CN103681840B - Semiconductor device and method for manufacturing the same - Google Patents
Semiconductor device and method for manufacturing the same Download PDFInfo
- Publication number
- CN103681840B CN103681840B CN201210333081.8A CN201210333081A CN103681840B CN 103681840 B CN103681840 B CN 103681840B CN 201210333081 A CN201210333081 A CN 201210333081A CN 103681840 B CN103681840 B CN 103681840B
- Authority
- CN
- China
- Prior art keywords
- layer
- semiconductor
- semiconductor substrate
- semiconductor layer
- matrix material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 270
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims description 49
- 239000010410 layer Substances 0.000 claims description 287
- 239000000463 material Substances 0.000 claims description 55
- 239000000758 substrate Substances 0.000 claims description 43
- 239000011241 protective layer Substances 0.000 claims description 15
- 239000004020 conductor Substances 0.000 claims description 10
- 238000000059 patterning Methods 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 239000003989 dielectric material Substances 0.000 claims description 5
- 125000001475 halogen functional group Chemical group 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims 21
- 238000002360 preparation method Methods 0.000 claims 13
- 238000000926 separation method Methods 0.000 claims 3
- 238000001020 plasma etching Methods 0.000 description 16
- 229910052814 silicon oxide Inorganic materials 0.000 description 10
- 125000006850 spacer group Chemical group 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000005468 ion implantation Methods 0.000 description 9
- 238000002955 isolation Methods 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 8
- 238000002513 implantation Methods 0.000 description 8
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 7
- 150000004767 nitrides Chemical class 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 230000003071 parasitic effect Effects 0.000 description 6
- 238000011065 in-situ storage Methods 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910021332 silicide Inorganic materials 0.000 description 4
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- 229910004491 TaAlN Inorganic materials 0.000 description 1
- 229910004166 TaN Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- VYQRBKCKQCRYEE-UHFFFAOYSA-N ctk1a7239 Chemical compound C12=CC=CC=C2N2CC=CC3=NC=CC1=C32 VYQRBKCKQCRYEE-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- -1 silicon nitride Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0281—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
Landscapes
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本申请公开了一种半导体器件及其制造方法。根据一示例,半导体器件可以包括:半导体层;半导体基体,位于半导体层上,所述半导体基体包括延伸穿过该半导体基体的空腔;源极和漏极,在半导体层上形成,且分别接于半导体基体的相对的第一侧面和第二侧面;栅极,分别接于半导体基体的相对的第三侧面和第四侧面。
The application discloses a semiconductor device and a manufacturing method thereof. According to an example, a semiconductor device may include: a semiconductor layer; a semiconductor base located on the semiconductor layer, the semiconductor base including a cavity extending through the semiconductor base; a source and a drain formed on the semiconductor layer and respectively connected to The gate is connected to the opposite first side and the second side of the semiconductor base; the gate is respectively connected to the opposite third side and the fourth side of the semiconductor base.
Description
技术领域technical field
本公开涉及半导体领域,更具体地,涉及一种半导体器件及其制造方法。The present disclosure relates to the field of semiconductors, and more particularly, to a semiconductor device and a manufacturing method thereof.
背景技术Background technique
随着金属氧化物半导体场效应晶体管(MOSFET)沟道长度不断缩短,一系列在MOSFET长沟道模型中可以忽略的效应变得愈发显著,甚至成为影响性能的主导因素,这种现象统称为短沟道效应。短沟道效应易于恶化器件的电学性能,如造成栅极阈值电压下降、功耗增加以及信噪比下降等问题。As the channel length of metal-oxide-semiconductor field-effect transistors (MOSFETs) continues to shorten, a series of effects that can be ignored in the MOSFET long-channel model become more and more significant, and even become the dominant factors affecting performance. This phenomenon is collectively referred to as short channel effect. The short channel effect is easy to deteriorate the electrical performance of the device, such as causing a decrease in the gate threshold voltage, an increase in power consumption, and a decrease in the signal-to-noise ratio.
为了控制短沟道效应,提出了立体型半导体器件如鳍式场效应晶体管(FinFET)。相对于平面型的MOSFET而言,立体型的FinFET能够更好地控制短沟道效应。但是,另一方面,FinFET相比于MOSFET具有相对较大的寄生电阻和寄生电容。由此,电阻电容延迟增加,器件交流性能降低。此外,与MOSFET相比,在FinFET中进行应力工程要相对困难。In order to control the short channel effect, a three-dimensional semiconductor device such as a fin field effect transistor (FinFET) is proposed. Compared with the planar MOSFET, the three-dimensional FinFET can better control the short channel effect. However, on the other hand, FinFETs have relatively larger parasitic resistance and parasitic capacitance than MOSFETs. As a result, the resistance-capacitance delay increases, and the AC performance of the device decreases. Additionally, stress engineering is relatively difficult in FinFETs compared to MOSFETs.
发明内容Contents of the invention
本公开的目的在于提供一种半导体器件及其制造方法,可以减小短沟道效应、寄生电阻及寄生电容,还可以容易地进行应力工程。The purpose of the present disclosure is to provide a semiconductor device and its manufacturing method, which can reduce short channel effect, parasitic resistance and parasitic capacitance, and can also easily perform stress engineering.
根据本发明的一个方面,提供了一种半导体器件,包括:一种半导体器件,包括:半导体层;半导体基体,位于半导体层上,所述半导体基体包括延伸穿过该半导体基体的空腔;源极和漏极,在半导体层上形成,且分别接于半导体基体的相对的第一侧面和第二侧面;栅极,分别接于半导体基体的相对的第三侧面和第四侧面。According to one aspect of the present invention, there is provided a semiconductor device, comprising: a semiconductor device, comprising: a semiconductor layer; a semiconductor substrate located on the semiconductor layer, the semiconductor substrate comprising a cavity extending through the semiconductor substrate; a source The electrode and the drain are formed on the semiconductor layer and are respectively connected to the opposite first and second sides of the semiconductor base; the gate is respectively connected to the opposite third and fourth sides of the semiconductor base.
根据本发明的另一方面,提供了一种制造半导体器件的方法,包括:在半导体层上形成预备半导体基体,所述预备半导体基体包括相对的第一侧面和第二侧面以及相对的第三侧面和第四侧面;在半导体层上形成源极和漏极,所述源极和漏极分别接于预备半导体基体的第一侧面和第二侧面;形成与预备半导体基体的第三侧面和第四侧面相接的栅极;以及形成贯穿预备半导体基体的空腔,从而预备半导体基体构成半导体基体。According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: forming a preliminary semiconductor base on a semiconductor layer, the preliminary semiconductor base including opposing first and second sides and an opposing third side and the fourth side; form a source and a drain on the semiconductor layer, and the source and drain are respectively connected to the first side and the second side of the prepared semiconductor base; form the third side and the fourth side of the prepared semiconductor base The side-connected gates; and forming a cavity penetrating through the prepared semiconductor body, so that the prepared semiconductor body constitutes the semiconductor body.
根据本公开实施例的半导体器件可以同时具备立体型FinFET结构及平面型MOSFET结构的优点,即,既能有效控制短沟道效应,又能减小寄生电阻和寄生电容,并且可以通过调节沟道区应力提高载流子迁移率,改善器件性能。The semiconductor device according to the embodiment of the present disclosure can have the advantages of the three-dimensional FinFET structure and the planar MOSFET structure at the same time, that is, it can not only effectively control the short channel effect, but also reduce the parasitic resistance and parasitic capacitance, and can adjust the channel Region stress increases carrier mobility and improves device performance.
附图说明Description of drawings
通过以下参照附图对本发明实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:The above and other objects, features and advantages of the present disclosure will be more clearly described through the following description of the embodiments of the present invention with reference to the accompanying drawings, in which:
图1(a)和1(b)是示意性示出根据本公开实施例的制造半导体器件流程中图形化保护层和牺牲层后的俯视图和截面图,其中图1(b)为沿图1(a)中A-A′线的截面图,以下附图中为清楚起见,不再示出A-A′线;1(a) and 1(b) are schematic top views and cross-sectional views after patterning a protective layer and a sacrificial layer in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure, wherein FIG. 1(b) is along the lines of FIG. 1 (a) The cross-sectional view of the A-A' line, in the following drawings for the sake of clarity, the A-A' line is no longer shown;
图2(a)和2(b)是示意性示出根据本公开实施例的制造半导体器件流程中形成第一侧墙后的俯视图和沿A-A′线的截面图;2(a) and 2(b) schematically show a top view and a cross-sectional view along line A-A' after forming a first spacer in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure;
图3(a)和3(b)是示意性示出根据本公开实施例的制造半导体器件流程中以第一侧墙为掩模对停止层、半导体基体材料层和半导体层进行构图后的俯视图和沿A-A′线的截面图;3(a) and 3(b) are top views schematically illustrating the patterning of the stop layer, the semiconductor base material layer and the semiconductor layer using the first spacer as a mask in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure and a sectional view along the line A-A';
图4(a)和4(b)是示意性示出根据本公开实施例的制造半导体器件流程中形成栅堆叠后的俯视图和沿A-A′线的截面图;4(a) and 4(b) schematically illustrate a top view and a cross-sectional view along line A-A' after forming a gate stack in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure;
图5(a)、5(b)和5(c)是示意性示出根据本公开实施例的制造半导体器件流程中暴露源漏区的停止层后的俯视图、沿A-A′线的截面图和沿B-B′线的截面图,以下附图中为清楚起见,不再示出B-B′线;5(a), 5(b) and 5(c) schematically illustrate a top view, a cross-sectional view along the A-A' line and The cross-sectional view along the line B-B', for the sake of clarity in the following drawings, the line B-B' is no longer shown;
图6(a)、6(b)和6(c)是示意性示出根据本公开实施例的制造半导体器件流程中形成第二侧墙后的俯视图、沿A-A′线的截面图和沿B-B′线的截面图;6(a), 6(b) and 6(c) schematically show a top view, a cross-sectional view along line A-A' and a cross-sectional view along line B-B after forming a second spacer in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure. sectional view of the line;
图7(a)、7(b)和7(c)是示意性示出根据本公开实施例的制造半导体器件流程中在源漏区露出半导体层后的俯视图、沿A-A′线的截面图和沿B-B′线的截面图;7(a), 7(b) and 7(c) schematically show a top view after exposing the semiconductor layer in the source and drain regions in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure, a cross-sectional view along line A-A' and A sectional view along the line B-B';
图8是示意性示出根据本公开实施例的制造半导体器件流程中执行第一离子注入操作的俯视图;8 is a top view schematically illustrating a first ion implantation operation performed in a process of manufacturing a semiconductor device according to an embodiment of the present disclosure;
图9(a)和9(b)是示意性示出根据本公开实施例的制造半导体器件流程中在源漏区形成另外的半导体层后的俯视图和沿B-B′线的截面图;9(a) and 9(b) are schematic top views and cross-sectional views along the line B-B' after another semiconductor layer is formed in the source and drain regions in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure;
图10(a)和10(b)是示意性示出根据本公开实施例的制造半导体器件流程中形成第一电介质层并进行平坦化处理后的俯视图和沿B-B′线的截面图;10(a) and 10(b) schematically show a top view and a cross-sectional view along line B-B' after forming a first dielectric layer and performing planarization treatment in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure;
图11是示意性示出根据本公开实施例的制造半导体器件流程中形成栅极后的俯视图;FIG. 11 is a top view schematically showing the formation of a gate in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure;
图12(a)、12(b)和12(c)是示意性示出根据本公开实施例的制造半导体器件流程中形成第二电介质层并进行平坦化处理后的俯视图、沿A-A′线的截面图和沿B-B′线的截面图;12(a), 12(b) and 12(c) are top views schematically showing the formation of a second dielectric layer and planarization in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure, along the line A-A' sectional views and sectional views along the line B-B';
图13是示意性示出根据本公开实施例的制造半导体器件流程中形成空腔后的沿A-A′线的截面图;13 is a schematic cross-sectional view along A-A' line after forming a cavity in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure;
图14是示意性示出根据本公开实施例的制造半导体器件流程中执行第二离子注入操作的沿A-A′线的截面图;14 is a cross-sectional view along line A-A' schematically illustrating a second ion implantation operation performed in a process of manufacturing a semiconductor device according to an embodiment of the present disclosure;
图15是示意性示出根据本公开实施例的制造半导体器件流程中在空腔中填充电介质材料后的沿A-A′线的截面图;15 is a cross-sectional view along A-A' line schematically showing a cavity filled with a dielectric material in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure;
图16(a)和16(b)是示意性示出根据本公开实施例的制造半导体器件流程中去除第二电介质层和至少部分第一电介质层以暴露栅极和源漏极后的沿A-A′线的截面图和沿B-B′线的截面图;16(a) and 16(b) schematically illustrate the process of removing the second dielectric layer and at least part of the first dielectric layer to expose the gate and source and drain along A-A in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure. ’ line and the sectional view along B-B’ line;
图17(a)、17(b)和17(c)是示意性示出根据本公开实施例的制造半导体器件流程中在栅极和源漏极上形成金属硅化物后的俯视图、沿A-A′线的截面图和沿B-B′线的截面图,图17(d)示意性示出了得到的半导体器件的透视图;以及17(a), 17(b) and 17(c) are top views schematically showing the formation of metal silicide on the gate, source and drain in the process of manufacturing a semiconductor device according to an embodiment of the present disclosure, along A-A' A cross-sectional view of the line and a cross-sectional view along the line B-B', Figure 17 (d) schematically shows a perspective view of the resulting semiconductor device; and
图18是示意性示出了根据本公开实施例的半导体器件的透视图。FIG. 18 is a perspective view schematically showing a semiconductor device according to an embodiment of the present disclosure.
具体实施方式detailed description
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present disclosure. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concept of the present invention.
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。Various structural schematic diagrams according to embodiments of the present disclosure are shown in the accompanying drawings. The figures are not drawn to scale, with certain details exaggerated and possibly omitted for clarity of presentation. The shapes of the various regions and layers shown in the figure, as well as their relative sizes and positional relationships are only exemplary, and may deviate due to manufacturing tolerances or technical limitations in practice, and those skilled in the art will Regions/layers with different shapes, sizes, and relative positions can be additionally designed as needed.
图18是示意性示出了根据本公开实施例的半导体器件的透视图。如图18所示,该半导体器件可以包括半导体层2002、半导体基体2004、源极和漏极2030以及栅极(2016、2018、2020)。FIG. 18 is a perspective view schematically showing a semiconductor device according to an embodiment of the present disclosure. As shown in FIG. 18, the semiconductor device may include a semiconductor layer 2002, a semiconductor body 2004, a source and a drain 2030, and a gate (2016, 2018, 2020).
半导体层2002可以是设置在衬底2000上的半导体层。或者,半导体层2002也可以是一半导体衬底。例如,衬底2000可以包括体Si衬底,半导体层2002可以包括SiGe(例如,Ge的原子百分比约为5-15%)。在这种情况下,半导体层2002可以通过外延生长的方式形成于衬底2000上。The semiconductor layer 2002 may be a semiconductor layer provided on the substrate 2000 . Alternatively, the semiconductor layer 2002 can also be a semiconductor substrate. For example, the substrate 2000 may include a bulk Si substrate, and the semiconductor layer 2002 may include SiGe (eg, about 5-15 atomic percent Ge). In this case, the semiconductor layer 2002 can be formed on the substrate 2000 by epitaxial growth.
半导体基体2004形成于半导体层2002上,并包括相对的第一侧面和第二侧面(图18所示的示例中,相对的竖直侧面S1和S2)以及相对的第三侧面和第四侧面(图18所示的示例中,相对的竖直侧面S3和S4)。半导体基体2004可以包括与半导体层2002不同的材料,且彼此之间具有刻蚀选择性。例如,在半导体层2002如上所述包括SiGe的示例中,半导体基体2004可以包括Si。在这种情况下,半导体基体2004可以通过外延生长的方式形成于半导体层2002上。A semiconductor base 2004 is formed on the semiconductor layer 2002, and includes opposing first and second sides (in the example shown in FIG. 18 , opposing vertical sides S1 and S2) and opposing third and fourth sides ( In the example shown in Figure 18, opposite vertical sides S3 and S4). The semiconductor base 2004 may include different materials from the semiconductor layer 2002 and have etch selectivity between them. For example, in examples where semiconductor layer 2002 includes SiGe as described above, semiconductor body 2004 may include Si. In this case, the semiconductor base 2004 can be formed on the semiconductor layer 2002 by means of epitaxial growth.
在半导体基体2004中,可以形成空腔,该空腔延伸穿过半导体基体2004。根据本公开的一个实施例,为了减小沟道区底部的漏电流,空腔还可以进一步延伸到半导体层2002中,使得半导体基体2004的底部与半导体层2002至少部分地隔开。在空腔中,可以填充有电介质材料2036。在这种情况下,半导体基体2004的底部可以通过电介质材料2036与半导体层2002电隔离。In the semiconductor body 2004 a cavity may be formed, which cavity extends through the semiconductor body 2004 . According to an embodiment of the present disclosure, in order to reduce leakage current at the bottom of the channel region, the cavity may further extend into the semiconductor layer 2002 such that the bottom of the semiconductor base 2004 is at least partially separated from the semiconductor layer 2002 . In the cavity, a dielectric material 2036 may be filled. In this case, the bottom of semiconductor body 2004 may be electrically isolated from semiconductor layer 2002 by dielectric material 2036 .
漏极和源极2030形成于半导体层2002上,且分别与半导体基体2004的第一侧面S1和第二侧面S2相接。源极和漏极2030可以包括在半导体基体2004上外延生长的另外的半导体层。为了增强器件性能,根据本公开的一个实施例,该另外的半导体层可以包括带应力半导体材料。例如,对于n型器件,带应力半导体材料可以包括Si:C(例如,C的原子百分比约为0.2-2%);对于p型器件,带应力半导体材料可以包括SiGe(例如,Ge的原子百分比约为15-75%)。对于n型器件或p型器件,漏极和源极2030分别被掺杂为n型或p型。这种掺杂例如可以在外延生长源极和漏极的过程中通过原位掺杂来实现。The drain and the source 2030 are formed on the semiconductor layer 2002 and are respectively in contact with the first side S1 and the second side S2 of the semiconductor substrate 2004 . The source and drain 2030 may comprise a further semiconductor layer grown epitaxially on the semiconductor body 2004 . To enhance device performance, according to one embodiment of the present disclosure, the additional semiconductor layer may comprise a stressed semiconductor material. For example, for an n-type device, the stressed semiconductor material may include Si:C (e.g., about 0.2-2 atomic percent of C); for a p-type device, the stressed semiconductor material may include SiGe (for example, about an atomic percent of Ge about 15-75%). For an n-type device or a p-type device, the drain and source 2030 are doped to be n-type or p-type, respectively. Such doping can be achieved, for example, by in-situ doping during the epitaxial growth of the source and drain.
栅极分别与半导体基体2004的第三侧面S3和第四侧面S4相接。这样,可以在半导体基体2004与栅极相邻的部分中形成沟道区。具体地,可以在半导体基体2004的第三侧面S3和第四侧面S4处形成沟道区。由于空腔,沟道区可以仅为一薄层,从而根据该实施例的半导体器件可以用作全耗尽型器件。The gate is in contact with the third side S3 and the fourth side S4 of the semiconductor substrate 2004 respectively. In this way, a channel region can be formed in a portion of the semiconductor body 2004 adjacent to the gate. Specifically, channel regions may be formed at the third side S3 and the fourth side S4 of the semiconductor base 2004 . Due to the cavity, the channel region can be only a thin layer, so that the semiconductor device according to this embodiment can be used as a fully depleted device.
根据本公开的一个实施例,可以在半导体基体2004中用作沟道区的部位处形成超陡后退阱。对于n型器件,超陡后退阱可以为p型掺杂;对于p型器件,超陡后退阱可以为n型掺杂。According to an embodiment of the present disclosure, an ultra-steep receding well may be formed at a portion of the semiconductor body 2004 used as a channel region. For n-type devices, the ultra-steep receding well can be p-type doped; for p-type devices, the ultra-steep receding well can be n-type doped.
栅极可以包括栅介质层2016和栅导体层2020。例如,栅介质层2016可以包括氧化硅,栅导体层2020可以包括多晶硅。或者,栅介质层2016可以包括高K栅介质,例如HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO等;栅导体层2020可以包括金属栅导体。在后一种情况下,栅极还可以包括位于栅介质层2016和栅导体层2020之间的功函数调节层2018,例如TiN、TiAlN、TaN、TaAlN等。The gate may include a gate dielectric layer 2016 and a gate conductor layer 2020 . For example, the gate dielectric layer 2016 may include silicon oxide, and the gate conductor layer 2020 may include polysilicon. Alternatively, the gate dielectric layer 2016 may include a high-K gate dielectric, such as HfO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, etc.; the gate conductor layer 2020 may include a metal gate conductor. In the latter case, the gate may further include a work function adjustment layer 2018 located between the gate dielectric layer 2016 and the gate conductor layer 2020, such as TiN, TiAlN, TaN, TaAlN and the like.
根据本公开的另一实施例,在半导体层2002上可以包括隔离层(例如,氧化物),栅极可以形成于该隔离层上,从而栅极通过该隔离层与半导体层2002隔开。According to another embodiment of the present disclosure, an isolation layer (for example, oxide) may be included on the semiconductor layer 2002 , and the gate may be formed on the isolation layer, so that the gate is separated from the semiconductor layer 2002 by the isolation layer.
以下,将参照附图来详细描述根据本公开实施例的半导体器件的示例制造流程。Hereinafter, an example manufacturing flow of a semiconductor device according to an embodiment of the present disclosure will be described in detail with reference to the accompanying drawings.
如图1所示,提供半导体层1002。该半导体层1002可以通过外延生长形成于衬底1000上。例如,衬底1000可以包括体Si衬底,半导体层1002可以包括SiGe(Ge的原子百分比约为5-15%)。半导层1002的厚度例如约为20-50nm。这里需要指出的是,尽管这里以Si和SiGe为例进行描述,但是本公开不限于此,其他半导体材料也是适用的。As shown in FIG. 1, a semiconductor layer 1002 is provided. The semiconductor layer 1002 can be formed on the substrate 1000 by epitaxial growth. For example, the substrate 1000 may include a bulk Si substrate, and the semiconductor layer 1002 may include SiGe (Ge about 5-15 atomic percent). The thickness of the semiconductor layer 1002 is, for example, about 20-50 nm. It should be noted here that although Si and SiGe are described here as examples, the present disclosure is not limited thereto, and other semiconductor materials are also applicable.
根据本公开的一个实施例,首先可以在半导体层上形成预备半导体基体(由该预备半导体基体制成半导体基体)。具体地,可以在半导体层1002上,例如通过外延生长,形成半导体基体材料层1004。该半导体基体材料层1004可以包括Si,厚度例如约为50-100nm。这里需要指出的是,半导体基体材料层不限于Si,也可以包括其他半导体材料,例如Ge。According to an embodiment of the present disclosure, firstly, a preliminary semiconductor body may be formed on the semiconductor layer (the semiconductor body is made from the preliminary semiconductor body). Specifically, the semiconductor base material layer 1004 can be formed on the semiconductor layer 1002, for example, by epitaxial growth. The semiconductor base material layer 1004 may include Si, for example, with a thickness of about 50-100 nm. It should be pointed out here that the semiconductor base material layer is not limited to Si, and may also include other semiconductor materials, such as Ge.
接下来,可以在半导体基体材料层1004上形成一些构图辅助层,以便于将半导体基体材料层1004构图为预备半导体基体。具体地,在半导体基体材料层1004上,例如可以通过淀积,依次形成停止层1006、牺牲层1008和保护层1010。例如,停止层1006可以包括氧化物如氧化硅,其厚度约为5-20nm;牺牲层1008可以包括非晶硅,其厚度约为30-80nm;保护层1010可以包括氮化物如氮化硅,其厚度约为20-50nm。这里需要指出的是,停止层1006、牺牲层1008和保护层1010的材料可以根据刻蚀工艺选择,只要它们能够在相应的刻蚀工艺中提供适当的刻蚀选择性,而不限于上述材料。Next, some patterning auxiliary layers may be formed on the semiconductor base material layer 1004, so as to pattern the semiconductor base material layer 1004 as a preliminary semiconductor base. Specifically, on the semiconductor base material layer 1004, for example, a stop layer 1006, a sacrificial layer 1008, and a protection layer 1010 can be sequentially formed by deposition. For example, the stop layer 1006 may include oxide such as silicon oxide with a thickness of about 5-20 nm; the sacrificial layer 1008 may include amorphous silicon with a thickness of about 30-80 nm; the protective layer 1010 may include nitride such as silicon nitride, Its thickness is about 20-50nm. It should be pointed out here that the materials of the stop layer 1006, the sacrificial layer 1008 and the protective layer 1010 can be selected according to the etching process, as long as they can provide appropriate etching selectivity in the corresponding etching process, and are not limited to the above materials.
牺牲层1008和保护层1010可以构图为与要形成的器件的有源区相对应的形状。具体地,例如可以通过反应离子刻蚀(RIE),对保护层1010和牺牲层1008进行刻蚀,并停止于停止层1006。在此,可以看到,停止层1006在该步骤中用作刻蚀停止层。因此,可以选择停止层1006的材料使得其相对于牺牲层1008的材料具有刻蚀选择性。另外,在牺牲层1008(例如,非晶硅)与半导体基体材料层1004(例如,Ge)材料具有刻蚀选择性的情况下,甚至可以省略停止层1006。The sacrificial layer 1008 and protective layer 1010 may be patterned into a shape corresponding to the active region of the device to be formed. Specifically, the protective layer 1010 and the sacrificial layer 1008 may be etched, for example, by reactive ion etching (RIE), and stop at the stop layer 1006 . Here, it can be seen that the stop layer 1006 serves as an etch stop layer in this step. Therefore, the material of the stop layer 1006 may be selected such that it has etch selectivity relative to the material of the sacrificial layer 1008 . In addition, in the case that the sacrificial layer 1008 (for example, amorphous silicon) and the semiconductor base material layer 1004 (for example, Ge) have etch selectivity, the stop layer 1006 can even be omitted.
然后,如图2所示,绕构图后的牺牲层1008(和保护层1010),形成第一侧墙1012。例如,可以通过淀积一层厚约15-20nm的氮化物如氮化硅,并对淀积的氮化物进行RIE,来形成第一侧墙1012。在该RIE过程中,同样可以利用停止层1006作为刻蚀停止层。对于本领域技术人员而言,存在多种方式来形成这种侧墙1012。Then, as shown in FIG. 2 , a first spacer 1012 is formed around the patterned sacrificial layer 1008 (and the protection layer 1010 ). For example, the first spacer 1012 can be formed by depositing a layer of nitride such as silicon nitride with a thickness of about 15-20 nm, and performing RIE on the deposited nitride. In this RIE process, the stop layer 1006 can also be utilized as an etch stop layer. For those skilled in the art, there are many ways to form such side walls 1012 .
接着,如图3所示,以第一侧墙1012为掩模,对半导体基体材料层1004进行构图。在此,例如可以通过RIE,依次对停止层1006、半导体基体材料层1004进行构图,得到构图后的停止层1006′和半导体基体材料层1004′。对半导体基体材料层1004′(例如,Si)的RIE可以停止于半导体层1002(例如,SiGe)。Next, as shown in FIG. 3 , the semiconductor base material layer 1004 is patterned by using the first sidewall 1012 as a mask. Here, for example, the stop layer 1006 and the semiconductor base material layer 1004 may be sequentially patterned by RIE to obtain the patterned stop layer 1006' and the semiconductor base material layer 1004'. RIE to semiconductor base material layer 1004' (eg, Si) may stop at semiconductor layer 1002 (eg, SiGe).
在此,可以看到,保护层1010可以保护牺牲层1008(非晶硅)在对半导体基体材料层1004(Si)刻蚀过程中被刻蚀。在牺牲层1008(例如,非晶硅)与半导体基体材料层1004(例如,Ge)材料具有刻蚀选择性的情况下,甚至可以省略保护层1010。Here, it can be seen that the protective layer 1010 can protect the sacrificial layer 1008 (amorphous silicon) from being etched during the etching process of the semiconductor base material layer 1004 (Si). In the case that the material of the sacrificial layer 1008 (for example, amorphous silicon) and the semiconductor base material layer 1004 (for example, Ge) has etch selectivity, the protection layer 1010 may even be omitted.
如以下所述,在图3所示的示例中,半导体基体材料层1004′的左右两个侧面用作沟道区。通过使得半导体基体材料层1004和半导体层1002的材料不同(具有刻蚀选择性),可以更好地控制沟道的宽度(图3中半导体基体材料层1004′沿竖直方向的高度)。As will be described below, in the example shown in FIG. 3, both left and right sides of the semiconductor base material layer 1004' are used as channel regions. By making the materials of the semiconductor base material layer 1004 and the semiconductor layer 1002 different (with etching selectivity), the width of the channel (the vertical height of the semiconductor base material layer 1004' in FIG. 3 ) can be better controlled.
在此,还可以对半导体层1002进行部分构图。例如,可以通过RIE,刻蚀一定厚度的半导体层1002。通过半导体层1002的这种部分构图,可以使得构图后的半导体层1002′在有源区之外的表面低于半导体基体材料层1004′的底面。这样,随后在半导体层1002′的所述表面上形成的栅极可以覆盖半导体基体材料层1004′的整个高度。Here, the semiconductor layer 1002 may also be partially patterned. For example, RIE can be used to etch the semiconductor layer 1002 with a certain thickness. Through this partial patterning of the semiconductor layer 1002, the surface of the patterned semiconductor layer 1002' outside the active region can be lower than the bottom surface of the semiconductor base material layer 1004'. In this way, the gate formed subsequently on said surface of the semiconductor layer 1002' can cover the entire height of the semiconductor base material layer 1004'.
为了使得随后形成的栅极与半导体层1002之间形成更好的电隔离,可以在半导体层1002上形成隔离层1014例如氧化物。例如,可以在整个结构上淀积一层高密度等离子(HDP)氧化物(如氧化硅),其在结构竖直侧壁上的厚度薄而在结构水平表面上的厚度厚,并对淀积的HDP氧化物进行回蚀。这样,在半导体层1002上留下隔离层1014。当然,在保护层1010顶部上可能也残留有HDP氧化物,这对后继工艺并无影响,图中为清楚起见并未示出。In order to form better electrical isolation between the subsequently formed gate and the semiconductor layer 1002 , an isolation layer 1014 such as oxide may be formed on the semiconductor layer 1002 . For example, a layer of high-density plasma (HDP) oxide such as silicon oxide can be deposited over the entire structure with a thin thickness on the vertical sidewalls of the structure and a thick thickness on the horizontal The HDP oxide is etched back. In this way, the isolation layer 1014 is left on the semiconductor layer 1002 . Of course, HDP oxide may also remain on the top of the passivation layer 1010 , which has no influence on subsequent processes, and is not shown in the figure for clarity.
优选地,隔离层1014的顶面低于半导体基体材料层1004′的底面。这样,随后在隔离层1014上形成的栅极可以更好地覆盖半导体基体材料层1004′的整个高度。Preferably, the top surface of the isolation layer 1014 is lower than the bottom surface of the semiconductor base material layer 1004'. In this way, the gate formed subsequently on the isolation layer 1014 can better cover the entire height of the semiconductor base material layer 1004'.
通过上述处理,半导体基体材料层1004′基本上留在了器件的有源区上。接下来,可以确定器件的源区和漏区,并去除半导体基体材料层1004′在源区和漏区的部分,从而得到预备半导体基体。Through the above treatment, the semiconductor base material layer 1004' basically remains on the active region of the device. Next, the source region and the drain region of the device can be determined, and the part of the semiconductor base material layer 1004 ′ in the source region and the drain region is removed, so as to obtain a preliminary semiconductor base.
在此,为简化工艺,可以将确定源漏区域的操作与栅堆叠的形成结合在一起(因为源漏区域位于栅堆叠两侧)。具体地,如图4所示,在整个结构上形成栅堆叠,并利用辅助掩模对栅堆叠进行构图,使得栅堆叠留于与栅极相对应的区域,从而露出源漏区域。具体地,例如可以通过热氧化形成约为0.2-0.7nm厚的界面氧化层(未示出),随后依次淀积约为2-3nm厚的高K栅介质层1016(例如,HfO2)、约为3-10nm厚的功函数调节层1018(例如,TiN)和约为50-100nm厚的栅导体层1020(例如,多晶硅)。这里需要指出的是,以上列举的栅堆叠中各层的材料和厚度仅仅是示例,本公开不限于此。在栅导体层1020为多晶硅的情况下,可以按需对其进行掺杂,例如在淀积同时进行原位掺杂。随后,可以对栅堆叠进行平坦化处理如化学机械抛光(CMP),直至露出保护层1010。继而,在栅堆叠和保护层1010上形成辅助掩模层(1022、1024、1026)。辅助掩模层可为层叠的具有不同材质的介质层,例如,在保护层1010和第一侧墙1012的材料为氮化硅时,辅助掩模层可为氧化硅层(第一辅助膜层1022,例如约2-5nm)-氮化硅层(第二辅助膜层1024,例如约10-20nm)-氧化硅层(第三辅助膜层1026,例如约10-20nm)的叠层。随后,例如通过RIE将辅助掩模层构图为与将要形成的栅极相对应的形状,并以构图后的辅助掩模层为掩模,例如通过RIE对栅堆叠进行构图。在对栅堆叠进行构图时,也可以不对栅介质层1016进行刻蚀。在图4所示的示例中,并未对栅介质层1016进行构图。Here, in order to simplify the process, the operation of determining the source and drain regions can be combined with the formation of the gate stack (because the source and drain regions are located on both sides of the gate stack). Specifically, as shown in FIG. 4 , a gate stack is formed on the entire structure, and an auxiliary mask is used to pattern the gate stack so that the gate stack remains in a region corresponding to the gate, thereby exposing the source and drain regions. Specifically, for example, an interface oxide layer (not shown) with a thickness of about 0.2-0.7 nm can be formed by thermal oxidation, and then a high-K gate dielectric layer 1016 (for example, HfO 2 ) with a thickness of about 2-3 nm is sequentially deposited, The work function adjusting layer 1018 (eg, TiN) is about 3-10 nm thick, and the gate conductor layer 1020 (eg, polysilicon) is about 50-100 nm thick. It should be pointed out here that the materials and thicknesses of the layers in the gate stack listed above are just examples, and the present disclosure is not limited thereto. In the case that the gate conductor layer 1020 is polysilicon, it can be doped as required, for example, in-situ doping is performed while depositing. Subsequently, a planarization process such as chemical mechanical polishing (CMP) may be performed on the gate stack until the protection layer 1010 is exposed. Next, an auxiliary mask layer ( 1022 , 1024 , 1026 ) is formed over the gate stack and protective layer 1010 . The auxiliary mask layer can be stacked dielectric layers with different materials. For example, when the material of the protective layer 1010 and the first spacer 1012 is silicon nitride, the auxiliary mask layer can be a silicon oxide layer (the first auxiliary film layer 1022, for example about 2-5 nm)-silicon nitride layer (second auxiliary film layer 1024, for example about 10-20 nm)-silicon oxide layer (third auxiliary film layer 1026, for example about 10-20 nm). Subsequently, the auxiliary mask layer is patterned into a shape corresponding to the gate to be formed, for example by RIE, and the gate stack is patterned by using the patterned auxiliary mask layer as a mask, for example by RIE. When patterning the gate stack, the gate dielectric layer 1016 may not be etched. In the example shown in FIG. 4, the gate dielectric layer 1016 is not patterned.
这样,半导体基体材料层1004′中与源漏区相对应的部分未被辅助掩模层覆盖。于是,可以去除这部分半导体基体材料层1004′,并因此得到预备半导体基体。具体地,如图5所示,例如可以通过RIE,依次去除未被辅助掩模层覆盖的栅介质层1016(例如,HfO2)、保护层1010和第一侧墙(例如,氮化物)、牺牲层100g。RIE可以停止于停止层1006′。这样,就露出了半导体基体材料层1004′中与源漏区与相对应的部分。In this way, the portion of the semiconductor base material layer 1004' corresponding to the source and drain regions is not covered by the auxiliary mask layer. This part of the layer of semiconductor body material 1004' can then be removed and thus a preliminary semiconductor body is obtained. Specifically, as shown in FIG. 5 , for example, the gate dielectric layer 1016 (for example, HfO 2 ) not covered by the auxiliary mask layer, the protective layer 1010 and the first sidewall (for example, nitride) can be sequentially removed by RIE, Sacrificial layer 100g. RIE may stop at stop layer 1006'. In this way, the portion of the semiconductor base material layer 1004' corresponding to the source and drain regions is exposed.
在此,为了在随后形成源极和漏极的步骤中更好地限定源极和漏极,可以如图6所示,绕当前结构的竖直侧面(具体地,绕栅堆叠的侧面以及半导体基体材料层1004′的侧面)形成第二侧墙1028。例如,可以通过淀积一层厚约7-20nm的氮化物如氮化硅,并对淀积的氮化物进行RIE,来形成第二侧墙1028。通过该第二侧墙1028,限定出了源区和漏区(在图6(a)的示例中,位于辅助掩模层上下两侧、被第二侧墙围绕的区域)。Here, in order to better define the source and drain in the subsequent steps of forming the source and drain, as shown in FIG. The side of the base material layer 1004 ′) forms the second sidewall 1028 . For example, the second spacer 1028 can be formed by depositing a layer of nitride such as silicon nitride with a thickness of about 7-20 nm, and performing RIE on the deposited nitride. The second sidewall 1028 defines a source region and a drain region (in the example of FIG. 6( a ), a region located on the upper and lower sides of the auxiliary mask layer and surrounded by the second sidewall).
随后,如图7所示,例如可以通过RIE,依次去除露出的停止层1006′和半导体基体材料层1004′,RIE可以停止于半导体层1002′。可以看到,半导体层1002′在源漏区中露出,以便于随后在其上形成源极和漏极。剩下的半导体基体材料层1004′即构成预备半导体基体。在该示例中,在对停止层1006′(例如,氧化硅)进行RIE过程中,辅助掩模层中的第三辅助膜层1026(例如,氧化硅)也被去除。Subsequently, as shown in FIG. 7 , for example, the exposed stop layer 1006 ′ and the semiconductor base material layer 1004 ′ can be sequentially removed by RIE, and the RIE can stop at the semiconductor layer 1002 ′. It can be seen that the semiconductor layer 1002' is exposed in the source and drain regions for subsequent formation of source and drain electrodes thereon. The remaining semiconductor base material layer 1004' constitutes a preliminary semiconductor base. In this example, during the RIE process on the stop layer 1006' (eg, silicon oxide), the third auxiliary film layer 1026 (eg, silicon oxide) in the auxiliary mask layer is also removed.
为了增强器件性能,可以如图8所示,沿面向第一侧面和第二侧面的方向(图中箭头所示方向),执行第一离子注入操作,以在预备半导体基体1004′中形成延伸区和晕圈区,用以抑制短沟道效应。例如,对于n型器件,可以进行n型掺杂如As或P离子掺杂;对于p型器件,可以进行p型掺杂如B、BF2或In离子掺杂,以形成延伸区。此外,对于n型器件,可以进行p型注入如B、BF2或In离子注入;对于p型器件,可以进行n型注入如As或P离子注入,之后在900-1100℃下进行尖峰退火激活杂质,形成源漏晕圈区。相比于现有技术中沿面向第三侧面和第四侧面的方向执行这种离子注入操作,更利于实践操作,也利于减少相邻器件的半导体基体之间的间距,减少占用面积,进而减低制造成本。第一离子注入操作的具体工艺,如注入能量、注入剂量、注入次数及掺杂粒子等,均可根据产品设计灵活调整,不再赘述。In order to enhance the performance of the device, as shown in FIG. 8, a first ion implantation operation may be performed along the direction facing the first side and the second side (the direction indicated by the arrow in the figure), so as to form an extension region in the prepared semiconductor substrate 1004' and halo regions to suppress short channel effects. For example, for an n-type device, n-type doping such as As or P ion doping can be performed; for a p-type device, p-type doping such as B, BF 2 or In ion doping can be performed to form an extension region. In addition, for n-type devices, p-type implantation such as B, BF 2 or In ion implantation can be performed; for p-type devices, n-type implantation such as As or P ion implantation can be performed, followed by spike annealing activation at 900-1100°C Impurities form source and drain halo regions. Compared with performing this ion implantation operation in the direction facing the third side and the fourth side in the prior art, it is more convenient for practical operation, and also helps to reduce the distance between semiconductor substrates of adjacent devices, reduce the occupied area, and further reduce the manufacturing cost. The specific process of the first ion implantation operation, such as implantation energy, implantation dose, implantation times and doped particles, etc., can be flexibly adjusted according to product design, and will not be repeated here.
接着,如图9所示,可以在第二侧墙限定的源漏区外延生长另外的半导体层1030,以形成源极和漏极。在此,为了增强器件性能,外延生长的半导体层1030可以包括带应力的半导体材料。例如,对于p型器件,半导体层1030可以包括SiGe,Ge的原子百分比可以在约15%-75%之间;对于n型器件,半导体层1030可以包括Si:C,C的原子百分比约在0.2%-2%之间。优选地,在外延生长同时可以对半导体层1030进行原位掺杂。例如,对于p型器件,进行原位p型离子掺杂,例如B,掺杂剂量可为1×1019/cm3-1×1021/cm3;对于n型器件,进行原位n型离子掺杂,例如P,掺杂剂量可为1×1019/cm3-1×1021/cm3。外延的源极和漏极应力材料,可以使沟道区处于应力之下。例如,在p型器件中,可以产生压应力,在n型器件中,可以产生拉应力。这样,可以调节器件沟道区中的应力,从而进一步提高沟道区内载流子的迁移率。Next, as shown in FIG. 9 , another semiconductor layer 1030 can be epitaxially grown in the source and drain regions defined by the second spacer to form the source and drain. Here, in order to enhance device performance, the epitaxially grown semiconductor layer 1030 may include a stressed semiconductor material. For example, for a p-type device, the semiconductor layer 1030 can include SiGe, and the atomic percentage of Ge can be between about 15%-75%; for an n-type device, the semiconductor layer 1030 can include Si:C, and the atomic percentage of C is about 0.2 %-2%. Preferably, in-situ doping can be performed on the semiconductor layer 1030 during the epitaxial growth. For example, for p-type devices, in-situ p-type ion doping, such as B, the doping dose can be 1×10 19 /cm 3 -1×10 21 /cm 3 ; for n-type devices, in-situ n-type For ion doping, such as P, the doping dose can be 1×10 19 /cm 3 -1×10 21 /cm 3 . The epitaxial source and drain stress material can place the channel region under stress. For example, in p-type devices, compressive stress can be generated, and in n-type devices, tensile stress can be generated. In this way, the stress in the channel region of the device can be adjusted, thereby further improving the mobility of carriers in the channel region.
这里需要指出的是,源极和漏极也可在去除位于源漏区的停止层1006′后,不再去除半导体基体材料层1004′,而是采用向该半导体基体材料层1004′中执行离子注入操作后形成。在这种情况下,半导体基体材料层1004′位于源漏区中的部分直接充当源极和漏极。What needs to be pointed out here is that the source and the drain can also remove the semiconductor base material layer 1004' after removing the stop layer 1006' located in the source and drain regions, but instead use the method of carrying out ionization into the semiconductor base material layer 1004'. Formed after the injection operation. In this case, the portion of the semiconductor base material layer 1004' located in the source and drain regions directly serves as the source and drain.
接下来,可以形成栅极和空腔。具体地,首先如图10所示,在整个结构上形成第一电介质层1032如氧化物(例如,氧化硅),并对其进行平坦化处理例如CMP。该CMP停止于辅助掩模层中的第二辅助掩模层1024(例如,氮化硅)。然后,如图11所示,去除栅堆叠顶部的辅助掩模层,露出栅堆叠,并可以对栅堆叠进行修整,以形成栅极。具体地,例如可以通过RIE,去除第二辅助膜层1024(例如,氮化硅)和第一辅助膜层1022(例如,氧化硅),并可以去除部分高度的栅堆叠,形成栅极1020′。在竖直方向上,栅极1020′至少高于预备半导体基体1004′(用以形成沟道区),利于增加器件内沟道区的有效区域,进而提高沟道区内载流子的迁移率。Next, gates and cavities can be formed. Specifically, first, as shown in FIG. 10 , a first dielectric layer 1032 such as oxide (for example, silicon oxide) is formed on the entire structure, and planarization treatment such as CMP is performed on it. The CMP stops at the second auxiliary mask layer 1024 (eg, silicon nitride) in the auxiliary mask layer. Then, as shown in FIG. 11 , the auxiliary mask layer on the top of the gate stack is removed to expose the gate stack, and the gate stack may be trimmed to form a gate. Specifically, for example, the second auxiliary film layer 1024 (for example, silicon nitride) and the first auxiliary film layer 1022 (for example, silicon oxide) can be removed by RIE, and part of the height of the gate stack can be removed to form the gate 1020′ . In the vertical direction, the gate 1020' is at least higher than the preliminary semiconductor base 1004' (for forming the channel region), which is beneficial to increase the effective area of the channel region in the device, thereby increasing the mobility of carriers in the channel region .
接着,如图12所示,形成第二电介质层1034(例如,氧化硅),并对其进行平坦化处理如CMP,以露出保护层1010(例如,氮化硅)。该第二电介质层1034可以在为形成空腔而去除保护层1010时,减少已有结构所受的损伤。然后,如图13所示,以第二介质层1034为掩模,去除保护层1010、牺牲层1008、停止层1006′和预备半导体基体层1004′,形成空腔。Next, as shown in FIG. 12 , a second dielectric layer 1034 (for example, silicon oxide) is formed and planarized such as CMP to expose the protection layer 1010 (for example, silicon nitride). The second dielectric layer 1034 can reduce damage to existing structures when the protection layer 1010 is removed to form a cavity. Then, as shown in FIG. 13 , using the second dielectric layer 1034 as a mask, the protection layer 1010 , the sacrificial layer 1008 , the stop layer 1006 ′ and the preliminary semiconductor base layer 1004 ′ are removed to form a cavity.
事实上,空腔300的侧壁由第一侧墙1012和第二侧墙1028限定。第二电介质层1034中露出的开口(参见图12(a))与第一侧墙1012和第二侧墙1028限定的区域相对应。即使不采用第二介质层1034,也可以以第一侧墙1012和第二侧墙1028为掩模,来形成空腔。In fact, the side walls of the cavity 300 are defined by the first side wall 1012 and the second side wall 1028 . The opening exposed in the second dielectric layer 1034 (see FIG. 12( a )) corresponds to the area defined by the first sidewall 1012 and the second sidewall 1028 . Even if the second dielectric layer 1034 is not used, the cavity can be formed by using the first sidewall 1012 and the second sidewall 1028 as a mask.
形成空腔之后,预备半导体基体1004′成为半导体基体1004″。After the cavity is formed, the semiconductor body 1004' is prepared to become the semiconductor body 1004".
在此,为了减少沟道区底部的电流泄露,在形成空腔时,可以进一步去除一部分半导体层1002′,使得半导体基体1004″的底部与半导体层1002′至少部分地隔开,乃至可以完全隔开,图12中示出了这种情况。Here, in order to reduce the current leakage at the bottom of the channel region, when forming the cavity, a part of the semiconductor layer 1002' can be further removed, so that the bottom of the semiconductor base 1004" is at least partially separated from the semiconductor layer 1002', and can even be completely separated. On, this situation is shown in Figure 12.
另外,为了增强器件性能,可以如图14所示,向空腔300内执行第二离子注入操作(如图中箭头所示),以在半导体基体1004″(用以形成沟道区)中形成超陡后退阱。例如,对于n型器件,可以形成p型超陡后退阱;对于p型器件,可以形成n型超陡后退阱。这种超陡后退阱可以减薄耗尽层,进一步减小短沟道效应。第二离子注入操作的具体工艺,如注入能量、注入剂量、注入次数及掺杂粒子等,均可根据产品设计灵活调整,不再赘述。In addition, in order to enhance the performance of the device, as shown in FIG. 14, a second ion implantation operation (as shown by the arrow in the figure) can be performed into the cavity 300 to form a Ultrasteep receding well. For example, for n-type devices, p-type ultra-steep receding wells can be formed; for p-type devices, n-type ultra-steep receding wells can be formed. This ultra-steep receding well can thin the depletion layer and further Small short channel effect. The specific process of the second ion implantation operation, such as implantation energy, implantation dose, implantation times and doped particles, etc., can be flexibly adjusted according to product design, and will not be repeated here.
可选地,如图15所示,可以在空腔内填充电介质材料1036。例如,可以先在淀积一层薄氧化物(未示出),然后再淀积氮化物,并进行回蚀,使得它们留于空腔内。至此,已基本完成了根据该实施例的半导体器件的制作。Optionally, as shown in FIG. 15 , a dielectric material 1036 may be filled in the cavity. For example, a thin layer of oxide (not shown) may be deposited first, followed by nitride, and etched back so that they remain within the cavity. So far, the fabrication of the semiconductor device according to this embodiment has been basically completed.
为了改善器件的电接触性能,可以在栅极和/或源漏极上形成金属硅化物。例如,如图16所示,可以去除第二介质层1034和至少一部分第一电介质层1032,以露出栅极和源漏极。然后,如图17所示,通过金属硅化工艺在栅极和/或源漏极上形成金属硅化物1038如NiPtSi。金属硅化工艺本身对于本领域技术人员而言是熟知的,在此不再赘述。In order to improve the electrical contact performance of the device, metal silicide can be formed on the gate and/or the source and drain. For example, as shown in FIG. 16 , the second dielectric layer 1034 and at least a part of the first dielectric layer 1032 can be removed to expose the gate, source and drain. Then, as shown in FIG. 17 , a metal silicide 1038 such as NiPtSi is formed on the gate and/or the source and drain through a metal silicide process. The metal silicidation process itself is well known to those skilled in the art and will not be repeated here.
图17(d)示出了根据上述流程制造得到的半导体器件的透视图。在图17(d)中,为了清楚起见,并没有示出第一侧墙、第二侧墙和残留的第一电介质层。Fig. 17(d) shows a perspective view of a semiconductor device manufactured according to the above-mentioned flow. In FIG. 17( d ), for the sake of clarity, the first spacer, the second spacer and the remaining first dielectric layer are not shown.
根据本发明的另一实施例,例如可以对图17所示的结构进行平坦化处理,从而得到如图18所示的半导体器件。另外,在图18所示的器件中,并未形成上述隔离层。According to another embodiment of the present invention, for example, the structure shown in FIG. 17 may be planarized to obtain a semiconductor device as shown in FIG. 18 . In addition, in the device shown in FIG. 18, the above-mentioned isolation layer was not formed.
在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。In the above description, technical details such as patterning and etching of each layer are not described in detail. However, those skilled in the art should understand that various technical means can be used to form layers, regions, etc. of desired shapes. In addition, in order to form the same structure, those skilled in the art can also design a method that is not exactly the same as the method described above.
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本发明的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。The embodiments of the present disclosure have been described above. However, these examples are for illustrative purposes only and are not intended to limit the scope of the present disclosure. The scope of the present disclosure is defined by the appended claims and their equivalents. Various substitutions and modifications can be made by those skilled in the art without departing from the scope of the present invention, and these substitutions and modifications should all fall within the scope of the present disclosure.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210333081.8A CN103681840B (en) | 2012-09-10 | 2012-09-10 | Semiconductor device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210333081.8A CN103681840B (en) | 2012-09-10 | 2012-09-10 | Semiconductor device and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103681840A CN103681840A (en) | 2014-03-26 |
CN103681840B true CN103681840B (en) | 2017-06-16 |
Family
ID=50318790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210333081.8A Active CN103681840B (en) | 2012-09-10 | 2012-09-10 | Semiconductor device and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103681840B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105632888A (en) * | 2014-10-30 | 2016-06-01 | 中国科学院微电子研究所 | Method for removing native oxide layer of FinFet device before source-drain epitaxy |
US20160247919A1 (en) * | 2015-02-23 | 2016-08-25 | Globalfoundries Inc. | Channel last replacement flow for bulk finfets |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102263131A (en) * | 2010-05-25 | 2011-11-30 | 中国科学院微电子研究所 | A kind of semiconductor device and its forming method |
CN102315267A (en) * | 2010-07-01 | 2012-01-11 | 中国科学院微电子研究所 | Semiconductor device and forming method thereof |
CN102479821A (en) * | 2010-11-30 | 2012-05-30 | 中国科学院微电子研究所 | Semiconductor device and method of forming the same |
CN102569395A (en) * | 2010-12-31 | 2012-07-11 | 中国科学院微电子研究所 | Semiconductor device and method of forming the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102315269B (en) * | 2010-07-01 | 2013-12-25 | 中国科学院微电子研究所 | Semiconductor device and forming method thereof |
CN102347350A (en) * | 2010-07-30 | 2012-02-08 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
-
2012
- 2012-09-10 CN CN201210333081.8A patent/CN103681840B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102263131A (en) * | 2010-05-25 | 2011-11-30 | 中国科学院微电子研究所 | A kind of semiconductor device and its forming method |
CN102315267A (en) * | 2010-07-01 | 2012-01-11 | 中国科学院微电子研究所 | Semiconductor device and forming method thereof |
CN102479821A (en) * | 2010-11-30 | 2012-05-30 | 中国科学院微电子研究所 | Semiconductor device and method of forming the same |
CN102569395A (en) * | 2010-12-31 | 2012-07-11 | 中国科学院微电子研究所 | Semiconductor device and method of forming the same |
Also Published As
Publication number | Publication date |
---|---|
CN103681840A (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10930764B2 (en) | Extension region for a semiconductor device | |
KR102226997B1 (en) | Integrated circuit devices including finfets and methods of forming the same | |
US10868179B2 (en) | Fin-type field effect transistor structure and manufacturing method thereof | |
US8237197B2 (en) | Asymmetric channel MOSFET | |
US11728400B2 (en) | Semiconductor structure | |
CN103021854B (en) | Method for manufacturing fin field effect transistor and semiconductor structure formed by method | |
US20160247807A1 (en) | Fin field effect transistor | |
CN107887442A (en) | Semiconductor device, method of manufacturing the same, and electronic apparatus including the same | |
US20150137181A1 (en) | Stress inducing contact metal in finfet cmos | |
CN109427582B (en) | Semiconductor structure and method of forming the same | |
US9773871B2 (en) | Fin field effect transistor and method for fabricating the same | |
CN103579295B (en) | Semiconductor device and method for manufacturing the same | |
US20150206953A1 (en) | Method and structure to enhance gate induced strain effect in multigate device | |
CN102315269B (en) | Semiconductor device and forming method thereof | |
CN111223778B (en) | Semiconductor structure and forming method thereof | |
CN111223779A (en) | Semiconductor structure and forming method thereof | |
CN103000664B (en) | Semiconductor device and method for manufacturing the same | |
CN107123670A (en) | Fin formula field effect transistor and forming method thereof | |
CN103378129B (en) | Semiconductor structure and manufacturing method thereof | |
CN103681840B (en) | Semiconductor device and method for manufacturing the same | |
CN104217948A (en) | Semiconductor manufacturing method | |
CN104218081A (en) | Semiconductor device and method for manufacturing the same | |
CN105336787B (en) | Semiconductor device and method of manufacturing the same | |
CN111106064B (en) | Semiconductor structure and method of forming the same | |
CN115116948A (en) | Method of forming a semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |