CN103389465A - Method for measuring electric quantity of battery - Google Patents
Method for measuring electric quantity of battery Download PDFInfo
- Publication number
- CN103389465A CN103389465A CN2012101452878A CN201210145287A CN103389465A CN 103389465 A CN103389465 A CN 103389465A CN 2012101452878 A CN2012101452878 A CN 2012101452878A CN 201210145287 A CN201210145287 A CN 201210145287A CN 103389465 A CN103389465 A CN 103389465A
- Authority
- CN
- China
- Prior art keywords
- battery
- element cell
- cell
- lithium
- electric weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Secondary Cells (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种电池结构及电量测量方法,特别是涉及一种结合三元素单元电池的电池结构及通过测量三元素单元电池电量以取得整体电池结构电量的电量测量方法。The invention relates to a battery structure and a power measurement method, in particular to a battery structure combined with a three-element unit battery and a power measurement method for obtaining the power of the whole battery structure by measuring the power of the three-element unit battery.
背景技术 Background technique
电池发展主要以锂离子电池为发展主力,锂离子电池无论是在能量密度、能量效率、循环寿命、充电时间与安全性皆是首选。为发挥电池最大效能与延长电池使用寿命,故须设电池管理系统进行检测,电池管理系统最主要的目的是取得电池状态信息、性能调校与电池外部保护,其中与使用者最相关的为电池剩余电量的估测。电池剩余电量称为残电量(State OfCharge,SOC),电动车中的电池相当于汽油车的油箱,则残电量就相当于油量,故对于顾客评估剩余电量尤其重要。现有技术的残电量估测方法有:Lithium-ion batteries are the main force for battery development. Lithium-ion batteries are the first choice in terms of energy density, energy efficiency, cycle life, charging time and safety. In order to maximize the performance of the battery and prolong the service life of the battery, a battery management system must be installed for detection. The main purpose of the battery management system is to obtain battery status information, performance adjustment and external protection of the battery. Among them, the battery is the most relevant to the user. Estimation of remaining power. The remaining power of the battery is called State Of Charge (SOC). The battery in an electric vehicle is equivalent to the fuel tank of a gasoline vehicle, and the residual power is equivalent to the amount of fuel. Therefore, it is especially important for customers to evaluate the remaining power. The residual capacity estimation methods in the prior art include:
(1)车辆行进时,采用电流测量积分-使用库伦计测量电流进行积分求出累积耗电量。(2)车辆静止时,或是单独测量电池结构时,采用开路电压法(Open circuit voltage,OCV)-测量电压源通过开路电压曲线进行分析。(1) When the vehicle is running, use current measurement integration - use a coulomb meter to measure the current and integrate it to calculate the cumulative power consumption. (2) When the vehicle is stationary, or when the battery structure is measured separately, the open circuit voltage method (Open circuit voltage, OCV)-the measurement voltage source is analyzed through the open circuit voltage curve.
但上述的开路电压法应用于锂铁单元电池时,将有下列的问题所在:(1)锂铁单元电池的开路电压曲线较为平缓,若直接测量电压值则可能造成判读错误。(2)锂铁单元电池经过充放电截止电压后,其电压会继续漂动,故无法直接测量电池端电压作为残电量的判断。However, when the above-mentioned open-circuit voltage method is applied to a lithium-iron unit battery, there will be the following problems: (1) The open-circuit voltage curve of the lithium-iron unit battery is relatively gentle, and if the voltage value is directly measured, it may cause interpretation errors. (2) After the lithium-iron unit battery passes the cut-off voltage of charge and discharge, its voltage will continue to drift, so it is impossible to directly measure the battery terminal voltage as the judgment of the residual capacity.
因此,如何提供一个较为准确的电池电量的测量模式,为应思量的问题。Therefore, how to provide a more accurate battery power measurement mode should be considered.
发明内容 Contents of the invention
本发明欲解决的问题是提供一种结合三元素单元电池的电量测量方法。The problem to be solved by the present invention is to provide a power measurement method combined with a three-element unit battery.
为解决上述方法问题,本发明公开一种电池的电量测量方法,应用于测量电池结构的残电量,电池结构包括三元素单元电池及至少一个锂铁单元电池,其特征在于,该方法包括:测量三元素单元电池的电压或电流,以计算出所述三元素单元电池的残电量;以及依据三元素单元电池的残电量取得电池结构的目前残电量。In order to solve the above-mentioned problem, the present invention discloses a battery power measurement method, which is applied to measure the residual power of a battery structure. The battery structure includes a three-element unit battery and at least one lithium-iron unit battery. It is characterized in that the method includes: measuring the voltage or current of the three-element unit cell to calculate the residual capacity of the three-element unit cell; and obtain the current residual capacity of the battery structure according to the residual capacity of the three-element unit cell.
其一实施例中,电池结构所包括的三元素单元电池及至少一个锂铁单元电池为串联形式,并通过三元素单元电池的目前电压值与已知最低电压值进行比较,以计算所述三元素单元电池的残电量。In one embodiment, the three-element unit battery and at least one lithium-iron unit battery included in the battery structure are connected in series, and the current voltage value of the three-element unit battery is compared with the known minimum voltage value to calculate the three-element unit battery. The residual capacity of the element unit battery.
本发明的特点在于本发明的电池结构包括三元素单元电池与锂铁单元电池,其中,三元素单元电池的开路电压曲线斜度较大,曲线变化比锂铁单元电池更为明确,而且电流输出亦更为稳定,因此不论充电、放电皆能作为电量变化的判断依据。另外,三元素单元电池经过充放电截止电压后,其输出电压或输出电流并不会过度漂动,因此能直接作为残电量的判断。The feature of the present invention is that the battery structure of the present invention includes a three-element unit battery and a lithium-iron unit battery, wherein the open-circuit voltage curve of the three-element unit battery has a larger slope, and the curve change is more definite than that of a lithium-iron unit battery, and the current output It is also more stable, so it can be used as a basis for judging changes in power regardless of charging or discharging. In addition, the output voltage or output current of the three-element unit battery will not fluctuate excessively after the charge-discharge cut-off voltage, so it can be directly used as the judgment of the remaining capacity.
附图说明 Description of drawings
图1A、图1B、图1C、图1D及图1E示出本发明实施例的电池结构的电池串接配置示意图;Fig. 1A, Fig. 1B, Fig. 1C, Fig. 1D and Fig. 1E show schematic diagrams of battery series configuration of the battery structure of the embodiment of the present invention;
图2示出本发明实施例的另一电池串接结构示意图;FIG. 2 shows a schematic diagram of another battery series connection structure according to an embodiment of the present invention;
图3示出本发明实施例的电量测量方法流程图;Fig. 3 shows the flow chart of the electric quantity measurement method of the embodiment of the present invention;
图4示出本发明实施例的电池故障判定方法流程图;FIG. 4 shows a flow chart of a battery failure determination method according to an embodiment of the present invention;
图5示出本发明实施例的串接结构的电池故障判定方法细部流程图;FIG. 5 shows a detailed flow chart of a method for judging a battery fault in a series connection according to an embodiment of the present invention;
图6示出本发明三元素单元电池及锂铁单元电池的开路电压曲线示意图;Fig. 6 shows the schematic diagram of the open-circuit voltage curve of the three-element unit battery and the lithium-iron unit battery of the present invention;
图7示出本发明三元素单元电池及锂铁单元电池的放电曲线示意图;以及Figure 7 shows a schematic diagram of the discharge curves of the three-element unit battery and the lithium-iron unit battery of the present invention; and
图8示出本发明整体电池结构及锂铁单元电池的放电曲线示意图。Fig. 8 shows a schematic diagram of the overall battery structure and the discharge curve of the lithium-iron unit battery of the present invention.
【主要元件符号说明】[Description of main component symbols]
10a,10b,10c,10d,10e 电池结构10a, 10b, 10c, 10d, 10e battery structure
11 三元素单元电池11 Three-element unit battery
12 锂铁单元电池12 Lithium iron unit battery
13 电量测量单元13 Power measurement unit
14 显示单元14 Display unit
15 充电单元15 Charging unit
T1 第一时段T1 The first period
T2 第二时段T2 Second Period
T3 第三时段T3 The third period
T4 第四时段T4 The fourth period
步骤S110-120Steps S110-120
步骤S210-230Steps S210-230
具体实施方式 Detailed ways
以下配合附图,将本发明优选实施例详细说明如下。The preferred embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
首先请参照图1A、图1B、图1C、图1D及图1E示出本发明实施例的电池结构的电池串联配置示意图。First, please refer to FIG. 1A , FIG. 1B , FIG. 1C , FIG. 1D and FIG. 1E , which illustrate a schematic diagram of a battery series configuration of a battery structure according to an embodiment of the present invention.
电池结构包括一个三元素单元电池11及一个以上的锂铁单元电池12,从图1A至图1E得知,不论锂铁单元电池12的数量多寡,三元素单元电池11与所有锂铁单元电池12形成串联形式,而且三元素单元电池11的配置顺序并未有所限定。The battery structure includes a three-
如电池结构10a与电池结构10b各具有一个三元素单元电池11及一个锂铁单元电池12,两者的顺序并不限定,可先配置三元素单元电池11,后串接锂铁单元电池12,或是先配置锂铁单元电池12后串接三元素单元电池11。For example, the
又如电池结构10c、电池结构10d与电池结构10e各具有一个三元素单元电池11及二个以上的锂铁单元电池12,三元素单元电池11与锂铁单元电池12为串接。三元素单元电池11串接于所有锂铁单元电池12的前端、任二个锂铁单元电池12之间或是所有锂铁单元电池12的后端。In another example, the
其中,三元素单元电池11的残电量与总电量的比例及各锂铁单元电池12的残电量与总电量的比例(以下简称残电量比例)需为相等、或是十分近似,以避免各电池的残电量比例相差过大,导致部分电池的供电负担过大,从而缩短电池寿命,或是造成电池损坏的情形。其次,三元素单元电池11包含的化学成份选自由镍、钴、锰以及锂所组成的组,更进一步,可为镍、钴、锰以及锂的化合物,例如钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)或磷酸铁锂(LiFePO4)。Among them, the ratio of the residual power to the total power of the three-
请参阅图2示出本发明实施例的另一电池结构串接示意图。此电池结构10a还包括电量测量单元13、显示单元14与充电单元15。此实施例得以施行于图1A至图1E中任一种电池排列的电池结构,以下各实施例暂以电池结构10a说明,但不限于此。Please refer to FIG. 2 , which is a schematic diagram of another battery structure series connection according to an embodiment of the present invention. The
电量测量单元13电连接三元素单元电池11,用以测量三元素单元电池11的残电量。其中,三元素单元电池11的残电量比例相等或大于其它锂铁单元电池12的残电量比例,且亦相等或大于整个电池结构10a的残电量比例,故使用者可将三元素单元电池11的电量比例视为电池结构10a的残电量比例。The
显示单元14电连接至电量测量单元13,用以显示三元素单元电池11的残电量。其中,显示单元14可为一般显示器、液晶显示器、二极管结构式显示器或是其它可用以呈现电量信息的显示元件。The display unit 14 is electrically connected to the
充电单元15电连接至整个电池结构10a的电极,用以对串联的三元素单元电池11及锂铁单元电池12进行充电。充电单元15及其相关技术为本发明技术领域普通技术人员所熟知,在此不再赘述。The charging
请参阅图3示出本发明实施例的电量测量方法流程图,请同时参阅图2以利于了解。此方法应用于测量电池结构10a的电量,电池结构10a包括三元素单元电池11及一个以上的锂铁单元电池12。此方法说明如下:Please refer to FIG. 3 , which shows the flow chart of the power measurement method according to the embodiment of the present invention, and please refer to FIG. 2 at the same time for easy understanding. This method is applied to measure the power of a
测量三元素单元电池的电压或电流,以计算出三元素单元电池的残电量(步骤S110)。如前述,电量测量单元13电连接三元素单元电池11,以测量三元素单元电池11的残电量。电池的残电量估测主要有两种方式,一是开路电压测量法、一是库伦积分法。开路电压测量法是利用三元素单元电池11的电压为基础,利用三元素单元电池11的目前电压值与已知最低电压值进行比较,以计算三元素单元电池11的剩余容量,库伦积分法是通过直接测量三元素单元电池11的电荷电流,并随着时间将其积分来估测三元素单元电池11的预估残电量,并将此预估残电量值通过环境温度数值补偿计算,以取得三元素单元电池11的残电量,以此视为得到电池结构10a的残电量。Measure the voltage or current of the three-element unit battery to calculate the residual capacity of the three-element unit battery (step S110 ). As mentioned above, the
依据三元素单元电池的电量取得电池结构的目前电量(步骤S120)。如前述,三元素单元电池11的电量比例因相等或大于其它锂铁单元电池12、亦或整个电池结构10a的残电量,故可将三元素单元电池11的电量比例视为电池结构10a的残电量比例。Obtain the current power of the battery structure according to the power of the three-element unit battery (step S120 ). As mentioned above, the power ratio of the three-
请参阅图4示出本发明实施例的电池故障判定方法流程图,请同时参阅图2、图5示出本发明实施例的串接结构的电池故障判定方法细部流程图以利于了解。此方法说明如下:Please refer to FIG. 4 for a flow chart of the method for judging a battery failure according to an embodiment of the present invention. Please also refer to FIG. 2 and FIG. 5 for a detailed flow chart of a method for judging a battery failure with a series connection structure according to an embodiment of the present invention for easy understanding. This method is described as follows:
判断是否存在损坏单元电池(步骤S210)。利用相关的检测工具以对电池结构10a中的各电池进行检查,检测工具会依据各单元电池的反应以判断整个电池结构10a中,三元素单元电池11或是任一锂铁单元电池12是否损坏。判断损坏的单元电池方法如下:Determine whether there is a damaged unit cell (step S210 ). Use relevant testing tools to check each battery in the
就图2而言,由于电池结构10a的电池为串联形式,所以当电池结构10a进行充电与放电时须注意各单元电池(包括三元素单元电池11或任一锂铁单元电池12)的电压高低,因每个单元电池皆有其使用的电压范围。As shown in Fig. 2, since the batteries of the
于此,先取得每一单元电池的输出电压值(步骤S211)。当电池结构10a放电时,在相同的放电电流下,损坏单元电池的输出电压会比其它正常的单元电池的输出电压还低。因此,使用者或设计人员可设计一例但不以此为限,如:单元电池的电压下限值为正常的单元电池的输出电压低10%以上,一旦损坏单元电池的输出电压值低于此电压下限值时,即判断此单元电池有故障的疑虑;经多次充放电测试后,两者的单元电池的输出电压的差异越大时,一旦输出电压值差大于30%以上,即判断此单元电池故障(步骤S212)。Here, the output voltage value of each unit cell is obtained first (step S211 ). When the
亦或,当电池结构10a经长时间充放电后,可利用相关的检测工具以对电池结构10a中的各电池进行检查,与原始存放在电量测量单元13的电池参数进行比对,通过检测工具会依据电池的反应以判断整个电池结构10a中,三元素单元电池11或是任一锂铁单元电池12是否损坏。Alternatively, after the
当有损坏单元电池存在时,需先对替换单元电池进行充电或放电行为,以使得替换单元电池的残电量的比例等同于电池结构10a中未损坏单元电池的残电量的比例(步骤S220)。When there is a damaged unit battery, the replacement unit battery needs to be charged or discharged first, so that the proportion of the remaining capacity of the replacement unit battery is equal to the proportion of the remaining capacity of the undamaged unit battery in the
之后,再将替换电池取代损坏单元电池(步骤S230),避免各电池的电量比例相差过大,导致部分电池的供电负担过大,从而缩短电池寿命,或是造成电池损坏的情形。Afterwards, replace the damaged unit battery with a replacement battery (step S230 ), so as to prevent the power ratio of each battery from being too large, resulting in excessive power supply burden of some batteries, thereby shortening battery life, or causing battery damage.
请参阅图6示出本发明三元素单元电池及锂铁单元电池的开路电压曲线示意图,请同时参阅图2以利于了解。其中,第一时段T1为电池放电时段,第二时段T2为放电截止时段,第三时段T3为电池充电时段,第四时段T4为充电截止时段。Please refer to FIG. 6 which shows a schematic diagram of the open-circuit voltage curves of the three-element unit battery and the lithium-iron unit battery of the present invention. Please also refer to FIG. 2 for easy understanding. Wherein, the first time period T1 is the battery discharge time period, the second time period T2 is the discharge cut-off time period, the third time period T3 is the battery charge time period, and the fourth time period T4 is the charge cut-off time period.
第一时段T1期间,锂铁单元电池12放电时,其初始放电的开路电压(请参考图6示出的锂铁单元电池电压)曲线变化相当的缓慢,然而,到达电量即将耗尽时,开路电压曲线斜度变化增大而急遽下降。就电量测量作业而言,很难取得很正确的电池残电量的变化。During the first period T1, when the lithium-
三元素单元电池11放电时,不但开路电压(请参考图6示出的三元素单元电池电压)曲线斜度较大且明显,自始自终皆未有开路电压曲线斜度大幅度变化的情形发生,而且电压下降的比例相当的稳定,就电量测量作业而言,很容易取得很正确的电池残电量的变化。When the three-
第二时段T2期间,锂铁单元电池12的放电截止电压会过度漂动,更甚者,会反向提升至放电前的常态电压数值。就电量测量作业而言,很难判断此锂铁单元电池12为电量耗尽或是具足够电池电量的状态。During the second period T2, the discharge cut-off voltage of the lithium-
然而,三元素单元电池11的放电截止电压并不会漂动,而是持续保持在放电后的电压值状态。就电池电量测量作业而言,很容易判断此三元素单元电池11为电池电量耗尽或是具足够电池电量的状态。However, the discharge cut-off voltage of the three-
第三时段T3期间,锂铁单元电池12充电时,其初始充电的开路电压曲线变化升到一定的电压值(约3.3~3.4V)后,其开路电压变化相当的缓慢,然而,锂铁单元电池12的残电量临界值时,开路电压曲线斜度变化增大而急遽上升,本锂铁单元电池12的临界值是以单元电池端电压来判断,此临界值的端电压为正常单元电池端电压的6%以上。就电池电量测量作业而言,很难取得很正确的电池残电量变化。During the third period T3, when the lithium-
三元素单元电池11充电时,不但开路电压曲线斜度较大且明显,自始自终皆未有开路电压曲线斜度大幅度变化的情形发生,而且电压上升的比例相当的稳定,就电量测量作业而言,很容易取得很正确的电池残电量。When the three-
第四时段T4期间,锂铁单元电池12的充电截止电压会过度漂动,更甚者,会反向下降至充电前的常态电压数值。就电池电量测量作业而言,很难判断此锂铁单元电池12的电池残电量。During the fourth time period T4, the charging cut-off voltage of the lithium-
然而,三元素单元电池11的充电截止电压并不会漂动,而是持续保持在充电后的电压值状态。就电量测量作业而言,很容易判断此三元素单元电池11的电池残电量。However, the cut-off voltage of the three-
以此例,三元素单元电池11与锂铁单元电池12串联时放电。当锂铁单元电池12达2.5V时停止放电。串联且充电时先以定电流模式充电,再以定电压模式对三元素单元11与锂铁单元电池12充电,充电电流为10A,当锂铁单元电池12开路电压为3.6V或充电电流小于等于1A时停止充电,测试时充放电保护以开路电压范围较低者为主,观察开路电压范围较高者的电池电压变化,因此充放电保护以锂铁单元电池12电压为主,观察三元素单元电池11电压变化,且测试前需先将锂铁单元电池12充电至3.6V,将三元素单元电池11充电至4V,确保单元电池的残电量为最高的情况下。In this example, the three-
请参阅图7示出本发明三元素单元电池及锂铁单元电池的放电曲线示意图,请同时参阅图2以利于了解。Please refer to FIG. 7 which shows a schematic diagram of the discharge curves of the three-element unit battery and the lithium-iron unit battery of the present invention. Please also refer to FIG. 2 for better understanding.
就锂铁单元电池12而言,其放电的开路电压(请参考图7示出的锂铁电池组的平均电压)曲线变化相当的缓慢。但锂铁单元电池12停止放电时,放电截止电压会漂动,且电压值会逐渐回升,相当不利于对电池残电量的测量作业。As far as the lithium-
然本实施例中,是将三元素单元电池(或电池组合)的总电量容量大于锂铁单元电池(或电池组合)的总电量容量为前提条件进行说明。三元素单元电池11放电时,不但开路电压(请参考图7示出的三元素单元电池电压)曲线斜度较大且明显,电压下降的比例相当的稳定。而且,三元素单元电池11的放电截止电压并不会漂动,而是持续保持在放电后的电压值状态。However, in this embodiment, the description is made on the precondition that the total electric capacity of the three-element unit battery (or battery combination) is greater than that of the lithium-iron unit battery (or battery combination). When the three-
请参阅图8示出本发明整体电池结构及锂铁单元电池的放电曲线示意图,请同时参阅图2以利于了解。Please refer to FIG. 8 for a schematic diagram showing the overall battery structure and the discharge curve of the lithium-iron unit battery of the present invention. Please also refer to FIG. 2 for better understanding.
其中,整体电池结构10a残电量是由电量测量单元13所测量整个电池结构所得到。当整体电池残电量(State of Charge,SOC)逐渐下降时,锂铁单元电池12与整体电池结构10a放电的开路电压(即单元电池无放电时,所测量到的单元电池端电压)曲线会持续下降,但变化皆相当的缓慢。而且,锂铁单元电池12与整体电池结构10a停止放电时,放电截止电压皆会漂动,且电压值会逐渐回升,相当不利于对电池残电量的测量作业。Wherein, the residual capacity of the
因此,就图6、图7及图8得知,三元素单元电池11不论充电或放电,开路电压曲线斜度皆较大且明显,自始自终皆未有开路电压曲线斜度大幅度变化的情形发生,而且电压上升、下降的比例皆相当稳定。而且充电、放电停止期间,并不会有电压漂动的情形发生。就电量测量作业而言,很容易取得很正确的电量变化。因此,三元素单元电池11可用以精确辅助测量锂铁单元电池12、亦或是整体电池结构10a的残电量。Therefore, according to Fig. 6, Fig. 7 and Fig. 8, no matter charging or discharging, the slope of the open circuit voltage curve of the three-
综上所述,仅记载本发明为呈现解决问题所采用的技术手段的实施方式或实施例而已,并非用来限定本发明专利实施的范围。即凡与本发明权利要求文义相符,或依本发明专利范围所做的均等变化与修改,皆为本发明专利范围所覆盖。To sum up, the present invention is only described as an implementation or example of the technical means adopted to solve the problems, and it is not intended to limit the scope of the patent implementation of the present invention. That is, all equivalent changes and modifications that are consistent with the content of the claims of the present invention, or made according to the patent scope of the present invention, are all covered by the patent scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210145287.8A CN103389465B (en) | 2012-05-11 | 2012-05-11 | How to measure battery capacity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210145287.8A CN103389465B (en) | 2012-05-11 | 2012-05-11 | How to measure battery capacity |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103389465A true CN103389465A (en) | 2013-11-13 |
CN103389465B CN103389465B (en) | 2015-10-21 |
Family
ID=49533795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210145287.8A Expired - Fee Related CN103389465B (en) | 2012-05-11 | 2012-05-11 | How to measure battery capacity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103389465B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104849667A (en) * | 2014-02-18 | 2015-08-19 | 现代自动车株式会社 | Apparatus and method for diagnosing battery cell defects |
CN115508722A (en) * | 2022-09-19 | 2022-12-23 | 上海仲海科技有限公司 | Residual battery capacity measuring method combined with three-element unit battery |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080186030A1 (en) * | 2007-02-06 | 2008-08-07 | Shinji Kasamatsu | Evaluation method and evaluation apparatus for evaluating battery safety, and battery whose safety indices have been determined with the same |
US20090230972A1 (en) * | 2008-03-12 | 2009-09-17 | O2Micro, Inc. | Capacity detector for detecting capacity of an energy storage unit |
CN101542821A (en) * | 2007-01-11 | 2009-09-23 | 松下电器产业株式会社 | Lithium secondary cell degradation detection method, degradation detector, degradation suppressing device, and cell pack using the same, battery charger |
CN201489097U (en) * | 2009-08-20 | 2010-05-26 | 江西中投新能源有限公司 | Lithium cell discharge tester |
CN102088107A (en) * | 2010-12-24 | 2011-06-08 | 上海中兴派能能源科技有限公司 | Cell die and method for rapid evaluating cell matching degree |
CN102185365A (en) * | 2011-05-27 | 2011-09-14 | 北京欧满德科技发展有限公司 | Charging circuit for equalizing activation of multi-section series lithium ion battery pack and battery pack |
CN102818996A (en) * | 2011-06-08 | 2012-12-12 | 光阳工业股份有限公司 | Battery structure and electric quantity measuring method thereof |
-
2012
- 2012-05-11 CN CN201210145287.8A patent/CN103389465B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101542821A (en) * | 2007-01-11 | 2009-09-23 | 松下电器产业株式会社 | Lithium secondary cell degradation detection method, degradation detector, degradation suppressing device, and cell pack using the same, battery charger |
US20080186030A1 (en) * | 2007-02-06 | 2008-08-07 | Shinji Kasamatsu | Evaluation method and evaluation apparatus for evaluating battery safety, and battery whose safety indices have been determined with the same |
US20090230972A1 (en) * | 2008-03-12 | 2009-09-17 | O2Micro, Inc. | Capacity detector for detecting capacity of an energy storage unit |
CN201489097U (en) * | 2009-08-20 | 2010-05-26 | 江西中投新能源有限公司 | Lithium cell discharge tester |
CN102088107A (en) * | 2010-12-24 | 2011-06-08 | 上海中兴派能能源科技有限公司 | Cell die and method for rapid evaluating cell matching degree |
CN102185365A (en) * | 2011-05-27 | 2011-09-14 | 北京欧满德科技发展有限公司 | Charging circuit for equalizing activation of multi-section series lithium ion battery pack and battery pack |
CN102818996A (en) * | 2011-06-08 | 2012-12-12 | 光阳工业股份有限公司 | Battery structure and electric quantity measuring method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104849667A (en) * | 2014-02-18 | 2015-08-19 | 现代自动车株式会社 | Apparatus and method for diagnosing battery cell defects |
CN104849667B (en) * | 2014-02-18 | 2019-09-17 | 现代自动车株式会社 | Device and method for diagnosing battery battery core defect |
CN115508722A (en) * | 2022-09-19 | 2022-12-23 | 上海仲海科技有限公司 | Residual battery capacity measuring method combined with three-element unit battery |
Also Published As
Publication number | Publication date |
---|---|
CN103389465B (en) | 2015-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101238478B1 (en) | The Measurment Method of Battery SOC | |
US9766298B2 (en) | Method for estimating state of health of a battery in a hybrid vehicle | |
US11346887B2 (en) | Method and apparatus for calculating SOH of battery power pack, and electric vehicle | |
CN102230953B (en) | Method for predicting left capacity and health status of storage battery | |
CN103344917B (en) | A kind of lithium battery cycle life method for rapidly testing | |
CN109507611B (en) | SOH correction method and system for electric vehicle | |
CN102662148B (en) | On-line feedback battery state of charge (SOC) predicting method | |
US20130069660A1 (en) | Method for in situ battery diagnostic by electrochemical impedance spectroscopy | |
CN109856548B (en) | Power battery capacity estimation method | |
EP3594705B1 (en) | Method and device for estimating service capacity and state of health of minimum battery cell and battery system | |
CN102854470A (en) | Measurement method for estimating actual available capacity by SOC (state of charge) of power battery set | |
CN101692120B (en) | Measuring measuring method for measuring maximum available energy of series storage battery pack | |
KR101463394B1 (en) | Battery management system, and method of estimating battery's state of charge using the same | |
CN111308374A (en) | Estimation method for SOH value of battery pack state of health | |
CN109975715B (en) | Method for obtaining residual electric quantity of lithium ion battery module of electric vehicle | |
JP2012208027A (en) | Method for diagnosing deterioration of battery pack | |
CN104950263A (en) | Estimation method for SOC of automobile power battery | |
US11415637B2 (en) | System and method for estimating battery state of health | |
KR101268082B1 (en) | SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage | |
CN111216595B (en) | SOC calibration method of severe hybrid electric vehicle based on lithium battery equivalent circuit model | |
JP5768914B2 (en) | Assembled battery charge state diagnosis method | |
CN106004481A (en) | SOH value estimation method for battery pack of hybrid electric vehicle | |
CN102818996B (en) | Battery structure and electric quantity measuring method thereof | |
CN103389465B (en) | How to measure battery capacity | |
CN102809728A (en) | Method for evaluating life condition strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151021 Termination date: 20200511 |
|
CF01 | Termination of patent right due to non-payment of annual fee |