CN103311280B - Semiconductor device and method for manufacturing the same - Google Patents
Semiconductor device and method for manufacturing the same Download PDFInfo
- Publication number
- CN103311280B CN103311280B CN201210065168.1A CN201210065168A CN103311280B CN 103311280 B CN103311280 B CN 103311280B CN 201210065168 A CN201210065168 A CN 201210065168A CN 103311280 B CN103311280 B CN 103311280B
- Authority
- CN
- China
- Prior art keywords
- layer
- fin
- forming
- gate electrode
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title claims description 34
- 239000010410 layer Substances 0.000 claims description 168
- 239000004020 conductor Substances 0.000 claims description 29
- 239000000758 substrate Substances 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 125000006850 spacer group Chemical group 0.000 claims description 19
- 239000012212 insulator Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 14
- 239000011241 protective layer Substances 0.000 claims description 14
- 229910021332 silicide Inorganic materials 0.000 claims description 14
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 14
- 150000002500 ions Chemical class 0.000 claims description 8
- 238000000059 patterning Methods 0.000 claims description 8
- 238000005468 ion implantation Methods 0.000 claims description 7
- 125000001475 halogen functional group Chemical group 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 239000007943 implant Substances 0.000 claims 2
- 230000001590 oxidative effect Effects 0.000 claims 1
- 238000005530 etching Methods 0.000 description 14
- 238000001020 plasma etching Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 7
- 150000004767 nitrides Chemical class 0.000 description 7
- 230000003071 parasitic effect Effects 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- -1 silicon nitride Chemical class 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- 229910004491 TaAlN Inorganic materials 0.000 description 1
- 229910004166 TaN Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
技术领域 technical field
本公开涉及半导体领域,更具体地,涉及一种半导体器件及其制造方法。The present disclosure relates to the field of semiconductors, and more particularly, to a semiconductor device and a manufacturing method thereof.
背景技术 Background technique
随着金属氧化物半导体场效应晶体管(MOSFET)沟道长度不断缩短,一系列在MOSFET长沟道模型中可以忽略的效应变得愈发显著,甚至成为影响性能的主导因素,这种现象统称为短沟道效应。短沟道效应易于恶化器件的电学性能,如造成栅极阈值电压下降、功耗增加以及信噪比下降等问题。As the channel length of metal-oxide-semiconductor field-effect transistors (MOSFETs) continues to shorten, a series of effects that can be ignored in the MOSFET long-channel model become more and more significant, and even become the dominant factors affecting performance. This phenomenon is collectively referred to as short channel effect. The short channel effect is easy to deteriorate the electrical performance of the device, such as causing a decrease in the gate threshold voltage, an increase in power consumption, and a decrease in the signal-to-noise ratio.
为了控制短沟道效应,提出了立体型半导体器件如鳍式场效应晶体管(FinFET)。相对于平面型的MOSFET而言,立体型的FinFET能够更好地控制短沟道效应。但是,另一方面,FinFET相比于MOSFET具有相对较大的寄生电阻和寄生电容。由此,电阻电容延迟增加,器件交流性能降低。In order to control the short channel effect, a three-dimensional semiconductor device such as a fin field effect transistor (FinFET) is proposed. Compared with the planar MOSFET, the three-dimensional FinFET can better control the short channel effect. However, on the other hand, FinFETs have relatively larger parasitic resistance and parasitic capacitance than MOSFETs. As a result, the resistance-capacitance delay increases, and the AC performance of the device decreases.
发明内容 Contents of the invention
本公开的目的至少部分地在于提供一种半导体器件及其制造方法,可以减小短沟道效应,并可以减小寄生电阻及寄生电容。The object of the present disclosure is at least partly to provide a semiconductor device and its manufacturing method, which can reduce the short channel effect, and can reduce the parasitic resistance and parasitic capacitance.
根据本发明的一个方面,提供了一种半导体器件,包括:沿第一方向延伸的鳍,鳍包括相对的第一端部和第二端部以及连接第一端部和第二端部的相对的第一侧面和第二侧面;沿与第一方向交叉的第二方向延伸且与鳍相交的栅电极;贯穿鳍和栅电极的通孔,通孔位于第一端部和第二端部之间,且位于第一侧面与第二侧面之间;源区和漏区,分别形成于鳍的第一端部和第二端部;形成于通孔中的导电接触部,该导电接触部与鳍电隔离,且与栅极电接触。According to one aspect of the present invention, there is provided a semiconductor device, comprising: a fin extending along a first direction, the fin includes opposite first and second ends and an opposite end connecting the first and second ends a first side and a second side of the first direction; a gate electrode extending along a second direction intersecting the first direction and intersecting the fin; a through hole penetrating the fin and the gate electrode, the through hole being located between the first end and the second end and located between the first side and the second side; the source region and the drain region are respectively formed at the first end and the second end of the fin; the conductive contact part is formed in the through hole, and the conductive contact part is connected with the fin. The fins are electrically isolated and in electrical contact with the gate.
根据本发明的另一方面,提供了一种制造半导体器件的方法,包括:在衬底上沿第一方向形成鳍,鳍包括相对的第一端部和第二端部以及连接第一端部和第二端部的相对的第一侧面和第二侧面;沿与第一方向交叉的第二方向且与鳍相交,形成栅电极;在鳍的第一端部和第二端部,分别形成源区和漏区;贯穿栅电极和鳍,形成通孔,通孔位于第一端部和第二端部之间,且位于第一侧面与第二侧面之间;在通孔中形成电介质侧墙以覆盖鳍在通孔中露出的部分;以及在通孔中填充导电材料,形成导电接触部,该导电接触部与栅电极电接触。According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: forming a fin on a substrate along a first direction, the fin including opposite first end portions and second end portions and connecting the first end portions and the opposite first side and second side of the second end; along the second direction intersecting with the first direction and intersecting with the fin, a gate electrode is formed; at the first end and the second end of the fin, respectively formed a source region and a drain region; through the gate electrode and the fin, a via hole is formed, the via hole is located between the first end portion and the second end portion, and is located between the first side surface and the second side surface; a dielectric side is formed in the via hole wall to cover the portion of the fin exposed in the through hole; and filling the through hole with a conductive material to form a conductive contact portion, and the conductive contact portion is in electrical contact with the gate electrode.
根据本公开实施例的半导体器件可以同时具备立体型FinFET结构及平面型MOSFET结构的优点,即,既能有效控制短沟道效应,又能减小寄生电阻和寄生电容。The semiconductor device according to the embodiments of the present disclosure can have the advantages of the three-dimensional FinFET structure and the planar MOSFET structure at the same time, that is, it can not only effectively control the short channel effect, but also reduce the parasitic resistance and parasitic capacitance.
附图说明 Description of drawings
通过以下参照附图对本发明实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:The above and other objects, features and advantages of the present disclosure will be more clearly described through the following description of the embodiments of the present invention with reference to the accompanying drawings, in which:
图1-15示出了根据本发明实施例的半导体器件的制造流程。1-15 illustrate the manufacturing process of a semiconductor device according to an embodiment of the present invention.
具体实施方式 Detailed ways
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present disclosure. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concept of the present invention.
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。Various structural schematic diagrams according to embodiments of the present disclosure are shown in the accompanying drawings. The figures are not drawn to scale, with certain details exaggerated and possibly omitted for clarity of presentation. The shapes of the various regions and layers shown in the figure, as well as their relative sizes and positional relationships are only exemplary, and may deviate due to manufacturing tolerances or technical limitations in practice, and those skilled in the art will Regions/layers with different shapes, sizes, and relative positions can be additionally designed as needed.
图15示出了根据本公开实施例的半导体器件的结构示意图,其中图15(a)为透视图,图15(b)为截面图。如图15所示,该半导体器件可以包括鳍(1002″,1002′″)、栅电极(1007″、1008″)、源区和漏区(1002″)以及导电接触部(1014)。FIG. 15 shows a schematic structural diagram of a semiconductor device according to an embodiment of the present disclosure, wherein FIG. 15( a ) is a perspective view, and FIG. 15( b ) is a cross-sectional view. As shown in FIG. 15, the semiconductor device may include fins (1002", 1002'"), gate electrodes (1007", 1008"), source and drain regions (1002"), and conductive contacts (1014).
具体地,鳍(1002″,1002′″)可以沿第一方向(在图15(b)的示例中,是垂直于纸面的方向)延伸。鳍可以包括相对的第一端部和第二端部(在图15的示例中,是沿第一方向彼此相对的两个端部)以及连接第一端部和第二端部的相对的第一侧面和第二侧面(在图15的示例中,是沿第一方向延伸的两个竖直侧面)。在鳍的第一端部和第二端部可以分别形成源区和漏区。Specifically, the fins (1002", 1002'") may extend along a first direction (in the example of FIG. 15(b), a direction perpendicular to the paper). The fin may include opposing first and second ends (in the example of FIG. 15 , two ends opposing each other along the first direction) and an opposing first end connecting the first and second ends. A side and a second side (in the example of FIG. 15, two vertical sides extending along the first direction). A source region and a drain region may be formed at the first end portion and the second end portion of the fin, respectively.
栅电极(1007″,1008″)可以沿与第一方向交叉(例如,正交)的第二方向(在图15(b)的示例中,是水平方向)延伸,且与鳍相交。栅电极可以包括栅介质层(1007″)和栅导体层(1008″)。在图15所示的示例中,栅介质层(1007″)仅形成于鳍的第一侧面和第二侧面上。但是本公开不限于此,栅介质层也可以形成为其他形状。在图15所示的示例中,鳍与栅电极交迭的部分(1002′″)充当沟道区。参见图15(b),由于通孔(以下将描述),沟道区(1002′″)仅为一薄层,从而根据该实施例的半导体器件可以用作全耗尽型器件。The gate electrodes ( 1007 ″, 1008 ″) may extend in a second direction (horizontal direction in the example of FIG. 15( b )) intersecting (eg, orthogonal to) the first direction and intersect the fins. The gate electrode may include a gate dielectric layer (1007") and a gate conductor layer (1008"). In the example shown in FIG. 15, the gate dielectric layer (1007″) is only formed on the first side and the second side of the fin. But the present disclosure is not limited thereto, and the gate dielectric layer can also be formed in other shapes. In FIG. 15 In the example shown, the portion of the fin that overlaps the gate electrode (1002'") acts as a channel region. Referring to FIG. 15(b), the channel region (1002'") is only a thin layer due to via holes (described below), so that the semiconductor device according to this embodiment can be used as a fully depleted device.
导电接触部(1014)可以形成于贯穿鳍和栅电极的通孔中,该导电接触部与鳍电隔离,且与栅极电接触。通孔可以位于第一端部和第二端部之间,且位于第一侧面与第二侧面之间。参照图15(b),由于通孔的存在,在第一端部和第二端部之间(即,在源区和漏区之间),仅留下分别沿第一侧面和第二侧面延伸的薄层(1002′″)。如上所述,该薄层(1002′″)充当器件的沟道区。在图15所示的示例中,该通孔将栅电极分成两部分,且其中形成的导电接触部与这两部分栅电极均电接触。A conductive contact (1014) may be formed in the via through the fin and the gate electrode, the conductive contact being electrically isolated from the fin and in electrical contact with the gate. The through hole may be located between the first end and the second end, and between the first side and the second side. Referring to Fig. 15(b), due to the existence of the through hole, between the first end and the second end (that is, between the source region and the drain region), only left along the first side and the second side respectively Extended thin layer (1002'"). As mentioned above, this thin layer (1002'") acts as the channel region of the device. In the example shown in FIG. 15 , the via divides the gate electrode into two parts, and a conductive contact formed therein makes electrical contact with both parts of the gate electrode.
为了增强导电接触部与栅电极之间的电接触,栅电极可以包括金属硅化物(1011″)。类似地,源区和漏区也可以包括金属硅化物(1011″)。In order to enhance the electrical contact between the conductive contact and the gate electrode, the gate electrode may comprise a metal silicide (1011"). Similarly, the source and drain regions may also comprise a metal silicide (1011").
根据本公开的一个实施例,该半导体器件还可以包括形成于鳍上沿第一侧面和第二侧面延伸的第一侧墙(1006′)。根据一示例,在制造该半导体器件的过程中,可以通过将第一侧墙(1006′)的形状转移到之下的鳍中,来形成薄层(1002′″)。在图15所示的示例中,第一侧墙仅形成于与沟道区相对应的位置处,即,被栅电极所覆盖。但是,本公开不限于此。According to an embodiment of the present disclosure, the semiconductor device may further include a first spacer (1006') formed on the fin and extending along the first side and the second side. According to an example, in the process of manufacturing the semiconductor device, the thin layer (1002'") may be formed by transferring the shape of the first spacer (1006') to the underlying fin. In the In an example, the first spacer is only formed at a position corresponding to the channel region, that is, covered by the gate electrode, however, the present disclosure is not limited thereto.
此外,该半导体器件还可以包括第二侧墙(1010)。该第二侧墙(1010)形成在栅电极沿第二方向延伸的侧面上,且至少与第一侧墙(1006′)交迭。这样,第一侧墙(1006′)和第二侧墙(1010)可以限定出通孔的侧壁。因此,在制造该器件的过程中,可以以第一侧墙(1006′)和第二侧墙(1010)为掩膜,来刻蚀得到通孔。In addition, the semiconductor device may further include a second spacer (1010). The second sidewall (1010) is formed on the side of the gate electrode extending along the second direction, and overlaps at least the first sidewall (1006'). In this manner, the first side wall (1006') and the second side wall (1010) may define the side walls of the through hole. Therefore, in the process of manufacturing the device, the first sidewall (1006') and the second sidewall (1010) can be used as masks to etch to obtain through holes.
另外,该半导体器件还可以包括在通孔中形成的第三侧墙(1013)以使得导电接触部(1013)与鳍电隔离。如图15(b)所示,该第三侧墙(1013)在竖直方向上至少覆盖薄层(1002′″)。In addition, the semiconductor device may further include a third spacer (1013) formed in the via hole to electrically isolate the conductive contact (1013) from the fin. As shown in Fig. 15(b), the third side wall (1013) covers at least the thin layer (1002'") in the vertical direction.
对于该半导体器件中各层的厚度、材料等特征,将在以下结合对制造流程的描述来予以说明。Features such as the thickness and material of each layer in the semiconductor device will be described below in conjunction with the description of the manufacturing process.
以下,将参照附图来详细描述根据本公开实施例的半导体器件的示例制造流程。Hereinafter, an example manufacturing flow of a semiconductor device according to an embodiment of the present disclosure will be described in detail with reference to the accompanying drawings.
如图1所示,提供绝缘体上半导体(SOI)衬底。在此,图1(a)是透视图,图1(b)是沿图1(a)中A-A′线的截面图。在以下各图中,(b)均为沿(a)中A-A′线的截面图,但是为了清楚起见,不再示出A-A′线。该SOI衬底可以包括第一半导体层1000、位于第一半导体层1000上的绝缘体层1001和位于绝缘体层1001上的第二半导体层1002。例如,第一半导体层1000和第二半导体层1002可以包括体硅,绝缘体层1001是埋入氧化层。当然,本公开不限于SOI衬底,也可以是其他各种形式的衬底例如体硅衬底;衬底的半导体材料也不限于硅,也可以是其他合适的半导体材料如SiGe等。该SOI衬底的厚度例如可以是约40nm。As shown in FIG. 1, a semiconductor-on-insulator (SOI) substrate is provided. Here, FIG. 1(a) is a perspective view, and FIG. 1(b) is a cross-sectional view along line A-A' in FIG. 1(a). In each of the following figures, (b) is a sectional view along line A-A' in (a), but line A-A' is not shown for clarity. The SOI substrate may include a first semiconductor layer 1000 , an insulator layer 1001 on the first semiconductor layer 1000 and a second semiconductor layer 1002 on the insulator layer 1001 . For example, the first semiconductor layer 1000 and the second semiconductor layer 1002 may include bulk silicon, and the insulator layer 1001 is a buried oxide layer. Of course, the present disclosure is not limited to SOI substrates, and may also be other types of substrates such as bulk silicon substrates; the semiconductor material of the substrate is not limited to silicon, and may also be other suitable semiconductor materials such as SiGe. The thickness of the SOI substrate may be, for example, about 40 nm.
根据本公开的一个实施例,首先可以在衬底上形成鳍。具体地,在该SOI衬底上,例如可以通过淀积,依次形成停止层1003、牺牲层1004和保护层1005。例如,停止层1003可以包括氧化物如氧化硅,其厚度约为10nm,牺牲层1004可以包括非晶硅,其厚度约为60nm,保护层1005可以包括氮化物如氮化硅,其厚度约为30nm。这里需要指出的是,停止层1003、牺牲层1004和保护层1005的材料可以根据刻蚀工艺选择,只要它们能够在相应的刻蚀工艺中提供适当的刻蚀选择性,而不限于上述材料。According to an embodiment of the present disclosure, fins may first be formed on a substrate. Specifically, on the SOI substrate, for example, a stop layer 1003, a sacrificial layer 1004, and a protection layer 1005 can be sequentially formed by deposition. For example, the stop layer 1003 may include oxide such as silicon oxide with a thickness of about 10 nm, the sacrificial layer 1004 may include amorphous silicon with a thickness of about 60 nm, and the protective layer 1005 may include a nitride such as silicon nitride with a thickness of about 30nm. It should be noted here that the materials of the stop layer 1003, the sacrificial layer 1004 and the protective layer 1005 can be selected according to the etching process, as long as they can provide appropriate etching selectivity in the corresponding etching process, and are not limited to the above materials.
接下来,如图2所示,将牺牲层1004构图为沿第一方向(图2(b)中垂直于纸面的方向)延伸的形状。具体地,例如可以通过反应离子刻蚀(RIE),对保护层1005和牺牲层1004进行刻蚀,并停止于停止层1003。刻蚀后的保护层1005′和牺牲层1004′大致对应于将要形成的鳍的形状,其宽度例如约为40-200nm。在此,可以看到,停止层1003在该步骤中用作刻蚀停止层。因此,可以选择停止层1003的材料使得其相对于牺牲层1004的材料具有刻蚀选择性。另外,在牺牲层1004(例如,非晶硅)与第二半导体层1002(例如,SiGe)材料相异的情况下,甚至可以省略停止层1003。Next, as shown in FIG. 2 , the sacrificial layer 1004 is patterned into a shape extending along the first direction (the direction perpendicular to the paper in FIG. 2( b )). Specifically, for example, the protective layer 1005 and the sacrificial layer 1004 may be etched by reactive ion etching (RIE), and the etching stops at the stop layer 1003 . The etched protective layer 1005' and the sacrificial layer 1004' roughly correspond to the shape of the fin to be formed, and the width thereof is, for example, about 40-200 nm. Here, it can be seen that the stop layer 1003 serves as an etch stop layer in this step. Therefore, the material of the stop layer 1003 can be selected such that it has etch selectivity relative to the material of the sacrificial layer 1004 . In addition, in the case that the material of the sacrificial layer 1004 (for example, amorphous silicon) is different from that of the second semiconductor layer 1002 (for example, SiGe), the stop layer 1003 can even be omitted.
然后,在构图后的牺牲层1004′(和保护层1005′)沿第一方向延伸的两个侧面上,形成第一侧墙1006。例如,可以通过淀积一层厚约10-30nm的氮化物如氮化硅,并对淀积的氮化物进行RIE,来形成第一侧墙1006。在该RIE过程中,同样可以利用停止层1003作为刻蚀停止层。对于本领域技术人员而言,存在多种方式来形成这种侧墙1006。这里需要指出的是,尽管在图2中将第一侧墙1006示出为沿着第一侧面和第二侧面延伸,但是在构图后的牺牲层1004′(和保护层1005′)的端面,也可能形成侧墙。Then, on the two sides of the patterned sacrificial layer 1004' (and the protective layer 1005') extending along the first direction, a first spacer 1006 is formed. For example, the first spacer 1006 can be formed by depositing a layer of nitride such as silicon nitride with a thickness of about 10-30 nm, and performing RIE on the deposited nitride. In this RIE process, the stop layer 1003 can also be used as an etch stop layer. For those skilled in the art, there are many ways to form such side walls 1006 . It should be pointed out here that although the first side wall 1006 is shown as extending along the first side and the second side in FIG. Side walls may also form.
然后,如图3所示,以第一侧墙1006为掩膜,对第二半导体层1002进行构图,以形成初始鳍1002′。在此,例如可以通过RIE,来对第二半导体层1002进行构图。该RIE可以停止于绝缘体层1001。在此,可以看到,保护层1005′可以保护牺牲层1004′(非晶硅)在对第二半导体层1002(体硅)刻蚀过程中被刻蚀。在牺牲层1004′(例如,非晶硅)与第二半导体层1002(例如,SiGe)材料相异的情况下,甚至可以省略保护层1005。Then, as shown in FIG. 3 , the second semiconductor layer 1002 is patterned by using the first spacer 1006 as a mask to form initial fins 1002 ′. Here, the second semiconductor layer 1002 can be patterned, for example, by RIE. The RIE may stop at the insulator layer 1001 . Here, it can be seen that the protective layer 1005' can protect the sacrificial layer 1004' (amorphous silicon) from being etched during the etching process of the second semiconductor layer 1002 (bulk silicon). In the case that the material of the sacrificial layer 1004 ′ (for example, amorphous silicon) is different from that of the second semiconductor layer 1002 (for example, SiGe), the protection layer 1005 can even be omitted.
在如上所述形成初始鳍1002′之后,可以沿与第一方向交叉的第二方向且与鳍相交,来形成栅电极。具体地,如图4所示,例如可以通过热氧化,在鳍的第一侧面和第二侧面上形成氧化物薄层1007。该氧化物薄层1007随后可以充当栅介质层。随后,例如通过淀积,在衬底上形成栅导体层1008。为了有助于刻蚀,还可以在栅导体层1008上形成一辅助掩膜层1009。例如,栅导体层1008可以包括多晶硅,其厚度约为50-60nm;辅助掩膜层1009可以包括氧化物如氧化硅,其厚度约为20-30nm。After forming the initial fin 1002' as described above, a gate electrode may be formed along a second direction intersecting the first direction and intersecting the fin. Specifically, as shown in FIG. 4 , for example, a thin oxide layer 1007 may be formed on the first side and the second side of the fin by thermal oxidation. This thin oxide layer 1007 may then act as a gate dielectric layer. Subsequently, a gate conductor layer 1008 is formed on the substrate, eg by deposition. In order to facilitate etching, an auxiliary mask layer 1009 may also be formed on the gate conductor layer 1008 . For example, the gate conductor layer 1008 may include polysilicon, and its thickness is about 50-60 nm; the auxiliary mask layer 1009 may include oxide such as silicon oxide, and its thickness is about 20-30 nm.
接下来,如图5所示,对栅电极进行构图。在此,图5(a)是透视图,图5(c)是沿图5(a)中B-B′线的截面图。在以下各图中,(c)均为沿(a)中B-B′线的截面图,但是为了清楚起见,不再示出B-B′线。具体地,例如通过RIE对辅助掩膜层1009进行刻蚀,以形成与将要形成的栅电极相对应的形状。然后,以构图后的辅助掩膜层1009′为掩膜,对栅导体层1008进行构图,得到构图后的栅导体层1008′。在此,在对栅导体层1008(例如,多晶硅)进行RIE过程中,相对于氧化物进行选择性刻蚀。这样,氧化物薄层1007(栅介质层)基本未受影响。Next, as shown in FIG. 5, the gate electrode is patterned. Here, FIG. 5(a) is a perspective view, and FIG. 5(c) is a cross-sectional view along line B-B' in FIG. 5(a). In the following figures, (c) is a sectional view along the line B-B' in (a), but for the sake of clarity, the line B-B' is not shown. Specifically, for example, the auxiliary mask layer 1009 is etched by RIE to form a shape corresponding to the gate electrode to be formed. Then, using the patterned auxiliary mask layer 1009' as a mask, the gate conductor layer 1008 is patterned to obtain a patterned gate conductor layer 1008'. Here, during the RIE process on the gate conductor layer 1008 (for example, polysilicon), selective etching is performed with respect to the oxide. Thus, the thin oxide layer 1007 (gate dielectric layer) is substantially unaffected.
在图4和5所示的示例中,栅介质层包括氧化物,而栅导体层包括多晶硅。但是,本公开并不局限于此。例如,栅介质层可以包括高K栅介质层,例如HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO等;栅导体层可以包括金属栅导体。此外,在栅介质层和金属导体之间还可以包括功函数调节层,例如TiN、TiAlN、TaN、TaAlN等。在这种情况下,可以在衬底上依次形成栅介质层、(功函数调节层)和金属栅导体层,并对它们进行构图,来得到栅电极。当然,在构图过程中,也可以不对栅介质层进行刻蚀,因为栅介质层是绝缘的,不会对器件性能造成影响。In the example shown in FIGS. 4 and 5 , the gate dielectric layer includes oxide, and the gate conductor layer includes polysilicon. However, the present disclosure is not limited thereto. For example, the gate dielectric layer may include a high-K gate dielectric layer, such as HfO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, etc.; the gate conductor layer may include a metal gate conductor. In addition, a work function adjustment layer, such as TiN, TiAlN, TaN, TaAlN, etc., may also be included between the gate dielectric layer and the metal conductor. In this case, a gate dielectric layer, (work function adjustment layer) and metal gate conductor layer can be sequentially formed on the substrate and patterned to obtain a gate electrode. Of course, during the patterning process, the gate dielectric layer may not be etched, because the gate dielectric layer is insulating and will not affect device performance.
在形成栅电极之后,例如可以通过离子注入等方式来形成器件的源区和漏区。具体地,如图6所示,可以进行源漏离子注入(图中箭头所示)。另外,为了增强器件性能,在源漏离子注入之前,还可以进行晕圈(halo)注入和延伸区(extension)注入。例如,在晕圈注入中,对于N型器件,可以注入B、BF2或In离子;对于P型器件,可以注入As或P离子。在延伸区注入中,对于N型器件,可以注入As或P离子;对于P型器件,可以注入B、BF2或In离子。在源漏注入中,对于P型器件,可以注入P型离子如B;对于NMOS器件,可以注入N型离子如P。随后,可以通过退火来激活注入的离子,并因此形成源区和漏区(以及可选的晕圈区和延伸区)。另外,由于退火,牺牲层1004′的材料可以由非晶硅转变为多晶硅。After the gate electrode is formed, the source region and the drain region of the device can be formed, for example, by means of ion implantation or the like. Specifically, as shown in FIG. 6 , source-drain ion implantation (shown by arrows in the figure) can be performed. In addition, in order to enhance device performance, before the source-drain ion implantation, halo implantation and extension implantation can also be performed. For example, in halo implantation, for N-type devices, B, BF 2 or In ions can be implanted; for P-type devices, As or P ions can be implanted. In the extension region implantation, for N-type devices, As or P ions can be implanted; for P-type devices, B, BF 2 or In ions can be implanted. In source-drain implantation, for P-type devices, P-type ions such as B can be implanted; for NMOS devices, N-type ions such as P can be implanted. Subsequently, the implanted ions can be activated by annealing, and thus form source and drain regions (and optionally halo and extension regions). In addition, the material of the sacrificial layer 1004' may be changed from amorphous silicon to polysilicon due to annealing.
在形成源区和漏区之后,如图7所示,可以去除牺牲层1004′、第一侧墙1006(和保护层1005′)在源区和漏区上的部分。这种去除例如可以通过RIE,相对于氧化物(停止层1003′、栅介质层1007和辅助掩膜层1009′)来选择性刻蚀牺牲层1004′、第一侧墙1006(和保护层1005′)予以实现。After forming the source region and the drain region, as shown in FIG. 7 , the sacrificial layer 1004 ′, the first sidewall 1006 (and the protection layer 1005 ′) on the source region and the drain region can be removed. This removal can be performed by RIE, for example, to selectively etch the sacrificial layer 1004', the first spacer 1006 (and the protection layer 1005 ') to be realized.
这里需要指出的是,图6和7中所示操作的顺序可以交换。例如,可以先如图7所示去除牺牲层1004′、第一侧墙1006(和保护层1005′)的不必要部分,然后再如图6所示进行离子注入和退火。另外,也可以先如图6所示进行离子注入,然后如图7所示去除牺牲层1004′、第一侧墙1006(和保护层1005′)的不必要部分,最后再进行退火。It should be noted here that the order of operations shown in FIGS. 6 and 7 can be exchanged. For example, unnecessary portions of the sacrificial layer 1004 ′, the first sidewall 1006 (and the protection layer 1005 ′) may be removed first as shown in FIG. 7 , and then ion implantation and annealing are performed as shown in FIG. 6 . In addition, ion implantation may be performed first as shown in FIG. 6 , and then unnecessary parts of the sacrificial layer 1004 ′, first sidewall 1006 (and protection layer 1005 ′) are removed as shown in FIG. 7 , and finally annealing is performed.
在沿第一方向形成的预备鳍1002′为多个器件共享的情况下,还可以如图8所示,按需进行器件间电隔离。具体地,可以利用例如光刻胶覆盖器件区域,露出与其他器件相邻的区域,并进行刻蚀例如RIE,从而使得该器件与相邻器件之间电隔离。由于刻蚀,预备鳍1002′成为该器件单独的鳍1002″(在图8所示的示例中,停止层1003′、栅介质层1007也被刻蚀掉一部分,从而形成停止层1003″和栅介质层1007′)。当然,如果该器件设计为其他器件电连接,则可以不进行这种器件间电隔离操作。In the case that the preliminary fins 1002 ′ formed along the first direction are shared by multiple devices, as shown in FIG. 8 , electrical isolation between devices can also be performed as required. Specifically, for example, a photoresist may be used to cover the device region to expose regions adjacent to other devices, and etching such as RIE may be performed to electrically isolate the device from adjacent devices. Due to etching, the preliminary fin 1002' becomes a separate fin 1002" of the device (in the example shown in FIG. dielectric layer 1007'). Of course, if the device is designed to be electrically connected to other devices, such inter-device electrical isolation operation may not be performed.
在如上所述形成栅电极以及源区和漏区之后,可以贯穿栅电极和鳍,形成通孔。具体地,例如如图9所示,可以形成第二侧墙1010,使得该第二侧墙1010形成在栅电极沿第二方向延伸的侧面上,且至少与第一侧墙交迭。第二侧墙1010例如可以包括氮化物如氮化硅。这样,第一侧墙1006′和第二侧墙1010可以限定出通孔的侧壁。这里需要指出的是,在图9所示的示例中,第二侧墙1010仅形成于栅电极的侧面上。实际上,例如在鳍1002″的竖直端面上也可能形成侧墙。After forming the gate electrode and the source and drain regions as described above, via holes may be formed through the gate electrode and the fin. Specifically, for example, as shown in FIG. 9 , the second sidewall 1010 may be formed such that the second sidewall 1010 is formed on a side surface of the gate electrode extending along the second direction and overlaps at least the first sidewall. The second sidewall 1010 may include nitride such as silicon nitride, for example. As such, the first sidewall 1006' and the second sidewall 1010 may define the sidewalls of the via. It should be pointed out that, in the example shown in FIG. 9 , the second spacer 1010 is only formed on the side of the gate electrode. In fact, it is also possible to form side walls, for example, on the vertical end faces of the fins 1002".
为了改善器件的电接触性能,可以在栅电极和/或源漏区上形成金属硅化物。具体地,例如可以通过RIE去除栅电极上的辅助掩膜1009′以及源漏区上的停止层1003″和栅介质层1007′部分(在该示例中,均为氧化物),然后通过金属硅化工艺在栅电极和/或源漏区上形成金属硅化物1011如NiPtSi。金属硅化工艺本身对于本领域技术人员而言是熟知的,在此不再赘述。In order to improve the electrical contact performance of the device, metal silicide can be formed on the gate electrode and/or the source and drain regions. Specifically, for example, the auxiliary mask 1009' on the gate electrode, the stop layer 1003" and the gate dielectric layer 1007' on the source and drain regions (in this example, both are oxides) can be removed by RIE, and then silicided by metal The process forms a metal silicide 1011 such as NiPtSi on the gate electrode and/or the source and drain regions. The metal silicide process itself is well known to those skilled in the art and will not be repeated here.
为了便于通孔的刻蚀,可以如图10所示,在衬底上形成一电介质层1012。该电介质层1012例如可以包括氧化物如氧化硅。然后,可以进行平坦化如化学机械抛光(CMP),直至露出牺牲层1004″的顶部(在存在保护层1005′的情况下,直至露出保护层1005′的顶部)。在图10中,为了清楚起见,电介质层1012和第二侧墙1010均以虚线示出。In order to facilitate the etching of via holes, a dielectric layer 1012 may be formed on the substrate as shown in FIG. 10 . The dielectric layer 1012 may include, for example, an oxide such as silicon oxide. Then, planarization such as chemical mechanical polishing (CMP) may be performed until the top of the sacrificial layer 1004″ is exposed (in the case of the protective layer 1005′, until the top of the protective layer 1005′ is exposed). In FIG. 10, for clarity For the sake of simplicity, the dielectric layer 1012 and the second spacer 1010 are both shown in dotted lines.
在经过平坦化处理之后,如图10所示,栅导体层1008″、牺牲层1004″的顶部(在该示例中,保护层1005′的顶部)(以及可选的金属硅化物1011′)露于外部。After the planarization process, as shown in FIG. 10, the gate conductor layer 1008", the top of the sacrificial layer 1004" (in this example, the top of the protective layer 1005') (and optional metal silicide 1011') are exposed on the outside.
在此,为了增强电接触性能,可以如图11所示,对露于外部的栅导体层1008″再次进行金属硅化处理,以形成金属硅化物1011″如NiPtSi。该金属硅化物1011″在随后通孔的刻蚀过程中,还可以起到刻蚀停止层的作用。这里需要指出的是,在图11(a)中,为了清楚起见,并没有示出电介质层1012。Here, in order to enhance the electrical contact performance, as shown in FIG. 11 , metal silicide treatment may be performed on the exposed gate conductor layer 1008 ″ again to form a metal silicide 1011 ″ such as NiPtSi. The metal silicide 1011" can also function as an etch stop layer during the subsequent etching process of the via hole. It should be noted here that in FIG. 11(a), for the sake of clarity, the dielectric Layer 1012.
随后,如图12所示,例如通过RIE,选择性刻蚀保护层1005′(例如,氮化物)。在该过程中,可能也去除了第一侧墙1006′(例如,氮化物)的一部分。接下来,如图13所示,例如通过RIE,选择性刻蚀牺牲层1004″(例如,多晶硅),该刻蚀可以停止于停止层1003″。在该刻蚀过程中,由于金属硅化物1011″的存在,栅导体层1008″即使包含多晶硅,也不会被刻蚀。之后,例如通过RIE,进一步选择性刻蚀停止层1003″和鳍1002″,该刻蚀可以停止于绝缘体层1001,从而形成贯穿栅电极和鳍的通孔。从图13可以看出,由于第一侧墙1006′的存在,使得在其下方留有鳍的薄层1002′″。该薄层1002′″可以充当器件的沟道区。Subsequently, as shown in FIG. 12, the protective layer 1005' (eg, nitride) is selectively etched, eg, by RIE. During this process, a portion of the first sidewall 1006' (eg, nitride) may also be removed. Next, as shown in FIG. 13, the sacrificial layer 1004" (eg, polysilicon) is selectively etched, eg, by RIE, and the etching may stop at the stop layer 1003". During this etching process, due to the existence of the metal silicide 1011", the gate conductor layer 1008" will not be etched even though it contains polysilicon. Thereafter, the stop layer 1003" and the fin 1002" are further selectively etched, eg by RIE, which may stop at the insulator layer 1001, thereby forming a via hole through the gate electrode and the fin. It can be seen from FIG. 13 that due to the existence of the first sidewall 1006', a thin layer 1002'" of fins is left under it. The thin layer 1002'" can serve as a channel region of the device.
在如上所述形成通孔之后,可以在通孔中通过填充导电材料如金属来形成导电接触部。为了使得导电接触部与鳍电隔离,可以如图14所示,在空腔中形成第三侧墙1013。第三侧墙1013例如可以包括氮化物如氮化硅,且在竖直方向上至少覆盖薄层1002′″。然后,如图15所示,在通孔中填充导体材料。具体地,例如可以通过物理气相淀积(PVD)形成TiN或Ti(未示出),并通过化学气相淀积(CVD)形成金属W,最后通过平坦化来得到导电接触部1014。After the via holes are formed as described above, conductive contacts may be formed in the via holes by filling a conductive material such as metal. In order to electrically isolate the conductive contact portion from the fin, a third spacer 1013 may be formed in the cavity as shown in FIG. 14 . The third spacer 1013 may include, for example, a nitride such as silicon nitride, and at least cover the thin layer 1002'" in the vertical direction. Then, as shown in FIG. 15, a conductive material is filled in the via hole. Specifically, for example, TiN or Ti (not shown) is formed by physical vapor deposition (PVD), metal W is formed by chemical vapor deposition (CVD), and finally the conductive contact 1014 is obtained by planarization.
可以看出,根据本公开的实施例,以自对准的方式形成了栅极接触部1014。It can be seen that, according to an embodiment of the present disclosure, the gate contact 1014 is formed in a self-aligned manner.
在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。In the above description, technical details such as patterning and etching of each layer are not described in detail. However, those skilled in the art should understand that various technical means can be used to form layers, regions, etc. of desired shapes. In addition, in order to form the same structure, those skilled in the art can also design a method that is not exactly the same as the method described above.
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本发明的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。The embodiments of the present disclosure have been described above. However, these examples are for illustrative purposes only and are not intended to limit the scope of the present disclosure. The scope of the present disclosure is defined by the appended claims and their equivalents. Various substitutions and modifications can be made by those skilled in the art without departing from the scope of the present invention, and these substitutions and modifications should all fall within the scope of the present disclosure.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210065168.1A CN103311280B (en) | 2012-03-13 | 2012-03-13 | Semiconductor device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210065168.1A CN103311280B (en) | 2012-03-13 | 2012-03-13 | Semiconductor device and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103311280A CN103311280A (en) | 2013-09-18 |
CN103311280B true CN103311280B (en) | 2015-12-02 |
Family
ID=49136301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210065168.1A Active CN103311280B (en) | 2012-03-13 | 2012-03-13 | Semiconductor device and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103311280B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9368408B2 (en) * | 2013-12-27 | 2016-06-14 | Infineon Technologies Dresden Gmbh | Method of manufacturing a semiconductor device with buried channel/body zone and semiconductor device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1750269A (en) * | 2004-06-28 | 2006-03-22 | 三星电子株式会社 | The semiconductor device and the manufacture method thereof that comprise multichannel fin field-effect transistor |
CN101079450A (en) * | 2007-06-19 | 2007-11-28 | 北京大学 | Fin channel dual-bar multi-function field effect transistor and its making method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100585178B1 (en) * | 2005-02-05 | 2006-05-30 | 삼성전자주식회사 | A semiconductor device comprising a metal FET having a metal gate electrode, and a manufacturing method thereof |
JP2008098553A (en) * | 2006-10-16 | 2008-04-24 | Elpida Memory Inc | Semiconductor device and manufacturing method thereof |
US8264048B2 (en) * | 2008-02-15 | 2012-09-11 | Intel Corporation | Multi-gate device having a T-shaped gate structure |
-
2012
- 2012-03-13 CN CN201210065168.1A patent/CN103311280B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1750269A (en) * | 2004-06-28 | 2006-03-22 | 三星电子株式会社 | The semiconductor device and the manufacture method thereof that comprise multichannel fin field-effect transistor |
CN101079450A (en) * | 2007-06-19 | 2007-11-28 | 北京大学 | Fin channel dual-bar multi-function field effect transistor and its making method |
Also Published As
Publication number | Publication date |
---|---|
CN103311280A (en) | 2013-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102768957B (en) | Fin field effect transistor and manufacturing method thereof | |
CN104465393B (en) | Stressor layers are formed in the method and device of fin field-effect transistor semiconductor devices | |
US8481379B2 (en) | Method for manufacturing fin field-effect transistor | |
US8946031B2 (en) | Method for fabricating MOS device | |
US20150200275A1 (en) | Finfet and method for manufacturing the same | |
US9076870B2 (en) | Method for forming fin-shaped structure | |
CN105810585B (en) | Method for manufacturing semiconductor structure | |
CN111106009A (en) | Semiconductor structure and method of forming the same | |
CN103985754B (en) | Semiconductor device and method for manufacturing the same | |
CN111341661B (en) | Transistors and methods of forming them | |
CN102543745B (en) | Method of forming semiconductor device | |
WO2013029311A1 (en) | Semiconductor device and manufacturing method thereof | |
US9450094B1 (en) | Semiconductor process and fin-shaped field effect transistor | |
CN102315267A (en) | Semiconductor device and forming method thereof | |
US20120171833A1 (en) | Method for manufacturing semiconductor device | |
CN104217948B (en) | Semiconductor manufacturing method | |
CN103915387B (en) | The forming method of CMOS transistor | |
CN103000686A (en) | Semiconductor device and method for manufacturing the same | |
CN112309858A (en) | Semiconductor structure and forming method thereof | |
CN103311280B (en) | Semiconductor device and method for manufacturing the same | |
CN110808286A (en) | Semiconductor structure and forming method thereof | |
CN104124160B (en) | Semiconductor device manufacturing method | |
CN104217947B (en) | Semiconductor manufacturing method | |
CN103681840B (en) | Semiconductor device and method for manufacturing the same | |
CN104078466B (en) | Flash device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |