CN103413788B - The preparation method of non-planar metal nanocrystalline multi-bit memory device - Google Patents
The preparation method of non-planar metal nanocrystalline multi-bit memory device Download PDFInfo
- Publication number
- CN103413788B CN103413788B CN201310383471.0A CN201310383471A CN103413788B CN 103413788 B CN103413788 B CN 103413788B CN 201310383471 A CN201310383471 A CN 201310383471A CN 103413788 B CN103413788 B CN 103413788B
- Authority
- CN
- China
- Prior art keywords
- layer
- substrate
- planar
- memory device
- bit memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002184 metal Substances 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims description 8
- 230000015654 memory Effects 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 22
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 9
- 239000002105 nanoparticle Substances 0.000 claims abstract description 9
- 238000000609 electron-beam lithography Methods 0.000 claims abstract description 8
- 230000005641 tunneling Effects 0.000 claims abstract description 8
- 230000003647 oxidation Effects 0.000 claims abstract description 7
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 7
- 238000005530 etching Methods 0.000 claims abstract description 5
- 238000005566 electron beam evaporation Methods 0.000 claims abstract description 3
- 238000000137 annealing Methods 0.000 claims description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 238000000280 densification Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 239000002159 nanocrystal Substances 0.000 abstract description 20
- 238000005516 engineering process Methods 0.000 abstract description 17
- 238000004151 rapid thermal annealing Methods 0.000 abstract description 4
- 238000010561 standard procedure Methods 0.000 abstract 1
- 238000003860 storage Methods 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000008367 deionised water Substances 0.000 description 12
- 229910021641 deionized water Inorganic materials 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 235000012239 silicon dioxide Nutrition 0.000 description 7
- 239000010453 quartz Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000002082 metal nanoparticle Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000011010 flushing procedure Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005264 electron capture Effects 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 210000000352 storage cell Anatomy 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
Abstract
非平面金属纳米晶多位存储器件的制备方法,涉及一种金属纳米晶存储器。1)通过电子束光刻方法在Si衬底上刻蚀出凹槽阵列,形成非平面台阶状的结构;2)将刻蚀后的Si衬底经过标准清洗后,采用干法氧化方法,在非平面的Si衬底上氧化一层致密的SiO2薄层作为存储器的电子隧穿层;3)将步骤2)得到的表面覆盖有SiO2薄层的非平面Si衬底上溅射Au层,采用快速热退火方法使Au层团聚形成Au纳米颗粒;4)采用电子束蒸发工艺在步骤3)获得的Au纳米颗粒上沉积高k介质层,最后蒸镀上电极和下电极,获得非平面金属纳米晶多位存储器件。只需要一步刻蚀技术、过程简单、重复性好。
The invention discloses a method for preparing a non-planar metal nanocrystal multi-bit memory device, relating to a metal nanocrystal memory. 1) The groove array is etched on the Si substrate by electron beam lithography to form a non-planar stepped structure; 2) After the etched Si substrate is cleaned by a standard method, dry oxidation method is used to form a non-planar stepped structure; Oxidize a layer of dense SiO 2 thin layer on the non-planar Si substrate as the electron tunneling layer of the memory; 3) sputter Au layer on the non-planar Si substrate covered with SiO 2 thin layer obtained in step 2) , using the rapid thermal annealing method to agglomerate the Au layer to form Au nanoparticles; 4) Deposit a high-k dielectric layer on the Au nanoparticles obtained in step 3) by electron beam evaporation, and finally evaporate the upper and lower electrodes to obtain a non-planar Metal nanocrystal multi-bit memory devices. Only one-step etching technology is required, the process is simple and repeatable.
Description
技术领域technical field
本发明涉及一种金属纳米晶存储器,尤其是涉及一种非平面金属纳米晶多位存储器件的制备方法。The invention relates to a metal nanocrystal memory, in particular to a preparation method of a non-planar metal nanocrystal multi-bit memory device.
背景技术Background technique
导体存储器是微电子学的一个重要分支,它具有对信息进行存储与处理的功能,广泛地应用于各种微电子设备中,如:笔记本计算机、手机、闪存器、平板电脑等便携式电子产品。随着便携式智能化电子产品的普及,市场对大容量数据存储的需求与日俱增。在当代半导体存储器领域中,非挥发性存储器(NVM)扮演着越来越重要的角色。所谓非挥发存储器,是指在失去外部供电的情况下仍能保持其所存储数据的存储器。自1967年贝尔实验室(BellLab)的D.Kahng和S.M.Sze提出基于浮栅结构(FG,FloatingGate)的非挥发性半导体存储器以来浮栅结构的概念就成为后来40多年半导体非易失性存储器的发展主线([1]D.KahngandS.M.Sze,Afloatinggateanditsapplicationtomemorydevices,BellSystemsTechnicalJournal.46,1288,1967),并被广泛的应用于嵌入式存储器当中。这种结构的存储器在成本、存储密度、功耗和热稳定性上都有很大的优势,并且性能不断快速提升。Conductor memory is an important branch of microelectronics. It has the function of storing and processing information, and is widely used in various microelectronic devices, such as portable electronic products such as notebook computers, mobile phones, flash memory, and tablet computers. With the popularity of portable intelligent electronic products, the market demand for large-capacity data storage is increasing day by day. In the field of contemporary semiconductor memory, non-volatile memory (NVM) plays an increasingly important role. The so-called non-volatile memory refers to a memory that can still maintain its stored data even when the external power supply is lost. Since D.Kahng and S.M.Sze of Bell Labs (BellLab) proposed a non-volatile semiconductor memory based on a floating gate structure (FG, Floating Gate) in 1967, the concept of a floating gate structure has become the focus of semiconductor non-volatile memory for more than 40 years. The main line of development ([1] D.KahngandS.M.Sze, Afloatinggate and its applicationtomemorydevices, BellSystemsTechnicalJournal.46, 1288, 1967), and is widely used in embedded memories. The memory of this structure has great advantages in cost, storage density, power consumption and thermal stability, and its performance continues to improve rapidly.
随着非挥发存储器进入20nm工艺节点,传统的基于多品Si浮栅结构的存储器在结构性能上遇到很多限制,对于传统的浮栅结构的非易失性存储器,进一步缩小其尺寸就会对存储技术带来严重的挑战,因为器件的加工工艺不再是简单的尺寸等比例缩小,己经到了一个极限。浮栅存储器可缩小性受阻主要体现在以下两个方面([2]K.Kim,Technologyforsub~50nmDRAMandNANDflashmanufacturing,IEDMTech.Dig.323~326,2005;[3]C.Y.Lu,K.Y.HsiehandR.Liu,Futurechallengesofflashmemorytechnologies,Microelectron.Eng.86,283~286,2009;[4]A.Sikora,F.P.Pesl,W.linger,etal..Technologiesandreliabilityofmodemembeddedflashcells,Microelectron.Reliab.46,1980~2005,2006):第一,隧穿氧化层的厚度减薄己经达到极限,隧穿氧化层无法按照等比例缩小的原则继续减薄,继续减薄将增大器件的泄漏电流,当隧穿氧化层的厚度小于7nm时,存储电荷的浮栅向衬底的电荷泄漏无法保证10年的数据存储要求;第二,随着尺寸减小,浮栅与控制栅之间的糊合系数不断下降,阵列中存储电元之间的距离越来越小,相邻多品破浮栅之间的串扰越来越严重。由此导致的逻辑错误使得器件尺寸很难推进到20nm以下。接下来有人提出了多层存储的概念。As the non-volatile memory enters the 20nm process node, the traditional memory based on the multi-product Si floating gate structure encounters many limitations in structural performance. Storage technology brings serious challenges, because the processing technology of devices is no longer a simple scale reduction, and has reached a limit. Scalability of floating gate memory is hindered mainly in the following two aspects ([2] K.Kim, Technology for sub~50nm DRAM and NAND flashmanufacturing, IEDMTech.Dig.323~326, 2005; .Eng.86,283~286,2009; [4]A.Sikora,F.P.Pesl,W.linger,etal..Technologies and reliability of mode embedded flash cells, Microelectron.Reliab.46,1980~2005,2006): First, the thickness of the tunneling oxide layer The thinning has reached the limit, and the tunnel oxide layer cannot continue to be thinned according to the principle of proportional reduction. Continued thinning will increase the leakage current of the device. When the thickness of the tunnel oxide layer is less than 7nm, the floating gate that stores charges will The charge leakage of the substrate cannot guarantee the data storage requirements for 10 years; second, as the size decreases, the paste coefficient between the floating gate and the control gate continues to decrease, and the distance between the storage cells in the array is getting smaller and smaller , the crosstalk between adjacent multi-pin floating gates is getting more and more serious. The resulting logic errors make it difficult to advance the device size below 20nm. Then someone proposed the concept of multi-tier storage.
基于多层纳米结构的陷阱存储原理的新一代电荷俘获型存储技术(CTM:ChargeTrappingMemory)([5]F.Masuoka,M.Assano,H.Iwahashi,AnewFlashEEPROMcellusingtriplepolysilieontechnology,TechnicalDigestontheIEEEInternationalElectronDevieesMeeting,464,1984),具有极少量电子操作、器件尺寸小、功耗低、可以实现多值存储、易与CMOS工艺兼容等优点,特别是具有多值存储状态的CTM存储器可以在同样面积、同样技术代下获得存储密度成倍的增长,从根本上解决了目前浮栅存储器面临的进一步尺寸缩小的瓶颈,被认为是下一代存储器技术发展的重要方向。然而,对于多层纳米晶存储器,由于上层的纳米晶体离沟道较远,电荷直接隧穿回衬底相对困难;同时,由于库仑阻塞效应和能级量子化效应,上下层纳米晶之间电荷的隧穿被抑制,导致了工作电压较大。A new generation of charge trapping memory technology (CTM: ChargeTrappingMemory) ([5] F.Masuoka, M.Assano, H.Iwahashi, AnewFlashEEPROMcellusingtriplepolysilieontechnology, TechnicalDigestontheIEEEInternationalElectronDevieesMeeting, 464, 1984) based on the trap storage principle of multilayer nanostructures, with a very small amount Electronic operation, small device size, low power consumption, multi-value storage, easy compatibility with CMOS technology, etc., especially CTM memory with multi-value storage state can obtain double storage density in the same area and technology generation Growth, which fundamentally solves the bottleneck of further size reduction faced by current floating gate memory, is considered to be an important direction for the development of next-generation memory technology. However, for multilayer nanocrystal memory, since the upper nanocrystal is far away from the channel, it is relatively difficult for the charge to tunnel directly back to the substrate; at the same time, due to the Coulomb blocking effect and energy level quantization effect, the charge The tunneling is suppressed, resulting in a larger operating voltage.
发明内容Contents of the invention
本发明的目的在于引进非平面台阶状沟道层结构,阶梯控制氧化层栅压技术,实现多位金属纳米晶存储器,提供一种非平面金属纳米晶多位存储器件的制备方法。The purpose of the present invention is to introduce a non-planar stepped channel layer structure and a stepwise control oxide layer gate voltage technology to realize a multi-bit metal nanocrystal memory, and to provide a preparation method for a non-planar metal nanocrystal multi-bit memory device.
本发明包括以下步骤:The present invention comprises the following steps:
1)通过电子束光刻方法在Si衬底上刻蚀出凹槽阵列,形成非平面台阶状的结构;1) A groove array is etched on the Si substrate by electron beam lithography to form a non-planar stepped structure;
2)将刻蚀后的Si衬底经过标准清洗后,采用干法氧化方法,在非平面的Si衬底上氧化一层致密的SiO2薄层作为存储器的电子隧穿层;2) After standard cleaning of the etched Si substrate, a dry oxidation method is used to oxidize a dense SiO 2 thin layer on the non-planar Si substrate as the electron tunneling layer of the memory;
3)将步骤2)得到的表面覆盖有SiO2薄层的非平面Si衬底上溅射Au层,采用快速热退火方法使Au层团聚形成Au纳米颗粒;3) Sputter an Au layer on the non-planar Si substrate covered with a thin layer of SiO 2 obtained in step 2), and use a rapid thermal annealing method to agglomerate the Au layer to form Au nanoparticles;
4)采用电子束蒸发工艺在步骤3)获得的Au纳米颗粒上沉积高k介质层,最后蒸镀上电极和下电极,获得非平面金属纳米晶多位存储器件。4) Deposit a high-k dielectric layer on the Au nanoparticles obtained in step 3) by electron beam evaporation, and finally evaporate the upper electrode and the lower electrode to obtain a non-planar metal nanocrystal multi-bit storage device.
在步骤1)中,所述电子束光刻方法可采用气电子束光刻机进行电子束光刻;所述Si衬底可选用圆片形Si衬底,圆片形Si衬底的直径可为10cm,厚度可为500μm;所述凹槽阵列可采用条形凹槽阵列或十字形凹槽阵列等;所述凹槽阵列的周期长度可为100~200nm,凹槽的高度可为50~70nm。In step 1), the electron beam lithography method can use a gas electron beam lithography machine for electron beam lithography; the Si substrate can be a disc-shaped Si substrate, and the diameter of the disc-shaped Si substrate can be It is 10cm, and the thickness can be 500 μm; The groove array can be a strip groove array or a cross-shaped groove array; the period length of the groove array can be 100-200nm, and the groove height can be 50- 70nm.
在步骤2)中,所述干法氧化方法可采用热退火炉,充入氧气作为反应气体,氧化温度为900℃,退火时间30s;所述SiO2薄层的厚度可为3~5nm。In step 2), the dry oxidation method can use a thermal annealing furnace filled with oxygen as a reaction gas, the oxidation temperature is 900°C, and the annealing time is 30s; the thickness of the SiO 2 thin layer can be 3-5nm.
在步骤3)中,所述Au层的厚度可为15nm;所述快速热退火方法的条件可为:退火温度600℃,退火时间60s,保护气体为氮气;所述Au纳米颗粒的尺寸可为20~30nm。In step 3), the thickness of the Au layer can be 15nm; the conditions of the rapid thermal annealing method can be: annealing temperature 600°C, annealing time 60s, protective gas is nitrogen; the size of the Au nanoparticles can be 20-30nm.
在步骤4)中,所述高k介质层可采用HfO2材料,所述上电极可采用Al电极,下电极可采用Al电极。In step 4), the high-k dielectric layer can be made of HfO 2 material, the upper electrode can be made of Al electrode, and the lower electrode can be made of Al electrode.
为了解决现有技术存在的问题,本发明提出引进非平面台阶状沟道层结构,阶梯控制氧化层栅压技术实现多位金属纳米晶存储器。本发明提供了一种非平面多位金属纳米晶存储器件结构优化设计。非平面的金属纳米颗粒处于不同的台面上,上层的控制氧化层呈现台阶状分布,沟槽与台面处的等效氧化层厚度不同,从而造成了内部电场分布的不同。对于不同的工作电压,电荷会储存在台面的不同位置,增大存储窗口,形成多位存储。In order to solve the problems existing in the prior art, the present invention proposes the introduction of a non-planar stepped channel layer structure, and a stepwise control oxide layer gate voltage technology to realize a multi-bit metal nanocrystal memory. The invention provides an optimized structure design of a non-planar multi-position metal nanocrystal storage device. Non-planar metal nanoparticles are on different mesas, the upper control oxide layer is distributed in steps, and the thickness of the equivalent oxide layer at the groove and the mesas is different, resulting in different internal electric field distributions. For different operating voltages, charges will be stored in different positions on the mesa, increasing the storage window and forming multi-bit storage.
本发明以进非平面台阶状沟道层结构,阶梯控制氧化层栅压技术实现多位金属纳米晶存储器,本发明只需要一步刻蚀技术、过程简单、重复性好,可对传统相关产业产生示范作用。The present invention realizes the multi-bit metal nanocrystal memory by adopting the non-planar stepped channel layer structure and stepwise control oxide layer gate voltage technology. The present invention only needs one-step etching technology, the process is simple, and the repeatability is good. Demonstration role.
附图说明Description of drawings
图1为本发明的具有台阶状氧化层金属纳米晶多位存储器原理图。在图1中,标记1为300nmAl电极,2为台阶状控制氧化层,3为纳米Au电子捕获层,4为SiO2隧穿氧化层,5为P型Si衬底;(a)无栅压V栅或小于薄层捕获电压Vt1初始状态;(b)当栅压V栅大于薄层捕获电压Vt1,而小于厚层捕获电压Vt2(Vt2>V栅>Vt1),电荷可以隧穿进入薄控制氧化层包裹的金属纳米晶;随着栅压增加,第一平带电压漂移或存储器窗口增大,直至薄氧化物区饱和;(c)随着栅极电压增大到V栅>Vt2>Vt1,电荷隧穿进入被厚控制氧化层包裹的金属纳米晶层,直到第二饱和区出现,通过控制栅压,实现电荷的多位存储。FIG. 1 is a schematic diagram of a metal nanocrystal multi-bit memory with a stepped oxide layer according to the present invention. In Figure 1, 1 is the 300nm Al electrode, 2 is the stepped control oxide layer, 3 is the nano-Au electron capture layer, 4 is the SiO 2 tunneling oxide layer, and 5 is the P-type Si substrate; (a) no gate voltage The initial state of V gate or less than the trapping voltage Vt1 of the thin layer; (b) When the gate voltage V gate is greater than the trapping voltage Vt1 of the thin layer but smaller than the trapping voltage Vt2 of the thick layer (Vt2>V gate>Vt1), charges can tunnel into the thin control Metal nanocrystals wrapped in an oxide layer; as the gate voltage increases, the first flat band voltage drifts or the memory window increases until the thin oxide region is saturated; (c) as the gate voltage increases to Vgate>Vt2>Vt1 , the charge tunnels into the metal nanocrystalline layer wrapped by a thick control oxide layer until the second saturation region appears, and the multi-bit storage of charges is realized by controlling the gate voltage.
图2为非平面金属纳米晶存储器结构示意图。在图2中,标记1为300nmAl正电极,2为台阶状控制氧化层,3为纳米Au电子捕获层,4为SiO2隧穿氧化层,5为P型Si衬底,6为300nmAl电极下电极。Fig. 2 is a schematic diagram of the structure of a non-planar metal nanocrystal memory. In Fig. 2, mark 1 is the 300nmAl positive electrode, 2 is the stepped control oxide layer, 3 is the nano-Au electron capture layer, 4 is the SiO2 tunneling oxide layer, 5 is the P-type Si substrate, and 6 is the 300nmAl electrode under the electrode. electrode.
具体实施方式detailed description
本发明以电子束光刻技术获得非平面台阶状沟道层结构,采用非平面的金属纳米颗粒作为电荷存储层,以阶梯控制氧化层栅压技术实现多位金属纳米晶存储器。The invention obtains a non-planar stepped channel layer structure by electron beam lithography technology, adopts non-planar metal nano-particles as a charge storage layer, and realizes a multi-bit metal nano-crystal memory by a step-by-step control oxide layer grid voltage technology.
1)电子束光刻技术在Si衬底上刻蚀出条形或十字形凹槽结构,凹槽周期为100~200nm,台面高度为50~70nm。1) Electron beam lithography is used to etch a strip-shaped or cross-shaped groove structure on the Si substrate, the groove period is 100-200nm, and the mesa height is 50-70nm.
2)对Si衬底采用标准清洗,得到表面清洁的Si表面。2) Standard cleaning is performed on the Si substrate to obtain a clean Si surface.
在步骤2)中,所述Si片尺寸为4英寸,厚度为500μm;所述清洗流程如下所述:In step 2), the size of the Si sheet is 4 inches and the thickness is 500 μm; the cleaning process is as follows:
(1)首先用Ⅲ号液清洗(H2SO4∶H2O2=4∶1),在石英杯中配制Ⅲ号液,然后把Si片放在石英舟中,在电炉上煮10min(先用电炉加热3min,然后关闭电炉用余温加热2min,再开启电炉加热2min后关闭)。取出Si片放入冲水的石英杯中冲热去离子水10遍,后冲冷去离子水5遍。(1) First wash with No. Ⅲ solution (H 2 SO 4 : H 2 O 2 =4: 1), prepare No. Ⅲ solution in a quartz cup, then put the Si wafer in the quartz boat and boil it on the electric furnace for 10 minutes ( First use the electric furnace to heat for 3 minutes, then turn off the electric furnace and heat with residual temperature for 2 minutes, then turn on the electric furnace to heat for 2 minutes and then turn it off). Take out the Si slice and put it into a quartz cup for flushing with hot deionized water for 10 times, and then rinse with cold deionized water for 5 times.
(2)取出Si片放入HF∶H2O=1∶20的溶液中浸泡4min。然后取出Si片冲热去离子水15遍,后冲冷去离子水15遍。(2) Take out the Si sheet and soak it in a solution of HF:H 2 O = 1:20 for 4 minutes. Then take out the Si sheet and rinse with hot deionized water for 15 times, and then rinse with cold deionized water for 15 times.
(3)然后用Ⅰ号液清洗(NH4OH∶H2O2∶H2O=1∶1∶4),先倒入去离子水,水加热至85℃,后倒入NH4OH和H2O2,1min后放入Si片,在电炉上加热5min,后关闭用余温加热5min。取出Si片放入冲水的石英杯中冲热去离子水10遍,后冲冷去离子水5遍。(3) Then wash with No. 1 solution (NH 4 OH: H 2 O 2 : H 2 O = 1:1:4), pour deionized water first, heat the water to 85°C, then pour NH 4 OH and H 2 O 2 , put Si slices in after 1 min, heat on the electric furnace for 5 min, then turn off and heat with residual temperature for 5 min. Take out the Si slice and put it into a quartz cup for flushing with hot deionized water for 10 times, and then rinse with cold deionized water for 5 times.
(4)取出Si片放入HF∶H2O=1∶20的溶液中浸泡2min。然后取出Si片冲热去离子水15遍,后冲冷去离子水15遍。(4) Take out the Si sheet and soak it in a solution of HF:H 2 O = 1:20 for 2 minutes. Then take out the Si sheet and rinse with hot deionized water for 15 times, and then rinse with cold deionized water for 15 times.
(5)用Ⅱ号液清洗(HCl∶H2O2∶H2O=1∶1∶4),先倒入去离子水加热至85℃,后倒入HCl和H2O2,1min后放入Si片,2min后开启电炉加热3min,后关闭电炉用余温加热5min。取出Si片放入冲水的石英杯中冲热去离子水15遍,后冲冷去离子水15遍。(5) Clean with No. Ⅱ solution (HCl: H 2 O 2 : H 2 O = 1: 1: 4), first pour deionized water and heat to 85°C, then pour HCl and H 2 O 2 , after 1 min Put in Si slices, turn on the electric furnace for 3 minutes after 2 minutes, and then turn off the electric furnace and heat for 5 minutes with residual temperature. Take out the Si slice and put it into a quartz cup for flushing, flush with hot deionized water for 15 times, and then flush with cold deionized water for 15 times.
(6)氮气吹干备用。(6) Blow dry with nitrogen for later use.
3)采用干法氧化技术,在非平面的Si衬底上氧化3~5nm厚的致密SiO2隧穿层;采用国产快速退火炉,以氧气为载气,退火温度为900℃,退火时间为30s。3) Use dry oxidation technology to oxidize a dense SiO 2 tunneling layer with a thickness of 3 to 5 nm on a non-planar Si substrate; use a domestic rapid annealing furnace with oxygen as a carrier gas, annealing temperature of 900 ° C, and annealing time of 30s.
4)将步骤3)得到的表面覆盖有SiO2薄层的非平面Si衬底上溅射15nm厚的Au层,然后采用国产快速退火炉,以快速热退火方式形成Au纳米颗粒Au纳米颗粒尺寸为20~30nm。退火温度为600℃,退火时间为60s。4) Sputter a 15nm-thick Au layer on the non-planar Si substrate covered with a thin layer of SiO2 obtained in step 3), and then use a domestic rapid annealing furnace to form Au nanoparticles by rapid thermal annealing. It is 20-30nm. The annealing temperature is 600°C, and the annealing time is 60s.
5)在步骤4)中,高k介质层为HfO2材料,高k介质层厚度为60~80nm,所述的上电极Al材料的厚度为300nm,下电极Al材料的厚度为300nm,通过磁控溅射技术溅射上电极和下电极。5) In step 4), the high-k dielectric layer is made of HfO 2 material, the thickness of the high-k dielectric layer is 60-80nm, the thickness of the upper electrode Al material is 300nm, and the thickness of the lower electrode Al material is 300nm. The upper electrode and the lower electrode are sputtered by controlled sputtering technology.
图1给出具有台阶状氧化层金属纳米晶多位存储器原理图。通过引入非平面结构,实现了电荷的选择性存储。上层的控制氧化层呈现台阶状分布,沟槽与台面处的等效氧化层厚度不同,从而造成了内部电场分布的不同。对于不同的工作电压,电荷存储于不同台面处的金属纳米颗粒,形成多位存储。图2给出非平面金属纳米晶存储器结构示意图。通过改变电子束刻蚀工艺,可以获得不同形状、不同台面高度的非平面金属纳米颗粒存储器,只需要一步刻蚀,操作工艺简单。Figure 1 shows a schematic diagram of a metal nanocrystal multi-bit memory with a stepped oxide layer. By introducing a non-planar structure, the selective storage of charges is achieved. The upper control oxide layer presents a stepped distribution, and the thickness of the equivalent oxide layer at the groove and the mesa is different, resulting in a difference in the internal electric field distribution. For different operating voltages, charges are stored in metal nanoparticles at different mesas, forming multi-bit storage. Figure 2 shows a schematic diagram of the structure of the non-planar metal nanocrystal memory. By changing the electron beam etching process, non-planar metal nanoparticle memories with different shapes and different mesa heights can be obtained, only one-step etching is required, and the operation process is simple.
经过上述步骤,最终得到了非平面多位金属纳米晶存储器件结构。以上所述仅为本发明的较佳实例。Through the above steps, a non-planar multi-bit metal nanocrystal storage device structure is finally obtained. The above descriptions are only preferred examples of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310383471.0A CN103413788B (en) | 2013-08-29 | 2013-08-29 | The preparation method of non-planar metal nanocrystalline multi-bit memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310383471.0A CN103413788B (en) | 2013-08-29 | 2013-08-29 | The preparation method of non-planar metal nanocrystalline multi-bit memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103413788A CN103413788A (en) | 2013-11-27 |
CN103413788B true CN103413788B (en) | 2016-03-09 |
Family
ID=49606787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310383471.0A Expired - Fee Related CN103413788B (en) | 2013-08-29 | 2013-08-29 | The preparation method of non-planar metal nanocrystalline multi-bit memory device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103413788B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101312213A (en) * | 2007-05-24 | 2008-11-26 | 中国科学院微电子研究所 | Non-volatile storage unit with nanocrystalline floating gate structure and manufacturing method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6958265B2 (en) * | 2003-09-16 | 2005-10-25 | Freescale Semiconductor, Inc. | Semiconductor device with nanoclusters |
KR100690911B1 (en) * | 2005-07-18 | 2007-03-09 | 삼성전자주식회사 | Nonvolatile semiconductor integrated circuit device including 2 bit memory cell and manufacturing method thereof |
KR100735534B1 (en) * | 2006-04-04 | 2007-07-04 | 삼성전자주식회사 | Nano Crystal Nonvolatile Semiconductor Integrated Circuit Device and Manufacturing Method Thereof |
US7846793B2 (en) * | 2007-10-03 | 2010-12-07 | Applied Materials, Inc. | Plasma surface treatment for SI and metal nanocrystal nucleation |
CN102168268A (en) * | 2011-03-02 | 2011-08-31 | 复旦大学 | Preparation method of metal nanocrystal |
-
2013
- 2013-08-29 CN CN201310383471.0A patent/CN103413788B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101312213A (en) * | 2007-05-24 | 2008-11-26 | 中国科学院微电子研究所 | Non-volatile storage unit with nanocrystalline floating gate structure and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103413788A (en) | 2013-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103887313B (en) | A kind of half floating-gate device and preparation method thereof | |
CN101692463B (en) | Capacitor structure of mixed nano-crystal memory and preparation method thereof | |
CN101807576A (en) | Nanocrystalline floating gate nonvolatile memory and manufacturing method thereof | |
CN101452963A (en) | Metal nanocrystal floating gate non-volatile memory and manufacturing method thereof | |
CN111627920A (en) | Ferroelectric memory cell | |
CN101494225B (en) | Memory and manufacturing method thereof | |
CN101383379A (en) | Nanocrystalline floating gate memory with multi-dielectric composite tunneling layer and its manufacturing method | |
CN102479823B (en) | Vertical NROM storage structure and preparation method thereof | |
CN108807393A (en) | Memory and forming method thereof | |
CN104882490B (en) | A kind of preparation method of the floating-gate memory based on metal hetero quntum point | |
CN101312212A (en) | Non-volatile memory using high-k dielectric and nanocrystalline floating gate and manufacturing method thereof | |
CN101399289A (en) | Nanocrystalline floating gate nonvolatile memory with double-layer tunneling dielectric structure and manufacturing method | |
CN103247629B (en) | A kind of non-volatile memory and preparation method thereof | |
CN103413788B (en) | The preparation method of non-planar metal nanocrystalline multi-bit memory device | |
CN103413787B (en) | Preparation method of step-shaped oxide layer Au/SiO2/Si nano-column memory device | |
CN101330008A (en) | A method of making metal nanocrystal non-volatile memory | |
CN101807548B (en) | Process for manufacturing nano-crystal split gate type flash memory | |
CN101383378A (en) | Non-volatile memory with multi-layer nanocrystalline floating gate structure and its preparation method | |
KR20070082509A (en) | Semiconductor memory device comprising a gate electrode layer formed of an alloy | |
CN100483744C (en) | Non-volatile floating-gate memory based on two-layer nano silicon structure and its preparing method | |
CN111755528A (en) | A flash memory cell and its manufacturing method | |
CN102610275B (en) | Cadmium selenide nanowire-based Schottky junction type multi-byte nonvolatile memory and preparation method thereof | |
CN102983138A (en) | Charge trapping type non-volatile memory and preparation method thereof | |
CN101335306B (en) | Ultra-rich silicon oxide nonvolatile memory cell and method of manufacturing the same | |
CN102655167A (en) | Charge-trapping gate stack and memory cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160309 Termination date: 20210829 |