[go: up one dir, main page]

CN104967382A - A sensorless control method for permanent magnet synchronous motor - Google Patents

A sensorless control method for permanent magnet synchronous motor Download PDF

Info

Publication number
CN104967382A
CN104967382A CN201510368936.4A CN201510368936A CN104967382A CN 104967382 A CN104967382 A CN 104967382A CN 201510368936 A CN201510368936 A CN 201510368936A CN 104967382 A CN104967382 A CN 104967382A
Authority
CN
China
Prior art keywords
voltage
angular velocity
output
motor
electrical angular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510368936.4A
Other languages
Chinese (zh)
Other versions
CN104967382B (en
Inventor
杨凯
杨星星
谢鸿钦
罗成
王晓光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201510368936.4A priority Critical patent/CN104967382B/en
Publication of CN104967382A publication Critical patent/CN104967382A/en
Application granted granted Critical
Publication of CN104967382B publication Critical patent/CN104967382B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

The invention discloses a permanent magnet synchronous motor position sensorless control method, comprising a rotating speed stabilization ring for correcting voltage synthesizing vector speed and a voltage amplitude correction ring for realizing vector control. The permanent magnet synchronous motor position sensorless control method essentially solves the problem that the motor is easy to lose synchronization and collapse, brings forwards a novel control strategy algorithm for realizing vector control, and realizes the stable, reliable and efficient operation of the driving system of the permanent magnet synchronous motor.

Description

一种永磁同步电机无位置传感器控制方法A sensorless control method for permanent magnet synchronous motor

技术领域technical field

本发明涉及一种永磁同步电机无位置传感器控制方法,属于电机控制领域。The invention relates to a position sensorless control method of a permanent magnet synchronous motor, which belongs to the field of motor control.

背景技术Background technique

日渐增长的能量消耗要求在工业设备中应用更加高效的控制系统,电力电子和控制技术能有效提升目前大多数工业驱动系统效率。永磁同步电机因其高效率、高功率密度、高动态响应等一系列优点受到业内重视,因而逐渐在工业设备中得到广泛应用。对于一些需要长时间持续运转的装置,比如风机、泵、压缩机类负载,效率上若能有提升,将节省巨大能量。将永磁同步电机应用于这些场合,能显著提升能源利用率,节约能源。The increasing energy consumption requires the application of more efficient control systems in industrial equipment. Power electronics and control technology can effectively improve the efficiency of most current industrial drive systems. Due to its high efficiency, high power density, high dynamic response and other advantages, the permanent magnet synchronous motor has been valued by the industry, so it has gradually been widely used in industrial equipment. For some devices that need to run continuously for a long time, such as fans, pumps, and compressors, if the efficiency can be improved, it will save huge energy. Applying permanent magnet synchronous motors to these occasions can significantly improve energy utilization and save energy.

永磁同步电机的控制方法主要有:1)矢量控制,包括电流矢量控制、磁场定向控制、直接转矩控制和磁链控制等,这些控制策略具有较高的动态性能,控制精度高,抗干扰能力较强。2)标量控制,包括常规的V/f控制、带有稳定修正环的V/f控制等,这类控制策略实施较为简单,鲁棒性强,但动态响应速度不高。过去十年里,无位置传感器控制得到了大力发展,主要在于省去位置传感器有助于降低成本,同时避免了信号干扰和高速状态下抖振所造成的传感器测量不准和失灵问题。相关研究集中在考虑成本的基础上提升性能和可靠性,提升控制精度和动态响应性。The control methods of permanent magnet synchronous motor mainly include: 1) Vector control, including current vector control, field oriented control, direct torque control and flux linkage control, etc. These control strategies have high dynamic performance, high control precision, and anti-interference Strong ability. 2) Scalar control, including conventional V/f control, V/f control with a stable correction loop, etc. This type of control strategy is relatively simple to implement and has strong robustness, but the dynamic response speed is not high. In the past ten years, position sensorless control has been vigorously developed, mainly because the omission of position sensors helps to reduce costs, and at the same time avoids the problem of inaccurate measurement and failure of sensors caused by signal interference and chattering at high speeds. Relevant research focuses on improving performance and reliability, improving control accuracy and dynamic responsiveness on the basis of considering cost.

将基于标量V/f控制的永磁同步电机无位置传感器驱动系统应用于风机类场合,是目前一种优质选择,主要在于这类负载对动态性能要求不高。众所周知,永磁同步电机转子上设计制造的阻尼绕组能确保转子速度与定子电频率保持同步。而出于设计和制造上的困难与成本,现有的大多数永磁同步电机转子上并未安装阻尼绕组,因而采用传统的开环V/f控制策略就无法保证电机的同步稳定运行。除此之外,对于风机、水泵、压缩机等应用场合,驱动系统的效率和出力能力是一大关注点,以往对于永磁同步电机无位置传感器控制研究大都还没有对其产生足够的关注,研究基于无位置传感器技术的V/f控制上实现类似电流矢量控制的效果,具有十分重要的意义。Applying the permanent magnet synchronous motor position sensorless drive system based on scalar V/f control to fan applications is a high-quality choice at present, mainly because such loads do not require high dynamic performance. As we all know, the damping winding designed and manufactured on the permanent magnet synchronous motor rotor can ensure that the rotor speed is synchronized with the stator electrical frequency. Due to the difficulty and cost of design and manufacture, most existing permanent magnet synchronous motor rotors do not have damping windings installed, so the traditional open-loop V/f control strategy cannot guarantee the synchronous and stable operation of the motor. In addition, for applications such as fans, water pumps, and compressors, the efficiency and output capacity of the drive system are a major concern. In the past, most researches on the sensorless control of permanent magnet synchronous motors have not paid enough attention to it. It is of great significance to study the effect similar to current vector control on V/f control based on position sensorless technology.

发明内容Contents of the invention

针对现有技术中存在的问题,本申请提供的是一种永磁同步电机无位置传感器控制方法,其中通过稳定环以及电压幅值修正环的具体结构及其设置方式进行研究和涉及,与现有产品相比更易于电机同步稳定运行以及矢量控制,同时具备一定的启动带载能力。Aiming at the problems existing in the prior art, this application provides a position sensorless control method for a permanent magnet synchronous motor, in which the specific structure and setting method of the stabilization loop and the voltage amplitude correction loop are studied and involved, which is different from the existing Compared with other products, it is easier for the synchronous and stable operation of the motor and vector control, and has a certain starting and loading capacity.

为实现上述目的,按照本发明的一个方面,提供一种永磁同步电机无位置传感器控制方法,具体包括以下步骤:In order to achieve the above purpose, according to one aspect of the present invention, a position sensorless control method for a permanent magnet synchronous motor is provided, which specifically includes the following steps:

步骤(1):电角速度指令信号的给予,输入目标电角速度,以一定的上升或者下降斜率从原电角速度指令信号按一次函数关系变化到新的目标电角速度,其中,ωe0 *定义为目标电角速度,ωe定义为变化过程中的电角速度指令;Step (1): Give the electrical angular velocity command signal, input the target electrical angular velocity, and change from the original electrical angular velocity command signal to the new target electrical angular velocity with a certain rising or falling slope according to a linear function relationship, where ω e0 * is defined as the target Electrical angular velocity, ω e is defined as the electrical angular velocity command during the change process;

步骤(2):电压合成矢量us *和θv *的确定;Step (2): Determination of voltage synthesis vectors u s * and θ v * ;

步骤(3):利用步骤(2)确定的电压合成矢量进行处理,用于驱动永磁同步电机;Step (3): Utilize the voltage synthesis vector determined in step (2) for processing to drive the permanent magnet synchronous motor;

步骤(4):测量永磁同步电机两相定子电流iA和iB,进行转速稳定环和电压幅值修正环控制,最终完成对永磁同步电机无位置传感器的控制。Step (4): Measure the two-phase stator currents i A and i B of the permanent magnet synchronous motor, perform speed stabilization loop and voltage amplitude correction loop control, and finally complete the sensorless control of the permanent magnet synchronous motor.

优选地,所述步骤(2)具体包括以下步骤:Preferably, the step (2) specifically includes the following steps:

步骤(21):将步骤(1)中得到的电角速度指令ωe经过一个比例环节,比例系数为永磁链λm,输出得到转子反电势esStep (21): pass the electrical angular velocity command ω e obtained in step (1) through a proportional link, the proportional coefficient is the permanent flux linkage λ m , and output the rotor back EMF e s ;

步骤(22):电压合成矢量幅值处理,具体包括:Step (22): voltage synthesis vector magnitude processing, specifically including:

步骤(221):将步骤(21)得到的es、初始启动提升电压u0和电压幅值修正环的输出电压量Δu进行相加,输出量为电压幅值usStep (221): Add the e s obtained in step (21), the initial start-up boost voltage u 0 and the output voltage Δu of the voltage amplitude correction loop, and the output value is the voltage amplitude u s ;

步骤(222):将步骤(221)得到的电压幅值us进行限幅处理,限幅环节上限为其中,定义逆变桥输入的直流母线电压为Udc,限幅环节下限为0,输出量为电压合成矢量幅值us *Step (222): Limiting the voltage amplitude u s obtained in step (221), the upper limit of the limiting link is Among them, the DC bus voltage input by the inverter bridge is defined as U dc , the lower limit of the limiting link is 0, and the output value is the voltage synthesis vector amplitude u s * ;

步骤(23):电压合成矢量角度处理,具体包括:Step (23): Voltage synthesis vector angle processing, specifically including:

步骤(231):将步骤(1)中所述的ωe与转速稳定环的输出电角速度量Δωe,通过一个减法器,输出电压矢量的电角速度值ωe *Step (231): the ω e described in the step (1) and the output electrical angular velocity Δω e of the speed stabilization loop are passed through a subtractor to output the electrical angular velocity value ω e * of the voltage vector;

步骤(232):将步骤(231)得到的电角速度ωe *通过积分环节进行积分,得到电压合成矢量角度值θv *Step (232): Integrate the electrical angular velocity ω e * obtained in step (231) through an integral link to obtain the voltage synthesis vector angle value θ v * .

优选地,所述步骤(3)具体包括以下步骤:Preferably, the step (3) specifically includes the following steps:

步骤(31):将步骤(2)得到的电压合成矢量幅值us *和角度值θv *,进行极坐标系量到直角坐标αβ轴系的转化,得到α轴和β轴的电压给定量分别记为uα *、uβ *Step (31): Transform the voltage synthesis vector amplitude u s * and angle value θ v * obtained in step (2) into the rectangular coordinate αβ axis, and obtain the voltage values of the α axis and β axis Quantitatively recorded as u α * and u β * respectively;

步骤(32):对步骤(31)中的电压给定值uα *、uβ *进行SVPWM调制,得到三相全桥逆变桥中六个开关管的驱动信号,上述逆变桥用于驱动永磁同步电机。Step (32): Carry out SVPWM modulation to the voltage given values u α * and u β * in step (31), to obtain the driving signals of six switching tubes in the three-phase full-bridge inverter bridge, and the above-mentioned inverter bridge is used for Drive permanent magnet synchronous motor.

优选地,所述步骤(4)具体包括以下步骤:Preferably, said step (4) specifically includes the following steps:

步骤(41):测量永磁同步电机定子两相电流iA和iB,将所测得的两相定子电流iA和iB经过Clark变换得到两相静止直角α-β坐标系下的电流iα和iβStep (41): Measure the stator two-phase currents i A and i B of the permanent magnet synchronous motor, and convert the measured two-phase stator currents i A and i B through Clark transformation to obtain the current in the two-phase stationary rectangular α-β coordinate system i α and i β ;

步骤(42):利用步骤(31)得到的电压给定量uα *、uβ *,和步骤(41)得到的电流iα、iβ,进行输入功率计算,分别计算出输入电机的有功功率P和无功功率Q;Step (42): Use the given voltage u α * and u β * obtained in step (31) and the current i α and i β obtained in step (41) to calculate the input power, and calculate the active power of the input motor respectively P and reactive power Q;

步骤(43):利用步骤(42)输出的电机输入有功功率P进行转速稳定环控制,具体还包括如下处理:Step (43): Use the motor input active power P outputted in step (42) to perform speed stabilization loop control, specifically including the following processing:

步骤(431):将所述电机输入有功功率P,经过一个一阶高通滤波器,得到输入电机的扰动有功功率Δp;Step (431): Input the active power P of the motor, and pass through a first-order high-pass filter to obtain the disturbance active power Δp of the input motor;

步骤(432):利用步骤(431)得到的所述扰动有功功率Δp,经过一个比例系数为kp的放大环节,输出得到转速稳定环的输出电角速度量ΔωeStep (432): Utilize the disturbance active power Δp that step (431) obtains, through an amplification link whose proportional coefficient is kp , the output obtains the output electrical angular velocity Δω e of the speed stabilization loop;

步骤(44):利用步骤(42)得到的电机输入有功功率P和无功功率Q、以及步骤(231)输出得到的电压矢量电角速度ωe *进行电压幅值修正环控制,具体还包括如下处理:Step (44): Use the motor input active power P and reactive power Q obtained in step (42) and the voltage vector electrical angular velocity ω e * obtained in step (231) to perform voltage amplitude correction loop control, specifically including the following deal with:

步骤(441):利用步骤(42)得到的电机输入有功功率P和步骤(231)输出得到的电压矢量电角速度ωe *,通过Qref计算环节,计算输出电机在最大转矩电流比、id=0控制策略下的指令无功功率QrefStep (441): Using the motor input active power P obtained in step (42) and the voltage vector electric angular velocity ω e * obtained in step (231) output, through the Q ref calculation link, calculate the output motor at Command reactive power Q ref under the maximum torque-to-current ratio, id = 0 control strategy;

步骤(442):利用步骤(441)输出得到的指令无功功率Qref和步骤(42)得到的输入电机的无功功率Q,通过一个减法器,输出得到无功功率偏差值ΔQ;Step (442): Utilize the command reactive power Q ref obtained in step (441) output and the reactive power Q of the input motor obtained in step (42), through a subtractor, output to obtain the reactive power deviation value ΔQ;

步骤(443):利用步骤(442)得到的无功功率偏差值ΔQ,通过PI调节器进行调节控制,输出得到电压幅值修正环的输出电压量Δu。Step (443): Use the reactive power deviation ΔQ obtained in step (442) to adjust and control through the PI regulator, and output the output voltage Δu of the voltage amplitude correction loop.

总体而言,按照本发明的上述技术构思与现有技术相比,主要具备以下的技术优点:Generally speaking, compared with the prior art, according to the above-mentioned technical concept of the present invention, it mainly possesses the following technical advantages:

1、硬件实施要求少,只需采集两相定子电流,对电机参数的依赖性小,计算量小。同时通过适当提升启动电压,系统具备一定的启动带载能力;1. Less hardware implementation requirements, only need to collect two-phase stator current, less dependence on motor parameters, and less calculation amount. At the same time, by properly increasing the starting voltage, the system has a certain starting load capacity;

2、从电机失步崩溃的本质原因入手,提出加入转速稳定环,解决电机在中高频率域或负载突变时无法保持同步稳定运行的问题;2. Starting from the essential cause of motor out-of-step collapse, it is proposed to add a speed stabilization loop to solve the problem that the motor cannot maintain synchronous and stable operation in the medium and high frequency domain or when the load changes suddenly;

3、从控制输入电机的无功功率为突破点,提出最大转矩电流比(MTPA)、id=0等矢量控制策略算法,加入电压幅值修正环,最终实现矢量控制。3. From controlling the reactive power of the input motor as a breakthrough point, it is proposed The maximum torque current ratio ( MTPA ), id = 0 and other vector control strategy algorithms are added to the voltage amplitude correction loop to finally realize the vector control.

附图说明Description of drawings

图1为本发明所设计的永磁同步电机无位置传感器控制方法的控制结构和原理框图。Fig. 1 is a control structure and a functional block diagram of a position sensorless control method for a permanent magnet synchronous motor designed in the present invention.

具体实施方式Detailed ways

为了使本发明的控制结构、技术方案及优点更加清楚明白,以下结合附图,对本发明进一步详细说明。In order to make the control structure, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings.

图1所示为本发明所述的控制方法原理框图,具体包括:电角速度指令加减速环节、计算转子反电势的比例环节、电压限幅环节、电角速度积分环节、极坐标系/两相静止αβ坐标系变换、SVPWM调制、三相逆变电源、永磁同步电机、电流传感器、三相静止ABC坐标系/两相静止αβ坐标系变换(Clark变换)、两相静止αβ坐标系下功率计算环节、高通滤波器、转速稳定比例调节器、(MTPA、id=0)控制策略时指令无功功率计算、电压幅值修正PI调节器等。Fig. 1 shows the principle block diagram of the control method according to the present invention, which specifically includes: the electric angular velocity command acceleration and deceleration link, the proportional link for calculating the rotor back EMF, the voltage limiting link, the electric angular velocity integral link, the polar coordinate system/two-phase static αβ coordinate system transformation, SVPWM modulation, three-phase inverter power supply, permanent magnet synchronous motor, current sensor, three-phase stationary ABC coordinate system/two-phase stationary αβ coordinate system transformation (Clark transformation), power calculation in two-phase stationary αβ coordinate system link, high-pass filter, speed stabilization proportional regulator, ( MTPA , id = 0) command reactive power calculation, voltage amplitude correction PI regulator, etc. during the control strategy.

本发明提出了一种永磁同步电机无位置传感器控制方法,具体包括以下具体步骤:The present invention proposes a position sensorless control method for a permanent magnet synchronous motor, which specifically includes the following specific steps:

步骤(1):电角速度指令信号的给予,输入目标电角速度,以一定的上升或者下降斜率从原电角速度指令信号按一次函数关系变化到新的目标电角速度,其中,ωe0 *定义为目标电角速度,ωe定义为变化过程中的电角速度指令;Step (1): Give the electrical angular velocity command signal, input the target electrical angular velocity, and change from the original electrical angular velocity command signal to the new target electrical angular velocity with a certain rising or falling slope according to a linear function relationship, where ω e0 * is defined as the target Electrical angular velocity, ω e is defined as the electrical angular velocity command during the change process;

步骤(2):电压合成矢量的确定,具体包括如下处理:Step (2): The determination of the voltage synthesis vector specifically includes the following processing:

步骤(21):将步骤(1)中得到的ωe经过一个比例环节,比例系数为永磁链λm,输出得到转子反电势esStep (21): pass the ω e obtained in the step (1) through a proportional link, the proportional coefficient is the permanent flux linkage λ m , and the output is the rotor back EMF e s ;

步骤(22):电压合成矢量幅值处理,具体包括:Step (22): voltage synthesis vector magnitude processing, specifically including:

步骤(221):将步骤(21)得到的es,初始启动提升电压u0和电压幅值修正环的输出电压量Δu进行相加,输出量为电压幅值usStep (221): add the e s obtained in step (21), the initial start-up boost voltage u 0 and the output voltage Δu of the voltage amplitude correction loop, and the output value is the voltage amplitude u s ;

步骤(222):将步骤(221)得到的电压幅值us进行限幅处理,限幅环节上限为其中,定义逆变桥输入的直流母线电压为Udc,限幅环节下限为0。输出量为电压合成矢量幅值us *Step (222): Limiting the voltage amplitude u s obtained in step (221), the upper limit of the limiting link is Among them, the DC bus voltage input by the inverter bridge is defined as U dc , and the lower limit of the limiting link is 0. The output is the voltage synthesis vector magnitude u s * ;

步骤(23):电压合成矢量角度处理,具体包括:Step (23): Voltage synthesis vector angle processing, specifically including:

步骤(231):将步骤(1)得到的ωe与转速稳定环的输出电角速度量Δωe,通过一个减法器,输出电压矢量的电角速度值ωe *Step (231): the ω e obtained in step (1) and the output electrical angular velocity Δω e of the speed stabilization loop are passed through a subtractor to output the electrical angular velocity value ω e * of the voltage vector;

步骤(232):将步骤(231)得到的电角速度ωe *通过积分环节进行积分,得到电压合成矢量角度值θv *Step (232): the electric angular velocity ω e * that step (231) obtains is integrated through the integration link, obtains voltage composite vector angle value θ v * ;

步骤(3):利用步骤(2)确定的电压合成矢量进行处理,用于驱动永磁同步电机,具体包括如下处理:Step (3): The voltage synthesis vector determined in step (2) is used for processing to drive the permanent magnet synchronous motor, which specifically includes the following processing:

步骤(31):将步骤(2)得到的电压合成矢量幅值和角度值,进行极坐标系量到直角坐标αβ轴系的转化,得到α轴和β轴的电压给定量分别为uα *、uβ *Step (31): Convert the magnitude and angle of the voltage synthesis vector obtained in step (2) into the polar coordinate system and the Cartesian coordinate αβ axis system, and obtain the given voltage values of the α axis and β axis as u α * , u β * ;

步骤(32):对步骤(31)中的电压给定值uα *、uβ *进行SVPWM调制,得到三相全桥逆变桥中六个开关管的驱动信号,上述逆变桥用于驱动永磁同步电机;Step (32): Carry out SVPWM modulation to the voltage given values u α * and u β * in step (31), to obtain the driving signals of six switching tubes in the three-phase full-bridge inverter bridge, and the above-mentioned inverter bridge is used for Drive permanent magnet synchronous motor;

步骤(4):测量永磁同步电机两相定子电流iA和iB,进行转速稳定环和电压幅值修正环控制,具体包括如下处理:Step (4): Measure the two-phase stator currents i A and i B of the permanent magnet synchronous motor, and perform speed stabilization loop and voltage amplitude correction loop control, specifically including the following processing:

步骤(41):测量永磁同步电机定子两相电流iA和iB,将两相电流iA和iB经过Clark变换得到两相静止直角α-β坐标系下的电流iα和iβStep (41): Measure the two-phase currents i A and i B of the stator of the permanent magnet synchronous motor, and transform the two-phase currents i A and i B through Clark transformation to obtain the currents i α and i β in the two-phase stationary rectangular α-β coordinate system ;

步骤(42):利用步骤(31)得到的电压给定量uα *、uβ *,和步骤(41)得到的电流iα、iβ,进行输入功率计算,分别计算出输入电机的有功功率P和无功功率Q;Step (42): Use the given voltage u α * and u β * obtained in step (31) and the current i α and i β obtained in step (41) to calculate the input power, and calculate the active power of the input motor respectively P and reactive power Q;

PP == 33 22 (( uu αα ** ii αα ++ uu ββ ** ii ββ )) QQ == 33 22 (( uu ββ ** ii αα -- uu αα ** ii ββ ))

步骤(43):利用步骤(42)输出的电机输入有功功率P进行转速稳定环控制,具体还包括如下处理:Step (43): Use the motor input active power P outputted in step (42) to perform speed stabilization loop control, specifically including the following processing:

步骤(431):利用步骤(42)得到的电机输入有功功率P,经过一个一阶高通滤波器(HPF),得到输入电机的扰动有功功率Δp;Step (431): using the motor input active power P obtained in step (42), through a first-order high-pass filter (HPF), to obtain the disturbance active power Δp of the input motor;

步骤(432):利用步骤(431)得到的输入电机的扰动有功功率Δp,经过一个比例系数为kp的放大环节,输出得到转速稳定环的输出电角速度量Δωe。其中,kp值通过求解分析电机数学模型的状态传输矩阵特征根求出,即一定工况下,通过数值分析方法选定kp值,保证状态传输矩阵的特征根均在s平面的左半区,从而确保转速稳定;Step (432): Use the disturbance active power Δp of the input motor obtained in step (431), and pass through an amplification link with a proportional coefficient k p to output the output electrical angular velocity Δω e of the speed stabilization loop. Among them, the value of k p is obtained by solving and analyzing the characteristic root of the state transfer matrix of the mathematical model of the motor, that is, under certain working conditions, the value of k p is selected by numerical analysis method to ensure that the characteristic roots of the state transfer matrix are all on the left half of the s plane area, so as to ensure the stable speed;

步骤(44):利用步骤(42)得到的电机输入有功功率P和无功功率Q、以及步骤(231)输出得到的电压矢量电角速度ωe *进行电压幅值修正环控制,具体还包括如下处理:Step (44): Use the motor input active power P and reactive power Q obtained in step (42) and the voltage vector electrical angular velocity ω e * obtained in step (231) to perform voltage amplitude correction loop control, specifically including the following deal with:

步骤(441):利用步骤(42)得到的电机输入有功功率P和步骤(231)输出得到的电压矢量电角速度ωe *,通过一定控制策略下的Qref计算环节,计算输出电机在最大转矩电流比(MTPA)、id=0控制策略下的指令无功功率Qref,具体分以下三种情况讨论:Step (441): Using the motor input active power P obtained in step (42) and the voltage vector electric angular velocity ω e * obtained in step (231) output, through the Q ref calculation link under a certain control strategy, calculate the output motor at The maximum torque-to-current ratio ( MTPA ), the commanded reactive power Q ref under the control strategy of id = 0, is specifically discussed in the following three cases:

在选择作为需实现的控制策略时,要求最终输入电机的无功功率为零,即Qref=0in selection As the control strategy to be realized, it is required that the final reactive power input to the motor is zero, that is, Q ref =0

②最大转矩电流比(MTPA)②Maximum torque current ratio (MTPA)

电机在稳定运行时,其电压方程为When the motor is running stably, Its voltage equation is

vd=Rsid-wrLqiq              (1)v d =R s i d -w r L q i q (1)

vq=Rsiq+wrm+Ldid)            (2)v q =R s i q +w rm +L d i d ) (2)

电机的电磁转矩方程为The electromagnetic torque equation of the motor is

Te=1.5piqm+(Ld-Lq)id]        (3)T e =1.5pi qm +(L d -L q )i d ] (3)

其中,(vd,vq),(id,iq)是定子电压和电流分量,Rs是定子每相电阻,Ld,Lq分别是d,q轴电感,ωr是转子的电角速度。ωm是转子的机械角速度,ωe *是电压合成矢量的电角速度,是功率因数角。λm是永磁体磁链,Te是电磁转矩,p是电机极对数。Among them, (v d , v q ), (i d , i q ) are the stator voltage and current components, R s is the resistance of each phase of the stator, L d , L q are the inductances of d and q axes respectively, ω r is the inductance of the rotor electrical angular velocity. ωm is the mechanical angular velocity of the rotor, ωe * is the electrical angular velocity of the voltage synthesis vector, is the power factor angle. λ m is the flux linkage of the permanent magnet, T e is the electromagnetic torque, and p is the number of pole pairs of the motor.

求得输入电机的有功功率P和无功功率Q,其中 Obtain the active power P and reactive power Q of the input motor, where

P=1.5(vdid+vqiq)=1.5Rsi2+         (4)P=1.5(v d i d +v q i q )=1.5R s i 2 + (4)

1.5wriqm+(Ld-Lq)id]1.5w r i qm +(L d -L q )i d ]

QQ == 1.51.5 (( vv qq ii dd -- vv dd ii qq )) == 1.51.5 ww rr [[ λλ mm ii dd ++ LL dd ii dd 22 ++ LL qq ii qq 22 ]] -- -- -- (( 55 ))

根据式(3)和式(4),由输入有功功率计算得电磁转矩为According to formula (3) and formula (4), the electromagnetic torque calculated from the input active power is

TT ee == PP -- 1.51.5 RR sthe s ii 22 ww rr // pp -- -- -- (( 66 ))

结合式(1)(2)(3),可得电机在最大转矩电流比控制时需满足Combining equations (1)(2)(3), it can be obtained that the motor needs to satisfy the maximum torque-current ratio control

(( LL dd -- LL qq )) ii dd 22 ++ λλ mm ii dd -- (( LL dd -- LL qq )) ii qq 22 == 00 -- -- -- (( 77 ))

将(7)代入(5),可得无功功率进一步表示为Substituting (7) into (5), the reactive power can be further expressed as

QQ == 1.51.5 ww rr (( LL qq ii dd 22 ++ LL dd ii qq 22 )) -- -- -- (( 88 ))

由此,可得将最大转矩电流比作为控制策略时,指令无功功率Thus, when the maximum torque-to-current ratio is used as the control strategy, the commanded reactive power

QQ rr ee ff (( Mm TT PP AA )) == ff (( ii dd (( Mm TT PP AA )) ,, ii qq (( Mm TT PP AA )) )) == ff (( TT ee )) == ff (( PP ,, ww ee ** )) -- -- -- (( 99 ))

进行梳理,得到最大转据电流比控制时的指令无功功率计算流程如下:After combing, the calculation process of the command reactive power under the control of the maximum transfer current ratio is obtained as follows:

③id=0③i d =0

在电机稳定运行前提下,采用id=0控制策略时,iq=i,则输入电机无功功率为Under the premise of stable operation of the motor, When i d = 0 control strategy is adopted, i q = i, then the reactive power of the input motor is

QQ == 1.51.5 ωω rr LL qq ii qq 22 -- -- -- (( 1010 ))

此时电磁转矩为At this time, the electromagnetic torque is

Te=1.5pλmiq           (11)T e =1.5pλ m i q (11)

由此,可得将id=0作为控制策略时,指令无功功率From this, it can be obtained that when id = 0 is used as the control strategy, the command reactive power

QQ rr ee ff (( ii dd == 00 )) == ff (( ii dd == 00 ,, ii qq (( ii dd == 00 )) )) == ff (( TT ee )) == ff (( PP ,, ww ee ** )) -- -- -- (( 1212 ))

进行梳理,得到id=0控制时的指令无功功率计算流程如下:After combing, the calculation process of the command reactive power when i d = 0 control is obtained is as follows:

步骤(442):利用步骤(441)输出得到的指令无功功率Qref和步骤(42)得到的输入电机的无功功率Q,通过一个减法器,输出得到无功功率偏差值ΔQ;Step (442): Utilize the command reactive power Q ref obtained in step (441) output and the reactive power Q of the input motor obtained in step (42), through a subtractor, output to obtain the reactive power deviation value ΔQ;

步骤(443):利用步骤(442)得到的无功功率偏差值ΔQ,通过PI调节器进行调节控制,输出得到电压幅值修正环的输出电压量Δu。Step (443): Use the reactive power deviation ΔQ obtained in step (442) to adjust and control through the PI regulator, and output the output voltage Δu of the voltage amplitude correction loop.

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.

Claims (4)

1.一种永磁同步电机无位置传感器控制方法,其特征在于,该方法包括如下具体步骤:1. a permanent magnet synchronous motor position sensorless control method, is characterized in that, the method comprises the following concrete steps: 步骤(1):电角速度指令信号的给予,输入目标电角速度,以一定的上升或者下降斜率从原电角速度指令信号按一次函数关系变化到新的目标电角速度,其中,ωe0 *定义为目标电角速度,ωe定义为变化过程中的电角速度指令;Step (1): Give the electrical angular velocity command signal, input the target electrical angular velocity, and change from the original electrical angular velocity command signal to the new target electrical angular velocity with a certain rising or falling slope according to a linear function relationship, where ω e0 * is defined as the target Electrical angular velocity, ω e is defined as the electrical angular velocity command during the change process; 步骤(2):电压合成矢量us *和θv *的确定;Step (2): Determination of voltage synthesis vectors u s * and θ v * ; 步骤(3):利用步骤(2)确定的电压合成矢量进行处理,用于驱动永磁同步电机;Step (3): Utilize the voltage synthesis vector determined in step (2) for processing to drive the permanent magnet synchronous motor; 步骤(4):测量永磁同步电机两相定子电流iA和iB,进行转速稳定环和电压幅值修正环控制,最终完成对永磁同步电机无位置传感器的控制。Step (4): Measure the two-phase stator currents i A and i B of the permanent magnet synchronous motor, perform speed stabilization loop and voltage amplitude correction loop control, and finally complete the sensorless control of the permanent magnet synchronous motor. 2.如权利要求1中所述的控制方法,其特征在于:所述步骤(2)具体包括以下步骤:2. control method as claimed in claim 1, is characterized in that: described step (2) specifically comprises the following steps: 步骤(21):将步骤(1)中得到的电角速度指令ωe经过一个比例环节,比例系数为永磁链λm,输出得到转子反电势esStep (21): pass the electrical angular velocity command ω e obtained in step (1) through a proportional link, the proportional coefficient is the permanent flux linkage λ m , and output the rotor back EMF e s ; 步骤(22):电压合成矢量幅值处理,具体包括:Step (22): voltage synthesis vector magnitude processing, specifically including: 步骤(221):将步骤(21)得到的es、初始启动提升电压u0和电压幅值修正环的输出电压量Δu进行相加,输出量为电压幅值usStep (221): Add the e s obtained in step (21), the initial start-up boost voltage u 0 and the output voltage Δu of the voltage amplitude correction loop, and the output value is the voltage amplitude u s ; 步骤(222):将步骤(221)得到的电压幅值us进行限幅处理,限幅环节上限为其中,定义逆变桥输入的直流母线电压为Udc,限幅环节下限为0,输出量为电压合成矢量幅值us *Step (222): Limiting the voltage amplitude u s obtained in step (221), the upper limit of the limiting link is Among them, the DC bus voltage input by the inverter bridge is defined as U dc , the lower limit of the limiting link is 0, and the output value is the voltage synthesis vector amplitude u s * ; 步骤(23):电压合成矢量角度处理,具体包括:Step (23): Voltage synthesis vector angle processing, specifically including: 步骤(231):将步骤(1)中所述的ωe与转速稳定环的输出电角速度量Δωe,通过一个减法器,输出电压矢量的电角速度值ωe *Step (231): the ω e described in the step (1) and the output electrical angular velocity Δω e of the speed stabilization loop are passed through a subtractor to output the electrical angular velocity value ω e * of the voltage vector; 步骤(232):将步骤(231)得到的电角速度ωe *通过积分环节进行积分,得到电压合成矢量角度值θv *Step (232): Integrate the electrical angular velocity ω e * obtained in step (231) through an integral link to obtain the voltage synthesis vector angle value θ v * . 3.如权利要求1所述的控制方法,其特征在于:所述步骤(3)具体包括以下步骤:3. control method as claimed in claim 1 is characterized in that: described step (3) specifically comprises the following steps: 步骤(31):将步骤(2)得到的电压合成矢量幅值us *和角度值θv *,进行极坐标系量到直角坐标αβ轴系的转化,得到α轴和β轴的电压给定量分别记为uα *、uβ *Step (31): Transform the voltage synthesis vector amplitude u s * and angle value θ v * obtained in step (2) into the rectangular coordinate αβ axis, and obtain the voltage values of the α axis and β axis Quantitatively recorded as u α * and u β * respectively; 步骤(32):对步骤(31)中的电压给定值uα *、uβ *进行SVPWM调制,得到三相全桥逆变桥中六个开关管的驱动信号,上述逆变桥用于驱动永磁同步电机。Step (32): Carry out SVPWM modulation to the voltage given values u α * and u β * in step (31), to obtain the driving signals of six switching tubes in the three-phase full-bridge inverter bridge, and the above-mentioned inverter bridge is used for Drive permanent magnet synchronous motor. 4.如权利要求1所述的控制方法,其特征在于:所述步骤(4)具体包括以下步骤:4. control method as claimed in claim 1 is characterized in that: described step (4) specifically comprises the following steps: 步骤(41):测量永磁同步电机定子两相电流iA和iB,将所测得的两相定子电流iA和iB经过Clark变换得到两相静止直角α-β坐标系下的电流iα和iβStep (41): Measure the stator two-phase currents i A and i B of the permanent magnet synchronous motor, and convert the measured two-phase stator currents i A and i B through Clark transformation to obtain the current in the two-phase stationary rectangular α-β coordinate system i α and i β ; 步骤(42):利用步骤(31)得到的电压给定量uα *、uβ *,和步骤(41)得到的电流iα、iβ,进行输入功率计算,分别计算出输入电机的有功功率P和无功功率Q;Step (42): Use the given voltage u α * and u β * obtained in step (31) and the current i α and i β obtained in step (41) to calculate the input power, and calculate the active power of the input motor respectively P and reactive power Q; 步骤(43):利用步骤(42)输出的电机输入有功功率P进行转速稳定环控制,具体还包括如下处理:Step (43): Use the motor input active power P outputted in step (42) to perform speed stabilization loop control, specifically including the following processing: 步骤(431):将所述电机输入有功功率P,经过一个一阶高通滤波器,得到输入电机的扰动有功功率Δp;Step (431): Input the active power P of the motor, and pass through a first-order high-pass filter to obtain the disturbance active power Δp of the input motor; 步骤(432):利用步骤(431)得到的所述扰动有功功率Δp,经过一个比例系数为kp的放大环节,输出得到转速稳定环的输出电角速度量ΔωeStep (432): Utilize the disturbance active power Δp that step (431) obtains, through an amplification link whose proportional coefficient is kp , the output obtains the output electrical angular velocity Δω e of the speed stabilization loop; 步骤(44):利用步骤(42)得到的电机输入有功功率P和无功功率Q、以及步骤(231)输出得到的电压矢量电角速度ωe *进行电压幅值修正环控制,具体还包括如下处理:Step (44): Use the motor input active power P and reactive power Q obtained in step (42) and the voltage vector electrical angular velocity ω e * obtained in step (231) to perform voltage amplitude correction loop control, specifically including the following deal with: 步骤(441):利用步骤(42)得到的电机输入有功功率P和步骤(231)输出得到的电压矢量电角速度ωe *,通过Qref计算环节,计算输出电机在最大转矩电流比、id=0控制策略下的指令无功功率QrefStep (441): Using the motor input active power P obtained in step (42) and the voltage vector electric angular velocity ω e * obtained in step (231) output, through the Q ref calculation link, calculate the output motor at Command reactive power Q ref under the maximum torque-to-current ratio, id = 0 control strategy; 步骤(442):利用步骤(441)输出得到的指令无功功率Qref和步骤(42)得到的输入电机的无功功率Q,通过一个减法器,输出得到无功功率偏差值ΔQ;Step (442): Utilize the command reactive power Q ref obtained in step (441) output and the reactive power Q of the input motor obtained in step (42), through a subtractor, output to obtain the reactive power deviation value ΔQ; 步骤(443):利用步骤(442)得到的无功功率偏差值ΔQ,通过PI调节器进行调节控制,输出得到电压幅值修正环的输出电压量Δu。Step (443): Use the reactive power deviation ΔQ obtained in step (442) to adjust and control through the PI regulator, and output the output voltage Δu of the voltage amplitude correction loop.
CN201510368936.4A 2015-06-29 2015-06-29 A kind of permagnetic synchronous motor method for controlling position-less sensor Expired - Fee Related CN104967382B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510368936.4A CN104967382B (en) 2015-06-29 2015-06-29 A kind of permagnetic synchronous motor method for controlling position-less sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510368936.4A CN104967382B (en) 2015-06-29 2015-06-29 A kind of permagnetic synchronous motor method for controlling position-less sensor

Publications (2)

Publication Number Publication Date
CN104967382A true CN104967382A (en) 2015-10-07
CN104967382B CN104967382B (en) 2017-11-14

Family

ID=54221354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510368936.4A Expired - Fee Related CN104967382B (en) 2015-06-29 2015-06-29 A kind of permagnetic synchronous motor method for controlling position-less sensor

Country Status (1)

Country Link
CN (1) CN104967382B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134954A (en) * 2017-07-03 2017-09-05 中山长峰智能自动化装备研究院有限公司 Permanent magnet synchronous motor control system and method
CN107508520A (en) * 2017-09-14 2017-12-22 南京航空航天大学 A kind of magneto control method and device
CN107919832A (en) * 2017-11-24 2018-04-17 浙江理工大学 Synchronous magnetic resistance motor sensorless control system and method based on power back-off
CN108336936A (en) * 2018-03-29 2018-07-27 深圳市英威腾电气股份有限公司 A kind of control method of linear motor, apparatus and system
CN109391189A (en) * 2018-10-17 2019-02-26 浙江大华技术股份有限公司 A kind of stepper motor rotational angle compensation method and device
CN109861613A (en) * 2018-12-19 2019-06-07 无锡华宸控制技术有限公司 A kind of calculation method, device and the electronic equipment of the output torque of motor
CN111064410A (en) * 2019-12-27 2020-04-24 天津瑞能电气有限公司 V/F stability control method for permanent magnet synchronous motor
CN112821829A (en) * 2021-01-07 2021-05-18 大连理工大学 Permanent magnet synchronous motor robust position control method considering current amplitude limiting
CN115208262A (en) * 2021-04-08 2022-10-18 台达电子工业股份有限公司 Motor control device and motor control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086085A (en) * 2006-09-26 2008-04-10 Toshiba Corp Electric car controller
CN101252336A (en) * 2008-03-07 2008-08-27 清华大学 Control method for high-speed operation of permanent magnet synchronous motor-compressor system
CN101635555A (en) * 2008-07-23 2010-01-27 日立空调·家用电器株式会社 Motor control device, motor control system, motor control module and refrigerating unit
CN102684592A (en) * 2012-05-10 2012-09-19 南京航空航天大学 Torque and flux linkage control method for permanent synchronous motor
CN103997267A (en) * 2014-04-11 2014-08-20 浙江大学 Serial compensation direct torque control method for winding permanent magnetic synchronous motor
CN103997270A (en) * 2014-06-09 2014-08-20 浙江理工大学 Sensorless vector control device and method for non-salient pole type permanent magnet synchronous motor
CN104518713A (en) * 2014-12-17 2015-04-15 华中科技大学 Position-sensor-free speed regulating control method for brushless doubly-fed motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086085A (en) * 2006-09-26 2008-04-10 Toshiba Corp Electric car controller
CN101252336A (en) * 2008-03-07 2008-08-27 清华大学 Control method for high-speed operation of permanent magnet synchronous motor-compressor system
CN101635555A (en) * 2008-07-23 2010-01-27 日立空调·家用电器株式会社 Motor control device, motor control system, motor control module and refrigerating unit
CN102684592A (en) * 2012-05-10 2012-09-19 南京航空航天大学 Torque and flux linkage control method for permanent synchronous motor
CN103997267A (en) * 2014-04-11 2014-08-20 浙江大学 Serial compensation direct torque control method for winding permanent magnetic synchronous motor
CN103997270A (en) * 2014-06-09 2014-08-20 浙江理工大学 Sensorless vector control device and method for non-salient pole type permanent magnet synchronous motor
CN104518713A (en) * 2014-12-17 2015-04-15 华中科技大学 Position-sensor-free speed regulating control method for brushless doubly-fed motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134954A (en) * 2017-07-03 2017-09-05 中山长峰智能自动化装备研究院有限公司 Permanent magnet synchronous motor control system and method
CN107134954B (en) * 2017-07-03 2019-08-20 中山长峰智能自动化装备研究院有限公司 Permanent magnet synchronous motor control system and method
CN107508520A (en) * 2017-09-14 2017-12-22 南京航空航天大学 A kind of magneto control method and device
CN107508520B (en) * 2017-09-14 2020-04-24 南京航空航天大学 Permanent magnet motor control method and device
CN107919832A (en) * 2017-11-24 2018-04-17 浙江理工大学 Synchronous magnetic resistance motor sensorless control system and method based on power back-off
CN108336936A (en) * 2018-03-29 2018-07-27 深圳市英威腾电气股份有限公司 A kind of control method of linear motor, apparatus and system
CN109391189A (en) * 2018-10-17 2019-02-26 浙江大华技术股份有限公司 A kind of stepper motor rotational angle compensation method and device
CN109861613A (en) * 2018-12-19 2019-06-07 无锡华宸控制技术有限公司 A kind of calculation method, device and the electronic equipment of the output torque of motor
CN111064410A (en) * 2019-12-27 2020-04-24 天津瑞能电气有限公司 V/F stability control method for permanent magnet synchronous motor
CN112821829A (en) * 2021-01-07 2021-05-18 大连理工大学 Permanent magnet synchronous motor robust position control method considering current amplitude limiting
CN115208262A (en) * 2021-04-08 2022-10-18 台达电子工业股份有限公司 Motor control device and motor control method

Also Published As

Publication number Publication date
CN104967382B (en) 2017-11-14

Similar Documents

Publication Publication Date Title
CN104967382B (en) A kind of permagnetic synchronous motor method for controlling position-less sensor
CN103872951B (en) Permanent magnet synchronous motor torque control method based on sliding mode flux linkage observer
WO2019218389A1 (en) Virtual voltage injection-based speed sensor-less driving control method for induction motor
CN103715962B (en) The permagnetic synchronous motor sliding-mode speed observer that dual stage matrix converter drives
CN102684592B (en) Torque and flux linkage control method for permanent synchronous motor
CN105262393B (en) A kind of fault-tolerant magneto method for control speed using novel transition process
CN108092567A (en) A kind of Speed control of permanent magnet synchronous motor system and method
CN101252336A (en) Control method for high-speed operation of permanent magnet synchronous motor-compressor system
CN108377117B (en) Compound current control system and method for permanent magnet synchronous motor based on predictive control
CN102201779A (en) Control method for detecting maximum torque current ratio of electromagnetic torque by using stator flux of permanent magnetic synchronous motor
CN105406784B (en) The torque of simplex winding bearing-free motor and suspending power self-operated controller and building method
CN105790660A (en) Rotary speed adaptive robust control system and method for ultra-high-speed permanent magnet synchronous motor
CN110784145A (en) Permanent magnet synchronous motor full-speed domain model prediction flux linkage control method
CN111987961A (en) Position-sensorless direct torque control method for permanent magnet synchronous motor
CN111769779A (en) PMSM direct torque control method based on improved Luenberger observer
CN106026803A (en) Speed sensorless control method based on sliding-mode observer
CN110323986A (en) A kind of permanent-magnet synchronous motor rotor position angle evaluation method
CN109861605B (en) A deadbeat torque prediction control method for permanent magnet synchronous motor
CN104104301A (en) Passivity-based control method for speed-senseless interpolating permanent magnet synchronous motor
CN110661463B (en) Design method of fractional order PID sliding-mode observer suitable for magnetic suspension spherical motor
CN107181438A (en) Speed Sensorless Control Method of Asynchronous Motor based on modified Q MRAS
CN111969900A (en) NPC three-level BLDC torque ripple minimization control method based on duty ratio modulation
CN106533294B (en) A kind of permanent magnet synchronous motor field weakening control method based on line voltage modulation
CN205509912U (en) Simplex winding does not have bearing motor torque and suspending power direct control ware
CN103427754B (en) Induction-type bearingless motor rotor radial displacement self-operated controller

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171114

Termination date: 20180629