CN103367356B - 具有氮化物层的半导体元件 - Google Patents
具有氮化物层的半导体元件 Download PDFInfo
- Publication number
- CN103367356B CN103367356B CN201210315883.6A CN201210315883A CN103367356B CN 103367356 B CN103367356 B CN 103367356B CN 201210315883 A CN201210315883 A CN 201210315883A CN 103367356 B CN103367356 B CN 103367356B
- Authority
- CN
- China
- Prior art keywords
- mentioned
- semiconductor layer
- semiconductor
- electrode
- nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 348
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 65
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 239000011248 coating agent Substances 0.000 claims 6
- 238000000576 coating method Methods 0.000 claims 6
- 239000012535 impurity Substances 0.000 claims 2
- 230000005669 field effect Effects 0.000 description 29
- 230000004888 barrier function Effects 0.000 description 12
- 230000005533 two-dimensional electron gas Effects 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- 229910002704 AlGaN Inorganic materials 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/675—Group III-V materials, Group II-VI materials, Group IV-VI materials, selenium or tellurium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
- H10D30/4755—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/6737—Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
- H10D30/6738—Schottky barrier electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/251—Source or drain electrodes for field-effect devices
- H10D64/254—Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes extend entirely through the semiconductor bodies, e.g. via-holes for back side contacts
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/64—Electrodes comprising a Schottky barrier to a semiconductor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/60—Schottky-barrier diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/05—Manufacture or treatment characterised by using material-based technologies using Group III-V technology
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/201—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits
- H10D84/204—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits of combinations of diodes or capacitors or resistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/811—Combinations of field-effect devices and one or more diodes, capacitors or resistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D88/00—Three-dimensional [3D] integrated devices
Landscapes
- Junction Field-Effect Transistors (AREA)
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
根据一个实施方式,提供一种半导体元件,该半导体元件具有半导体基板、氮化物的第一至第四半导体层、第一至第三电极以及栅电极。上述第一半导体层直接或隔着缓冲层设置在上述半导体基板上。上述第二半导体层从上述第一半导体层离开地设置。上述第三半导体层设置在上述第二半导体层上,具有比上述第二半导体层大的带隙。上述第四半导体层将上述第一半导体层及上述第二半导体层进行绝缘。上述第一电极与上述第一至上述第三半导体层形成欧姆接合。上述第二电极设置在上述第三半导体层上。上述栅电极设置在上述第一电极和上述第二电极之间。上述第三电极与上述第一半导体层形成肖特基结。
Description
相关申请的引用:本申请以2012年3月26日申请的在先日本专利申请第2012-70228号为基础,且要求其优先权利益,并通过引用而将其全部内容包含在本申请中。
技术领域
本发明的实施方式整体上涉及一种具有氮化物层的半导体元件。
背景技术
随着近年来的节能意愿的提高,功率转换电路的高效化被注目。功率转换电路为,将适合于发电、输电的形式的电力转换为消耗该电力的设备容易使用的形式。作为功率转换电路,例如能够列举开关电源、变换器等。
在功率转换电路中,一般将被称为功率半导体元件的元件用作为电路的主要元件。该功率半导体元件到通过开关动作来控制向负载的电力供给的作用。主要是其开关时的损失的大小较大地左右功率转换电路的效率,因此对于功率半导体元件的高性能化的研究被广泛进行。在构成功率半导体元件的半导体材料中,长期使用硅(Si)。但是,功率半导体元件的性能逐渐达到由硅的材料特性限制的极限。
因此,为了超越基于硅的材料特性的极限,而正在进行使用了碳化硅(SiC)、氮化物半导体例如GaN那样的代替硅的新材料的元件的开发。这些新材料的共同特征在于禁带宽度(bandgap:带隙)较大、击穿电场强度较大。因此,如果是SiC、GaN,则对于在采用硅作为构成材料的情况下仅能够使用双极类的晶体管那样的高电压领域,也能够使用开关速度较快的单极晶体管。其结果,能够降低功率半导体元件在开关动作时产生的损失。
通过使用上述新材料,不仅是晶体管、对于二极管也能够期待节能效果。根据与晶体管的情况同样的理由,对于在采用硅作为构成材料情况下仅能够使用双极型的pn二极管那样的高电压领域,也能够使用单极型的肖特基势垒二极管(SBD:SchottkyBarrierDiode)。这种肖特基势垒二极管的开关速度比pn二极管快。因此,能够降低开关损失,能够使功率转换电路低损失化。
氮化物半导体的特征在于,当适当地选择其材料而形成异质结时,在其异质结面上产生高浓度且高迁移率的二维电子气(2DEG:twoDimensionalElectronGas)。将该2DEG用作为沟道的场效应晶体管是异质结场效应晶体管(HFET:Hetero-structureFieldEffectTransistor)。该异质结场效应晶体管具有高耐压、低导通电阻的特性,作为使氮化物半导体的特征被最大限度地利用的器件而被注目。
作为构成功率转换电路的基本电路要素,一般具有被称为半桥式的电路。半桥式电路为,将两个具有场效应晶体管以及与该晶体管反并联的二极管的要素串联。通过单个的该半桥式电路或将多个该半桥式电路并联组合,来实现各种变换器电路。
半桥式电路的场效应晶体管到如下作用:根据输入到栅极端子的信号进行开关动作,控制从电力供给端子向与负载连接端子连接的负载的电力供给。另一方面,与场效应晶体管反并联的二极管一般是被称为续流二极管的二极管,设置该二极管是为了在电力控制的过程中避免在主要为线圈负载的情况下产生的反馈电力破坏晶体管。如此,在基本的变换器电路中,场效应晶体管和二极管必然成对。
关于氮化物半导体,难以如硅那样获得廉价且大直径(4英寸以上)的自立基板。因此,通常,通过在蓝宝石基板、硅基板上使氮化物半导体异质外延生长,由此得到氮化物半导体元件用的基板。
在硅基板上形成了氮化物半导体结晶层的基板,使用廉价且大直径的硅基板,因此能够比较廉价地获得。
但是,为了得到高品质的异质外延晶体,需要使用高度且复杂的技术。因此,即使在使用了这种基板的情况下,氮化物半导体元件所占的面积的增大对元件成本产生的影响也比硅元件更显著。
因此,寻求一种技术,尽量不增加元件所占的面积,而将场效应晶体管以及与该晶体管反并联的二极管进行集成。
发明内容
本发明的实施方式提供一种具有氮化物层的半导体元件,能够抑制元件所占的面积的增加,并且能够将场效应晶体管以及与该晶体管反并联的二极管进行集成。
根据实施方式,提供一种半导体元件,该半导体元件具有半导体基板、氮化物的第一至第四半导体层、第一至第三电极以及栅电极。上述第一半导体层直接或隔着缓冲层设置在上述半导体基板上,并至少在水平方向上具有导电性。上述第二半导体层从上述第一半导体层离开而设置。上述第三半导体层设置在上述第二半导体层上,并具有比上述第二半导体层大的带隙。上述第四半导体层设置在上述第一半导体层及上述第二半导体层之间,将上述第一半导体层及上述第二半导体层绝缘。
根据上述构成,能够抑制元件所占的面积的增加,并且能够将场效应晶体管以及与该晶体管反并联的二极管进行集成。
附图说明
图1是第一实施方式的氮化物半导体元件的示意截面图。
图2A至图2E是用于说明第一实施方式的氮化物半导体元件的制造方法的工序截面图。
图3是第一实施方式的变形例的氮化物半导体元件的示意截面图。
图4是第二实施方式的氮化物半导体元件的示意截面图。
图5是第二实施方式的第一变形例的氮化物半导体元件的示意截面图。
图6是第二实施方式的第二变形例的氮化物半导体元件的示意截面图。
具体实施方式
上述第一电极形成在从上述第三半导体层达到上述第四半导体层的第一开口部中,并与上述第一至上述第三半导体层形成欧姆接合。上述第二电极设置在上述第三半导体层上,并与上述第三半导体层形成欧姆接合。上述栅电极设置在上述第一电极和上述第二电极之间。
上述第三电极与上述第一半导体层形成肖特基结。上述第三电极和上述栅电极以夹着上述第二电极的方式形成,且上述第三电极设置在从上述第二半导体层达到第四半导体层的第二开口部中。
以下,参照附图对多个实施方式进行说明。在附图中,相同的符号表示相同或类似的部分。
参照附图对第一及第二实施方式进行说明。在第一实施方式中,异质结场效应晶体管的源电极与肖特基势垒二极管的阳极电极被设置为分离了的状态。在第二实施方式中,异质结场效应晶体管的源电极与肖特基势垒二极管的阳极电极被一体地设置。
图1表示第一实施方式的氮化物半导体元件的示意截面图。
如图1所示,本实施方式的氮化物半导体元件具备:半导体基板(Si基板)1、缓冲层2、依次层叠在该缓冲层2上的氮化物的半导体层3~7、栅极绝缘膜17、源电极8、兼作漏电极及阴极电极的电极9、栅电极11以及阳极电极12。
本实施方式的氮化物半导体元件被分为具有异质结场效应晶体管的HFET部20和具有肖特基势垒二极管的二极管部21。
HFET部20具有比半导体层5靠上的半导体层即半导体层6、7、源电极8、电极9以及栅电极11。二极管部21具有比半导体层5靠下的半导体层即半导体层3、4、阳极电极12以及电极9。
在HFET部20中,将在半导体层6和半导体层7的界面上产生的二维电子气利用为沟道。在二极管部21中,利用在半导体层3和半导体层4的界面上产生的二维电子气。二极管部21利用高迁移率的二维电子气,由此能够减小肖特基势垒二极管的正向的电压降。半导体层4能够省略。
以下,对上述各构成要素分别进行详细说明。
缓冲层2是为了通过应力的缓和、晶体缺陷及错位的降低而在半导体基板1上层叠高品质的半导体层而设置的层。该缓冲层2例如可以含有一种氮化物半导体、例如AlGaN,或者也可以具有交替层叠了多种氮化物半导体的薄层的多层构造(AlGaN/GaN、AlN/GaN等)。
半导体层3设置在缓冲层2上。该半导体层3含有无掺杂的氮化物半导体、例如GaN。半导体层3也可以不隔着缓冲层2而直接设置在半导体基板1上。
半导体层4设置在半导体层3上,具有比半导体层3更大的带隙。该半导体层4含有无掺杂或n型的氮化物半导体、例如AlGaN。
半导体层6(以从半导体层4离开而相互对置的方式)设置在半导体层4的上方,并含有无掺杂的氮化物半导体、例如GaN。
半导体层7设置在半导体层6上,具有比半导体层6更大的带隙。该半导体层7含有无掺杂或n型的氮化物半导体、例如AlGaN。
半导体层5设置在半导体层4及半导体层6之间,将半导体层4及半导体层6绝缘。该半导体层5作为将HFET部20与二极管部21进行绝缘的元件分离层作用,其主要作用是防止源电极8与二极管部21的二维电子气的短路。
半导体层5例如含有无掺杂的AlN。更详细地说,半导体层5含有具有比半导体层4、6更大的带隙的无掺杂的氮化物半导体。
半导体层5也可以含有p型的氮化物半导体、例如GaN、InAlN、AlGaN。通过使用p型的氮化物半导体,能够使用与半导体层4之间的晶格失配较小的材料。因此,能够使半导体层5变厚,使绝缘性能提高。并且,半导体层5使在半导体层6、7的界面上产生的二维电子气集中,因此还能够得到使HFET部20的上述异质结场效应晶体管的阈值电压提高的效果。
电极9是兼作上述异质结场效应晶体管的漏电极和上述肖特基势垒二极管的阴极电极的电极。如图1所示,该电极9被设置为填充在贯通半导体层5至7的开口部13中,并与半导体层4、6及7形成欧姆接合。电极9在厚度方向上、从栅极绝缘膜17之上的位置起设置到半导体层4、5的边界面为止。
源电极8是上述异质结场效应晶体管的源电极,被设置为填充在半导体层7的开口部13中,并与半导体层7形成欧姆接合。
源电极8及电极9例如具有钛(Ti)层和铝(Al)层的双层构造。
栅电极11是上述异质结场效应晶体管的栅电极,设置在电极9和源电极8之间,控制在半导体层6和半导体层7的界面上产生的二维电子气的浓度。
在本实施方式中,如图1所示,半导体层7的一部分及半导体层6的一部分被除去,形成贯通半导体层7并达到半导体层6的厚度方向的途中的开口部15。上述栅极绝缘膜17形成为从开口部15覆盖在上述半导体层7上。栅电极11被设置为填充在开口部15中。换言之,栅极绝缘膜17被设置为,跨越将半导体层6及半导体层7的边界延长了的面。如此,将位于栅电极11之下的半导体层7的上述一部分除去,因此在栅电极11的下方不产生二维电子气。因此,上述异质结场效应晶体管成为变换器所使用的晶体管所通常要求的增强型(normally-offtype)。栅电极11例如含有以镍(Ni)为主要成分的金属。
阳极电极12是上述肖特基势垒二极管的阳极电极,设置在开口部14中,与半导体层4形成肖特基结。开口部14夹着源电极8而形成在栅电极11的相反侧,并贯通半导体层5至7。阳极电极12例如含有以镍(Ni)为主要成分的金属。阳极电极12以不与开口部14的侧面接触的方式形成于在开口部14的底面露出的半导体层4上。
如上所述,在本实施方式中,构成上述异质结场效应晶体管的HFET部20和构成上述肖特基势垒二极管的二极管部21分别形成在元件分离层即半导体层5的上下。此外,一体地设置漏电极和阴极电极,并且夹着源电极而将阳极电极设置在栅电极的相反侧。由此,不较大地增加元件面积,就能够将场效应晶体管以及与该晶体管反并联的二极管进行集成。根据本实施方式,能够提供元件面积较小的、场效应晶体管和二极管的混装元件。
二极管部21的阳极与阴极之间的导通,不限于利用二维电子气,也可以使用n型的氮化物半导体。例如也可以设置含有n型的GaN的至少一个半导体层,来代替无掺杂的半导体层3、4。如此设置在缓冲层2上的至少一个层,是含有至少在水平方向上具有导电性的氮化物半导体的层即可。
参照图2A至图2E以及图1,对图1所示的氮化物半导体元件的制造方法进行说明。
如图2A所示,将半导体层3~7直接或隔着缓冲层2依次层叠在半导体基板1上。通过该层叠,来制作具备半导体层3~7的外延片。
之后,使用光刻技术,在半导体层7上形成具有规定图案的光致抗蚀剂层(未图示),将该光致抗蚀剂层作为掩模,而进行半导体层7的选择蚀刻以及半导体层6的深度方向的一部分的选择蚀刻。由此,如图2B所示,形成在底面露出了半导体层6的开口部15。该蚀刻例如通过使用了Cl2那样的氯类气体的干法蚀刻来进行。将蚀刻时间调整为,在开口部15的底面露出半导体层6。在蚀刻后,除去上述光致抗蚀剂层。
进一步,如图2C所示,以覆盖半导体层7的表面、开口部15的底面以及侧面的方式,形成栅极绝缘膜17。作为该栅极绝缘膜17的材料,例如能够列举SiO2。此外,作为栅极绝缘膜17的形成方法,能够列举等离子体CVD法、LPCVD法等。
之后,使用光刻技术,在栅极绝缘膜17上形成具有规定图案的光致抗蚀剂层(未图示),将该光致抗蚀剂层作为掩模而进行栅极绝缘膜17的蚀刻。通过该蚀刻,如图2D所示,形成在底面露出了半导体层4的开口部13及开口部14。该蚀刻与开口部15同样,例如通过使用了Cl2那样的氯类气体的干法蚀刻来进行。将蚀刻时间调整为,在开口部13、14的底面露出半导体层4。之后,将上述光致抗蚀剂层剥离。
如图2E所示,栅极绝缘膜17被选择性地蚀刻,形成开口20。以填充开口部13的方式形成电极9,并且以填充开口20的方式在半导体层7上形成源电极8。电极9及源电极8的形成,例如使用基于剥离(lift-off)法的电极形成方法来同时进行。电极9及源电极8为了形成欧姆接合而含有功函数比较小的金属,例如具有Ti/Al/Ni/Au的层叠构造。
之后,对电极9及源电极8实施退火处理。通过该退火处理,电极9与半导体层4以及半导体层6、7形成欧姆接合,且源电极8与半导体层7形成欧姆接合。该退火处理例如以600℃、1分钟的条件来进行。
进一步,如图1所示,以填充开口部15的方式在栅极绝缘膜17的部分上形成栅电极11,并且在开口部14的底面露出的半导体层4上形成阳极电极12。栅电极11及阳极电极12的形成,例如使用基于剥离法的电极形成方法来同时进行。阳极电极12为了形成肖特基结而含有功函数比较大的金属,例如具有镍(Ni)和金(Au)的层叠构造。
通过上述工序,制作出图1所示的氮化物半导体元件。如上所述,在形成了欧姆电极即电极9和源电极8之后,形成栅电极11及阳极电极12。通过这种制造方法,在形成了栅电极11及阳极电极12之后不需要进行退火处理,能够维持肖特基结。
在上述说明中,将上述异质结场效应晶体管构成为增强型,但也能够构成为耗尽型(normally-ontype)。图3表示本实施方式的变形例的耗尽型的氮化物半导体元件的示意截面图。与上述图1的氮化物半导体元件的不同点之一在于栅电极11的构成。在本变形例中,栅电极11设置在半导体层7上所形成的平坦的栅极绝缘膜10上。该栅极绝缘膜10例如含有SiN。在半导体层7上直接形成了栅电极11的情况下,也大多成为增强型。在被要求进行增强动作的情况下,在源电极8和阳极电极12之间插入低耐压的增强型Si-MOSFET、并形成共射共基连接(cascodeconnection)即可。在本变形例中,也能够得到与第一实施方式同样的效果。
对第二实施方式的氮化物半导体元件进行说明。在第二实施方式中,肖特基势垒二极管的阳极电极和异质结场效应晶体管的源电极被一体地设置。通过这种构成,能够进一步抑制元件面积的增大,并且能够将上述场效应晶体管以及与该晶体管反并联的二极管进行集成。
图4表示第二实施方式的氮化物半导体元件的示意截面图。
如图4所示,本实施方式的氮化物半导体元件具备:半导体基板(Si基板)1、缓冲层2、依次层叠在该缓冲层2上的半导体层3~7、源电极8、兼作漏电极和阴极电极的电极9、栅电极11以及阳极电极12。
如图4所示,阳极电极12为,与开口部14的侧面接触,从开口部14的底部起形成到深度方向的途中为止。
阳极电极12被设置为将开口部14填充到上方的途中为止,并与半导体层4形成肖特基结。如此,阳极电极12从半导体层4的表面起设置到半导体层6的厚度方向的途中为止。
源电极8形成为,覆盖开口部14且与阳极电极12及半导体层7接触。源电极8被设置为填充于在底面露出了阳极电极12的开口部14中,并与半导体层7形成欧姆接合。如此,源电极8被设置在阳极电极12上。
在第二实施方式中,上述异质结场效应晶体管需要构成为增强型。因此,如图4所示,栅电极11被设置为,填充在将半导体层7贯通并形成到半导体层6的厚度方向的途中为止的开口部15中。并且,在栅电极11和开口部15之间夹装有栅极绝缘膜10的一部分。栅极绝缘膜10跨越半导体层6、7的边界的延长面。如此,将位于栅电极11之下的半导体层7的一部分除去,因此在栅电极11的下方不产生二维电子气,异质结场效应晶体管成为增强型。
如上所述,在第二实施方式中,源电极8一体地设置在阳极电极12上,因此能够进一步抑制元件面积的增加。结果,能够提供元件面积更小的、晶体管和二极管的混装元件。
对第二实施方式的第一及第二变形例进行说明。该第一及第二变形例都能够得到第二实施方式的上述效果。
使用图5对第一变形例的氮化物半导体元件进行说明。图5是本变形例的氮化物半导体元件的示意截面图。
本变形例与第二实施方式的不同点之一在于电极9及阳极电极12的构造。如图5所示,开口部13、14贯通半导体层4并形成到半导体层3的厚度方向的途中为止。
电极9被设置到半导体层3的厚度方向的途中为止,其底面及侧面的一部分与半导体层3接触而形成欧姆接合。阳极电极12从半导体层6的厚度方向的途中起设置到半导体层3的厚度方向的途中为止,其底面及侧面的一部分与半导体层3接触而形成肖特基结。
根据本变形例,能够降低肖特基势垒二极管的导通电压。
使用图6对第二变形例的氮化物半导体元件进行说明。图6是本变形例的氮化物半导体元件的示意截面图。
本变形例与第二实施方式的不同点之一在于栅电极11的构造。如图6所示,未形成图4所示那样的开口部15,栅电极11设置在半导体层7上所形成的p型的半导体层16上。该p型的半导体层16例如含有p型的GaN或p型的AlGaN。
如此,在本变形例中,通过在栅电极11和半导体层7之间设置p型的半导体层16,由此在半导体层7和半导体层16之间产生内建势(built-inpotential)。由此,能够使上述氮化物半导体元件的异质结场效应晶体管成为增强型。
并且,根据本变形例,能够较高地维持在半导体层6、7的界面上产生的二维电子气的迁移率,因此能够减小上述异质结场效应晶体管的导通电阻。
以上,对第二实施方式的两个变形例进行了说明。这些变形例也能够应用于第一实施方式中说明的氮化物半导体元件。
对本发明的几个实施方式进行了说明,但这些实施方式是作为例子而提示的,不意图限定发明的范围。这些新的实施方式能够以其它各种方式来实施,在不脱离发明主旨的范围内能够进行各种省略、置换和变更。这些实施方式和其变形包含在发明的范围以及其主旨内,并且包含在专利请求的范围所记载的发明和与其等同的范围内。
Claims (20)
1.一种半导体元件,具备:
半导体基板;
氮化物的第一半导体层,直接或隔着缓冲层设置在上述半导体基板上;
氮化物的第二半导体层,设置在上述第一半导体层上,具有比上述第一半导体层大的带隙;
氮化物的第三半导体层,与上述第二半导体层分离地设置;
氮化物的第四半导体层,设置在上述第三半导体层上,具有比上述第三半导体层大的带隙;
氮化物的第五半导体层,设置在上述第二半导体层及上述第三半导体层之间,将上述第二半导体层及上述第三半导体层进行绝缘;
第一电极,形成在从上述第四半导体层达到上述第五半导体层的第一开口部中,与上述第二至上述第四半导体层形成欧姆接合;
第二电极,设置在上述第四半导体层上,与上述第四半导体层形成欧姆接合;
栅极绝缘膜,该栅极绝缘膜的至少一部分形成在设置于上述第四半导体层的第二开口部内、且形成在上述第三半导体层上;
栅电极,在上述第一电极和上述第二电极之间设置在上述栅极绝缘膜上;以及
第三电极,与上述第二半导体层形成肖特基结,该第三电极和上述栅电极以夹着上述第二电极的方式形成,并且该第三电极设置在从上述第三半导体层达到上述第五半导体层的第三开口部中。
2.如权利要求1所述的半导体元件,其中,
上述第二开口部从上述第四半导体层起形成到上述第三半导体层的厚度方向的途中为止,上述栅极绝缘膜形成为跨越将上述第三半导体层和上述第四半导体层的边界延长了的面。
3.一种半导体元件,具备:
半导体基板;
氮化物的第一半导体层,直接或隔着缓冲层设置在上述半导体基板上,至少在水平方向上具有导电性;
氮化物的第二半导体层,与上述第一半导体层分离地设置;
氮化物的第三半导体层,设置在上述第二半导体层上,具有比上述第二半导体层大的带隙;
氮化物的第四半导体层,设置在上述第一半导体层及上述第二半导体层之间,将上述第一半导体层及上述第二半导体层进行绝缘;
第一电极,形成在从上述第三半导体层达到上述第四半导体层的第一开口部中,与上述第一至上述第三半导体层形成欧姆接合;
第二电极,设置在上述第三半导体层上,与上述第三半导体层形成欧姆接合;
栅电极,设置在上述第一电极和上述第二电极之间;以及
第三电极,与上述第一半导体层形成肖特基结,该第三电极和上述栅电极以夹着上述第二电极的方式形成,并且该第三电极设置在从上述第二半导体层达到上述第四半导体层的第二开口部中。
4.如权利要求3所述的半导体元件,其中,
上述第一半导体层具有第五及第六半导体层,上述第五半导体层直接或隔着缓冲层设置在上述半导体基板上,上述第六半导体层设置在上述第五半导体层上,并具有比上述第五半导体层大的带隙。
5.如权利要求3所述的半导体元件,其中,
上述第一半导体层含有掺杂了n型的杂质元素的氮化物半导体。
6.如权利要求3所述的半导体元件,其中,
上述第四半导体层含有具有比上述第一及第二半导体层大的带隙的无掺杂的氮化物半导体。
7.如权利要求3所述的半导体元件,其中,
上述第四半导体层含有p型的氮化物半导体。
8.如权利要求3所述的半导体元件,其中,
上述栅电极设置在上述第三半导体层上,与上述第三半导体层形成肖特基结。
9.如权利要求3所述的半导体元件,其中,
还具有形成在上述第三半导体层上的栅极绝缘膜,上述栅电极设置在上述栅极绝缘膜上。
10.如权利要求3所述的半导体元件,其中,
还具有设置在上述栅电极和上述第二半导体层之间的栅极绝缘膜,上述栅极绝缘膜形成为跨越将上述第二半导体层和上述第三半导体层的边界延长了的面。
11.如权利要求3所述的半导体元件,其中,
上述栅电极设置在上述第三半导体层上所形成的p型的半导体层上。
12.如权利要求3所述的半导体元件,其中,
上述第三电极以不与上述第三开口部的侧面接触的方式,形成于在上述第二开口部中露出的上述第一半导体层上。
13.一种半导体元件,具备:
半导体基板;
氮化物的第一半导体层,直接或隔着缓冲层设置在上述半导体基板上,至少在水平方向上具有导电性;
氮化物的第二半导体层,与上述第一半导体层分离地设置;
氮化物的第三半导体层,设置在上述第二半导体层上,具有比上述第二半导体层大的带隙;
氮化物的第四半导体层,设置在上述第一半导体层及上述第二半导体层之间,将上述第一半导体层及上述第二半导体层进行绝缘;
第一电极,形成在从上述第三半导体层达到上述第四半导体层的第一开口部中,与上述第一至上述第三半导体层形成欧姆接合;
第二电极,与上述第一半导体层形成肖特基结,该第二电极在从上述第三半导体层达到上述第四半导体层的第二开口部中,从上述第一半导体层的上面起设置到上述第二半导体层的厚度方向的途中为止;
第三电极,设置在上述第二电极上,与上述第三半导体层形成欧姆接合;以及
栅电极,设置在上述第一电极与上述第三电极之间。
14.如权利要求13所述的半导体元件,其中,
上述第一半导体层具有第五及第六半导体层,上述第五半导体层直接或隔着缓冲层设置在上述半导体基板上,上述第六半导体层设置在上述第五半导体层上,并具有比上述第五半导体层大的带隙。
15.如权利要求13所述的半导体元件,其中,
上述第一半导体层具有第五半导体层和第六半导体层,上述第五半导体层直接或隔着缓冲层设置在上述半导体基板上,上述第六半导体层设置在上述第五半导体层上,并具有比上述第五半导体层大的带隙,
上述第一电极从上述第三半导体层起设置到上述第五半导体层的厚度方向的途中为止,该第一电极的底面及侧面的一部分与上述第五半导体层接触而形成欧姆接合,
上述第二电极从上述第二半导体层的厚度方向的途中起设置到上述第五半导体层的厚度方向的途中为止,该第二电极的底面及侧面的一部分与上述第五半导体层接触而形成肖特基结。
16.如权利要求13所述的半导体元件,其中,
上述第一半导体层含有掺杂了n型的杂质元素的氮化物半导体。
17.如权利要求13所述的半导体元件,其中,
上述第四半导体层含有具有比上述第一及第二半导体层大的带隙的无掺杂的氮化物半导体。
18.如权利要求13所述的半导体元件,其中,
上述第四半导体层含有p型的氮化物半导体。
19.如权利要求13所述的半导体元件,其中,
还具有设置在上述栅电极和上述第二半导体层之间的栅极绝缘膜,上述栅极绝缘膜形成为跨越将上述第二半导体层和上述第三半导体层的边界延长了的面。
20.如权利要求13所述的半导体元件,其中,
上述栅电极设置在上述第三半导体层上所形成的p型的半导体层上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012070228A JP5696083B2 (ja) | 2012-03-26 | 2012-03-26 | 窒化物半導体素子及びその製造方法 |
JP070228/2012 | 2012-03-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103367356A CN103367356A (zh) | 2013-10-23 |
CN103367356B true CN103367356B (zh) | 2016-01-06 |
Family
ID=49210958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210315883.6A Expired - Fee Related CN103367356B (zh) | 2012-03-26 | 2012-08-30 | 具有氮化物层的半导体元件 |
Country Status (3)
Country | Link |
---|---|
US (2) | US8575656B2 (zh) |
JP (1) | JP5696083B2 (zh) |
CN (1) | CN103367356B (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5306438B2 (ja) * | 2011-11-14 | 2013-10-02 | シャープ株式会社 | 電界効果トランジスタおよびその製造方法 |
US9318446B2 (en) * | 2013-03-15 | 2016-04-19 | Infineon Technologies Austria Ag | Metal deposition on substrates |
JP6135487B2 (ja) | 2013-12-09 | 2017-05-31 | 富士通株式会社 | 半導体装置及び半導体装置の製造方法 |
JP6251071B2 (ja) | 2014-02-05 | 2017-12-20 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
US10153276B2 (en) | 2014-12-17 | 2018-12-11 | Infineon Technologies Austria Ag | Group III heterojunction semiconductor device having silicon carbide-containing lateral diode |
JP2016171259A (ja) * | 2015-03-13 | 2016-09-23 | 株式会社東芝 | 半導体装置およびその製造方法 |
CN105070752B (zh) * | 2015-08-17 | 2018-02-06 | 西南交通大学 | 一种具有集成二极管的异质结器件 |
CN107104048A (zh) * | 2016-02-23 | 2017-08-29 | 北京大学 | 集成肖特基二极管的氮化镓晶体管的制造方法 |
TWI695418B (zh) * | 2017-09-22 | 2020-06-01 | 新唐科技股份有限公司 | 半導體元件及其製造方法 |
JP6728123B2 (ja) | 2017-11-22 | 2020-07-22 | 株式会社東芝 | 半導体装置、電源回路、及び、コンピュータ |
CN110034186B (zh) * | 2018-01-12 | 2021-03-16 | 中国科学院苏州纳米技术与纳米仿生研究所 | 基于复合势垒层结构的iii族氮化物增强型hemt及其制作方法 |
JP7021034B2 (ja) * | 2018-09-18 | 2022-02-16 | 株式会社東芝 | 半導体装置 |
WO2020191357A1 (en) * | 2019-03-21 | 2020-09-24 | Transphorm Technology, Inc. | Integrated design for iii-nitride devices |
CN112397582B (zh) * | 2019-08-14 | 2024-05-14 | 联华电子股份有限公司 | 高电子迁移率晶体管及其制作方法 |
JP7319614B2 (ja) * | 2020-01-09 | 2023-08-02 | 株式会社東芝 | 半導体装置 |
CN112154542B (zh) | 2020-04-29 | 2023-12-08 | 英诺赛科(珠海)科技有限公司 | 电子装置 |
US11888054B2 (en) | 2020-12-18 | 2024-01-30 | Innoscience (Suzhou) Technology Co., Ltd. | Semiconductor device and method for manufacturing the same |
CN113130645A (zh) | 2020-12-18 | 2021-07-16 | 英诺赛科(苏州)科技有限公司 | 半导体器件以及制造半导体器件的方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102239550A (zh) * | 2008-12-05 | 2011-11-09 | 松下电器产业株式会社 | 场效应晶体管 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001102565A (ja) | 1999-09-28 | 2001-04-13 | Toshiba Corp | 半導体装置及びその製造方法 |
JP5130641B2 (ja) | 2006-03-31 | 2013-01-30 | サンケン電気株式会社 | 複合半導体装置 |
JP4904299B2 (ja) | 2001-11-27 | 2012-03-28 | 古河電気工業株式会社 | 電力変換装置用GaN系半導体装置 |
JP4385205B2 (ja) * | 2002-12-16 | 2009-12-16 | 日本電気株式会社 | 電界効果トランジスタ |
JP4746825B2 (ja) * | 2003-05-15 | 2011-08-10 | 富士通株式会社 | 化合物半導体装置 |
JP2006100645A (ja) | 2004-09-30 | 2006-04-13 | Furukawa Electric Co Ltd:The | GaN系半導体集積回路 |
US7253454B2 (en) * | 2005-03-03 | 2007-08-07 | Cree, Inc. | High electron mobility transistor |
US7932539B2 (en) * | 2005-11-29 | 2011-04-26 | The Hong Kong University Of Science And Technology | Enhancement-mode III-N devices, circuits, and methods |
JP5052807B2 (ja) * | 2006-03-29 | 2012-10-17 | 古河電気工業株式会社 | 半導体装置及び電力変換装置 |
WO2007116517A1 (ja) * | 2006-04-10 | 2007-10-18 | Fujitsu Limited | 化合物半導体構造とその製造方法 |
JP5114947B2 (ja) * | 2006-12-28 | 2013-01-09 | 富士通株式会社 | 窒化物半導体装置とその製造方法 |
JP4089752B2 (ja) * | 2007-05-21 | 2008-05-28 | サンケン電気株式会社 | 半導体装置の製造方法 |
JP5319084B2 (ja) * | 2007-06-19 | 2013-10-16 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
JP2009164158A (ja) * | 2007-12-28 | 2009-07-23 | Panasonic Corp | 半導体装置及びその製造方法 |
DE102009018054B4 (de) | 2009-04-21 | 2018-11-29 | Infineon Technologies Austria Ag | Lateraler HEMT und Verfahren zur Herstellung eines lateralen HEMT |
JP5638846B2 (ja) * | 2010-06-14 | 2014-12-10 | 古河電気工業株式会社 | 電界効果トランジスタ |
-
2012
- 2012-03-26 JP JP2012070228A patent/JP5696083B2/ja not_active Expired - Fee Related
- 2012-08-30 CN CN201210315883.6A patent/CN103367356B/zh not_active Expired - Fee Related
- 2012-09-06 US US13/605,814 patent/US8575656B2/en not_active Expired - Fee Related
-
2013
- 2013-09-27 US US14/039,716 patent/US8853742B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102239550A (zh) * | 2008-12-05 | 2011-11-09 | 松下电器产业株式会社 | 场效应晶体管 |
Also Published As
Publication number | Publication date |
---|---|
US8575656B2 (en) | 2013-11-05 |
CN103367356A (zh) | 2013-10-23 |
US20140097505A1 (en) | 2014-04-10 |
JP2013201392A (ja) | 2013-10-03 |
US20130248928A1 (en) | 2013-09-26 |
US8853742B2 (en) | 2014-10-07 |
JP5696083B2 (ja) | 2015-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103367356B (zh) | 具有氮化物层的半导体元件 | |
TWI770134B (zh) | 半導體裝置及半導體裝置之製造方法 | |
US9818856B2 (en) | Semiconductor device with high electron mobility transistor | |
JP4478175B2 (ja) | 半導体装置 | |
JP5589850B2 (ja) | 半導体装置及びその製造方法 | |
US8076699B2 (en) | Integrated HEMT and lateral field-effect rectifier combinations, methods, and systems | |
CN103325828B (zh) | 氮化物半导体元件 | |
TWI450382B (zh) | Semiconductor device | |
KR101248202B1 (ko) | 향상 모드 고 전자이동도 트랜지스터 및 그 제조방법 | |
US9087704B2 (en) | Semiconductor devices and methods of manufacturing the semiconductor device | |
JP6244557B2 (ja) | 窒化物半導体デバイス | |
JP2009164158A (ja) | 半導体装置及びその製造方法 | |
JP2009059816A (ja) | Ed型インバータ回路および集積回路素子 | |
JP2010206020A (ja) | 半導体装置 | |
KR20140042470A (ko) | 노멀리 오프 고전자이동도 트랜지스터 | |
JP2013229449A (ja) | 窒化物系半導体素子 | |
JP5415668B2 (ja) | 半導体素子 | |
JP2008118044A (ja) | 電界効果トランジスタ及びその製造方法 | |
JP5549081B2 (ja) | 半導体装置及びその製造方法 | |
JP2013239735A (ja) | 電界効果トランジスタ | |
CN105261656A (zh) | 形成在氮化物半导体基板上的肖特基势垒二极管 | |
JP2013041976A (ja) | 窒化物系半導体装置 | |
WO2017110267A1 (ja) | トランジスタ、半導体装置、電子機器、およびトランジスタの製造方法 | |
JP2009060065A (ja) | 窒化物半導体装置 | |
JP2015056413A (ja) | 窒化物半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160106 Termination date: 20170830 |