580A (en) Method for producing vinegar containing pyrroloquinoline quinone through microbial co-culture fermentation
CN105647846A (en) Recombinant bacterium providing improved efficiency in convertive production of Alpha-phenylpyruvic acid
CN118344986A (en) Bacterial strain producing beta-carotene using cheap nitrogen source and its construction method and application
CN107723300B (en) Overexpression of CgGsh1 gene to improve 2-phenethyl alcohol tolerance and yield of glycerol-producing candida
CN105462868A (en) Method for improving yield and production intensity of pyruvic acid
CN112501219B (en) A method for producing lactic acid monomer by fermenting sucrose as raw material
CN115261361A (en) Industrial fermentation method for generating hyaluronidase by recombinant pichia pastoris
CN101575588A (en) Preparation technology for 2-keto -L-gulonic acid ferment strain
CN110951794B (en) A kind of fermentation method for improving the production of glucaric acid by Saccharomyces cerevisiae engineering bacteria
WO2023000618A1 (en) Bacillus xiaoxiensis and application thereof
CN102660571A (en) Method for producing 1, 3 propylene glycol safely and highly efficiently

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111123