[go: up one dir, main page]

CN103427754A - Direct controller of radial displacement of bearing-less asynchronous motor rotor - Google Patents

Direct controller of radial displacement of bearing-less asynchronous motor rotor Download PDF

Info

Publication number
CN103427754A
CN103427754A CN2013103352737A CN201310335273A CN103427754A CN 103427754 A CN103427754 A CN 103427754A CN 2013103352737 A CN2013103352737 A CN 2013103352737A CN 201310335273 A CN201310335273 A CN 201310335273A CN 103427754 A CN103427754 A CN 103427754A
Authority
CN
China
Prior art keywords
rotor
phase
displacement
eccentric
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103352737A
Other languages
Chinese (zh)
Other versions
CN103427754B (en
Inventor
朱熀秋
祝苏明
潘伟
朱利东
刁小燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Chuangda Power Technology Co ltd
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201310335273.7A priority Critical patent/CN103427754B/en
Publication of CN103427754A publication Critical patent/CN103427754A/en
Application granted granted Critical
Publication of CN103427754B publication Critical patent/CN103427754B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开一种无轴承异步电机转子径向位移直接控制器,由转速控制器、径向位移闭环控制器和转矩绕组气隙磁链估算模块组成;转速控制器输出三相电流给电机转矩绕组;径向位移闭环控制器由转子偏心位移和偏心角度计算模块、神经元PID控制器、悬浮力绕组电流计算模块、三相功率PWM逆变器、径向位移传感器和光电编码器组成;悬浮力绕组电流计算模块以径向悬浮力幅值、转子偏心角度

Figure DEST_PATH_IMAGE004
、转矩绕组气隙磁链幅值、相位
Figure DEST_PATH_IMAGE008
、转子位置角
Figure DEST_PATH_IMAGE010
五个变量为输入,以三相悬浮力绕组电流命令值
Figure DEST_PATH_IMAGE012
Figure DEST_PATH_IMAGE014
Figure DEST_PATH_IMAGE016
为输出,经三相功率PWM逆变器得到转子稳定悬浮所需的三相悬浮力绕组电流
Figure DEST_PATH_IMAGE020
Figure DEST_PATH_IMAGE022
;本发明结构简单可行,实现无轴承异步电机电磁转矩和径向悬浮力之间的独立控制。

Figure 201310335273

The invention discloses a bearingless asynchronous motor rotor radial displacement direct controller, which is composed of a rotational speed controller, a radial displacement closed-loop controller and a torque winding air-gap flux linkage estimation module; the rotational speed controller outputs three-phase current to the motor. Moment winding; radial displacement closed-loop controller is composed of rotor eccentric displacement and eccentric angle calculation module, neuron PID controller, suspension force winding current calculation module, three-phase power PWM inverter, radial displacement sensor and photoelectric encoder; The levitation force winding current calculation module is based on the radial levitation force amplitude , rotor eccentricity angle

Figure DEST_PATH_IMAGE004
, Torque winding air gap flux linkage amplitude , phase
Figure DEST_PATH_IMAGE008
, Rotor position angle
Figure DEST_PATH_IMAGE010
Five variables are input as the three-phase levitation force winding current command value
Figure DEST_PATH_IMAGE012
,
Figure DEST_PATH_IMAGE014
,
Figure DEST_PATH_IMAGE016
For output, the three-phase levitation force winding current required for the stable levitation of the rotor is obtained through the three-phase power PWM inverter ,
Figure DEST_PATH_IMAGE020
,
Figure DEST_PATH_IMAGE022
The structure of the present invention is simple and feasible, and realizes the independent control between the electromagnetic torque of the bearingless asynchronous motor and the radial suspension force.

Figure 201310335273

Description

无轴承异步电机转子径向位移直接控制器Direct Controller of Rotor Radial Displacement of Bearingless Asynchronous Motor

技术领域 technical field

本发明是一种直接对无轴承异步电机转子径向位移进行控制使其达到稳定悬浮并且高速旋转的控制器方案,适用于大功率、超高速、高电磁效率和高空间利用率等众多使用无轴承异步电机的特殊电气传动领域,属于电力传动控制的技术领域。 The invention is a controller scheme for directly controlling the radial displacement of the rotor of a bearingless asynchronous motor to achieve stable suspension and high-speed rotation, and is suitable for many applications such as high power, ultra-high speed, high electromagnetic efficiency, and high space utilization. The invention relates to the special electric transmission field of a bearing asynchronous motor, belonging to the technical field of electric transmission control.

背景技术 Background technique

利用电磁轴承支撑无轴承电机的转子,并对转子径向位移进行精确控制实现电机转子的稳定悬浮一直是无轴承电机研究的重点及难点。现已提出的电机转子悬浮力控制方法主要有两种:矢量控制方法和直接悬浮力控制方法,基本上能够实现电机转子径向悬浮力的控制,但这两种控制方法均存在明显的不足:矢量控制方法需要繁琐的坐标变换,增加了控制系统软件的复杂程度,占用了过多的系统时钟周期;直接悬浮力控制方法则需要对电机转子径向悬浮力进行在线辨识,不但增加了系统硬件设计成本,而且径向悬浮力辨识精度也决定了系统的整体控制性能,且只能应用于特定类型的电机,很难得到广泛应用。 The use of electromagnetic bearings to support the rotor of a bearingless motor, and the precise control of the radial displacement of the rotor to achieve stable suspension of the motor rotor have always been the focus and difficulty of bearingless motor research. There are two main methods of controlling the levitation force of the motor rotor that have been proposed: the vector control method and the direct levitation force control method, which can basically realize the control of the radial levitation force of the motor rotor, but both control methods have obvious deficiencies: The vector control method requires cumbersome coordinate transformation, which increases the complexity of the control system software and takes up too many system clock cycles; the direct levitation force control method requires online identification of the radial levitation force of the motor rotor, which not only increases the system hardware The design cost and the identification accuracy of the radial suspension force also determine the overall control performance of the system, and it can only be applied to specific types of motors, and it is difficult to be widely used.

无轴承异步电机是一种新型的无轴承电机,在电磁效率、空间利用率等方面均明显优越于传统的磁轴承电机,在大功率、超高速电机领域具有很好的发展前景。然而,无轴承异步电机电磁转矩与径向悬浮力之间存在着严重耦合,使得无轴承异步电机控制系统设计要复杂。为了实现这种电机转子的稳定悬浮与高速旋转,使这种电机能够在生产中得到广泛应用并发挥其所具有的独特优势,需要设计一种能够实现电机转子径向稳定悬浮且简单可行的悬浮控制器。 Bearingless asynchronous motor is a new type of bearingless motor, which is obviously superior to traditional magnetic bearing motors in terms of electromagnetic efficiency and space utilization, and has a good development prospect in the field of high-power and ultra-high-speed motors. However, there is serious coupling between the electromagnetic torque and the radial levitation force of the bearingless asynchronous motor, which makes the design of the control system of the bearingless asynchronous motor more complicated. In order to achieve the stable suspension and high-speed rotation of the rotor of this motor, so that this motor can be widely used in production and give full play to its unique advantages, it is necessary to design a simple and feasible suspension that can achieve stable radial suspension of the motor rotor. controller.

发明内容 Contents of the invention

为了实现无轴承异步电机的广泛应用、简单可行、稳定悬浮的目的,本发明提出一种无轴承异步电机转子径向位移直接控制器,对转子径向位移进行直接控制,且实现了电机转矩和径向悬浮力的独立控制,使电机转子能够高速旋转且稳定悬浮。 In order to achieve the purpose of wide application, simplicity, and stable suspension of bearingless asynchronous motors, the present invention proposes a direct controller for rotor radial displacement of bearingless asynchronous motors, which directly controls the radial displacement of the rotor and realizes motor torque The independent control of the radial suspension force and the radial suspension force enables the motor rotor to rotate at a high speed and stabilize the suspension.

本发明采用的技术方案是:本发明所述无轴承异步电机转子径向位移直接控制器由转速控制器、径向位移闭环控制器和转矩绕组气隙磁链估算模块组成;所述转速控制器输出三相电流                                                

Figure 2013103352737100002DEST_PATH_IMAGE001
Figure 9031DEST_PATH_IMAGE002
Figure 2013103352737100002DEST_PATH_IMAGE003
给无轴承异步电机转矩绕组;所述径向位移闭环控制器由转子偏心位移和偏心角度计算模块、神经元PID控制器、悬浮力绕组电流计算模块、三相功率PWM逆变器、径向位移传感器和光电编码器组成;所述转子偏心位移和偏心角度计算模块、神经元PID控制器、悬浮力绕组电流计算模块、三相功率PWM逆变器和无轴承异步电机依次串接;所述光电编码器检测无轴承异步电机的转子位置角
Figure 912265DEST_PATH_IMAGE004
,所述径向位移传感器检测其转子实际位移反馈值X、Y,转子实际位移X、Y与转子位移给定值X*、Y*一并输入转子偏心位移和偏心角度计算模块,转子偏心位移和偏心角度计算模块计算得出转子偏心位移
Figure 2013103352737100002DEST_PATH_IMAGE005
和转子偏心角度
Figure 186251DEST_PATH_IMAGE006
,所述转子偏心位移
Figure 833133DEST_PATH_IMAGE005
输入到神经元PID控制器得到转子稳定悬浮所需的径向悬浮力幅值
Figure 2013103352737100002DEST_PATH_IMAGE007
,所述转子偏心角度
Figure 141755DEST_PATH_IMAGE006
直接输入悬浮力绕组电流计算模块;所述转矩绕组气隙磁链估算模块由U-I模型磁链观测器串接极坐标变换共同组成,转矩绕组气隙磁链估算模块以转矩绕组三相相电压
Figure 215890DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE009
Figure 242752DEST_PATH_IMAGE010
和相电流
Figure 834270DEST_PATH_IMAGE001
Figure 387612DEST_PATH_IMAGE002
Figure 508014DEST_PATH_IMAGE003
为输入,以转矩绕组气隙磁链幅值
Figure DEST_PATH_IMAGE011
及相位
Figure 881227DEST_PATH_IMAGE012
为输出;所述悬浮力绕组电流计算模块以径向悬浮力幅值
Figure 276436DEST_PATH_IMAGE007
、转子偏心角度
Figure 559650DEST_PATH_IMAGE006
、转矩绕组气隙磁链幅值
Figure 382112DEST_PATH_IMAGE011
、相位
Figure 242621DEST_PATH_IMAGE012
、转子位置角
Figure 910363DEST_PATH_IMAGE004
这五个变量为输入,以三相悬浮力绕组电流命令值
Figure DEST_PATH_IMAGE013
Figure 175646DEST_PATH_IMAGE014
Figure DEST_PATH_IMAGE015
为输出,经三相功率PWM逆变器得到转子稳定悬浮所需的三相悬浮力绕组电流
Figure 637852DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE017
Figure 985657DEST_PATH_IMAGE018
。 The technical solution adopted in the present invention is: the direct controller of the radial displacement of the rotor of the bearingless asynchronous motor in the present invention is composed of a rotational speed controller, a radial displacement closed-loop controller and a torque winding air-gap flux linkage estimation module; the rotational speed control output three-phase current
Figure 2013103352737100002DEST_PATH_IMAGE001
,
Figure 9031DEST_PATH_IMAGE002
,
Figure 2013103352737100002DEST_PATH_IMAGE003
Torque windings for bearingless asynchronous motors; the radial displacement closed-loop controller consists of a rotor eccentric displacement and eccentric angle calculation module, a neuron PID controller, a suspension force winding current calculation module, a three-phase power PWM inverter, a radial Composed of a displacement sensor and a photoelectric encoder; the rotor eccentric displacement and eccentric angle calculation module, the neuron PID controller, the suspension force winding current calculation module, the three-phase power PWM inverter and the bearingless asynchronous motor are sequentially connected in series; the Photoelectric encoder detects rotor position angle of bearingless asynchronous motor
Figure 912265DEST_PATH_IMAGE004
, the radial displacement sensor detects the actual rotor displacement feedback values X, Y, the actual rotor displacements X, Y and the rotor displacement given values X*, Y* are input into the rotor eccentric displacement and eccentric angle calculation module together, and the rotor eccentric displacement and the eccentric angle calculation module to calculate the rotor eccentric displacement
Figure 2013103352737100002DEST_PATH_IMAGE005
and rotor eccentricity angle
Figure 186251DEST_PATH_IMAGE006
, the rotor eccentric displacement
Figure 833133DEST_PATH_IMAGE005
Input to the neuron PID controller to obtain the radial suspension force amplitude required for the stable suspension of the rotor
Figure 2013103352737100002DEST_PATH_IMAGE007
, the rotor eccentricity angle
Figure 141755DEST_PATH_IMAGE006
Directly input the suspension force winding current calculation module; the torque winding air gap flux linkage estimation module is composed of a UI model flux linkage observer connected in series with polar coordinate transformation, and the torque winding air gap flux linkage estimation module is based on the torque winding three-phase phase voltage
Figure 215890DEST_PATH_IMAGE008
,
Figure DEST_PATH_IMAGE009
,
Figure 242752DEST_PATH_IMAGE010
and phase current
Figure 834270DEST_PATH_IMAGE001
,
Figure 387612DEST_PATH_IMAGE002
,
Figure 508014DEST_PATH_IMAGE003
As input, take the torque winding air-gap flux amplitude as
Figure DEST_PATH_IMAGE011
and phase
Figure 881227DEST_PATH_IMAGE012
is the output; the levitation force winding current calculation module uses the radial levitation force amplitude
Figure 276436DEST_PATH_IMAGE007
, rotor eccentricity angle
Figure 559650DEST_PATH_IMAGE006
, Torque winding air gap flux linkage amplitude
Figure 382112DEST_PATH_IMAGE011
, phase
Figure 242621DEST_PATH_IMAGE012
, Rotor position angle
Figure 910363DEST_PATH_IMAGE004
These five variables are input as the three-phase levitation force winding current command value
Figure DEST_PATH_IMAGE013
,
Figure 175646DEST_PATH_IMAGE014
,
Figure DEST_PATH_IMAGE015
For output, the three-phase levitation force winding current required for the stable levitation of the rotor is obtained through the three-phase power PWM inverter
Figure 637852DEST_PATH_IMAGE016
,
Figure DEST_PATH_IMAGE017
,
Figure 985657DEST_PATH_IMAGE018
.

本发明的优点在于: The advantages of the present invention are:

1.本发明所述无轴承异步电机转子径向位移直接控制器将径向位移传感器检测的转子实际位移X、Y与位移给定值X*、Y*进行比较,通过悬浮力绕组电流计算模块直接生成控制径向位移所需要的悬浮力绕组电流值,使转子稳定悬浮,与矢量控制方法相比,省去了中间复杂的坐标矢量变换,降低了控制系统的复杂程度及控制算法耗用的系统时钟周期,控制系统响应更快。 1. The direct controller for radial displacement of the rotor of the bearingless asynchronous motor in the present invention compares the actual displacement X and Y of the rotor detected by the radial displacement sensor with the given displacement values X * and Y * , and directly generates them through the suspension force winding current calculation module The current value of the levitation force winding required to control the radial displacement makes the rotor levitate stably. Compared with the vector control method, the complex coordinate vector transformation in the middle is omitted, and the complexity of the control system and the system clock consumed by the control algorithm are reduced. cycle, the control system responds faster.

2.本发明所述无轴承异步电机转子径向位移直接控制器对转子径向位移进行直接控制,与直接悬浮力控制方法相比,不需要对转子径向悬浮力进行在线辨识,避免了使用直接悬浮力控制方法时,由于辨识精度而影响控制系统性能的问题。 2. The direct controller for the radial displacement of the rotor of the bearingless asynchronous motor in the present invention directly controls the radial displacement of the rotor. Compared with the direct suspension force control method, online identification of the radial suspension force of the rotor is not required, and the use of direct suspension is avoided. When using the force control method, the performance of the control system is affected due to the identification accuracy.

3.本发明所述无轴承异步电机转子径向位移直接控制器中转矩绕组气隙磁链采用U-I(电压-电流)模型磁链观测器进行估算,这种磁链观测器算法简单可行,易于悬浮力绕组电流计算模块的实现,降低了径向位移闭环控制器的软件和硬件的设计复杂度,减少了控制系统占用的系统时钟周期。 3. The air gap flux linkage of the torque winding in the direct controller of the radial displacement of the rotor of the bearingless asynchronous motor described in the present invention is estimated by the U-I (voltage-current) model flux observer. The algorithm of this flux observer is simple and feasible, and it is easy to levitate The realization of the force winding current calculation module reduces the design complexity of the software and hardware of the radial displacement closed-loop controller, and reduces the system clock cycle occupied by the control system.

4.本发明所述无轴承异步电机转子径向位移直接控制器的结构简单可行,实现了无轴承异步电机电磁转矩和径向悬浮力之间的独立控制,有效提高了整个系统的控制性能。 4. The direct controller of the rotor radial displacement of the bearingless asynchronous motor has a simple and feasible structure, realizes the independent control between the electromagnetic torque and the radial suspension force of the bearingless asynchronous motor, and effectively improves the control performance of the whole system.

附图说明 Description of drawings

图1是本发明所述无轴承异步电机转子径向位移直接控制器结构原理图; Fig. 1 is the structural schematic diagram of the direct controller of radial displacement of the rotor of the bearingless asynchronous motor described in the present invention;

图2是图1中转速控制器1的结构原理图; Fig. 2 is a structural principle diagram of the speed controller 1 in Fig. 1;

图3是图1中径向位移闭环控制器2的结构原理图; Fig. 3 is the structural principle diagram of radial displacement closed-loop controller 2 in Fig. 1;

图4是图1中转矩绕组气隙磁链模块60的结构原理图; Fig. 4 is a schematic diagram of the structure of the torque winding air gap flux linkage module 60 in Fig. 1;

图5是图4中U-I模型磁链观测器的构造原理图; Fig. 5 is the structural principle diagram of U-I model flux linkage observer among Fig. 4;

图6是无轴承异步电机转子偏心示意图; Fig. 6 is a schematic diagram of rotor eccentricity of a bearingless asynchronous motor;

图7是图3中悬浮力绕组电流计算模块53的内部原理图; Fig. 7 is the internal schematic diagram of the suspension force winding current calculation module 53 in Fig. 3;

图8是本发明所述无轴承异步电机转子径向位移直接控制器的总体实现原理图。 Fig. 8 is an overall realization principle diagram of the direct controller of radial displacement of the rotor of the bearingless asynchronous motor according to the present invention.

图中:1.转速控制器;2.径向位移闭环控制器;3.无轴承异步电机;51.转子偏心位移和偏心角度计算模块;52.神经元PID控制器;53.悬浮力绕组电流计算模块;54.三相功率PWM逆变器;55.径向位移传感器;56.光电编码器;60.转矩绕组气隙磁链估算模块;61.U-I模型磁链观测器;62、63.Clark变换;64.极坐标变换;70.通用变频器。 In the figure: 1. Speed controller; 2. Radial displacement closed-loop controller; 3. Bearingless asynchronous motor; 51. Rotor eccentric displacement and eccentric angle calculation module; 52. Neuron PID controller; 53. Suspension force winding current Calculation module; 54. Three-phase power PWM inverter; 55. Radial displacement sensor; 56. Photoelectric encoder; 60. Torque winding air gap flux linkage estimation module; 61. U-I model flux linkage observer; 62, 63 .Clark transformation; 64. Polar coordinate transformation; 70. General frequency converter.

具体实施方式 Detailed ways

如图1,本发明无轴承异步电机转子径向位移直接控制器由转速控制器1、径向位移闭环控制器2和转矩绕组气隙磁链估算模块60组成。如图2,转速控制器1直接采用通用变频器70实现,通用变频器70直接生成三相电流{

Figure 988248DEST_PATH_IMAGE001
Figure 980474DEST_PATH_IMAGE002
Figure 144740DEST_PATH_IMAGE003
},驱动无轴承异步电机3的转矩绕组,确保电机转速具有优良的响应性能指标,实现电磁转矩的稳定控制。 As shown in FIG. 1 , the direct controller for rotor radial displacement of a bearingless asynchronous motor in the present invention is composed of a speed controller 1 , a radial displacement closed-loop controller 2 and a torque winding air gap flux linkage estimation module 60 . As shown in Figure 2, the speed controller 1 is directly realized by a general-purpose frequency converter 70, and the general-purpose frequency converter 70 directly generates three-phase current {
Figure 988248DEST_PATH_IMAGE001
,
Figure 980474DEST_PATH_IMAGE002
,
Figure 144740DEST_PATH_IMAGE003
}, to drive the torque winding of the bearingless asynchronous motor 3, to ensure that the motor speed has an excellent response performance index, and to realize the stable control of the electromagnetic torque.

转速控制器1输出的三相电流{

Figure 979840DEST_PATH_IMAGE001
Figure 520543DEST_PATH_IMAGE002
Figure 367276DEST_PATH_IMAGE003
}给无轴承异步电机3转矩绕组,转矩绕组气隙磁链估算模块60以转矩绕组三相相电压{
Figure 561497DEST_PATH_IMAGE008
Figure 24840DEST_PATH_IMAGE009
Figure 838075DEST_PATH_IMAGE010
}和三相相电流{
Figure 70473DEST_PATH_IMAGE001
Figure 435595DEST_PATH_IMAGE002
Figure 386234DEST_PATH_IMAGE003
}为输入,以转矩绕组气隙磁链幅值
Figure 737581DEST_PATH_IMAGE011
及相位
Figure 90065DEST_PATH_IMAGE012
为输出,以{
Figure 626088DEST_PATH_IMAGE011
Figure 64023DEST_PATH_IMAGE012
}和转子位移给定值(X*,Y*)作为径向位移闭环控制器2的输入,得到三相悬浮力绕组驱动电流{
Figure 19526DEST_PATH_IMAGE017
}。 The three-phase current output by the speed controller 1 {
Figure 979840DEST_PATH_IMAGE001
,
Figure 520543DEST_PATH_IMAGE002
,
Figure 367276DEST_PATH_IMAGE003
}Give the bearingless asynchronous motor 3 torque windings, the torque winding air gap flux linkage estimation module 60 uses the torque winding three-phase phase voltage{
Figure 561497DEST_PATH_IMAGE008
,
Figure 24840DEST_PATH_IMAGE009
,
Figure 838075DEST_PATH_IMAGE010
} and three-phase phase current {
Figure 70473DEST_PATH_IMAGE001
,
Figure 435595DEST_PATH_IMAGE002
,
Figure 386234DEST_PATH_IMAGE003
} as input, take the amplitude of torque winding air gap flux linkage
Figure 737581DEST_PATH_IMAGE011
and phase
Figure 90065DEST_PATH_IMAGE012
For output, start with {
Figure 626088DEST_PATH_IMAGE011
,
Figure 64023DEST_PATH_IMAGE012
} and the given value of rotor displacement (X*, Y*) are used as the input of the radial displacement closed-loop controller 2 to obtain the driving current of the three-phase suspension force winding { ,
Figure 19526DEST_PATH_IMAGE017
, }.

如图3,径向位移闭环控制器2由转子偏心位移和偏心角度计算模块51、神经元PID控制器52、悬浮力绕组电流计算模块53、三相功率PWM逆变器54(CRPWM逆变器54)、径向位移传感器55和光电编码器56组成。其中,转子偏心位移和偏心角度计算模块51、神经元PID控制器52、悬浮力绕组电流计算模块53、三相功率PWM逆变器54和无轴承异步电机3依次串接,无轴承异步电机3通过径向位移传感器55检测其转子实际位移反馈值(X、Y),转子实际位移(X、Y)与转子位移给定值(X*、Y*)一并输入到转子偏心位移和偏心角度计算模块51,经转子偏心位移和偏心角度计算模块51计算,得出转子偏心位移

Figure 527048DEST_PATH_IMAGE005
和偏心角度。转子位移给定值均设定为0。转子偏心位移输入到神经元PID控制器52,得到转子稳定悬浮所需的径向悬浮力幅值
Figure 690679DEST_PATH_IMAGE007
。神经元PID控制器52采用神经元与传统线性理论中的PID相结合的方法来设计,以转子偏心位移
Figure 572048DEST_PATH_IMAGE005
作为神经元PID控制器52输入,以无轴承异步电机3的转子稳定悬浮所需的径向悬浮力幅值为输出。通过调整神经元PID控制器52参数,实现无轴承异步电机转子位移的直接控制。径向悬浮力幅值输入到悬浮力绕组电流计算模块53,转子偏心角度
Figure 307987DEST_PATH_IMAGE006
直接输入到悬浮力绕组电流计算模块53。无轴承异步电机3通过光电编码器56检测其转子位置角
Figure 942231DEST_PATH_IMAGE004
,光电编码器56将检测的转子位置角
Figure 101817DEST_PATH_IMAGE004
输入到悬浮力绕组电流计算模块53。这样,悬浮力绕组电流计算模块53就以{
Figure 403485DEST_PATH_IMAGE007
Figure 498480DEST_PATH_IMAGE006
Figure 620020DEST_PATH_IMAGE011
Figure 739471DEST_PATH_IMAGE004
}五个变量作为输入,以三相悬浮力绕组电流命令值{
Figure 5368DEST_PATH_IMAGE013
Figure 207679DEST_PATH_IMAGE014
Figure 115592DEST_PATH_IMAGE015
}为输出。以三相悬浮力绕组电流命令值{
Figure 595115DEST_PATH_IMAGE013
Figure 563071DEST_PATH_IMAGE014
}作为三相功率PWM逆变器54的输入,经三相功率PWM逆变器54得到无轴承异步电机转子稳定悬浮所需的三相悬浮力绕组电流{
Figure 964282DEST_PATH_IMAGE016
Figure 298312DEST_PATH_IMAGE017
Figure 437169DEST_PATH_IMAGE018
}。 As shown in Figure 3, the radial displacement closed-loop controller 2 consists of a rotor eccentric displacement and eccentric angle calculation module 51, a neuron PID controller 52, a suspension force winding current calculation module 53, and a three-phase power PWM inverter 54 (CRPWM inverter 54), radial displacement sensor 55 and photoelectric encoder 56. Among them, rotor eccentric displacement and eccentric angle calculation module 51, neuron PID controller 52, suspension force winding current calculation module 53, three-phase power PWM inverter 54 and bearingless asynchronous motor 3 are sequentially connected in series, and bearingless asynchronous motor 3 The actual rotor displacement feedback value (X, Y) is detected by the radial displacement sensor 55, and the actual rotor displacement (X, Y) and the given rotor displacement value (X*, Y*) are input to the rotor eccentric displacement and eccentric angle together. Calculation module 51 is calculated by rotor eccentric displacement and eccentric angle calculation module 51 to obtain rotor eccentric displacement
Figure 527048DEST_PATH_IMAGE005
and eccentric angle . The given value of rotor displacement is set to 0. Rotor eccentric displacement Input to the neuron PID controller 52 to obtain the radial suspension force amplitude required for the stable suspension of the rotor
Figure 690679DEST_PATH_IMAGE007
. Neuron PID controller 52 is designed by combining neuron with PID in traditional linear theory, and the rotor eccentric displacement
Figure 572048DEST_PATH_IMAGE005
As the neuron PID controller 52 input, the radial levitation force amplitude required for the stable levitation of the rotor of the bearingless asynchronous motor 3 for output. By adjusting the parameters of the neuron PID controller 52, the direct control of the rotor displacement of the bearingless asynchronous motor is realized. Radial Suspension Force Amplitude Input to suspension force winding current calculation module 53, rotor eccentricity angle
Figure 307987DEST_PATH_IMAGE006
It is directly input to the suspension force winding current calculation module 53. Bearingless asynchronous motor 3 detects its rotor position angle through photoelectric encoder 56
Figure 942231DEST_PATH_IMAGE004
, the photoelectric encoder 56 will detect the rotor position angle
Figure 101817DEST_PATH_IMAGE004
Input to the levitation force winding current calculation module 53. Like this, suspension force winding current calculation module 53 just with {
Figure 403485DEST_PATH_IMAGE007
,
Figure 498480DEST_PATH_IMAGE006
,
Figure 620020DEST_PATH_IMAGE011
, ,
Figure 739471DEST_PATH_IMAGE004
} Five variables are used as input, with three-phase levitation force winding current command value {
Figure 5368DEST_PATH_IMAGE013
,
Figure 207679DEST_PATH_IMAGE014
,
Figure 115592DEST_PATH_IMAGE015
} for output. Take the three-phase levitation force winding current command value {
Figure 595115DEST_PATH_IMAGE013
,
Figure 563071DEST_PATH_IMAGE014
, } As the input of the three-phase power PWM inverter 54, the three-phase levitation force winding current required for the stable suspension of the bearingless asynchronous motor rotor is obtained through the three-phase power PWM inverter 54 {
Figure 964282DEST_PATH_IMAGE016
,
Figure 298312DEST_PATH_IMAGE017
,
Figure 437169DEST_PATH_IMAGE018
}.

如图4,转矩绕组气隙磁链估算模块60由U-I模型磁链观测器61(电压-电流模型磁链观测器61)串接极坐标变换64共同组成。U-I模型磁链观测器61采用电压-电流模型磁链观测方法,其内部原理如图5所示,以三相转矩绕组相电压和相电流

Figure DEST_PATH_IMAGE021
作为输入,分别经过Clark变换62和Clark变换63得到两相静止坐标系下分量(
Figure 598209DEST_PATH_IMAGE022
Figure DEST_PATH_IMAGE023
)和(
Figure 911379DEST_PATH_IMAGE024
Figure 2013103352737100002DEST_PATH_IMAGE025
),由关系式得到两相静止坐标系下的转矩绕组气隙磁链分量{
Figure 283454DEST_PATH_IMAGE028
Figure DEST_PATH_IMAGE029
},其中,为转矩绕组定子电阻,
Figure DEST_PATH_IMAGE031
为转矩绕组定子漏感,
Figure 472831DEST_PATH_IMAGE032
Figure DEST_PATH_IMAGE033
分别为转矩绕组定子磁链在两相静止坐标系下的分量,
Figure 781453DEST_PATH_IMAGE034
Figure DEST_PATH_IMAGE035
分别为转矩绕组定子漏感对应的磁链在两相静止坐标系下的分量。转矩绕组气隙磁链分量{
Figure 855588DEST_PATH_IMAGE028
Figure 882450DEST_PATH_IMAGE029
}经过极坐标变换64:
Figure DEST_PATH_IMAGE037
得到转矩绕组气隙磁链幅值
Figure 67444DEST_PATH_IMAGE011
及相位
Figure 230572DEST_PATH_IMAGE012
。 As shown in FIG. 4 , the torque winding air-gap flux linkage estimation module 60 is composed of a UI model flux linkage observer 61 (voltage-current model flux linkage observer 61 ) connected in series with a polar coordinate transformation 64 . The UI model flux observer 61 adopts the voltage-current model flux observation method, and its internal principle is shown in Figure 5. The phase voltage of the three-phase torque winding is and phase current
Figure DEST_PATH_IMAGE021
As input, the component under the two-phase stationary coordinate system is obtained through Clark transformation 62 and Clark transformation 63 respectively (
Figure 598209DEST_PATH_IMAGE022
,
Figure DEST_PATH_IMAGE023
)and(
Figure 911379DEST_PATH_IMAGE024
,
Figure 2013103352737100002DEST_PATH_IMAGE025
), by the relation Obtain the torque winding air gap flux linkage component in the two-phase stationary coordinate system{
Figure 283454DEST_PATH_IMAGE028
,
Figure DEST_PATH_IMAGE029
},in, is the torque winding stator resistance,
Figure DEST_PATH_IMAGE031
is the stator leakage inductance of the torque winding,
Figure 472831DEST_PATH_IMAGE032
and
Figure DEST_PATH_IMAGE033
are the components of the torque winding stator flux linkage in the two-phase stationary coordinate system,
Figure 781453DEST_PATH_IMAGE034
and
Figure DEST_PATH_IMAGE035
are the components of the flux linkage corresponding to the stator leakage inductance of the torque winding in the two-phase stationary coordinate system. Torque winding air gap flux linkage component{
Figure 855588DEST_PATH_IMAGE028
,
Figure 882450DEST_PATH_IMAGE029
} After polar coordinate transformation 64:
Figure DEST_PATH_IMAGE037
Get the torque winding air gap flux linkage amplitude
Figure 67444DEST_PATH_IMAGE011
and phase
Figure 230572DEST_PATH_IMAGE012
.

如图6所示,是无轴承异步电机3的转子偏心示意图,转子偏心位移和偏心角度计算模块51以转子位移给定值(X*、Y*)和转子实际位移反馈值(X、Y)作为输入,转子位移给定值(X*、Y*)均设定为0,由关系式

Figure DEST_PATH_IMAGE039
得到转子偏心位移
Figure 741188DEST_PATH_IMAGE005
和偏心角度。 As shown in Figure 6, it is a schematic diagram of the rotor eccentricity of the bearingless asynchronous motor 3. The rotor eccentric displacement and eccentric angle calculation module 51 uses the rotor displacement given value (X*, Y*) and the rotor actual displacement feedback value (X, Y) As input, the given value of rotor displacement (X*, Y*) is set to 0, by the relation
Figure DEST_PATH_IMAGE039
Get the rotor eccentric displacement
Figure 741188DEST_PATH_IMAGE005
and eccentric angle .

如图7所示,悬浮力绕组电流计算模块53以五个变量为输入,利用关系式

Figure DEST_PATH_IMAGE043
得到三相悬浮力绕组电流命令值的幅值
Figure 978451DEST_PATH_IMAGE044
及初始相位
Figure DEST_PATH_IMAGE045
,其中C为常数,则三相静止坐标系下无轴承异步电机转子稳定悬浮所需的三相悬浮力绕组电流命令值可表示为 式中。依据悬浮力绕组电流计算模块53的输出,即三相悬浮力绕组电流命令值,输出PWM控制信号至三相功率PWM逆变器54得到三相悬浮力绕组驱动电流{
Figure 413477DEST_PATH_IMAGE017
Figure 612378DEST_PATH_IMAGE018
}。 As shown in Figure 7, the suspension force winding current calculation module 53 uses Five variables are input, using the relation
Figure DEST_PATH_IMAGE043
Obtain the amplitude of the current command value of the three-phase levitation force winding
Figure 978451DEST_PATH_IMAGE044
and initial phase
Figure DEST_PATH_IMAGE045
, where C is a constant, then the three-phase levitation force winding current command value required for the stable levitation of the rotor of the bearingless asynchronous motor in the three-phase stationary coordinate system can be expressed as In the formula . According to the output of the suspension force winding current calculation module 53, that is, the three-phase suspension force winding current command value, output the PWM control signal to the three-phase power PWM inverter 54 to obtain the three-phase suspension force winding drive current{ ,
Figure 413477DEST_PATH_IMAGE017
,
Figure 612378DEST_PATH_IMAGE018
}.

本发明提出的无轴承异步电机转子位移直接控制器通过测量转子径向位移的大小直接对径向悬浮力的大小进行控制,其实现方法是将径向位移传感器55检测的转子实际径向位移反馈值X、Y与位移给定值X*、Y*进行比较,通过调节神经元PID控制器52参数,实现无轴承异步电机转子的稳定悬浮。对于径向位移闭环控制器2,首先采用由U-I模型磁链观测器61和极坐标变换64组成转矩绕组气隙磁链估算模块60获取转矩绕组气隙磁链的幅值

Figure 874732DEST_PATH_IMAGE011
及相位
Figure 336937DEST_PATH_IMAGE012
,然后将所获得的转矩绕组气隙磁链信息与径向位移闭环控制器2中神经元PID控制器52输出的径向悬浮力幅值
Figure 91266DEST_PATH_IMAGE007
、转子偏心位移和偏心角度计算模块51输出的转子偏心角度
Figure 421754DEST_PATH_IMAGE006
及光电编码器57得到的转子位置角
Figure 945139DEST_PATH_IMAGE004
一并应用于悬浮力绕组电流计算模块53,由其生成无轴承异步电机转子稳定悬浮所需的三相悬浮力绕组电流命令值{
Figure 843825DEST_PATH_IMAGE013
Figure 85450DEST_PATH_IMAGE014
Figure 951119DEST_PATH_IMAGE015
}。转速控制器1、径向位移闭环控制器2和转矩绕组气隙磁链估算模块60共同组成无轴承异步电机转子位移直接控制器,转矩绕组气隙磁链估算模块60的应用实现了无轴承异步电机电磁转矩和径向悬浮力部分的独立控制。该控制器的实现是将径向位移传感器55检测的转子实际位移反馈值(X、Y)与位移给定值(X*、Y*)进行比较,位移给定值均设定为0,通过调整神经元PID控制器52的参数,实现无轴承异步电机3径向位移闭环控制器2具有优良的动静态性能指标。具体的实施分以下7步: The direct controller of the rotor displacement of the bearingless asynchronous motor proposed by the present invention directly controls the size of the radial suspension force by measuring the size of the radial displacement of the rotor, and its realization method is to feed back the actual radial displacement of the rotor detected by the radial displacement sensor 55 The values X, Y are compared with the given displacement values X * , Y * , and the stable suspension of the rotor of the bearingless asynchronous motor is realized by adjusting the parameters of the neuron PID controller 52. For the radial displacement closed-loop controller 2, first use the torque winding air gap flux linkage estimation module 60 composed of UI model flux linkage observer 61 and polar coordinate transformation 64 to obtain the magnitude of the torque winding air gap flux linkage
Figure 874732DEST_PATH_IMAGE011
and phase
Figure 336937DEST_PATH_IMAGE012
, then combine the obtained torque winding air gap flux linkage information with the radial suspension force amplitude output by the neuron PID controller 52 in the radial displacement closed-loop controller 2
Figure 91266DEST_PATH_IMAGE007
, rotor eccentric displacement and eccentric angle calculation module 51 output rotor eccentric angle
Figure 421754DEST_PATH_IMAGE006
and the rotor position angle obtained by the photoelectric encoder 57
Figure 945139DEST_PATH_IMAGE004
It is also applied to the levitation force winding current calculation module 53, which generates the three-phase levitation force winding current command value {
Figure 843825DEST_PATH_IMAGE013
,
Figure 85450DEST_PATH_IMAGE014
,
Figure 951119DEST_PATH_IMAGE015
}. The speed controller 1, the radial displacement closed-loop controller 2 and the torque winding air gap flux linkage estimation module 60 together form a direct controller for the rotor displacement of a bearingless asynchronous motor. The application of the torque winding air gap flux linkage estimation module 60 realizes the Independent control of electromagnetic torque and radial suspension force of bearing asynchronous motor. The implementation of this controller is to compare the actual rotor displacement feedback value (X, Y) detected by the radial displacement sensor 55 with the given displacement value (X * , Y * ), and the given displacement value is set to 0. By adjusting the parameters of the neuron PID controller 52, the radial displacement closed-loop controller 2 of the bearingless asynchronous motor 3 has excellent dynamic and static performance indicators. The specific implementation is divided into the following 7 steps:

第1步,构造无轴承异步电机转子位移直接控制器。如图1所示,无轴承异步电机转子位移直接控制器由转速控制器1、转矩绕组气隙磁链估算模块60和径向位移闭环控制器2组成。转速控制器1输出三相电流{

Figure 594590DEST_PATH_IMAGE001
Figure 127520DEST_PATH_IMAGE003
}给无轴承异步电机转矩绕组。转矩绕组气隙磁链估算模块60以转矩绕组三相相电压{
Figure 799810DEST_PATH_IMAGE008
Figure 297787DEST_PATH_IMAGE009
Figure 538276DEST_PATH_IMAGE010
}和相电流{
Figure 82389DEST_PATH_IMAGE001
Figure 964895DEST_PATH_IMAGE002
Figure 786220DEST_PATH_IMAGE003
}为输入,以转矩绕组气隙磁链幅值
Figure 728768DEST_PATH_IMAGE011
及相位
Figure 760178DEST_PATH_IMAGE012
为输出。以{
Figure 122207DEST_PATH_IMAGE012
}和转子位移给定值(X*,Y*)作为径向位移闭环控制器2的输入,得到三相悬浮力绕组驱动电流{
Figure 829131DEST_PATH_IMAGE016
Figure 447512DEST_PATH_IMAGE018
}。 The first step is to construct the direct controller of the rotor displacement of the bearingless asynchronous motor. As shown in FIG. 1 , the direct rotor displacement controller of a bearingless asynchronous motor consists of a speed controller 1 , a torque winding air-gap flux linkage estimation module 60 and a radial displacement closed-loop controller 2 . Speed controller 1 outputs three-phase current {
Figure 594590DEST_PATH_IMAGE001
, ,
Figure 127520DEST_PATH_IMAGE003
} to the torque winding of the bearingless asynchronous motor. The torque winding air gap flux linkage estimation module 60 uses the torque winding three-phase phase voltage {
Figure 799810DEST_PATH_IMAGE008
,
Figure 297787DEST_PATH_IMAGE009
,
Figure 538276DEST_PATH_IMAGE010
} and phase current {
Figure 82389DEST_PATH_IMAGE001
,
Figure 964895DEST_PATH_IMAGE002
,
Figure 786220DEST_PATH_IMAGE003
} as input, take the amplitude of torque winding air gap flux linkage
Figure 728768DEST_PATH_IMAGE011
and phase
Figure 760178DEST_PATH_IMAGE012
for output. by{ ,
Figure 122207DEST_PATH_IMAGE012
} and the given value of rotor displacement (X*, Y*) are used as the input of the radial displacement closed-loop controller 2 to obtain the driving current of the three-phase suspension force winding {
Figure 829131DEST_PATH_IMAGE016
, ,
Figure 447512DEST_PATH_IMAGE018
}.

第2步,转速控制器1的构造。如图2所示,无轴承异步电机的转速控制器1采用通用变频器70实现,通用变频器70直接输出三相电流{

Figure 509009DEST_PATH_IMAGE001
Figure 799362DEST_PATH_IMAGE003
}给无轴承异步电机转矩绕组,确保电机转速具有优良的响应性能指标,实现电磁转矩的稳定控制。 Step 2, the construction of speed controller 1. As shown in Figure 2, the speed controller 1 of the bearingless asynchronous motor is realized by a general-purpose frequency converter 70, and the general-purpose frequency converter 70 directly outputs three-phase current {
Figure 509009DEST_PATH_IMAGE001
, ,
Figure 799362DEST_PATH_IMAGE003
}To the torque winding of the bearingless asynchronous motor, ensure that the motor speed has an excellent response performance index, and realize the stable control of the electromagnetic torque.

第3步,径向位移闭环控制器构造。径向位移闭环控制器由转子偏心位移和偏心角度计算模块51、神经元PID控制器52、悬浮力绕组电流计算模块53、三相功率PWM逆变器54、径向位移传感器55和光电编码器56组成(如图3所示)。径向位移传感器55输出转子实际位移(X、Y),与转子位移给定值(X*、Y*)一并输入到转子偏心位移和偏心角度计算模块51,经计算得出转子偏心位移和偏心角度

Figure 477785DEST_PATH_IMAGE006
。转子偏心位移
Figure 260933DEST_PATH_IMAGE005
输入到神经元PID控制器52后得到转子稳定悬浮所需的径向悬浮力幅值
Figure 160756DEST_PATH_IMAGE007
。悬浮力绕组电流计算模块53以{
Figure 195708DEST_PATH_IMAGE007
Figure 90851DEST_PATH_IMAGE006
Figure 307386DEST_PATH_IMAGE012
}(
Figure 164188DEST_PATH_IMAGE004
为光电编码器56输出的转子位置角)五个变量作为输入,以三相悬浮力绕组电流命令值{
Figure 632396DEST_PATH_IMAGE014
Figure 805888DEST_PATH_IMAGE015
}为输出。以{
Figure 846842DEST_PATH_IMAGE014
}作为三相功率PWM逆变器54的输入,得到无轴承异步电机转子稳定悬浮所需的三相悬浮力绕组电流{
Figure 123420DEST_PATH_IMAGE016
Figure 720940DEST_PATH_IMAGE018
}。 Step 3, radial displacement closed-loop controller construction. The radial displacement closed-loop controller consists of a rotor eccentric displacement and eccentric angle calculation module 51, a neuron PID controller 52, a suspension force winding current calculation module 53, a three-phase power PWM inverter 54, a radial displacement sensor 55 and a photoelectric encoder 56 components (as shown in Figure 3). The radial displacement sensor 55 outputs the actual displacement of the rotor (X, Y), which is input to the rotor eccentric displacement and eccentric angle calculation module 51 together with the given value of the rotor displacement (X*, Y*), and the rotor eccentric displacement is calculated and eccentric angle
Figure 477785DEST_PATH_IMAGE006
. Rotor eccentric displacement
Figure 260933DEST_PATH_IMAGE005
After being input to the neuron PID controller 52, the radial suspension force amplitude required for the stable suspension of the rotor is obtained
Figure 160756DEST_PATH_IMAGE007
. Suspension force winding current calculation module 53 with {
Figure 195708DEST_PATH_IMAGE007
,
Figure 90851DEST_PATH_IMAGE006
, ,
Figure 307386DEST_PATH_IMAGE012
, }(
Figure 164188DEST_PATH_IMAGE004
The rotor position angle output by the photoelectric encoder 56) five variables as input, with the three-phase levitation force winding current command value { ,
Figure 632396DEST_PATH_IMAGE014
,
Figure 805888DEST_PATH_IMAGE015
} for output. by{ ,
Figure 846842DEST_PATH_IMAGE014
, } as the input of the three-phase power PWM inverter 54 to obtain the three-phase levitation force winding current {
Figure 123420DEST_PATH_IMAGE016
, ,
Figure 720940DEST_PATH_IMAGE018
}.

第4步,转矩绕组气隙磁链估算模块60的设计。转矩绕组气隙磁链估算模块60由U-I模型磁链观测器61和极坐标变换64组成(如图4所示)。U-I模型磁链观测器61采用电压-电流模型磁链观测方法(其内部原理如图5所示),以三相转矩绕组相电压

Figure 773210DEST_PATH_IMAGE048
和相电流
Figure DEST_PATH_IMAGE049
作为输入,分别经过Clark变换62和Clark变换63得到两相静止坐标系下分量(
Figure 616401DEST_PATH_IMAGE022
Figure 70516DEST_PATH_IMAGE023
)和(
Figure 380275DEST_PATH_IMAGE024
Figure 44474DEST_PATH_IMAGE025
),由关系式
Figure DEST_PATH_IMAGE051
Figure 566723DEST_PATH_IMAGE030
为转矩绕组定子电阻,
Figure 999978DEST_PATH_IMAGE031
为转矩绕组定子漏感)得到两相静止坐标系下的转矩绕组气隙磁链分量
Figure 480638DEST_PATH_IMAGE052
,其中,
Figure 835396DEST_PATH_IMAGE054
分别为转矩绕组定子磁链在两相静止坐标系下的分量,
Figure 855622DEST_PATH_IMAGE035
分别为转矩绕组定子漏感对应的磁链在两相静止坐标系下的分量。转矩绕组气隙磁链分量{
Figure 507183DEST_PATH_IMAGE028
Figure 154764DEST_PATH_IMAGE029
}经过极坐标变换64:得到转矩绕组气隙磁链幅值
Figure 567607DEST_PATH_IMAGE011
及相位
Figure 249124DEST_PATH_IMAGE012
。 The fourth step is the design of the torque winding air gap flux linkage estimation module 60 . The torque winding air gap flux linkage estimation module 60 is composed of a UI model flux linkage observer 61 and a polar coordinate transformation 64 (as shown in FIG. 4 ). The UI model flux observer 61 adopts the voltage-current model flux observation method (its internal principle is shown in Figure 5), and the phase voltage of the three-phase torque winding
Figure 773210DEST_PATH_IMAGE048
and phase current
Figure DEST_PATH_IMAGE049
As input, the component under the two-phase stationary coordinate system is obtained through Clark transformation 62 and Clark transformation 63 respectively (
Figure 616401DEST_PATH_IMAGE022
,
Figure 70516DEST_PATH_IMAGE023
)and(
Figure 380275DEST_PATH_IMAGE024
,
Figure 44474DEST_PATH_IMAGE025
), by the relation
Figure DEST_PATH_IMAGE051
(
Figure 566723DEST_PATH_IMAGE030
is the torque winding stator resistance,
Figure 999978DEST_PATH_IMAGE031
is the torque winding stator leakage inductance) to obtain the torque winding air gap flux linkage component in the two-phase stationary coordinate system
Figure 480638DEST_PATH_IMAGE052
,in, and
Figure 835396DEST_PATH_IMAGE054
are the components of the torque winding stator flux linkage in the two-phase stationary coordinate system, and
Figure 855622DEST_PATH_IMAGE035
are the components of the flux linkage corresponding to the stator leakage inductance of the torque winding in the two-phase stationary coordinate system. Torque winding air gap flux linkage component{
Figure 507183DEST_PATH_IMAGE028
,
Figure 154764DEST_PATH_IMAGE029
} After polar coordinate transformation 64: Get the torque winding air gap flux linkage amplitude
Figure 567607DEST_PATH_IMAGE011
and phase
Figure 249124DEST_PATH_IMAGE012
.

第5步,转子偏心位移和偏心角度计算模块51的设计。图6为无轴承异步电机转子偏心示意图,转子偏心位移和偏心角度计算模块51以转子位移给定值(X*、Y*)和转子实际位移反馈值(X、Y)作为输入,转子位移给定值(X*、Y*)均设定为0,由关系式

Figure 516158DEST_PATH_IMAGE058
得到转子偏心位移
Figure 183899DEST_PATH_IMAGE005
和偏心角度
Figure 180674DEST_PATH_IMAGE006
。 Step 5, the design of the rotor eccentric displacement and eccentric angle calculation module 51 . Fig. 6 is a schematic diagram of the rotor eccentricity of a bearingless asynchronous motor. The rotor eccentric displacement and eccentric angle calculation module 51 takes the rotor displacement given value (X*, Y*) and the rotor actual displacement feedback value (X, Y) as input, and the rotor displacement is given by The fixed values (X*, Y*) are all set to 0, by the relation
Figure 516158DEST_PATH_IMAGE058
Get the rotor eccentric displacement
Figure 183899DEST_PATH_IMAGE005
and eccentric angle
Figure 180674DEST_PATH_IMAGE006
.

第6步,神经元PID控制器参数调整。该神经元PID控制器52采用神经元与传统线性理论中的PID相结合的方法来设计,以转子偏心位移

Figure 439617DEST_PATH_IMAGE005
作为神经元PID控制器52输入,以无轴承异步电机转子稳定悬浮所需的径向悬浮力幅值为输出。通过调整神经元PID控制器52参数,实现无轴承异步电机转子位移的直接控制。 Step 6, neuron PID controller parameter adjustment. The neuron PID controller 52 is designed by combining neurons with PID in traditional linear theory, and the rotor eccentric displacement
Figure 439617DEST_PATH_IMAGE005
As the input of the neuron PID controller 52, the radial suspension force amplitude required for the stable suspension of the rotor of the bearingless asynchronous motor for output. By adjusting the parameters of the neuron PID controller 52, the direct control of the rotor displacement of the bearingless asynchronous motor is realized.

第7步,悬浮力绕组电流计算。如图7所示,悬浮力绕组电流计算模块53以

Figure 993275DEST_PATH_IMAGE060
五个变量为输入,利用关系式得到三相悬浮力绕组电流命令值的幅值及初始相位,其中C为常数,则三相静止坐标系下无轴承异步电机转子稳定悬浮所需的三相悬浮力绕组电流命令值可表示为
Figure DEST_PATH_IMAGE063
,式中。依据悬浮力绕组电流计算模块53的输出,即三相悬浮力绕组电流命令值,输出PWM控制信号至三相功率PWM逆变器54得到三相悬浮力绕组驱动电流{
Figure 637883DEST_PATH_IMAGE016
Figure 566525DEST_PATH_IMAGE017
Figure 295447DEST_PATH_IMAGE018
}。 Step 7, calculation of suspension force winding current. As shown in Figure 7, the suspension force winding current calculation module 53 uses
Figure 993275DEST_PATH_IMAGE060
Five variables are input, using the relation Obtain the amplitude of the current command value of the three-phase levitation force winding and initial phase , where C is a constant, then the three-phase levitation force winding current command value required for the stable levitation of the rotor of the bearingless asynchronous motor in the three-phase stationary coordinate system can be expressed as
Figure DEST_PATH_IMAGE063
, where . According to the output of the suspension force winding current calculation module 53, that is, the three-phase suspension force winding current command value, output the PWM control signal to the three-phase power PWM inverter 54 to obtain the three-phase suspension force winding drive current{
Figure 637883DEST_PATH_IMAGE016
,
Figure 566525DEST_PATH_IMAGE017
,
Figure 295447DEST_PATH_IMAGE018
}.

图8给出了无轴承异步电机转子位移直接控制器总体实现原理图,按步骤2可实现转速控制器1部分,按步骤4至步骤7对图中各个模块进行设计即可实现径向位移闭环控制器2部分。 Figure 8 shows the overall realization schematic diagram of the direct controller of the rotor displacement of the bearingless asynchronous motor. According to step 2, the first part of the speed controller can be realized, and the radial displacement closed-loop can be realized by designing each module in the figure according to step 4 to step 7. Controller 2 part.

Claims (3)

1.一种无轴承异步电机转子径向位移直接控制器,其特征是:由转速控制器(1)、径向位移闭环控制器(2)和转矩绕组气隙磁链估算模块(60)组成;所述转速控制器(1)输出三相电流                                                
Figure 918858DEST_PATH_IMAGE001
Figure 294662DEST_PATH_IMAGE003
给电机转矩绕组;所述径向位移闭环控制器(2)由转子偏心位移和偏心角度计算模块(51)、神经元PID控制器(52)、悬浮力绕组电流计算模块(53)、三相功率PWM逆变器(54)、径向位移传感器(55)和光电编码器(56)组成;所述转子偏心位移和偏心角度计算模块(51)、神经元PID控制器(52)、悬浮力绕组电流计算模块(53)、三相功率PWM逆变器(54)依次串接;所述光电编码器(56)检测无轴承异步电机的转子位置角,所述径向位移传感器(55)检测转子实际位移反馈值X、Y,转子实际位移X、Y与转子位移给定值X*、Y*一并输入转子偏心位移和偏心角度计算模块(51),转子偏心位移和偏心角度计算模块(51)计算得出转子偏心位移
Figure 742140DEST_PATH_IMAGE005
和转子偏心角度
Figure 431748DEST_PATH_IMAGE006
,转子偏心位移
Figure 877773DEST_PATH_IMAGE005
输入到神经元PID控制器(52)得到转子稳定悬浮所需的径向悬浮力幅值
Figure 477381DEST_PATH_IMAGE007
,所述转子偏心角度
Figure 616238DEST_PATH_IMAGE006
直接输入悬浮力绕组电流计算模块(53);所述转矩绕组气隙磁链估算模块(60)由U-I模型磁链观测器(61)串接极坐标变换(64)共同组成,转矩绕组气隙磁链估算模块(60)以转矩绕组三相相电压
Figure 796072DEST_PATH_IMAGE008
 和相电流
Figure 45787DEST_PATH_IMAGE009
为输入,以转矩绕组气隙磁链幅值
Figure 499902DEST_PATH_IMAGE010
及相位
Figure 403136DEST_PATH_IMAGE011
为输出;所述悬浮力绕组电流计算模块(53)以径向悬浮力幅值、转子偏心角度
Figure 996109DEST_PATH_IMAGE006
、转矩绕组气隙磁链幅值
Figure 835889DEST_PATH_IMAGE010
、相位
Figure 910024DEST_PATH_IMAGE011
、转子位置角
Figure 202465DEST_PATH_IMAGE004
五个变量为输入,以三相悬浮力绕组电流命令值
Figure 222691DEST_PATH_IMAGE013
Figure 467727DEST_PATH_IMAGE014
为输出,经三相功率PWM逆变器(54)得到转子稳定悬浮所需的三相悬浮力绕组电流
Figure 513044DEST_PATH_IMAGE015
Figure 377095DEST_PATH_IMAGE016
Figure 925888DEST_PATH_IMAGE017
1. A direct controller for the radial displacement of the rotor of a bearingless asynchronous motor, characterized by: a speed controller (1), a radial displacement closed-loop controller (2) and a torque winding air gap flux linkage estimation module (60) composition; the speed controller (1) outputs three-phase current
Figure 918858DEST_PATH_IMAGE001
, ,
Figure 294662DEST_PATH_IMAGE003
to the motor torque winding; the radial displacement closed-loop controller (2) consists of a rotor eccentric displacement and eccentric angle calculation module (51), a neuron PID controller (52), a suspension force winding current calculation module (53), three Phase power PWM inverter (54), radial displacement sensor (55) and photoelectric encoder (56); the rotor eccentric displacement and eccentric angle calculation module (51), neuron PID controller (52), suspension The force winding current calculation module (53) and the three-phase power PWM inverter (54) are sequentially connected in series; the photoelectric encoder (56) detects the rotor position angle of the bearingless asynchronous motor , the radial displacement sensor (55) detects the actual rotor displacement feedback values X, Y, and the actual rotor displacements X, Y and the rotor displacement given values X*, Y* are input into the rotor eccentric displacement and eccentric angle calculation module (51 ), the rotor eccentric displacement and eccentric angle calculation module (51) calculates the rotor eccentric displacement
Figure 742140DEST_PATH_IMAGE005
and rotor eccentricity angle
Figure 431748DEST_PATH_IMAGE006
, rotor eccentric displacement
Figure 877773DEST_PATH_IMAGE005
Input to the neuron PID controller (52) to obtain the radial suspension force amplitude required for stable suspension of the rotor
Figure 477381DEST_PATH_IMAGE007
, the rotor eccentricity angle
Figure 616238DEST_PATH_IMAGE006
Directly input the suspension force winding current calculation module (53); the torque winding air gap flux linkage estimation module (60) is composed of a UI model flux linkage observer (61) connected in series with a polar coordinate transformation (64), and the torque winding The air gap flux linkage estimation module (60) uses the torque winding three-phase phase voltage
Figure 796072DEST_PATH_IMAGE008
and phase current
Figure 45787DEST_PATH_IMAGE009
As input, take the torque winding air-gap flux amplitude as
Figure 499902DEST_PATH_IMAGE010
and phase
Figure 403136DEST_PATH_IMAGE011
is the output; the levitation force winding current calculation module (53) uses the radial levitation force amplitude , rotor eccentricity angle
Figure 996109DEST_PATH_IMAGE006
, Torque winding air gap flux linkage amplitude
Figure 835889DEST_PATH_IMAGE010
, phase
Figure 910024DEST_PATH_IMAGE011
, Rotor position angle
Figure 202465DEST_PATH_IMAGE004
Five variables are input as the three-phase levitation force winding current command value ,
Figure 222691DEST_PATH_IMAGE013
,
Figure 467727DEST_PATH_IMAGE014
For output, the three-phase levitation force winding current required for the stable levitation of the rotor is obtained through the three-phase power PWM inverter (54)
Figure 513044DEST_PATH_IMAGE015
,
Figure 377095DEST_PATH_IMAGE016
,
Figure 925888DEST_PATH_IMAGE017
.
2.根据权利要求1所述无轴承异步电机转子径向位移直接控制器,其特征是:所述U-I模型磁链观测器(61)以三相转矩绕组相电压
Figure 607405DEST_PATH_IMAGE008
和相电流
Figure 343279DEST_PATH_IMAGE018
作为输入,分别经过两个Clark变换得到两相静止坐标系下分量()和(
Figure 797897DEST_PATH_IMAGE021
Figure 755489DEST_PATH_IMAGE022
),由关系式
Figure 758080DEST_PATH_IMAGE023
得到两相静止坐标系下的转矩绕组气隙磁链分量
Figure DEST_PATH_IMAGE025
为转矩绕组定子电阻,为转矩绕组定子漏感,
Figure 343148DEST_PATH_IMAGE027
Figure 883851DEST_PATH_IMAGE028
分别为转矩绕组定子磁链在两相静止坐标系下的分量,
Figure 730584DEST_PATH_IMAGE029
Figure 331330DEST_PATH_IMAGE030
分别为转矩绕组定子漏感对应的磁链在两相静止坐标系下的分量,转矩绕组气隙磁链分量
Figure 385218DEST_PATH_IMAGE024
经过所述极坐标变换(64)
Figure 729612DEST_PATH_IMAGE031
得到转矩绕组气隙磁链幅值
Figure 696431DEST_PATH_IMAGE032
及相位
Figure 202498DEST_PATH_IMAGE033
2. The direct controller of rotor radial displacement of bearingless asynchronous motor according to claim 1, characterized in that: said UI model flux observer (61) uses three-phase torque winding phase voltage
Figure 607405DEST_PATH_IMAGE008
and phase current
Figure 343279DEST_PATH_IMAGE018
As input, two Clark transformations are used to obtain the components in the two-phase stationary coordinate system ( , )and(
Figure 797897DEST_PATH_IMAGE021
,
Figure 755489DEST_PATH_IMAGE022
), by the relation
Figure 758080DEST_PATH_IMAGE023
Obtain the air-gap flux component of the torque winding in the two-phase stationary coordinate system ,
Figure DEST_PATH_IMAGE025
is the torque winding stator resistance, is the stator leakage inductance of the torque winding,
Figure 343148DEST_PATH_IMAGE027
and
Figure 883851DEST_PATH_IMAGE028
are the components of the torque winding stator flux linkage in the two-phase stationary coordinate system,
Figure 730584DEST_PATH_IMAGE029
and
Figure 331330DEST_PATH_IMAGE030
are the components of the flux linkage corresponding to the stator leakage inductance of the torque winding in the two-phase stationary coordinate system, and the air gap flux linkage components of the torque winding
Figure 385218DEST_PATH_IMAGE024
After the polar transformation (64)
Figure 729612DEST_PATH_IMAGE031
Get the torque winding air gap flux linkage amplitude
Figure 696431DEST_PATH_IMAGE032
and phase
Figure 202498DEST_PATH_IMAGE033
.
3.根据权利要求1所述无轴承异步电机转子径向位移直接控制器,其特征是:转子位移给定值X*、Y*均设定为0,转子偏心位移和偏心角度计算模块(51)由关系式得到转子偏心位移
Figure 363538DEST_PATH_IMAGE005
和偏心角度
Figure 716022DEST_PATH_IMAGE006
3. according to claim 1 described bearingless asynchronous motor rotor radial displacement direct controller, it is characterized in that: rotor displacement given value X*, Y* are all set to 0, rotor eccentric displacement and eccentric angle calculation module (51 ) by the relation Get the rotor eccentric displacement
Figure 363538DEST_PATH_IMAGE005
and eccentric angle
Figure 716022DEST_PATH_IMAGE006
.
CN201310335273.7A 2013-08-05 2013-08-05 Induction-type bearingless motor rotor radial displacement self-operated controller Active CN103427754B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310335273.7A CN103427754B (en) 2013-08-05 2013-08-05 Induction-type bearingless motor rotor radial displacement self-operated controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310335273.7A CN103427754B (en) 2013-08-05 2013-08-05 Induction-type bearingless motor rotor radial displacement self-operated controller

Publications (2)

Publication Number Publication Date
CN103427754A true CN103427754A (en) 2013-12-04
CN103427754B CN103427754B (en) 2016-04-06

Family

ID=49652034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310335273.7A Active CN103427754B (en) 2013-08-05 2013-08-05 Induction-type bearingless motor rotor radial displacement self-operated controller

Country Status (1)

Country Link
CN (1) CN103427754B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150045A (en) * 2018-09-26 2019-01-04 河南科技大学 The independent Inverse Decoupling method of induction-type bearingless motor
CN109217766A (en) * 2018-09-26 2019-01-15 河南科技大学 The independent reversed decoupling control system of induction-type bearingless motor
CN109525150A (en) * 2019-01-04 2019-03-26 哈尔滨理工大学 A kind of bearing-free permanent magnet synchronous motor system
CN112186976A (en) * 2020-08-07 2021-01-05 山东大学 A bearingless magnetic suspension motor rotor radial position detection device and control method
RU2822608C1 (en) * 2023-11-15 2024-07-09 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Method of obtaining signal for estimating rotor speed and signal for estimating moment of resistance on asynchronous motor shaft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227160A (en) * 2007-11-30 2008-07-23 江苏大学 Construction Method of Neural Network Generalized Inverse Bearingless Permanent Magnet Synchronous Motor Decoupling Controller
CN101425775A (en) * 2008-12-02 2009-05-06 江苏大学 Controller and controlling method for non-bearing permanent magnet synchronous electric motor
CN101958685A (en) * 2010-03-04 2011-01-26 江苏大学 Nonlinear Inverse Decoupling Controller for Bearingless Synchronous Reluctance Motor and Its Construction Method
CN102082544A (en) * 2010-11-26 2011-06-01 江苏大学 Bearingless synchronous reluctance motor torque and suspension force direct controller and construction method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227160A (en) * 2007-11-30 2008-07-23 江苏大学 Construction Method of Neural Network Generalized Inverse Bearingless Permanent Magnet Synchronous Motor Decoupling Controller
CN101425775A (en) * 2008-12-02 2009-05-06 江苏大学 Controller and controlling method for non-bearing permanent magnet synchronous electric motor
CN101958685A (en) * 2010-03-04 2011-01-26 江苏大学 Nonlinear Inverse Decoupling Controller for Bearingless Synchronous Reluctance Motor and Its Construction Method
CN102082544A (en) * 2010-11-26 2011-06-01 江苏大学 Bearingless synchronous reluctance motor torque and suspension force direct controller and construction method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150045A (en) * 2018-09-26 2019-01-04 河南科技大学 The independent Inverse Decoupling method of induction-type bearingless motor
CN109217766A (en) * 2018-09-26 2019-01-15 河南科技大学 The independent reversed decoupling control system of induction-type bearingless motor
CN109150045B (en) * 2018-09-26 2021-07-20 河南科技大学 Independent Inverse System Decoupling Method for Bearingless Asynchronous Motors
CN109217766B (en) * 2018-09-26 2021-07-23 河南科技大学 Independent Inverse Decoupling Control System for Bearingless Asynchronous Motors
CN109525150A (en) * 2019-01-04 2019-03-26 哈尔滨理工大学 A kind of bearing-free permanent magnet synchronous motor system
CN112186976A (en) * 2020-08-07 2021-01-05 山东大学 A bearingless magnetic suspension motor rotor radial position detection device and control method
CN112186976B (en) * 2020-08-07 2022-01-28 山东大学 Bearing-free magnetic suspension motor rotor radial position detection device and control method
RU2822608C1 (en) * 2023-11-15 2024-07-09 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Method of obtaining signal for estimating rotor speed and signal for estimating moment of resistance on asynchronous motor shaft

Also Published As

Publication number Publication date
CN103427754B (en) 2016-04-06

Similar Documents

Publication Publication Date Title
CN103296935B (en) A kind of composite construction bearing-free switch reluctance motor and control method thereof
CN106505921B (en) A kind of control method and system of electric machine speed regulation
CN105406784B (en) The torque of simplex winding bearing-free motor and suspending power self-operated controller and building method
CN105262393B (en) A kind of fault-tolerant magneto method for control speed using novel transition process
CN103414428B (en) Bearingless synchronous reluctance motor rotor eccentric displacement controller and building method thereof
CN103997176B (en) A kind of DC motor without bearing and brush and suspending power control method
CN103916056B (en) 12/8 simplex winding bearingless switched reluctance motor error-tolerant operation control method
CN104201965B (en) Rotor suspension control method for stator permanent magnet type bearingless synchronous motor
CN103427755B (en) A kind of building method of bearing-free permanent magnet thin-sheet motor rotor radial displacement controller
CN104967382A (en) A sensorless control method for permanent magnet synchronous motor
CN103427754B (en) Induction-type bearingless motor rotor radial displacement self-operated controller
CN205509912U (en) Simplex winding does not have bearing motor torque and suspending power direct control ware
CN101546947A (en) Bearing-free switch reluctance motor and control method thereof
CN105897064B (en) An integrated winding self-suspending permanent magnet motor and control system and control method
CN110061676B (en) Bearingless permanent magnet synchronous motor controller based on flux linkage observer
Ramesh et al. Closed-loop control of BLDC motor using Hall effect sensors
CN104201966A (en) Drive control method for three-phase single-winding bearingless motor
CN104485852B (en) A kind of three pole magnetic bearing operation control system and methods based on matrix converter
CN204392131U (en) Based on the AC magnetism bearing electric chief axis operating control device of matrix converter
CN204392118U (en) A kind of three pole magnetic bearing operating control devices based on matrix converter
CN106788099B (en) A kind of method for controlling torque of composite rotors double winding bearing-free switch reluctance motor
CN107800342A (en) A kind of bearingless synchronous reluctance motor Second Order Sliding Mode Control method
CN104660139B (en) Method for controlling running of alternating current magnetic bearing electro spindle based on matrix converters
CN104038133B (en) A kind of permanent magnetic linear synchronous motor shifting sliding surface sliding mode positioning control method
Chen et al. A novel bearingless switched reluctance motor and its control method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210126

Address after: No. 159, Chengjiang Middle Road, Jiangyin City, Wuxi City, Jiangsu Province

Patentee after: Jiangyin Intellectual Property Operation Co.,Ltd.

Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301

Patentee before: JIANGSU University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240813

Address after: No. 159 Keji Road, Sanshui Street, Jiangyan District, Taizhou City, Jiangsu Province, China 225500

Patentee after: Jiangsu Chuangda Power Technology Co.,Ltd.

Country or region after: China

Address before: No. 159, Chengjiang Middle Road, Jiangyin City, Wuxi City, Jiangsu Province

Patentee before: Jiangyin Intellectual Property Operation Co.,Ltd.

Country or region before: China