CN103390784A - Miniaturized substrate integration waveguide duplexer - Google Patents
Miniaturized substrate integration waveguide duplexer Download PDFInfo
- Publication number
- CN103390784A CN103390784A CN2013103085242A CN201310308524A CN103390784A CN 103390784 A CN103390784 A CN 103390784A CN 2013103085242 A CN2013103085242 A CN 2013103085242A CN 201310308524 A CN201310308524 A CN 201310308524A CN 103390784 A CN103390784 A CN 103390784A
- Authority
- CN
- China
- Prior art keywords
- resonant cavity
- metal
- microstrip line
- copper layer
- triangle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 12
- 230000010354 integration Effects 0.000 title description 3
- 239000002184 metal Substances 0.000 claims abstract description 42
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 230000008878 coupling Effects 0.000 claims abstract description 35
- 238000010168 coupling process Methods 0.000 claims abstract description 35
- 238000005859 coupling reaction Methods 0.000 claims abstract description 35
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052802 copper Inorganic materials 0.000 claims abstract description 31
- 239000010949 copper Substances 0.000 claims abstract description 31
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 208000002925 dental caries Diseases 0.000 claims 2
- 238000012545 processing Methods 0.000 abstract description 4
- 238000004891 communication Methods 0.000 abstract description 2
- 238000003491 array Methods 0.000 abstract 1
- 238000011161 development Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明公开了一种小型化基片集成波导双工器,包括从上向下依次层叠的第一金属覆铜层、第一介质层、第二金属覆铜层、第二介质层、第三金属覆铜层、第三介质层、第四金属覆铜层,由金属化通孔阵列围成双模谐振腔与三角形谐振腔,双模谐振腔与三角形谐振腔通过耦合缝连接,三角形谐振腔之间通过耦合窗相连,输入输出用微带线结构。本发明可用于微波毫米波通信系统,其优点是适用于系统的小型化、重量轻、低成本、易于集成、加工周期快。
The invention discloses a miniaturized substrate integrated waveguide duplexer, which comprises a first metal copper-clad layer, a first dielectric layer, a second metal copper-clad layer, a second dielectric layer, a third The metal copper-clad layer, the third dielectric layer, and the fourth metal-clad copper layer are surrounded by metallized through-hole arrays to form a dual-mode resonant cavity and a triangular resonant cavity. The dual-mode resonant cavity and the triangular resonant cavity are connected through coupling slots. They are connected through coupling windows, and the input and output use a microstrip line structure. The invention can be used in a microwave and millimeter wave communication system, and has the advantages of being suitable for miniaturization of the system, light in weight, low in cost, easy to integrate and fast in processing cycle.
Description
技术领域 technical field
本发明属于微波毫米波无源器件技术领域,尤其涉及微波毫米波无源器件中的基片集成波导双工器。The invention belongs to the technical field of microwave and millimeter wave passive devices, in particular to a substrate integrated waveguide duplexer in microwave and millimeter wave passive devices.
背景技术 Background technique
随着现代通信系统的快速发展,微波毫米波电路的功能越来越复杂、电性能要求越来越高,同时也向着小型化、轻量化、低成本的方向发展。这种发展趋势是为了适应微波毫米波电路的商业化要求而形成的。而基片集成波导正是在这种形势下产生的一种具有低损耗、高功率容量、低成本、易于集成的传输线结构,利用这种技术可以制作出高性能的滤波器、天线、双工器等微波毫米波器件。With the rapid development of modern communication systems, the functions of microwave and millimeter wave circuits are becoming more and more complex, and the electrical performance requirements are getting higher and higher. At the same time, they are also developing in the direction of miniaturization, light weight, and low cost. This development trend is formed to meet the commercial requirements of microwave and millimeter wave circuits. The substrate integrated waveguide is a kind of transmission line structure with low loss, high power capacity, low cost and easy integration under this situation. Using this technology, high-performance filters, antennas, duplex Microwave and millimeter wave devices such as devices.
通常使用双工器来实现发射与接收共用一副天线,从而达到降低成本和减小系统体积的目的。传统设计中,双工器通常是由一个进行阻抗匹配的T型结连接的两个滤波器构成,其中一个滤波器工作在发射频段,而另一个滤波器工作在接收频段。合理的T型结要同时满足端口间的阻抗匹配要求和隔离要求。然而,T型结通常会占据很大的空间,不利于双工器的小型化。另一方面,传统的工作在高频段的双工器多是由机械加工的金属腔体构成,因此其加工成本高,周期长,体积大,重量重,不易集成。传统双工器有诸多缺点,亟需改进。A duplexer is usually used to realize the sharing of an antenna for transmission and reception, so as to achieve the purpose of reducing cost and system volume. In the traditional design, a duplexer is usually composed of two filters connected by a T-junction for impedance matching, one of which works in the transmitting frequency band, and the other works in the receiving frequency band. A reasonable T-junction should meet the impedance matching requirements and isolation requirements between ports at the same time. However, the T-junction usually takes up a lot of space, which is not conducive to the miniaturization of the duplexer. On the other hand, traditional duplexers working in the high-frequency band are mostly composed of machined metal cavities, so the processing costs are high, the cycle is long, the volume is large, the weight is heavy, and it is difficult to integrate. Traditional duplexers have many shortcomings and need to be improved urgently.
发明内容 Contents of the invention
本发明的目的是提出一种小型化基片集成波导双工器,克服现有双工器体积大、加工成本高、不易集成的缺点。The object of the present invention is to propose a miniaturized substrate integrated waveguide duplexer, which overcomes the shortcomings of existing duplexers such as large volume, high processing cost and difficulty in integration.
本发明的技术方案是:一种小型化基片集成波导双工器,包括从上向下依次层叠的第一金属覆铜层、第一介质层、第二金属覆铜层、第二介质层、第三金属覆铜层、第三介质层、第四金属覆铜层;所述金属化通孔阵列贯穿了第一金属覆铜层、第一介质层、第二金属覆铜层形成了大小相同的三角形谐振腔一与三角形谐振腔二,这两个三角形谐振腔为等腰直角三角形;所述金属化通孔阵列以及两个进行微扰的金属化通孔贯穿了第二金属覆铜层、第二介质层、第三金属覆铜层形成了一个正方形的双模谐振腔,两个进行微扰的金属化通孔位于正方形的对角线上;所述金属化通孔阵列贯穿了第三金属覆铜层、第三介质层、第四金属覆铜层形成了大小相同的三角形谐振腔三与三角形谐振腔四,这两个三角形谐振腔为等腰直角三角形;位于第三金属层的微带线、微带线两侧的耦合槽、微带线下方的金属化通孔阵列中断构成的窗口,共同构成双工器的输入端口,输入端口的一端与正方形双模谐振腔相连;位于第一金属层的微带线、微带线两侧的耦合槽、微带线下方的金属化通孔阵列中断构成的窗口,共同构成双工器一个输出端口,该端口的一端与三角形谐振腔一相连;位于第四金属层的微带线、微带线两侧的耦合槽、微带线下方的金属化通孔阵列中断构成的窗口,共同构成双工器另一个输出端口,该端口的一端与三角形谐振腔三相连。The technical solution of the present invention is: a miniaturized substrate-integrated waveguide duplexer, including a first metal copper-clad layer, a first dielectric layer, a second metal copper-clad layer, and a second dielectric layer sequentially stacked from top to bottom , the third metal copper clad layer, the third dielectric layer, and the fourth metal copper clad layer; The same triangular resonant cavity 1 and
进一步的,三角形谐振腔一与三角形谐振腔二斜边相邻,它们交界区域的金属化通孔中断,形成耦合窗口;三角形谐振腔三与三角形谐振腔四斜边相邻,它们交界区域的金属化通孔中断,形成耦合窗口。Further, the triangular resonator one is adjacent to the hypotenuse of the triangular resonator two, and the metallized through holes in their junction area are interrupted to form a coupling window; The vias are interrupted to form coupling windows.
进一步的,正方形双模谐振腔通过第二金属覆铜层上的长方形耦合缝与三角形谐振腔二相连,通过第三金属覆铜层上的长方形耦合缝与三角形谐振腔四相连,这两条长方形耦合缝沿长边的方向分别与正方形双模谐振腔的两条对角线平行。Further, the square dual-mode resonant cavity is connected to the second triangular resonant cavity through the rectangular coupling slot on the second metal copper clad layer, and connected to the triangular resonant cavity four through the rectangular coupling slot on the third metal copper clad layer. The directions along the long sides of the coupling slots are respectively parallel to the two diagonals of the square double-mode resonant cavity.
本发明的优点和有益效果:Advantages and beneficial effects of the present invention:
(1)相比与传统的双工器,本发明具有结构紧凑的优点。一方面,通过使用公共谐振单元取代T型结,公共谐振单元不仅能提供谐振,还能消除了T型结所占用的面积,使电路尺寸降低。另一方面,使用层叠结构将谐振单元重叠起来,与使用平面结构相比,尺寸缩减很多;(1) Compared with the traditional duplexer, the present invention has the advantage of compact structure. On the one hand, by replacing the T-junction with a common resonant unit, the common resonant unit can not only provide resonance, but also eliminate the area occupied by the T-junction, reducing the size of the circuit. On the other hand, using a stacked structure to overlap the resonant units, compared with using a planar structure, the size is reduced a lot;
(2)本发明的双工器由于采用印制电路板技术来生产加工,而传统的双工器采用机械加工而成,因此本发明的双工器成本更低、重量更轻、加工周期快、易于集成;(2) The duplexer of the present invention is produced and processed by printed circuit board technology, while the traditional duplexer is machined, so the duplexer of the present invention is lower in cost, lighter in weight, and has a faster processing cycle , easy to integrate;
附图说明 Description of drawings
图1是本发明的总体结构展开示意图Fig. 1 is the overall structure development schematic diagram of the present invention
图2是本发明的总体结构的俯视示意图Fig. 2 is a schematic top view of the overall structure of the present invention
具体实施方式 Detailed ways
下面结合附图和具体实施例对本发明做进一步说明:如图1所示,小型化基片集成波导双工器,其特征在于,包括从上向下依次层叠的第一金属覆铜层1、第一介质层2、第二金属覆铜层3、第二介质层4、第三金属覆铜层5、第三介质层6、第四金属覆铜层7;所述金属化通孔阵列81贯穿了第一金属覆铜层1、第一介质层2、第二金属覆铜层3形成了大小相同的三角形谐振腔一22与三角形谐振腔二24,这两个三角形谐振腔为等腰直角三角形;所述金属化通孔阵列82以及两个进行微扰的金属化通孔42贯穿了第二金属覆铜层3、第二介质层4、第三金属覆铜层5形成了一个正方形的双模谐振腔41,两个进行微扰的金属化通孔42位于正方形的对角线上;所述金属化通孔阵列83贯穿了第三金属覆铜层5、第三介质层6、第四金属覆铜层7形成了大小相同的三角形谐振腔三62与三角形谐振腔四64,这两个三角形谐振腔为等腰直角三角形;位于第三金属层的微带线51、微带线两侧的耦合槽52、微带线下方的金属化通孔阵列中断构成的窗口43,共同构成双工器的输入端口,输入端口的一端与正方形双模谐振腔41相连;位于第一金属层的微带线11、微带线两侧的耦合槽12、微带线下方的金属化通孔阵列中断构成的窗口21,共同构成双工器一个输出端口,该端口的一端与三角形谐振腔一22相连;位于第四金属层的微带线71、微带线两侧的耦合槽72、微带线下方的金属化通孔阵列中断构成的窗口61,共同构成双工器另一个输出端口,该端口的一端与三角形谐振腔三62相连。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments: As shown in Figure 1, the miniaturized substrate integrated waveguide duplexer is characterized in that it includes a first metal copper clad layer 1, which is stacked sequentially from top to bottom, The first
进一步的,三角形谐振腔一22与三角形谐振腔二24斜边相邻,它们交界区域的金属化通孔中断,形成耦合窗口23;三角形谐振腔三62与三角形谐振腔四64斜边相邻,它们交界区域的金属化通孔中断,形成耦合窗口63。Further, the triangular resonant cavity 1 22 is adjacent to the hypotenuse of the triangular
进一步的,正方形双模谐振腔41通过第二金属覆铜层3上的长方形耦合缝31与三角形谐振腔二24相连,通过第三金属覆铜层5上的长方形耦合缝53与三角形谐振腔四64相连,这两条长方形耦合缝沿长边的方向分别与正方形双模谐振腔41的两条对角线平行。Further, the square dual-
本发明的技术方案的原理是:正方形双模谐振腔41可以在两个频率谐振,当微扰通孔42在双模谐振腔41的对角线上移动时,可以改变双模谐振腔41的一个谐振频率,另一个谐振频率不变。从微带线51进入双模谐振腔41的信号将在双工器的两个通带中心频率上产生谐振,其中一个谐振频率同三角形谐振腔22与24的谐振频率相同,而另一个谐振频率同三角形谐振腔62与64的谐振频率相同。于是,一路信号由正方形双模谐振腔41通过耦合缝31进入三角形谐振腔二24,再经耦合窗23进入三角形谐振腔一22,最后由微带线11输出。另一路信号则由正方形双模谐振腔41通过耦合缝53进入三角形谐振腔四64,再经耦合窗63进入三角形谐振腔三62,最后由微带线71输出。通过控制耦合缝31、耦合窗23的大小可以控制其中一路信号通带的带宽,而控制耦合缝53、耦合窗63的大小可以控制另一路信号通带的带宽。耦合槽52、12、72的大小可以控制滤波器的输入输出品质因数。The principle of the technical solution of the present invention is: the square dual-
为进一步说明上述技术方案的可实施性,下面给出一个具体设计实例,一个小型化基片集成波导双工器,设计的低频通道工作在8GHz,高频通道工作在9GHz,两个通道带宽均为0.33GHz。介质基片使用厚度为0.8mm,介电常数为2.55的F4B基片。选定金属化通孔的直径为0.8mm。图2中端口A为输入端口,端口B与端口C为两个输出端口,对应的双工器的几何参数取值如下:a1 = 27.64 mm, a2 = 24.5 mm, w= 2.3 mm, w1 = 6.03 mm, w2 = 5.73 mm, l1 = 4.5mm, l2 = 4.7 mm, l3 = 3.5 mm, t = 5.85 mm, p1= 1.02 mm, p2 = 1 mm, p3 = 1.1 mm, p4 = 1.11 mm, s1 = 1.5 mm, s2 = 1 mm, s3 = 1.5 mm, s4= 4.45 mm, s5 = 1 mm, s6 = 4.4 mm, s7 = 1.06 mm, d1 = 2.33 mm, d2 = 1.34 mm。测试结果表明,该双工器两个通道滤波器的中心频率分别为8.02GHz和9.08GHz,对应带宽为0.293GHz和0.326GHz,在中心频率处的插入损耗分别为2.86dB和3.04dB。从7GHz到10GHz,其隔离度大于40dB。In order to further illustrate the practicability of the above-mentioned technical solution, a specific design example is given below, a miniaturized substrate integrated waveguide duplexer, the designed low-frequency channel works at 8GHz, and the high-frequency channel works at 9GHz. The bandwidth of the two channels is equal to 0.33GHz. The dielectric substrate is an F4B substrate with a thickness of 0.8 mm and a dielectric constant of 2.55. The diameter of the selected metallized vias is 0.8mm. In Figure 2, port A is the input port, and port B and port C are two output ports. The geometric parameters of the corresponding duplexer are as follows: a 1 = 27.64 mm, a 2 = 24.5 mm, w= 2.3 mm, w 1 = 6.03 mm, w 2 = 5.73 mm, l 1 = 4.5 mm, l 2 = 4.7 mm, l 3 = 3.5 mm, t = 5.85 mm, p 1 = 1.02 mm, p 2 = 1 mm, p 3 = 1.1 mm, p 4 = 1.11 mm, s 1 = 1.5 mm, s 2 = 1 mm, s 3 = 1.5 mm, s 4 = 4.45 mm, s 5 = 1 mm, s 6 = 4.4 mm, s 7 = 1.06 mm, d1 = 2.33 mm, d2 = 1.34 mm. The test results show that the center frequencies of the two channel filters of the duplexer are 8.02GHz and 9.08GHz respectively, the corresponding bandwidths are 0.293GHz and 0.326GHz, and the insertion losses at the center frequencies are 2.86dB and 3.04dB respectively. From 7GHz to 10GHz, its isolation is greater than 40dB.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those skilled in the art will appreciate that the embodiments described here are to help readers understand the principles of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations based on the technical revelations disclosed in the present invention without departing from the present invention, and these modifications and combinations are still within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310308524.2A CN103390784B (en) | 2013-07-22 | 2013-07-22 | Miniaturized substrate integration waveguide duplexer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310308524.2A CN103390784B (en) | 2013-07-22 | 2013-07-22 | Miniaturized substrate integration waveguide duplexer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103390784A true CN103390784A (en) | 2013-11-13 |
CN103390784B CN103390784B (en) | 2015-06-17 |
Family
ID=49534986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310308524.2A Active CN103390784B (en) | 2013-07-22 | 2013-07-22 | Miniaturized substrate integration waveguide duplexer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103390784B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104638360A (en) * | 2015-02-16 | 2015-05-20 | 南通大学 | Filtering antenna |
CN104868210A (en) * | 2015-05-22 | 2015-08-26 | 电子科技大学 | SIW lamination structure cavity filter and design method thereof |
CN105720331A (en) * | 2016-03-23 | 2016-06-29 | 华南理工大学 | Single-cavity three-mode band-pass duplexer based on microstrip feed gap coupling |
EP3125368A1 (en) * | 2014-04-22 | 2017-02-01 | Huawei Technologies Co., Ltd | Multi-polarization substrate integrated waveguide antenna |
CN107196069A (en) * | 2017-04-21 | 2017-09-22 | 南京邮电大学 | Compact substrate integrated waveguide back cavity slot antenna |
CN109818119A (en) * | 2018-12-31 | 2019-05-28 | 瑞声科技(南京)有限公司 | Millimeter wave LTCC filter |
CN111048879A (en) * | 2019-12-31 | 2020-04-21 | 广东盛路通信科技股份有限公司 | A broadband equal-amplitude conversion structure from rectangular waveguide to double-ended stripline |
CN111463525A (en) * | 2020-04-20 | 2020-07-28 | 南京邮电大学 | Miniaturized third-order SD-HMSIW band-pass filter based on coplanar waveguide |
CN113471654A (en) * | 2021-05-21 | 2021-10-01 | 西安电子科技大学 | Glass-based wide-stop-band microwave duplexer |
CN115064851A (en) * | 2022-07-19 | 2022-09-16 | 东南大学 | Rectangular cavity and round cavity multimode coupled substrate integrated waveguide duplexer |
CN116315543A (en) * | 2023-03-21 | 2023-06-23 | 杭州电子科技大学 | A miniaturized SIW filter cross junction that can be shared by all cavities |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2359197A (en) * | 1999-12-11 | 2001-08-15 | Bsc Filters Ltd | Enhanced performance waveguide diplexers |
WO2010049922A1 (en) * | 2008-10-27 | 2010-05-06 | Starling Advanced Communications Ltd. | A waveguide antenna front end |
CN203339280U (en) * | 2013-07-22 | 2013-12-11 | 电子科技大学 | A Miniaturized Substrate Integrated Waveguide Duplexer |
-
2013
- 2013-07-22 CN CN201310308524.2A patent/CN103390784B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2359197A (en) * | 1999-12-11 | 2001-08-15 | Bsc Filters Ltd | Enhanced performance waveguide diplexers |
WO2010049922A1 (en) * | 2008-10-27 | 2010-05-06 | Starling Advanced Communications Ltd. | A waveguide antenna front end |
CN203339280U (en) * | 2013-07-22 | 2013-12-11 | 电子科技大学 | A Miniaturized Substrate Integrated Waveguide Duplexer |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3125368A1 (en) * | 2014-04-22 | 2017-02-01 | Huawei Technologies Co., Ltd | Multi-polarization substrate integrated waveguide antenna |
EP3125368A4 (en) * | 2014-04-22 | 2017-03-29 | Huawei Technologies Co., Ltd. | Multi-polarization substrate integrated waveguide antenna |
US10044109B2 (en) | 2014-04-22 | 2018-08-07 | Huawei Technologies Co., Ltd. | Multi-polarization substrate integrated waveguide antenna |
CN104638360B (en) * | 2015-02-16 | 2018-03-16 | 中天宽带技术有限公司 | Filter antenna |
CN104638360A (en) * | 2015-02-16 | 2015-05-20 | 南通大学 | Filtering antenna |
CN104868210A (en) * | 2015-05-22 | 2015-08-26 | 电子科技大学 | SIW lamination structure cavity filter and design method thereof |
CN105720331B (en) * | 2016-03-23 | 2018-09-14 | 华南理工大学 | Single-cavity three-mode band-pass duplexer based on microstrip feed gap coupling |
CN105720331A (en) * | 2016-03-23 | 2016-06-29 | 华南理工大学 | Single-cavity three-mode band-pass duplexer based on microstrip feed gap coupling |
CN107196069A (en) * | 2017-04-21 | 2017-09-22 | 南京邮电大学 | Compact substrate integrated waveguide back cavity slot antenna |
CN109818119A (en) * | 2018-12-31 | 2019-05-28 | 瑞声科技(南京)有限公司 | Millimeter wave LTCC filter |
CN111048879A (en) * | 2019-12-31 | 2020-04-21 | 广东盛路通信科技股份有限公司 | A broadband equal-amplitude conversion structure from rectangular waveguide to double-ended stripline |
CN111463525A (en) * | 2020-04-20 | 2020-07-28 | 南京邮电大学 | Miniaturized third-order SD-HMSIW band-pass filter based on coplanar waveguide |
CN111463525B (en) * | 2020-04-20 | 2021-04-27 | 南京邮电大学 | Miniaturized third-order SD-HMSIW bandpass filter based on coplanar waveguide |
CN113471654A (en) * | 2021-05-21 | 2021-10-01 | 西安电子科技大学 | Glass-based wide-stop-band microwave duplexer |
CN113471654B (en) * | 2021-05-21 | 2022-08-05 | 西安电子科技大学 | Glass-based wide-stop-band microwave duplexer |
CN115064851A (en) * | 2022-07-19 | 2022-09-16 | 东南大学 | Rectangular cavity and round cavity multimode coupled substrate integrated waveguide duplexer |
CN116315543A (en) * | 2023-03-21 | 2023-06-23 | 杭州电子科技大学 | A miniaturized SIW filter cross junction that can be shared by all cavities |
CN116315543B (en) * | 2023-03-21 | 2025-03-25 | 杭州电子科技大学 | A miniaturized SIW filter crossover junction that can be shared by all cavities |
Also Published As
Publication number | Publication date |
---|---|
CN103390784B (en) | 2015-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103390784B (en) | Miniaturized substrate integration waveguide duplexer | |
CN106785290B (en) | Filtering power divider based on quarter-mode substrate integrated waveguide circular cavity | |
CN103904391B (en) | Multilayer hybrid guided mode hexagon substrate integral wave guide filter | |
CN102509837B (en) | Substrate Integrated Waveguide Miniaturized Bandpass Hybrid Ring | |
CN105552487A (en) | Dual-layer SIW-based dual-bandpass microwave filter | |
CN108448211A (en) | Slab Dielectric Waveguide terahertz filter | |
CN203339280U (en) | A Miniaturized Substrate Integrated Waveguide Duplexer | |
CN105990630A (en) | High-selectivity Balun band pass filter based on substrate integrated waveguide | |
CN202275910U (en) | Substrate integrated waveguide miniaturized bandpass hybrid ring | |
CN204927461U (en) | A kind of LTCC duplexer | |
CN109830789B (en) | Broadband band-pass filter based on folded substrate integrated waveguide and complementary split ring resonator | |
CN105304979A (en) | Three-mode and three-band microwave filter based on SIW | |
CN108493534A (en) | A kind of four mould chip integrated waveguide broad-band filters | |
CN101694898A (en) | Bimodule annular resonant cavity band-pass filter with direct feed planar structure | |
CN112072224B (en) | Balanced Bandpass Filter Based on Substrate Integrated Waveguide | |
CN104218279A (en) | Novel dual-mode band-pass filter based on LTCC (low temperature co-fired ceramics) | |
CN102610880A (en) | Plane miniaturization communication band-pass filter with broadband external inhibition characteristic | |
CN110350273B (en) | Dual-passband millimeter wave substrate integrated waveguide filter | |
CN113328223B (en) | Third-order band-pass filter | |
CN106898851A (en) | Hybrid electromagnetic coupling duplexer based on half module substrate integrated wave guide | |
CN105789786B (en) | Filter with low insertion loss broadband filter based on substrate integration wave-guide complementary openings resonant ring | |
CN110911789B (en) | Substrate integrated waveguide band-pass filter | |
CN104167578B (en) | Substrate integration wave-guide band pass filter | |
CN111900518B (en) | Dielectric filter with 180-degree phase shifter | |
CN105071009B (en) | A kind of LTCC duplexers based on public resonator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170726 Address after: Dingshuzhen pottery road Yixing City, Jiangsu province 214200 No. 138 Patentee after: Jiangsu Hengxin Science & Technology Co., Ltd. Address before: 611731 Chengdu province high tech Zone (West) West source Avenue, No. 2006 Patentee before: University of Electronic Science and Technology of China |
|
TR01 | Transfer of patent right |