[go: up one dir, main page]

JP5768914B2 - Assembled battery charge state diagnosis method - Google Patents

Assembled battery charge state diagnosis method Download PDF

Info

Publication number
JP5768914B2
JP5768914B2 JP2014084645A JP2014084645A JP5768914B2 JP 5768914 B2 JP5768914 B2 JP 5768914B2 JP 2014084645 A JP2014084645 A JP 2014084645A JP 2014084645 A JP2014084645 A JP 2014084645A JP 5768914 B2 JP5768914 B2 JP 5768914B2
Authority
JP
Japan
Prior art keywords
discharge
voltage
battery
cell
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014084645A
Other languages
Japanese (ja)
Other versions
JP2014178324A (en
Inventor
基司 桐林
基司 桐林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2014084645A priority Critical patent/JP5768914B2/en
Publication of JP2014178324A publication Critical patent/JP2014178324A/en
Application granted granted Critical
Publication of JP5768914B2 publication Critical patent/JP5768914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、複数個の蓄電池を組み合わせて構成した組電池における個々の蓄電池の劣化診断を行う方法に関するものである。   The present invention relates to a method for diagnosing deterioration of individual storage batteries in an assembled battery configured by combining a plurality of storage batteries.

鉛蓄電池に代表される蓄電池、すなわち二次電池は、電気機器の電源、計測機器の自動バックアップ電源、無停電電源装置(UPS)、電気自動車(ハイブリッド車を含む)の装置の信頼性を左右する重要な部品となっている。   A storage battery represented by a lead storage battery, that is, a secondary battery, influences the reliability of electrical equipment power supplies, automatic backup power supplies for measurement equipment, uninterruptible power supplies (UPS), and electric vehicles (including hybrid vehicles). It is an important part.

しかしながら、化学反応を基本とするために、定期的に交換しなければ、その蓄電池を使用している装置の信頼性や性能が維持できなくなる場合があり、さらに、安全面においても非常に危険である。特に、非常時だけ蓄電池を動作させる装置、例えばUPSの場合には、蓄電池が劣化していた場合には、非常時にバックアップが出来ず、装置の信頼性を大きく損ねるばかりでなく重大な事故を招くことにもなる。
このため、蓄電池の寿命あるいは劣化を適切に診断して適切な時期に蓄電池を交換する必要があり、そのためには蓄電池の劣化状態を診断する技術が必要になる。
However, since it is based on a chemical reaction, if it is not periodically replaced, the reliability and performance of the device using the storage battery may not be maintained, and it is also very dangerous for safety. is there. In particular, in the case of a device that operates a storage battery only in an emergency, such as a UPS, if the storage battery has deteriorated, backup cannot be performed in an emergency, not only greatly reducing the reliability of the device but also causing a serious accident. It will also be a thing.
For this reason, it is necessary to appropriately diagnose the life or deterioration of the storage battery and replace the storage battery at an appropriate time. For this purpose, a technique for diagnosing the deterioration state of the storage battery is required.

また、電源として使用される場合、蓄電池を複数個組み合わせて「組電池」として使用される場合が多い。この組電池は、複数個の蓄電池からなるために、その個々の蓄電池の製造条件や組電池の形態(組電池における蓄電池の組み合わせ方など)、さらには組電池の個々の蓄電池への使用環境の影響の違いなどによって、蓄電池の劣化の程度差が異なっている。   When used as a power source, a plurality of storage batteries are often combined and used as an “assembled battery”. Since this assembled battery is composed of a plurality of storage batteries, the manufacturing conditions of each individual storage battery, the form of the assembled battery (how to combine the storage batteries in the assembled battery, etc.), and the usage environment of the assembled battery for each storage battery The difference in the degree of deterioration of the storage battery varies depending on the influence.

以上のような背景から、蓄電池の劣化状態を診断する方法は、いろいろな方法が提案されており、特に、常時フロート充電状態にある据置用VRLA電池の点検(劣化診断)は、交流1kHz法や直流放電方式によっておこなわれてきた(特許文献1、2など参照)。   In view of the above background, various methods have been proposed for diagnosing the deterioration state of the storage battery. In particular, the check (deterioration diagnosis) of the stationary VRLA battery that is always in the float charge state is the AC 1 kHz method or This has been done by a direct current discharge method (see Patent Documents 1 and 2, etc.).

特開平10−92472号公報JP-A-10-92472 特開平8−136629号公報JP-A-8-136629

しかしながら、直流放電方式においては、一旦フロート充電を止めて電池電圧を安定化させてから行なっていたため、充電停止の手間の増加や、突然の停電に対するリスクを伴っての診断であった。何故、フロート充電を止めていたかというと、開回路電圧は電解液比重に依存していて蓄電池の劣化診断の尺度になるが、フロート充電中の各セルの充電電圧は開回路電圧との相関が低いため、正確な診断ができないからであった。
また、交流1kHz法でも直流放電方式でも、フロート充電中の充電状態診断はできなかった。
However, in the DC discharge method, since the float charging is once stopped and the battery voltage is stabilized, the diagnosis is accompanied by an increase in time for stopping charging and a risk for a sudden power failure. The reason why the float charge was stopped is that the open circuit voltage depends on the specific gravity of the electrolyte and is a measure for the deterioration diagnosis of the storage battery, but the charge voltage of each cell during the float charge has a correlation with the open circuit voltage. This is because it is low and an accurate diagnosis cannot be made.
Also, neither the AC 1 kHz method nor the DC discharge method was able to diagnose the state of charge during float charging.

そこで、このような課題の状況に際して、本発明は、組電池の個々の蓄電池の劣化診断を短時間に精度良く計測する組電池の劣化診断方法を提供するものである。   Therefore, in the situation of such problems, the present invention provides an assembled battery deterioration diagnosis method that accurately measures deterioration diagnosis of individual storage batteries of the assembled battery in a short time.

本発明の第の発明は、放電開始時を起点に0.5秒から5秒までの間のいずれかの時間に測定した電池電圧と、放電電流にフロート充電中における放電開始前の電池電圧と放電における放電開始を起点に0.001秒から0.01秒までの間のいずれかの時間に測定した放電中の電池電圧との差を放電電流で除算して求めた電池の内部抵抗を乗算して求めた値、との加算値を用いて電池の充電状態を診断することを特徴とする組電池の充電状態診断方法である。 The first aspect of the present invention, a battery voltage measured in any time between the time of discharge start from 0.5 seconds to the starting point to the 5 seconds, the discharge current, discharge start before the battery during float charge The internal resistance of the battery obtained by dividing the difference between the voltage and the battery voltage during discharge measured at any time between 0.001 second and 0.01 second from the start of discharge in the discharge by the discharge current A method for diagnosing the state of charge of a battery pack, wherein the state of charge of the battery is diagnosed using an addition value of the value obtained by multiplying by

本発明によれば、フロート充電中においても、その劣化状態を、自己放電の影響を受けずに、さらに測定時には、開回路電圧(OCV)の安定を待つことなく測定ができ、また測定に要する時間も短時間で済むことから、その計測時間を著しく短縮するものである。さらには、測定に使用する装置も小型かつ安価な装置とすることが可能となり、工業上顕著な効果を奏するものである。   According to the present invention, even during float charging, the degradation state can be measured without waiting for the stability of the open circuit voltage (OCV) at the time of measurement without being affected by self-discharge, and required for measurement. Since the time is short, the measurement time is remarkably shortened. Furthermore, the apparatus used for the measurement can be made small and inexpensive, which has a remarkable industrial effect.

フロート充電した状態で放電を行った場合の組電池の電圧の変化を示す図である。It is a figure which shows the change of the voltage of an assembled battery at the time of discharging in the state which carried out float charge. 組電池の劣化診断試験を行う際の試験回路図である。It is a test circuit diagram at the time of performing the deterioration diagnostic test of an assembled battery. 劣化診断および充電状態診断に用いる試験回路を示す図である。It is a figure which shows the test circuit used for a deterioration diagnosis and a charge condition diagnosis. 0.02CAから0.2CAまでの間の電流で放電したときの電圧の推移を示した図である。It is the figure which showed transition of the voltage when discharging with the electric current between 0.02CA and 0.2CA. セルの内部抵抗値(DC−IR)の時間推移を示す図である。It is a figure which shows the time transition of the internal resistance value (DC-IR) of a cell. 実施例におけるセルNo.1a〜1cの0.02CA放電の放電電圧の推移を示す図である。Cell No. in Example It is a figure which shows transition of the discharge voltage of 0.02CA discharge of 1a-1c. 実施例におけるセルNo.1a〜1cの0.1CA放電の放電電圧の推移を示す図である。Cell No. in Example It is a figure which shows transition of the discharge voltage of 0.1 CA discharge of 1a-1c. 実施例におけるセルNo.1a〜1cの0.2CA放電の放電電圧の推移を示す図である。Cell No. in Example It is a figure which shows transition of the discharge voltage of 0.2CA discharge of 1a-1c. 実施例におけるセルNo.1d〜1fの0.02CA放電の放電電圧の推移を示す図である。Cell No. in Example It is a figure which shows transition of the discharge voltage of 0.02CA discharge of 1d-1f. 実施例におけるセルNo.1d〜1fの0.1CA放電の放電電圧の推移を示す図である。Cell No. in Example It is a figure which shows transition of the discharge voltage of 0.1 CA discharge of 1d-1f. 実施例におけるセルNo.1d〜1fの0.2CA放電の放電電圧の推移を示す図である。Cell No. in Example It is a figure which shows transition of the discharge voltage of 0.2 CA discharge of 1d-1f. 実施例におけるセルNo.1g〜1iの0.02CA放電の放電電圧の推移を示す図である。Cell No. in Example It is a figure which shows transition of the discharge voltage of 0.02CA discharge of 1g-1i. 実施例におけるセルNo.1g〜1iの0.1CA放電の放電電圧の推移を示す図である。Cell No. in Example It is a figure which shows transition of the discharge voltage of 0.1 CA discharge of 1g-1i. 実施例におけるセルNo.1g〜1iの0.2CA放電の放電電圧の推移を示す図である。Cell No. in Example It is a figure which shows transition of the discharge voltage of 0.2 CA discharge of 1g-1i. セルの内部抵抗値(DC−IR)と容量との相関を示す図である。It is a figure which shows the correlation with the internal resistance value (DC-IR) of a cell, and a capacity | capacitance. 0.1CA放電時の開回路電圧の推定の値(推定OCV)、実際の開回路電圧(実測OCV)との相関を示す図である。It is a figure which shows the correlation with the estimated value (estimated OCV) of the open circuit voltage at the time of 0.1CA discharge, and an actual open circuit voltage (measured OCV). 0.02CA放電時の開回路電圧の推定の値(推定OCV)、実際の開回路電圧(実測OCV)との相関を示す図である。It is a figure which shows the correlation with the estimated value (estimated OCV) of the open circuit voltage at the time of 0.02 CA discharge, and an actual open circuit voltage (actually measured OCV). 0.1CA放電時の開回路電圧の推定の値(推定OCV)、実際の開回路電圧(実測OCV)との相関を示す図である。It is a figure which shows the correlation with the estimated value (estimated OCV) of the open circuit voltage at the time of 0.1CA discharge, and an actual open circuit voltage (measured OCV). 0.2CA放電時の開回路電圧の推定の値(推定OCV)、実際の開回路電圧(実測OCV)との相関を示す図である。It is a figure which shows the correlation with the estimated value (estimated OCV) of the open circuit voltage at the time of 0.2CA discharge, and an actual open circuit voltage (measured OCV).

以下に、本発明の劣化診断方法および充電診断方法を説明する。
図1を用いて本発明の劣化診断方法および充電診断方法の概略を示す。
図1は、フロート充電した状態で放電を行った場合の組電池の電圧の変化を示す図で、横軸は「時間」、縦軸は「電圧」である。
図1は、放電が開始すると、初期に急激に電圧が下降し、その急激な電圧の低下を過ぎた後は、緩やかな電圧降下が続くが、放電が終了した後は、フロート充電の作用によって電圧が急上昇した後、緩やかに電圧の上昇が継続されることを示している。
The deterioration diagnosis method and charge diagnosis method of the present invention will be described below.
An outline of the deterioration diagnosis method and the charge diagnosis method of the present invention will be described with reference to FIG.
FIG. 1 is a diagram illustrating a change in voltage of a battery pack when discharging is performed in a float charge state, where the horizontal axis is “time” and the vertical axis is “voltage”.
FIG. 1 shows that when the discharge starts, the voltage drops rapidly in the initial stage, and after the rapid voltage drop, the gradual voltage drop continues. It shows that after the voltage suddenly rises, the voltage rise continues gently.

[劣化診断]
本発明の劣化診断は、この放電における所定の放電時間(図1のtdc)での電圧降下量dV(図1の「DC−IR」で示される値)を測定し、その値を放電電流値Idcで除算して算出した電池の内部抵抗rcellを用いて、電池(セル)の劣化程度を判定するものである。
この劣化診断を行うためのデータを収集する試験の条件の根拠について以下に示す。
[Deterioration diagnosis]
In the deterioration diagnosis of the present invention, a voltage drop dV (value indicated by “DC-IR” in FIG. 1) at a predetermined discharge time (tdc in FIG. 1) in this discharge is measured, and the value is determined as a discharge current value. The degree of deterioration of the battery (cell) is determined by using the internal resistance rcell of the battery calculated by dividing by Idc.
The basis of the test conditions for collecting data for performing this deterioration diagnosis is shown below.

(1)放電電流
フロート充電中の組電池内の1つのセルを放電電流0.02CAから0.2CAまでの間の電流で放電したときの電圧推移の一例を図4に示す。
どの電流で放電したときも、放電を開始した直後は電圧が急激に低下し、その後は緩やかに低下し、その後一旦電圧低下が安定すると、放電による比重低下による濃度分極の影響で直線的に低下する傾向がある。
しかし、放電電流の大小により、緩やかに低下する速度が大きく異なる。緩やかに低下する部分では、活性化分極の解消が起こっており、本例のようにフロート充電中に放電をすると、各セルで分極を起こしている程度が異なるため、電圧が安定するまでの時間がまちまちとなる。放電電流が図に示す電流より小さいと、電圧降下が安定するまでに非常に時間がかかることになる。逆に電流が大きいと、今度は濃度分極による電圧低下が発生するため、正確な測定ができなくなる。
従って、放電電流の目安は、0.02CA以上、0.1CA以下の範囲が望ましい。
(1) Discharge Current FIG. 4 shows an example of voltage transition when one cell in the assembled battery being float charged is discharged with a current between 0.02 CA and 0.2 CA discharge current.
When discharging at any current, the voltage drops sharply immediately after the start of discharge, then gradually decreases, and once the voltage drop stabilizes, it drops linearly due to the effect of concentration polarization due to the decrease in specific gravity due to discharge. Tend to.
However, the rate of gradual decrease greatly varies depending on the magnitude of the discharge current. In the slowly decreasing part, the activation polarization is eliminated, and when discharging during float charging as in this example, the degree of polarization in each cell differs, so the time until the voltage stabilizes Will be mixed. If the discharge current is smaller than the current shown in the figure, it takes a very long time for the voltage drop to stabilize. On the other hand, if the current is large, a voltage drop due to concentration polarization occurs, and accurate measurement cannot be performed.
Therefore, the standard of the discharge current is desirably in the range of 0.02 CA or more and 0.1 CA or less.

(2)内部抵抗「DC−IR」を意味する電圧降下量dVを求めるための放電開始後のセル電圧(放電電圧)の測定地点の範囲
放電開始時を起点に0.001秒から0.01秒後の範囲に測定地点を採る理由は、図5に示すセルの内部抵抗値(DC−IR)の時間推移から、内部抵抗「DC−IR」は、およそ0.01秒の間まで安定しているが、0.01秒以降は恐らく充電分極の解消および活性化分極の発生の影響で、大きく変化するものもあらわれている。このことより、診断に用いるセルの内部抵抗値(DC−IR)を算出するための放電電圧の値を測定する測定地点は、放電開始時を起点に0.001秒から0.01秒までの間が望ましい。
0.001秒未満では放電による電圧降下量が小さく、また0.01秒を超えると電圧降下にバラツキを生じ易くなり、得られる内部抵抗の値の誤差が大きくなることから上記範囲としている。
(2) Range of measurement point of cell voltage (discharge voltage) after start of discharge for obtaining voltage drop amount dV meaning internal resistance “DC-IR” 0.001 second to 0.01 from start of discharge The reason for taking the measurement point in the range after 2 seconds is that the internal resistance “DC-IR” is stable until about 0.01 seconds from the time transition of the internal resistance value (DC-IR) of the cell shown in FIG. However, after 0.01 second, there are some that change significantly due to the effects of elimination of charge polarization and generation of activation polarization. From this, the measurement point for measuring the value of the discharge voltage for calculating the internal resistance value (DC-IR) of the cell used for diagnosis is from 0.001 second to 0.01 second from the start of discharge. The interval is desirable.
If it is less than 0.001 seconds, the amount of voltage drop due to discharge is small, and if it exceeds 0.01 seconds, the voltage drop tends to vary, and the error in the value of the obtained internal resistance becomes large.

[充電状態診断]
充電状態診断は、放電開始後の緩やかな電圧低下時の放電電圧Vadc(図1のAに示す範囲)に、放電電流Idcと電池の内部抵抗rcellを乗算した値Idc×rcellを加算した値Veocvを開回路電圧の推定の値(推定OCV)とし、予め定めたしきい値と比較して、その電池の充電状態を診断するものである。放電する際、組電池全体に電子負荷を接続して組電池全体を放電すると、放電を開始して電圧低下するや否や、直流電源からはその設定充電電圧を維持するために充電電流が増加する。
結局、電池に流れる電流は、電子負荷からの放電電流を直流電源からの充電電流で相殺した電流であるため、まともな診断ができない。よって本発明では、組電池を構成する複数のセルのうちの1個を放電することで、フロート充電時の電流の変化が小さくなるようにしている。
[Charge state diagnosis]
The charge state diagnosis is a value Veocv obtained by adding a value Idc × rcell obtained by multiplying a discharge current Idc and a battery internal resistance rcell to a discharge voltage Vadc (range shown in A of FIG. 1) at a gradual voltage drop after the start of discharge. Is an estimated value of the open circuit voltage (estimated OCV) and is compared with a predetermined threshold value to diagnose the state of charge of the battery. When discharging, if an electronic load is connected to the entire assembled battery and the entire assembled battery is discharged, the charging current increases from the DC power supply to maintain the set charging voltage as soon as the discharge starts and the voltage drops. .
After all, since the current flowing through the battery is a current obtained by canceling the discharge current from the electronic load with the charging current from the DC power supply, a proper diagnosis cannot be made. Therefore, in the present invention, by discharging one of a plurality of cells constituting the assembled battery, a change in current during float charging is reduced.

充電状態診断に用いる放電電圧Vadc(図1のAに示す範囲)は、表1より放電開始後から0.5〜5秒後における値を用いることが望ましく、より望ましくは2〜5秒後における放電電圧を測定するのが良い。0.5秒より短い場合では、図1からもわかるように、放電電圧の変化が未だ大きく、推定OCVによる充電状態診断に大きな誤差を生じ可能性がある。また、5秒を超えては、その変化がわずかであることから測定精度および測定効率の点から、それ以上の時間後の測定は無駄であると考えられるために上記範囲が望ましい。   The discharge voltage Vadc (range shown in FIG. 1A) used for the charge state diagnosis is desirably a value after 0.5 to 5 seconds from the start of discharge from Table 1, and more desirably after 2 to 5 seconds. It is good to measure the discharge voltage. When the time is shorter than 0.5 seconds, as can be seen from FIG. 1, the change in the discharge voltage is still large, and a large error may occur in the charge state diagnosis by the estimated OCV. In addition, since the change is slight beyond 5 seconds, from the viewpoint of measurement accuracy and measurement efficiency, it is considered that measurement after a longer time is useless, so the above range is desirable.

[劣化・充電状態診断方法]
次に、実際に各々の診断を行うためには、以下に示す試験を行い、セルの内部抵抗、推定OCVを求める。n個のセルを直列に接続したnセル組電池の劣化診断、充電状態診断を行う場合、図2に示す試験回路を構成して試験を行う。
図2において、1はnセルから構成される組電池、1a〜1nは組電池を構成するセル、2は抵抗、10は直流電源、11は電子負荷、12はデータロガ、13aは電流測定プローブ、13bは電圧測定プローブである。図では、iセル(1x)目の診断を行う状態を示す。
試験は、次に示す測定手順に従って行う。
[Deterioration / Charging State Diagnosis Method]
Next, in order to actually perform each diagnosis, the following test is performed to determine the internal resistance of the cell and the estimated OCV. When performing a deterioration diagnosis and a charge state diagnosis of an n-cell assembled battery in which n cells are connected in series, the test circuit shown in FIG.
In FIG. 2, 1 is an assembled battery composed of n cells, 1a to 1n are cells constituting the assembled battery, 2 is a resistor, 10 is a DC power supply, 11 is an electronic load, 12 is a data logger, 13a is a current measuring probe, 13b is a voltage measurement probe. The figure shows a state in which the i-cell (1x) is diagnosed.
The test is performed according to the following measurement procedure.

[測定手順]
(1)フロート充電中のセルを1個ずつ、表1に記載の条件で放電し、放電中の電圧の推移を測定する。
(2)放電中の電圧推移の測定結果から、セルの内部抵抗の算出、および推定開回路電圧(推定OCV)の算出を行う。
(3)求めたセルの内部抵抗を用いて劣化診断を行う。
(4)求めた推定OCVを用いて充電状態の診断を行う。
[Measurement procedure]
(1) Discharge one cell at a time under float charging under the conditions shown in Table 1, and measure the transition of voltage during discharge.
(2) The internal resistance of the cell and the estimated open circuit voltage (estimated OCV) are calculated from the measurement result of the voltage transition during discharge.
(3) A deterioration diagnosis is performed using the obtained internal resistance of the cell.
(4) The state of charge is diagnosed using the obtained estimated OCV.

Figure 0005768914
Figure 0005768914

据置用組電池は通常2.23V/セル、又UPSでは2.275V/セルで充電される。
なお、雰囲気温度は、組電池が使用される環境に合わせて変更しても良い。また、充電電圧、最大充電電流は、組電池の接続形態(直列接続、並列接続)、測定対象の組電池のセルの開回路電圧に合わせて適正に設定するものである。
さらに、電圧収集間隔も0.0025秒(2.5ms)間隔に固執せずに適宜設定することができるが、0.001〜0.005秒間隔がデータ量の大きさや取扱いなどを考えると好ましい。
A stationary battery pack is normally charged at 2.23 V / cell, and at UPS, 2.275 V / cell.
In addition, you may change atmospheric temperature according to the environment where an assembled battery is used. Further, the charging voltage and the maximum charging current are appropriately set according to the connection mode (series connection or parallel connection) of the assembled battery and the open circuit voltage of the cell of the assembled battery to be measured.
Furthermore, the voltage collection interval can be set as appropriate without sticking to the 0.0025 second (2.5 ms) interval, but the 0.001 to 0.005 second interval is preferable in consideration of the amount of data and the handling. .

以下、実施例を用いて本発明を詳細する。
図3に示す試験回路を用いて、定格容量が500AhであるVRLA電池(セル)を9セル直列接続した劣化電池(9セル組電池)の劣化診断および充電状態診断の検証試験を行った。図3において、1は組電池(9セル、セル1a〜1i)、2は抵抗、10は直流電源、11は電子負荷、12はデータロガ、13aは電流測定プローブ、13bは電圧測定プローブである。
試験手順は、先に説明した「測定手順」を基にしているが、妥当性を検証するために一部変更して行った。その試験手順を下記(1)から(8)に示す。
Hereinafter, the present invention will be described in detail using examples.
Using the test circuit shown in FIG. 3, a deterioration test and a charge state diagnosis verification test were performed on a deteriorated battery (9-cell battery pack) in which nine VRLA batteries (cells) having a rated capacity of 500 Ah were connected in series. In FIG. 3, 1 is an assembled battery (9 cells, cells 1a to 1i), 2 is a resistor, 10 is a DC power supply, 11 is an electronic load, 12 is a data logger, 13a is a current measurement probe, and 13b is a voltage measurement probe.
The test procedure was based on the “measurement procedure” described above, but was partially changed to verify the validity. The test procedure is shown in the following (1) to (8).

(1)満充電状態にした各セルの容量試験を、表2の条件で行う。
(2)容量試験を終えたセル1a〜1iを用いて、組電池を構成する。
(3)(1)の回復充電の完了後24時間放置し開回路電圧が充分安定した状態で、各セル(1a〜1i)の実際の開回路電圧(実測OCV)(a〜i)を、電圧測定プローブ13bを使用して測定する。
(4)各セルの開回路電圧を測定後、表3に一例を示す条件で組電池1に対してフロート充電を行う。
(5)充電中に、電池1個ずつ順番に表3記載の条件で放電を行い、放電中の電圧推移を測定する。
(6)放電中の電圧推移の測定結果から、セルの内部抵抗の算出、および推定開回路電圧(推定OCV)の算出を行う。
(7)求めたセルの内部抵抗を初期状態の抵抗測定結果と比較して劣化診断の妥当性を検証する。
(8)求めた推定OCVを実測OCVと比較して充電状態診断結果の妥当性を検証する。
(1) The capacity test of each cell in a fully charged state is performed under the conditions shown in Table 2.
(2) An assembled battery is configured using the cells 1a to 1i after the capacity test.
(3) After the completion of the recovery charge in (1), the actual open circuit voltage (actually measured OCV) (ai) of each cell (1a to 1i) is left in a state where the open circuit voltage is sufficiently stable after being left for 24 hours. Measurement is performed using the voltage measurement probe 13b.
(4) After measuring the open circuit voltage of each cell, float charging is performed on the assembled battery 1 under the conditions shown in Table 3 as an example.
(5) During charging, the batteries are discharged one by one under the conditions shown in Table 3 and the voltage transition during discharging is measured.
(6) The internal resistance of the cell and the estimated open circuit voltage (estimated OCV) are calculated from the measurement result of the voltage transition during discharge.
(7) The validity of the deterioration diagnosis is verified by comparing the obtained internal resistance of the cell with the resistance measurement result in the initial state.
(8) The obtained estimated OCV is compared with the actual OCV to verify the validity of the state of charge diagnosis.

Figure 0005768914
Figure 0005768914

Figure 0005768914
Figure 0005768914

測定結果を以下に示す。
[測定結果]
(a)劣化診断
セルNo.1a〜1iの容量試験結果を表4に示す。
The measurement results are shown below.
[Measurement result]
(A) Deterioration diagnosis Cell No. Table 4 shows the capacity test results of 1a to 1i.

Figure 0005768914
Figure 0005768914

表4から、セルNo.1a、1b、1d、1gは、容量が定格の70%以下となっており、No.1h、1iは、ほとんど劣化が認められない容量となっていた。No.1c、1eは寿命判定に近い容量であった。   From Table 4, cell no. 1a, 1b, 1d, and 1g have capacities of 70% or less of the rating. The capacity of 1h and 1i was hardly deteriorated. No. 1c and 1e were capacities close to the life judgment.

次に、組電池状態でフロート充電を行っている状態で各セル毎に放電した結果を示す。放電時の電圧推移を3セルずつにまとめて図6〜14に、この測定結果をまとめたものを表5〜8に示す。推定に用いる内部抵抗値は、2.5秒目の電圧を用いて算出した。さらに、この結果を基に電池の内部抵抗(DC−IR)を求めて、表5〜8に併記した。
表5は10A放電時の放電結果、表6は20A放電時の放電結果、表7は50A放電時の放電結果を、表8は100A放電時の放電結果を表している。
Next, the result of discharging for each cell in a state where float charging is performed in the assembled battery state is shown. The voltage transitions during discharge are summarized for each three cells and shown in FIGS. 6 to 14, and the results of measurement are summarized in Tables 5 to 8. The internal resistance value used for estimation was calculated using the voltage at 2.5 seconds. Furthermore, based on this result, the internal resistance (DC-IR) of the battery was determined and listed in Tables 5-8.
Table 5 shows the discharge results at 10 A discharge, Table 6 shows the discharge results at 20 A discharge, Table 7 shows the discharge results at 50 A discharge, and Table 8 shows the discharge results at 100 A discharge.

Figure 0005768914
Figure 0005768914

Figure 0005768914
Figure 0005768914

Figure 0005768914
Figure 0005768914

Figure 0005768914
Figure 0005768914

容量と内部抵抗の相関図を図15に示す。
一般に、据置VRLA電池は定格容量の70%以下に容量低下すると寿命と判断される。本試験に用いた電池の初期状態における内部抵抗(DC−IR)は、0.20〜25[mΩ]である。容量が70%以下であったセルの内部抵抗はどれも1mΩ以上となっていた。また、容量が80%程度であったセルも全て、内部抵抗が初期値の2倍以上となっていた。
FIG. 15 shows a correlation diagram between the capacitance and the internal resistance.
In general, a stationary VRLA battery is considered to have a lifetime when its capacity drops to 70% or less of the rated capacity. The internal resistance (DC-IR) in the initial state of the battery used in this test is 0.20 to 25 [mΩ]. The internal resistance of each cell having a capacity of 70% or less was 1 mΩ or more. Also, all the cells having a capacity of about 80% had an internal resistance of more than twice the initial value.

(b)充電状態診断
表5〜8のデータを基に、充電状態の診断を行うために推定OCVを算出した。推定に用いる内部抵抗値は、2.5秒目の電圧を用いた。
表9〜表12に放電開始後から0.5秒、1秒、2秒、5秒後の時間で求めた推定OCVを示す。
表9は表5を基にした10A放電時の推定OCVを示し、表10は表6を基にした20A放電時の推定OCVを、表11は表7を基に50A放電時の推定OCVを、表12は表8を基に100A放電時の推定OCVを表している。
(B) State of charge diagnosis Based on the data of Tables 5 to 8, an estimated OCV was calculated in order to diagnose the state of charge. As the internal resistance value used for estimation, a voltage at 2.5 seconds was used.
Tables 9 to 12 show estimated OCVs obtained at times 0.5 seconds, 1 second, 2 seconds and 5 seconds after the start of discharge.
Table 9 shows the estimated OCV at the time of 10 A discharge based on Table 5, Table 10 shows the estimated OCV at the time of 20 A discharge based on Table 6, and Table 11 shows the estimated OCV at the time of 50 A discharge based on Table 7. Table 12 shows the estimated OCV during 100 A discharge based on Table 8.

Figure 0005768914
Figure 0005768914

Figure 0005768914
Figure 0005768914

Figure 0005768914
Figure 0005768914

Figure 0005768914
Figure 0005768914

得られた推定OCVの妥当性を検証するために、推定OCVと、実測OCVとの相関を調べた。
その相関図を、図16〜19に示し、それぞれの条件での相関係数をまとめた結果を表13に示す。
実測OCVと、放電開始から5秒後の放電電圧から求めた推定OCVの相関係数は、0.88〜0.95が得られ、充電状態診断の妥当性を確認した。
In order to verify the validity of the obtained estimated OCV, the correlation between the estimated OCV and the measured OCV was examined.
The correlation diagrams are shown in FIGS. 16 to 19, and Table 13 shows the results of summarizing the correlation coefficients under the respective conditions.
The correlation coefficient between the measured OCV and the estimated OCV obtained from the discharge voltage 5 seconds after the start of discharge was 0.88 to 0.95, confirming the validity of the charge state diagnosis.

Figure 0005768914
Figure 0005768914

1 組電池
1a、1b、1c〜1n 組電池を構成する各セル
2 抵抗
10 直流電源
11 電子負荷
12 データロガ
13a 電流測定プローブ
13b 電圧測定プローブ
1 assembled battery 1a, 1b, 1c to 1n each cell constituting the assembled battery 2 resistance 10 DC power supply 11 electronic load 12 data logger 13a current measurement probe 13b voltage measurement probe

Claims (1)

放電開始時を起点に0.5秒から5秒までの間のいずれかの時間に測定した電池電圧と、
放電電流に、フロート充電中における放電開始前の電池電圧と放電における放電開始時を起点に0.001秒から0.01秒までの間のいずれかの時間に測定した放電中の電池電圧との差を放電電流で除算して求めた電池の内部抵抗を乗算して求めた値、
との加算値を用いて電池の充電状態を診断することを特徴とする組電池の充電状態診断方法。
Battery voltage measured at any time between 0.5 seconds and 5 seconds from the start of discharge;
The discharge current includes the battery voltage before the start of discharge during float charging and the battery voltage during the discharge measured at any time between 0.001 second and 0.01 second from the start of discharge in discharge. The value obtained by multiplying the internal resistance of the battery obtained by dividing the difference by the discharge current,
A method for diagnosing the state of charge of a battery using the added value of
JP2014084645A 2014-04-16 2014-04-16 Assembled battery charge state diagnosis method Active JP5768914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014084645A JP5768914B2 (en) 2014-04-16 2014-04-16 Assembled battery charge state diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014084645A JP5768914B2 (en) 2014-04-16 2014-04-16 Assembled battery charge state diagnosis method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011074165A Division JP2012208027A (en) 2011-03-30 2011-03-30 Method for diagnosing deterioration of battery pack

Publications (2)

Publication Number Publication Date
JP2014178324A JP2014178324A (en) 2014-09-25
JP5768914B2 true JP5768914B2 (en) 2015-08-26

Family

ID=51698388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014084645A Active JP5768914B2 (en) 2014-04-16 2014-04-16 Assembled battery charge state diagnosis method

Country Status (1)

Country Link
JP (1) JP5768914B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI586982B (en) * 2015-08-28 2017-06-11 友達光電股份有限公司 Method for calculating battery internal resistance
CN106646262A (en) * 2017-01-03 2017-05-10 重庆长安汽车股份有限公司 Power battery capacity estimation method, power battery capacity estimation system, and electric vehicle
KR102261481B1 (en) 2017-10-30 2021-06-07 (주)엘지에너지솔루션 Apparatus and method for estimating state of health of battery
CN113655389B (en) * 2020-05-12 2022-10-18 比亚迪股份有限公司 Method and system for diagnosing connection state of power circuit of battery pack, storage medium, battery management system and vehicle
CN113655396B (en) * 2020-05-12 2022-10-18 比亚迪股份有限公司 Method and system for diagnosing connection state of power loop of battery pack and management system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543662B2 (en) * 1999-03-09 2004-07-14 日産自動車株式会社 SOC calculation method for secondary battery for electric vehicle

Also Published As

Publication number Publication date
JP2014178324A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP2012208027A (en) Method for diagnosing deterioration of battery pack
US11280837B2 (en) Apparatus and method for detecting battery cell failure due to unknown discharge current
CN107870301B (en) A kind of detection method and device for battery micro-short circuit
CN104502859B (en) The detection of battery charge amount and cell health state, diagnostic method
CN110133536B (en) System, method and apparatus for determining an indicator of leakage current within a battery entity
US20150226811A1 (en) Apparatus and method for estimating internal resistance of battery pack
CN102445663B (en) Method for estimating battery health of electric automobile
CN109856548B (en) Power battery capacity estimation method
JP5768914B2 (en) Assembled battery charge state diagnosis method
CN104813182B (en) The steady state detection of abnormal charge event in the cell device being connected in series
CN103197257A (en) Method and device for detecting state of health (SOH) of battery
CN103884991A (en) Test method for single body cell DC internal resistance
CN103217651A (en) Method and system for estimating charge state of storage battery
CN106025323A (en) Inspection method for secondary battery
CN105866701A (en) Method for detecting uniformity of sodium-sulfur batteries
KR101268082B1 (en) SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage
CN111239633B (en) Battery pack pressure difference reason analysis method and device and computer equipment
JP5783116B2 (en) Battery degradation diagnosis method and charge / discharge monitoring control system
CN110780140A (en) A test method of battery management system for energy storage power station
CN109991550B (en) Storage battery performance detection method, device, system and computer readable storage medium
JP2018501613A (en) Method and apparatus for detecting overcharge of a battery accumulator
CN114487852A (en) Power battery residual energy detection method, device, computer equipment and storage medium
JP5772737B2 (en) Total battery capacity estimation method
KR102695066B1 (en) Apparatus and method for monitoring state of ess
CN106249165A (en) The method of testing that a kind of monomer lead acid storage battery quality judges

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5768914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150