[go: up one dir, main page]

CN103296163B - led - Google Patents

led Download PDF

Info

Publication number
CN103296163B
CN103296163B CN201310061155.1A CN201310061155A CN103296163B CN 103296163 B CN103296163 B CN 103296163B CN 201310061155 A CN201310061155 A CN 201310061155A CN 103296163 B CN103296163 B CN 103296163B
Authority
CN
China
Prior art keywords
layer
quantum
epitaxy
type semiconductor
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310061155.1A
Other languages
Chinese (zh)
Other versions
CN103296163A (en
Inventor
傅毅耕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lite On Technology Corp
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW102103818A external-priority patent/TWI549317B/en
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to CN201510547355.7A priority Critical patent/CN105047773B/en
Publication of CN103296163A publication Critical patent/CN103296163A/en
Application granted granted Critical
Publication of CN103296163B publication Critical patent/CN103296163B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Devices (AREA)

Abstract

本发明公开多种发光二极管,发光二极管包括蓝宝石基板、N型半导体层、有源层、P型半导体层、第一电极与第二电极。N型半导体层位于蓝宝石基板上。有源层具有缺陷密度为DD≥2×107/cm3的活性区,有源层位于N型半导体层与P型半导体层之间。有源层发出的光波长λ满足222nm≤λ≤405nm,有源层包括i层的量子磊层及(i-1)层量子阱层。各量子阱层位于任意两层量子磊层之间,i为大于等于2的自然数。其中一种发光二极管的有源层中,掺杂N型杂质于量子磊层中的至少k层,k为大于等于1的自然数,当i为偶数时,k≥i/2,当i为奇数时,k≥(i-1)/2。第一电极与第二电极分别位于N型半导体层与P半导体层上。

The invention discloses a variety of light-emitting diodes. The light-emitting diodes include a sapphire substrate, an N-type semiconductor layer, an active layer, a P-type semiconductor layer, a first electrode and a second electrode. The N-type semiconductor layer is located on the sapphire substrate. The active layer has an active area with a defect density of DD≥2×10 7 /cm 3 , and the active layer is located between the N-type semiconductor layer and the P-type semiconductor layer. The wavelength λ of the light emitted by the active layer satisfies 222nm≤λ≤405nm. The active layer includes an i-layer quantum Lei layer and an (i-1) quantum well layer. Each quantum well layer is located between any two quantum Lei layers, and i is a natural number greater than or equal to 2. In the active layer of one of the light-emitting diodes, N-type impurities are doped in at least k layers in the quantum Lei layer. k is a natural number greater than or equal to 1. When i is an even number, k≥i/2, and when i is an odd number. When, k≥(i-1)/2. The first electrode and the second electrode are respectively located on the N-type semiconductor layer and the P-type semiconductor layer.

Description

发光二极管led

技术领域technical field

本发明涉及一种发光二极管,特别是一种可提高发光效率的发光二极管(lightemittingdiode,简称LED)。The invention relates to a light emitting diode, in particular to a light emitting diode (light emitting diode, LED for short) which can improve luminous efficiency.

背景技术Background technique

发光二极管是一种半导体元件,主要是由III~V族元素化合物半导体材料所构成。因为这种半导体材料具有将电能转换为光的特性,所以对这种半导体材料施加电流时,其内部的电子会与空穴结合,并将过剩的能量以光的形式释出,而达成发光的效果。A light-emitting diode is a semiconductor element, mainly composed of III-V group element compound semiconductor materials. Because this semiconductor material has the characteristic of converting electrical energy into light, when an electric current is applied to this semiconductor material, the electrons inside it will combine with holes, and the excess energy will be released in the form of light to achieve luminescence. Effect.

一般而言,由于发光二极管中作为磊晶层材料的氮化镓的晶格常数与蓝宝石基板的晶格常数之间存在不匹配的问题,其晶格常数不匹配的程度约为16%,致使大量的缺陷产生于晶格生长的接面,进而导致发光强度大幅衰减。虽然发光二极管中因氮化镓的晶体生长过程中无可避免地具有一定的缺陷。然而,当发光二极管所发出的光波长为450nm时,由于已知晶格应力会释放在缺陷附近而形成铟自聚区域,当载子在移动到缺陷之前容易进入到铟自聚的区域,形成所谓的局部效应(localizedeffect)。由于铟自聚的区域存在量子局限效应而可提升载子的复合效率,因此即使氮化镓发光二极管因晶体生长工艺的限制而在活性区存在着高缺陷密度,但对于光波长450nm而言仍可维持一定程度的发光效率。Generally speaking, due to the mismatch between the lattice constant of gallium nitride used as the material of the epitaxial layer in the light-emitting diode and the lattice constant of the sapphire substrate, the degree of the lattice constant mismatch is about 16%, resulting in A large number of defects are generated at the junction of lattice growth, which leads to a large attenuation of luminous intensity. Although there are inevitably certain defects in the crystal growth process of gallium nitride in light-emitting diodes. However, when the wavelength of the light emitted by the LED is 450nm, since it is known that the lattice stress will be released near the defect to form an indium self-accumulation region, when carriers easily enter the indium self-accumulation region before moving to the defect, forming The so-called localized effect (localized effect). Due to the quantum confinement effect in the self-assembled region of indium, the recombination efficiency of carriers can be improved. Therefore, even though the gallium nitride light-emitting diode has a high defect density in the active region due to the limitation of the crystal growth process, it still has a light wavelength of 450nm. A certain level of luminous efficiency can be maintained.

但是,当发光二极管的发光波段逐渐由蓝光移到紫外光波段时,由于有源层中的铟含量逐渐减少,使得铟自聚的形成区域也相对的变少,致使发光二极管中的载子容易移到缺陷处产生非辐射复合,导致发光二极管在近紫外光的发光效率大幅降低;再者,氮化物半导体本身存在着极化场效应导致有源层的能带弯曲,电子空穴对不易被局限在量子阱层里面,因而无法有效地辐射复合。此外,电子更容易溢流(overflow)到P型半导体层导致发光强度下降,再者,由于空穴的迁移率小于电子的迁移率,当空穴从P型半导体层注入到有源层时,大多数的空穴被局限在最靠近P型半导体层的量子阱层里面,不易均匀分布全部的量子阱层里面,导致发光强度下降,因此业界极力开发具有高发光强度的发光二极管。However, when the light-emitting band of the light-emitting diode gradually shifts from the blue light to the ultraviolet light band, since the indium content in the active layer gradually decreases, the formation area of indium self-agglomeration is relatively reduced, which makes the carriers in the light-emitting diode easy to Moved to the defect to produce non-radiative recombination, resulting in a significant reduction in the luminous efficiency of the light-emitting diode in the near-ultraviolet light; moreover, the nitride semiconductor itself has a polarization field effect that causes the energy band of the active layer to bend, and the electron-hole pair is not easy to be absorbed. Confined in the quantum well layer, it cannot effectively radiatively recombine. In addition, electrons are more likely to overflow (overflow) to the P-type semiconductor layer, resulting in a decrease in luminous intensity. Furthermore, since the mobility of holes is smaller than that of electrons, when holes are injected from the P-type semiconductor layer into the active layer, the Most of the holes are confined in the quantum well layer closest to the P-type semiconductor layer, and it is not easy to distribute uniformly in all the quantum well layers, resulting in a decrease in luminous intensity. Therefore, the industry strives to develop light-emitting diodes with high luminous intensity.

发明内容Contents of the invention

本发明提出一种发光二极管,其通过使量子磊层中掺有N型杂质的量子磊层的层数符合特定比例,可提升发光二极管在222nm~405nm发光波段的发光效率。The invention proposes a light-emitting diode, which can improve the luminous efficiency of the light-emitting diode in the 222nm-405nm light-emitting wavelength band by making the number of quantum epitaxy layers doped with N-type impurities in the quantum epitaxy layer meet a specific ratio.

本发明提出另一种发光二极管,其通过使掺杂有N型杂质的量子磊层中最靠近P型半导体者具有最小的掺杂浓度,可提升发光二极管在222nm~405nm发光波段的发光效率。The present invention proposes another light-emitting diode, which can improve the luminous efficiency of the light-emitting diode in the 222nm-405nm light-emitting band by making the quantum epitaxy layer doped with N-type impurities closest to the P-type semiconductor have the minimum doping concentration.

本发明再提出一种发光二极管,其通过使掺杂有N型杂质的量子磊层的掺杂浓度满足特定关系,可提升发光二极管在222nm~405nm发光波段的发光效率。The present invention further proposes a light-emitting diode, which can improve the luminous efficiency of the light-emitting diode in the 222nm-405nm light-emitting band by making the doping concentration of the quantum epitaxial layer doped with N-type impurities satisfy a specific relationship.

本发明提出一种发光二极管,其包括基板、N型半导体层、有源层、P型半导体层、第一电极以及一第二电极。N型半导体层位于基板上。有源层具有一缺陷密度为DD的活性区,其中DD≥2×107/cm3。位于N型半导体层的部分区域上,有源层发出的光波长λ满足222nm≤λ≤405nm,有源层包括i层的量子磊层以及(i-1)层量子阱层,各量子阱层位于任意两层量子磊层之间,且i为大于等于2的自然数,其中掺杂N型杂质于量子磊层中的至少k层,k为大于等于1的自然数,当i为偶数时,k≥i/2,当i为奇数时,k≥(i-1)/2。P型半导体层位于有源层上。第一电极位于N型半导体层的部分区域上,且第二电极位于P半导体层的部分区域上。The invention provides a light emitting diode, which includes a substrate, an N-type semiconductor layer, an active layer, a P-type semiconductor layer, a first electrode and a second electrode. The N-type semiconductor layer is located on the substrate. The active layer has an active region with a defect density of DD, wherein DD≥2×10 7 /cm 3 . Located on a part of the N-type semiconductor layer, the wavelength λ of the light emitted by the active layer satisfies 222nm≤λ≤405nm. The active layer includes the i-layer quantum epitaxy layer and the (i-1) quantum well layer. Each quantum well layer Located between any two quantum epitaxy layers, and i is a natural number greater than or equal to 2, wherein at least k layers of the quantum epitaxy layer are doped with N-type impurities, k is a natural number greater than or equal to 1, when i is an even number, k ≥i/2, when i is an odd number, k≥(i-1)/2. The P-type semiconductor layer is on the active layer. The first electrode is located on a partial area of the N-type semiconductor layer, and the second electrode is located on a partial area of the P semiconductor layer.

本发明提出另一种发光二极管,其包括基板、N型半导体层、有源层、P型半导体层、第一电极以及第二电极。N型半导体层位于基板上。有源层具有一缺陷密度为DD的活性区,其中DD≥2×107/cm3。有源层位于N型半导体层的部分区域上且发出的光波长λ满足222nm≤λ≤405nm,有源层包括i层的量子磊层以及(i-1)层量子阱层,各量子阱层位于任意两层量子磊层之间,且i为大于等于2的自然数,其中掺杂N型杂质于量子磊层中的至少k层,k为大于等于1的自然数,当i为偶数时,k≥i/2,当i为奇数时,k≥(i-1)/2。P型半导体层位于有源层上,且k层量子磊层中最靠近P型半导体的量子磊层的掺杂浓度小于等于k层量子磊层中其他量子磊层的掺杂浓度。第一电极位于N型半导体层的部分区域上,且第二电极位于P半导体层的部分区域上。The present invention provides another light emitting diode, which includes a substrate, an N-type semiconductor layer, an active layer, a P-type semiconductor layer, a first electrode and a second electrode. The N-type semiconductor layer is located on the substrate. The active layer has an active region with a defect density of DD, wherein DD≥2×10 7 /cm 3 . The active layer is located on a part of the N-type semiconductor layer and the emitted light wavelength λ satisfies 222nm≤λ≤405nm. The active layer includes an i-layer quantum epitaxy layer and an (i-1) quantum well layer. Each quantum well layer Located between any two quantum epitaxy layers, and i is a natural number greater than or equal to 2, wherein at least k layers of the quantum epitaxy layer are doped with N-type impurities, k is a natural number greater than or equal to 1, when i is an even number, k ≥i/2, when i is an odd number, k≥(i-1)/2. The P-type semiconductor layer is located on the active layer, and the doping concentration of the quantum epitaxy layer closest to the P-type semiconductor in the k-layer quantum epitaxy layer is less than or equal to the doping concentration of other quantum epitaxy layers in the k-layer quantum epitaxy layer. The first electrode is located on a partial area of the N-type semiconductor layer, and the second electrode is located on a partial area of the P semiconductor layer.

本发明再提出一种发光二极管,其包括基板、N型半导体层、有源层、P型半导体层、第一电极以及第二电极。活性区具有一缺陷密度DD,其中DD≥2×107/cm3。N型半导体层位于基板上。一有源层,位于N型半导体层的部分区域上,有源层发出的光波长λ满足222nm≤λ≤405nm,有源层包括i层的量子磊层以及(i-1)层量子阱层,各量子阱层位于任意两层量子磊层之间,且i为大于等于2的自然数,其中掺杂N型杂质于量子磊层中的至少k层,k为大于等于1的自然数,当i为偶数时,k≥i/2,当i为奇数时,k≥(i-1)/2,k层量子磊层的掺杂浓度为5×1017/cm3至1×1019/cm3。P型半导体层位于有源层上。第一电极以及一第二电极,其中第一电极位于N型半导体层的部分区域上,且第二电极位于P半导体层的部分区域上。The present invention further provides a light emitting diode, which includes a substrate, an N-type semiconductor layer, an active layer, a P-type semiconductor layer, a first electrode and a second electrode. The active region has a defect density DD, wherein DD≥2×10 7 /cm 3 . The N-type semiconductor layer is located on the substrate. An active layer, located on a part of the N-type semiconductor layer, the light wavelength λ emitted by the active layer satisfies 222nm≤λ≤405nm, and the active layer includes an i-layer quantum epitaxy layer and an (i-1) quantum well layer , each quantum well layer is located between any two quantum epitaxy layers, and i is a natural number greater than or equal to 2, wherein doping N-type impurities in at least k layers in the quantum epitaxy layer, k is a natural number greater than or equal to 1, when i When it is an even number, k≥i/2, when i is an odd number, k≥(i-1)/2, the doping concentration of the k-layer quantum epitaxy layer is 5×10 17 /cm 3 to 1×10 19 /cm 3 . The P-type semiconductor layer is on the active layer. The first electrode and a second electrode, wherein the first electrode is located on a partial area of the N-type semiconductor layer, and the second electrode is located on a partial area of the P semiconductor layer.

基于上述,本发明的发光二极管中,通过使有源层中掺有N型杂质的量子磊层的层数符合特定关系、或通过使有源层的掺杂有N型杂质的量子磊层中最靠近P型半导体者具有最小的掺杂浓度、或通过使掺杂有N型杂质的量子磊层的掺杂浓度满足特定关系,使得N型杂质可以抚平缺陷对载子的影响,提升发光二极管的载子的复合效率,因此本发明的发光二极管通过上述任一技术手段即可大幅地提升发光二极管在222nm~405nm发光效率。Based on the above, in the light-emitting diode of the present invention, by making the number of quantum epitaxy layers doped with N-type impurities in the active layer conform to a specific relationship, or by making the quantum epitaxy layers doped with N-type impurities in the active layer The one closest to the P-type semiconductor has the smallest doping concentration, or the doping concentration of the quantum epitaxial layer doped with N-type impurities satisfies a specific relationship, so that the N-type impurities can smooth the influence of defects on carriers and improve luminescence The recombination efficiency of the carriers of the diode, therefore, the light emitting diode of the present invention can greatly improve the luminous efficiency of the light emitting diode at 222nm-405nm by using any of the above technical means.

本发明提出一种发光二极管,其通过在最靠近P型半导体层的三层量子磊层中,使最靠近P型半导体层的量子磊层大于其余两层量子磊层的厚度,可使电子空穴对均匀分布在有源层的量子磊层中,由此可提升发光二极管在222nm~405nm发光波段的发光强度。The present invention proposes a light-emitting diode. Among the three quantum epitaxy layers closest to the P-type semiconductor layer, the thickness of the quantum epitaxy layer closest to the P-type semiconductor layer is greater than the thickness of the other two quantum epitaxy layers, so that electrons can be empty. The hole pairs are evenly distributed in the quantum epitaxial layer of the active layer, thereby improving the luminous intensity of the light-emitting diode in the 222nm-405nm luminous wavelength band.

本发明提出另一种发光二极管,其通过使最靠近P型半导体层的三层量子磊层的厚度符合特定关系,可使电子空穴对均匀分布在有源层的量子磊层中,由此可提升发光二极管在222nm~405nm发光波段的发光强度。The present invention proposes another light-emitting diode, which can make electron-hole pairs evenly distributed in the quantum epitaxy layers of the active layer by making the thicknesses of the three quantum epitaxy layers closest to the P-type semiconductor layer conform to a specific relationship, thereby The luminous intensity of the light-emitting diode in the 222nm-405nm luminous band can be improved.

本发明提出一种发光二极管,其包括一基板、一N型半导体层与一P型半导体层、一有源层以及一第一电极以及一第二电极。N型半导体层位于基板与P型半导体层之间。有源层位于N型半导体层以及P型半导体层之间,有源层发出的光波长λ满足222nm≤λ≤405nm,有源层包括i层的量子磊层以及(i-1)层量子阱层,各量子阱层位于任意两层量子磊层之间,且i为大于等于2的自然数,i层中各量子磊层的厚度自P型半导体侧起算依序为T1、T2、T3...Ti,其中T1大于T2与T3或T1>T2=T3。第一电极位于N型半导体层的部分区域上,且第二电极位于P半导体层的部分区域上。The invention provides a light-emitting diode, which includes a substrate, an N-type semiconductor layer and a P-type semiconductor layer, an active layer, a first electrode, and a second electrode. The N-type semiconductor layer is located between the substrate and the P-type semiconductor layer. The active layer is located between the N-type semiconductor layer and the P-type semiconductor layer. The light wavelength λ emitted by the active layer satisfies 222nm≤λ≤405nm. The active layer includes the i-layer quantum epitaxy layer and the (i-1) layer quantum well Each quantum well layer is located between any two quantum epitaxial layers, and i is a natural number greater than or equal to 2. The thickness of each quantum epitaxial layer in the i layer is T 1 , T 2 , T in sequence from the P-type semiconductor side. 3 . . . T i , wherein T 1 is greater than T 2 and T 3 or T 1 >T 2 =T 3 . The first electrode is located on a partial area of the N-type semiconductor layer, and the second electrode is located on a partial area of the P semiconductor layer.

本发明提出另一种发光二极管,其包括一基板、一N型半导体层与一P型半导体层、一有源层以及一第一电极以及一第二电极。N型半导体层位于基板与P型半导体层之间。有源层位于N型半导体层以及P型半导体层之间,有源层发出的光波长λ满足222nm≤λ≤405nm,有源层包括i层的量子磊层以及(i-1)层量子阱层,各量子阱层位于任意两层量子磊层之间,且i为大于等于2的自然数,i层中各量子磊层的厚度自P型半导体侧起算依序为T1、T2、T3...Ti,其中i层量子磊层中厚度满足:T1=T2>T3或T1>T2>T3。。第一电极与第二电极分别位于N型半导体层的部分区域上与P半导体层的部分区域上。The present invention proposes another light emitting diode, which includes a substrate, an N-type semiconductor layer and a P-type semiconductor layer, an active layer, a first electrode, and a second electrode. The N-type semiconductor layer is located between the substrate and the P-type semiconductor layer. The active layer is located between the N-type semiconductor layer and the P-type semiconductor layer. The light wavelength λ emitted by the active layer satisfies 222nm≤λ≤405nm. The active layer includes the i-layer quantum epitaxy layer and the (i-1) layer quantum well Each quantum well layer is located between any two quantum epitaxial layers, and i is a natural number greater than or equal to 2. The thickness of each quantum epitaxial layer in the i layer is T 1 , T 2 , T in sequence from the P-type semiconductor side. 3 ... T i , wherein the thickness of the i-layer quantum epitaxy layer satisfies: T 1 =T 2 >T 3 or T 1 >T 2 >T 3 . . The first electrode and the second electrode are respectively located on a partial area of the N-type semiconductor layer and a partial area of the P semiconductor layer.

基于上述,本发明的发光二极管中,通过在最靠近P型半导体层的三量子磊层中,使最靠近P型半导体层的量子磊层大于其余两层量子磊层的厚度,或通过使有源层中量子磊层的厚度符合特定关系,通过上述任一技术手段,可增加电子空穴对均匀分布在有源层里,增加电子空穴对复合机率,因此本发明的发光二极管通过上述任一技术手段即可大幅地提升发光二极管在222nm~405nm发光强度。Based on the above, in the light-emitting diode of the present invention, among the three quantum epitaxy layers closest to the P-type semiconductor layer, the thickness of the quantum epitaxy layer closest to the P-type semiconductor layer is greater than the thickness of the remaining two quantum epitaxy layers, or by making the thickness of the quantum epitaxy layer closest to the P-type semiconductor layer The thickness of the quantum epitaxial layer in the source layer conforms to a specific relationship. Through any of the above-mentioned technical means, the uniform distribution of electron-hole pairs in the active layer can be increased, and the recombination probability of electron-hole pairs can be increased. A technical means can greatly increase the luminous intensity of light-emitting diodes at 222nm-405nm.

附图说明Description of drawings

图1为本发明的一实施例中一种发光二极管的剖面示意图;1 is a schematic cross-sectional view of a light emitting diode in an embodiment of the present invention;

图2A为本发明一实施例的发光二极管中一种单一量子阱有源层的剖面示意图;2A is a schematic cross-sectional view of a single quantum well active layer in a light emitting diode according to an embodiment of the present invention;

图2B为本发明一实施例的发光二极管中一种多重量子阱有源层的剖面示意图;2B is a schematic cross-sectional view of a multiple quantum well active layer in a light emitting diode according to an embodiment of the present invention;

图3为发光二极管的有源层的放大剖面示意图;3 is an enlarged schematic cross-sectional view of an active layer of a light emitting diode;

图4A显示了本发明的发光二极管的比较例;Fig. 4 A has shown the comparative example of the light-emitting diode of the present invention;

图4B显示了本发明的发光二极管的实施例;Figure 4B shows an embodiment of a light emitting diode of the present invention;

图5A至图5D分别表示当改变图3的掺杂量子磊层的层数时,仿真对发光二极管的电子浓度的关系图;FIGS. 5A to 5D respectively show the relational diagrams of the electron concentration of the simulation to the light-emitting diode when the number of doped quantum epitaxy layers in FIG. 3 is changed;

图6A至图6D分别表示当改变图3的掺杂量子磊层的层数时,仿真对发光二极管的空穴浓度的关系图;FIGS. 6A to 6D respectively show the relational diagrams of the simulation versus the hole concentration of the light-emitting diode when the number of layers of the doped quantum epitaxy layer in FIG. 3 is changed;

图7A至图7D分别表示当改变图3的掺杂量子磊层的层数时,仿真对发光二极管的电子空穴复合机率的关系图;FIGS. 7A to 7D respectively show the relationship diagrams of the simulation to the electron-hole recombination probability of the light-emitting diode when the number of doped quantum epitaxy layers in FIG. 3 is changed;

图8A至图8D分别表示当改变图3的掺杂量子磊层的层数时,仿真对发光二极管的非辐射复合机率的关系图;FIGS. 8A to 8D respectively show the relational diagrams of the simulation to the non-radiative recombination probability of the light-emitting diode when the number of layers of the doped quantum epitaxy layer in FIG. 3 is changed;

图9A为发光二极管的量子磊层中不同掺杂层数对电流-光输出功率曲线的关系图;FIG. 9A is a graph showing the relationship between the current-light output power curve of different doped layers in the quantum epitaxy layer of the light-emitting diode;

图9B为发光二极管的量子磊层中不同掺杂层数对电流-电压曲线的关系图;FIG. 9B is a graph showing the relationship between different numbers of doped layers and the current-voltage curve in the quantum epitaxial layer of the light-emitting diode;

图10A为发光二极管中的量子磊层中不同掺杂浓度对电流-光输出功率曲线的关系图;10A is a graph showing the relationship between different doping concentrations in the quantum epitaxial layer in the light emitting diode and the current-light output power curve;

图10B为发光二极管的量子磊层中不同掺杂浓度对电流-电压曲线的关系图;FIG. 10B is a graph showing the relationship between different doping concentrations and current-voltage curves in the quantum epitaxial layer of the light emitting diode;

图11A至图11C分别为本发明一实施例中几种发光二极管的结构设计图;11A to 11C are structural design diagrams of several light-emitting diodes in an embodiment of the present invention;

图12为图11A至图11C中各发光二极管的发光强度仿真图;Fig. 12 is a simulation diagram of the luminous intensity of each light emitting diode in Fig. 11A to Fig. 11C;

图13A至图13C分别表示图11A至图11C中各发光二极管的电子与空穴浓度仿真图;FIGS. 13A to 13C respectively represent the electron and hole concentration simulation diagrams of the light-emitting diodes in FIGS. 11A to 11C ;

图14A与图14B分别为图11B与图11C中的发光二极管的能带仿真图;FIG. 14A and FIG. 14B are energy band simulation diagrams of the light-emitting diodes in FIG. 11B and FIG. 11C respectively;

图15为图11A至图11C中各发光二极管的电子电流密度仿真图;Fig. 15 is a simulation diagram of electron current density of each light emitting diode in Fig. 11A to Fig. 11C;

图16为表2的各发光二极管中光输出曲线对注入电流图;Fig. 16 is a graph of light output curve versus injection current in each light emitting diode in Table 2;

图17为本发明的发光二极管的一种实施方式;Fig. 17 is an embodiment of the light emitting diode of the present invention;

图18为本发明的发光二极管的另一种实施方式;Fig. 18 is another embodiment of the light emitting diode of the present invention;

图19为本发明的发光二极管的再一种实施方式。Fig. 19 is another embodiment of the light emitting diode of the present invention.

【主要元件符号说明】[Description of main component symbols]

200、200A-200I、I-IX:发光二极管200, 200A-200I, I-IX: LED

210:基板210: Substrate

212:氮化物半导体披覆层212: Nitride semiconductor cladding layer

220:N型半导体层220: N-type semiconductor layer

222:第一N型掺杂氮化镓层222: the first N-type doped gallium nitride layer

224:第二N型掺杂氮化镓层224: the second N-type doped gallium nitride layer

230:有源层230: active layer

230A:单一量子阱有源层230A: Single quantum well active layer

230B:多重量子阱有源层230B: multiple quantum well active layer

232、232a、232b、232c、232d、232e、232f:量子磊层232, 232a, 232b, 232c, 232d, 232e, 232f: quantum epitaxy layer

234、234a、234b、234c、234d、234e:量子阱层234, 234a, 234b, 234c, 234d, 234e: quantum well layer

240:P型半导体层240: P-type semiconductor layer

242:第一P型掺杂氮化镓层242: the first p-type doped gallium nitride layer

244:第二P型掺杂氮化镓层244: The second p-type doped gallium nitride layer

250:第一电极250: first electrode

260:第二电极260: second electrode

T1、T2、T3、…、Ti:量子磊层的厚度T 1 , T 2 , T 3 , ..., T i : the thickness of the quantum epitaxy layer

310:接触层310: contact layer

320:反射层320: reflective layer

330:接合层330: bonding layer

340:承载基板340: Carrier substrate

具体实施方式detailed description

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.

图1为本发明的一实施例中一种发光二极管的剖面示意图。FIG. 1 is a schematic cross-sectional view of a light emitting diode in an embodiment of the present invention.

请参照图1,发光二极管200包括基板210、N型半导体层220、有源层230、P型半导体层240、以及第一电极250与第二电极260,而基板210例如是蓝宝石基板。具体来说,于蓝宝石基板210的一表面上依序形成氮化物半导体披覆层212(例如是未掺杂的氮化镓)、N型半导体层220、有源层230以及P型半导体层240的叠层,有源层230位于N型半导体层220与P型半导体层240之间,N型半导体层220可包含依序位于氮化物半导体披覆层212上的第一N型掺杂氮化镓层222以及第二N型掺杂氮化镓层224的叠层,P型半导体层240可包含依序位于有源层230上的第一P型掺杂氮化镓层242以及第二P型掺杂氮化镓层244的叠层,其中第一N型掺杂氮化镓层222与第二N型掺杂氮化镓层224之间、或者第一P型掺杂氮化镓层242与第二P型掺杂氮化镓层244之间的差异可为厚度不同或是掺杂浓度不同。此外,N型半导体层220与P型半导体层240的材料例如为氮化铝镓,在此领域的技术人员可以依实际需求来选择所生长的氮化物半导体披覆层212、第一N/P型掺杂氮化镓层222、242、第二N/P型掺杂氮化镓层224、244的厚度、掺杂浓度和铝含量,本发明并不以此为限。Referring to FIG. 1 , the LED 200 includes a substrate 210 , an N-type semiconductor layer 220 , an active layer 230 , a P-type semiconductor layer 240 , and a first electrode 250 and a second electrode 260 , and the substrate 210 is, for example, a sapphire substrate. Specifically, a nitride semiconductor coating layer 212 (for example, undoped gallium nitride), an N-type semiconductor layer 220, an active layer 230, and a P-type semiconductor layer 240 are sequentially formed on a surface of the sapphire substrate 210. The active layer 230 is located between the N-type semiconductor layer 220 and the P-type semiconductor layer 240, and the N-type semiconductor layer 220 may include the first N-type doped nitride layer sequentially located on the nitride semiconductor cladding layer 212. The gallium layer 222 and the stack of the second N-type doped gallium nitride layer 224, the P-type semiconductor layer 240 may include the first P-type doped gallium nitride layer 242 and the second P-type semiconductor layer on the active layer 230 in sequence. type doped gallium nitride layer 244, wherein between the first n-type doped gallium nitride layer 222 and the second n-type doped gallium nitride layer 224, or between the first p-type doped gallium nitride layer The difference between 242 and the second P-type doped GaN layer 244 may be different thickness or different doping concentration. In addition, the material of the N-type semiconductor layer 220 and the P-type semiconductor layer 240 is, for example, aluminum gallium nitride. Those skilled in the art can select the grown nitride semiconductor cladding layer 212, the first N/P The thickness, doping concentration and aluminum content of the second N/P-type doped GaN layers 222 and 242 and the second N/P-type doped GaN layers 224 and 244 are not limited in the present invention.

详言之,如图1所示,于蓝宝石基板210上依序形成氮化物半导体披覆层212(例如是未掺杂(un-doped)的氮化镓)、第一N型掺杂氮化镓层222以及第二N型掺杂氮化镓层224、有源层230、第一P型掺杂氮化铝镓层242以及第二P型掺杂氮化镓层244,并且再分别于第二N型掺杂氮化镓层224和第二型P型掺杂氮化镓层244表面的部分区域上形成第一电极250与第二电极260,以使第一电极250电性连接N型半导体层220,并使第二电极260电性连接P型半导体层240。当然,亦可于蓝宝石基板与N型半导体之间增设一一层氮化物缓冲层,本发明并不以此为限。Specifically, as shown in FIG. 1 , a nitride semiconductor cladding layer 212 (such as un-doped gallium nitride), a first N-type doped nitride coating layer 212 are sequentially formed on a sapphire substrate 210. The gallium layer 222 and the second N-type doped GaN layer 224, the active layer 230, the first P-type doped AlGaN layer 242 and the second P-type doped GaN layer 244, and respectively The first electrode 250 and the second electrode 260 are formed on the second N-type doped gallium nitride layer 224 and the second type P-type doped gallium nitride layer 244 on partial areas of the surface, so that the first electrode 250 is electrically connected to N type semiconductor layer 220 , and electrically connect the second electrode 260 to the P-type semiconductor layer 240 . Of course, a nitride buffer layer can also be added between the sapphire substrate and the N-type semiconductor, and the present invention is not limited thereto.

有源层230的构成型态例如为图2A与图2B所示,其可为单一量子阱有源层230A或是多重量子阱有源层230B。图2A为本发明一实施例的发光二极管中一种单一量子阱有源层的剖面示意图,而图2B为本发明一实施例的发光二极管中一种多重量子阱有源层的剖面示意图。一般来说,有源层包括i层的量子磊层以及(i-1)层量子阱层,且各量子阱层夹置于任意两层量子磊层之间,因此i为大于等于2的自然数。例如,如图2A所示,单一量子阱有源层230A可由两量子磊层232以及夹于其间的一量子阱层234所构成,而构成量子磊层232/量子阱层234/量子磊层232。以222nm~405nm发光波段的发光二极管200为例,量子阱层234的材料例如是AlmInnGa1-m-nN,其中0≤m<1,0≤n≤0.5,m+n≤1,且x>m,n≥y,而量子磊层232的材料例如是AlxInyGa1-x-yN,其中0≤x≤1,0≤y≤0.3,且x+y≤1,在所属领域的技术人员可针对不同发光波段等实际需求来选择所生长的m、n的含量、或x、y含量,本发明并不以此为限。The constitution of the active layer 230 is, for example, shown in FIG. 2A and FIG. 2B , which can be a single quantum well active layer 230A or a multiple quantum well active layer 230B. 2A is a schematic cross-sectional view of a single quantum well active layer in a light emitting diode according to an embodiment of the present invention, and FIG. 2B is a schematic cross-sectional view of a multiple quantum well active layer in a light emitting diode according to an embodiment of the present invention. Generally speaking, the active layer includes an i-layer quantum epitaxy layer and (i-1) quantum well layer, and each quantum well layer is sandwiched between any two quantum epitaxy layers, so i is a natural number greater than or equal to 2 . For example, as shown in FIG. 2A, a single quantum well active layer 230A can be composed of two quantum epitaxy layers 232 and a quantum well layer 234 sandwiched therebetween, thus forming a quantum epitaxy layer 232/quantum well layer 234/quantum epitaxy layer 232 . Taking the light-emitting diode 200 in the 222nm-405nm light-emitting band as an example, the material of the quantum well layer 234 is, for example, Al m In n Ga 1-mn N, where 0≤m<1, 0≤n≤0.5, m+n≤1, And x>m, n≥y, and the material of the quantum epitaxial layer 232 is, for example, Al x In y Ga 1-xy N, where 0≤x≤1, 0≤y≤0.3, and x+y≤1, in the Those skilled in the art can select the content of m and n, or the content of x and y to be grown according to actual requirements such as different light emission bands, and the present invention is not limited thereto.

另外,有源层的构成型态亦可如图2B所示的多重量子阱有源层230B的型态。如图2B所示,多重量子阱有源层230B可由量子磊层232与量子阱层234的至少两对叠层所构成,如图2B中所显示的三对量子磊层232/量子阱层234重复的叠层。In addition, the configuration type of the active layer can also be the type of the multiple quantum well active layer 230B shown in FIG. 2B . As shown in FIG. 2B, the multiple quantum well active layer 230B can be composed of at least two pairs of stacked layers of quantum epitaxy layer 232 and quantum well layer 234, such as three pairs of quantum epitaxy layer 232/quantum well layer 234 shown in FIG. 2B Repeated overlays.

值得注意的是,本发明的发光二极管200通过有源层230中对量子磊层232进行N型杂质的掺杂工艺,改变量子磊层232中掺杂量子磊层232的层数、掺杂浓度、以及不同掺杂量子磊层232中的掺杂浓度分布来提升发光二极管200于222nm~405nm波段的发光效率。具体来说,虽然氮化镓的生长技术中因工艺的限制而存在着一定的缺陷密度,但即使发光二极管200中的有源层230存在107的等级,通过调节量子磊层232中掺杂量子磊层232的层数、掺杂浓度等,即可通过有目的地(intentionally)掺杂N型杂质来降低活性区的缺陷密度对载子的影响,有效地提升发光效率。尤其是,特别是对于有源层230所发出的波长范围为222nm至405nm波段的光线更具有显著的提升效果。It should be noted that, in the light-emitting diode 200 of the present invention, the quantum epitaxy layer 232 is doped with N-type impurities in the active layer 230 to change the number of doped quantum epitaxy layers 232 in the quantum epitaxy layer 232 and the doping concentration. , and different doping concentration distributions in the doped quantum epitaxy layer 232 to improve the luminous efficiency of the light emitting diode 200 in the 222nm-405nm band. Specifically, although there is a certain defect density in the gallium nitride growth technology due to process limitations, even if the active layer 230 in the light emitting diode 200 has a level of 10 7 , by adjusting the doping in the quantum epitaxy layer 232 The number of layers, doping concentration, etc. of the quantum epitaxy layer 232 can be intentionally doped with N-type impurities to reduce the influence of the defect density in the active region on carriers, and effectively improve the luminous efficiency. In particular, it has a significant improvement effect on the light emitted by the active layer 230 with a wavelength ranging from 222 nm to 405 nm.

以下将以实验结果来辅助说明发明人所提出的本发明的发光二极管200的功效。在以下实施例中,是以硅作为N型杂质为实施范围,但本领域的技术人员亦可使用与硅属同族的IVA族中的其他元素来代替实施例中的硅,或着可选用V或着VIA族的元素来代替实施例中的硅,例如氧,只要可做为取代IIIA族的铝、铟、镓元素,可提供出电子做为N型掺杂,同样可以实现本发明。In the following, experimental results will be used to illustrate the efficacy of the light emitting diode 200 of the present invention proposed by the inventor. In the following embodiments, silicon is used as the N-type impurity as the implementation range, but those skilled in the art can also use other elements in the IVA group of the same family as silicon to replace silicon in the embodiments, or V can be selected. Or replace the silicon in the embodiment with the element of VIA group, such as oxygen, as long as it can replace the aluminum, indium, and gallium element of the IIIA group, and can provide electrons as N-type doping, the present invention can also be realized.

图3为发光二极管的有源层的放大剖面示意图。如图3所示,本实施例的有源层230包括六层量子磊层与五层量子阱层,且各量子阱层夹位于任意两层量子磊层之间。量子磊层自N型半导体侧起算依序为232a、232b、232c、232d、232e、232f,而量子阱层,其自N型半导体侧起算依序为量子阱层234a、234b、234c、234d、234e。FIG. 3 is an enlarged schematic cross-sectional view of an active layer of a light emitting diode. As shown in FIG. 3 , the active layer 230 of this embodiment includes six quantum epitaxy layers and five quantum well layers, and each quantum well layer is sandwiched between any two quantum epitaxy layers. The quantum epitaxy layers are 232a, 232b, 232c, 232d, 232e, 232f in sequence from the N-type semiconductor side, and the quantum well layers are quantum well layers 234a, 234b, 234c, 234d, 234e.

图4A表示作为本发明的发光二极管比较例的光学仿真图,而图4B表示本发明的发光二极管的光学仿真图,其中图4A与图4B中的缺陷密度设定为1×108/cm3。请先参照图4A,图4A为发光二极管中改变量子磊层232a~232f的掺杂量子磊层的层数与发光波长为450nm附近波段的发光强度的关系图,请同时参照图3与图4A,横轴表示发光波长(单位:纳米),纵轴为发光强度(单位:a.u.),而不同的线段A、B、C、D中斜线前后的数字分别代表如图3所示的量子磊层232a~232f中有掺杂量子磊层与未掺杂量子磊层的层数,并且掺杂的层数是以自N型半导体层220侧起算。例如,线段A中的6/0代表六层量子磊层232a~232f全部掺杂,线段B中的4/2代表靠近N型半导体层220侧的四层量子磊层232a~232d为掺杂量子磊层,而未掺杂量子磊层232e~232f的层数为二层,线段C中的2/4代表靠近N型半导体层220侧的二层量子磊层232a~232b为掺杂量子磊层,且未掺杂量子磊层232c~232f的层数为四层,而线段D中的0/6代表六层量子磊层232a~232f全部未掺杂。如图4A所示,结果显示增加掺杂量子磊层的层数反而降低发光二极管在450nm附近波段的发光效率。FIG. 4A shows an optical simulation diagram of a light emitting diode of the present invention as a comparative example, and FIG. 4B shows an optical simulation diagram of a light emitting diode of the present invention, wherein the defect density in FIG. 4A and FIG. 4B is set to 1×10 8 /cm 3 . Please refer to FIG. 4A first. FIG. 4A is a diagram showing the relationship between the number of doped quantum epitaxy layers of the quantum epitaxy layers 232a-232f in the light-emitting diode and the luminous intensity in the band near 450nm. Please refer to FIG. 3 and FIG. 4A at the same time. , the horizontal axis represents the luminous wavelength (unit: nanometer), the vertical axis represents the luminous intensity (unit: au), and the numbers before and after the slash in different line segments A, B, C, and D represent the quantum epitaxy as shown in Figure 3. The layers 232 a - 232 f have the numbers of doped quantum epitaxy layers and undoped quantum epitaxy layers, and the number of doped layers is counted from the side of the N-type semiconductor layer 220 . For example, 6/0 in the line segment A represents that the six layers of quantum epitaxy layers 232a-232f are all doped, and 4/2 in the line segment B represents that the four layers of quantum epitaxy layers 232a-232d near the N-type semiconductor layer 220 are doped with quantum epitaxy layers. The number of layers of the undoped quantum epitaxy layers 232e-232f is two layers, and 2/4 in the line segment C represents that the two-layer quantum epitaxy layers 232a-232b near the side of the N-type semiconductor layer 220 are doped quantum epitaxy layers , and the number of undoped quantum epitaxy layers 232c-232f is four layers, and 0/6 in line segment D represents that all six quantum epitaxy layers 232a-232f are undoped. As shown in FIG. 4A , the results show that increasing the number of doped quantum epitaxy layers reduces the luminous efficiency of the light-emitting diode at a wavelength near 450 nm.

相对于此,当增加量子磊层232的掺杂量子磊层的层数时,可以有效地提升发光二极管在222nm~405nm波段的发光强度。详细而言,图4B为发光二极管中改变量子磊层的掺杂量子磊层的层数与发光波长为365nm附近波段的发光强度的关系图,图4B中有关横轴、纵轴、以及线段的定义与图4A类似,除了图4B是表示主峰为365nm附近的222nm~405nm范围的发光波段。如图4B所示,结果显示增加掺杂量子磊层232的层数有助于提升发光二极管在222nm~405nm波段的发光效率。In contrast, when the number of doped quantum epitaxy layers in the quantum epitaxy layer 232 is increased, the luminous intensity of the light emitting diode in the 222nm-405nm band can be effectively increased. In detail, FIG. 4B is a graph showing the relationship between the number of layers of doped quantum epitaxy layers and the luminous intensity of the luminous wavelength near 365nm in the light-emitting diode. The horizontal axis, vertical axis, and line segment in FIG. 4B The definition is similar to that in Fig. 4A, except that Fig. 4B shows that the main peak is in the 222nm-405nm range near 365nm. As shown in FIG. 4B , the results show that increasing the number of doped quantum epitaxy layers 232 helps to improve the luminous efficiency of the light-emitting diode in the 222nm-405nm band.

发明人依据前述图4A与图4B的结果推论,当发光二极管所发出的发光波段在450nm附近时,由于量子阱存在较强的局部效应(localizedeffect),使得载子不易受到缺陷密度的影响,因此于量子磊层中掺杂N型杂质,并无法增强450nm附近的发光强度,过多的掺杂反而会造成载子溢流现象发生因而降低发光强度,如图4A所示。然而,对于发光波段在365nm附近的发光二极管而言,于量子磊层中掺杂N型杂质的效应却与发光波段在450nm附近的发光二极管完全相反。The inventor deduces based on the aforementioned results in FIG. 4A and FIG. 4B that when the luminous wavelength band emitted by the light-emitting diode is around 450nm, due to the strong localized effect in the quantum well, the carriers are not easily affected by the defect density, so Doping N-type impurities in the quantum epitaxy layer cannot enhance the luminous intensity near 450nm, and excessive doping will cause carrier overflow phenomenon and thus reduce luminous intensity, as shown in FIG. 4A . However, for a light-emitting diode with a light-emitting wavelength around 365nm, the effect of doping the quantum epitaxy layer with N-type impurities is completely opposite to that of a light-emitting diode with a light-emitting wavelength around 450nm.

详言之,如图4B所示,当发光二极管所发出的发光波段在主峰为365nm附近的222nm~405nm的发光波段时,由于量子阱的局部效应减弱,使得载子受到缺陷密度的影响增强,而于既定的量子磊层中掺杂N型杂质(例如硅)有助于补偿缺陷密度对载子的影响,换言之,N型杂质也可以提供电子作为辐射复合之用,因此可有效地提升发光二极管在222nm至405nm发光波段的发光效率。此处所谓的N型杂质为从外界有目的的提供可作为取代III族元素的IV族杂质。如图4B所示,222nm至405nm发光波段的发光强度随着掺杂量子磊层的层数增加而增加,尤其当掺杂量子磊层的层数k与量子磊层的总数i满足下述关系式时,发光效率提升的效果显著:当i为偶数时,k≥i/2;当i为奇数时,k≥(i-1)/2。In detail, as shown in FIG. 4B, when the luminescence band emitted by the light-emitting diode is in the 222nm-405nm luminescence band near the main peak of 365nm, due to the weakening of the local effect of the quantum well, the carrier is affected by the defect density. Doping N-type impurities (such as silicon) in a given quantum epitaxy layer can help compensate the influence of defect density on carriers. In other words, N-type impurities can also provide electrons for radiative recombination, so it can effectively improve luminescence. The luminous efficiency of the diode in the 222nm to 405nm luminous wavelength band. The so-called N-type impurity here is a group IV impurity provided purposefully from the outside as a substitute for group III elements. As shown in Figure 4B, the luminous intensity in the 222nm to 405nm luminescent band increases as the number of doped quantum epitaxy layers increases, especially when the number k of doped quantum epitaxy layers and the total number of quantum epitaxy layers i satisfy the following relationship When the formula is used, the effect of improving the luminous efficiency is remarkable: when i is an even number, k≥i/2; when i is an odd number, k≥(i-1)/2.

为了进一步验证上述推论,针对222nm至405nm发光波段的发光二极管,进一步以图5A至图8D来分别表示当改变图3的掺杂量子磊层232的层数时,仿真对发光二极管电子浓度、空穴浓度、电子空穴复合机率、以及非辐射复合机率的关系图,其中图5至图8横轴代表与基板表面的距离(单位:纳米),而图5至图8中的A、B、C、D图分别代表掺杂量子磊层与未掺杂量子磊层的层数,其定义与图4A、4B中线段A~D相同,不再赘述。In order to further verify the above inference, for light-emitting diodes with light-emitting wavelengths from 222nm to 405nm, Fig. 5A to Fig. 8D are further used to show that when the number of doped quantum epitaxy layers 232 in Fig. The relationship diagram of hole concentration, electron-hole recombination probability, and non-radiative recombination probability, wherein the horizontal axis of Fig. 5 to Fig. 8 represents the distance from the substrate surface (unit: nanometer), and A, B, Figures C and D respectively represent the number of layers of doped quantum epitaxy layer and undoped quantum epitaxy layer, and their definitions are the same as the line segments A to D in Figures 4A and 4B, and will not be repeated here.

由图5A至图5D的电子浓度仿真图可知,当掺杂量子磊层的层数越多时,其电子浓度逐渐增加。由图6A至图6D的空穴浓度仿真图可知,当掺杂量子磊层的层数越多时,其空穴浓度逐渐减少,其中又以全部量子磊层均不掺杂时的整体空穴浓度最高。由图7A至图7D的电子空穴复合机率仿真图可知,虽然量子磊层全部掺杂时的整体空穴分布较均匀,理应图7D的量子磊层全部不掺杂的发光二极管具有较高的电子空穴复合机率,然而,由图7A至图7D的趋势可知,图7A的全部量子磊层232均掺杂时的电子空穴复合机率最高,反而图7D的全部量子磊层均不掺杂时的电子空穴复合机率最低。因此,图7A至图7D亦可验证N型杂质可以提供电子作为辐射复合之用,因此可有效地提升发光二极管在222nm至405nm发光波段的发光效率的推论。再者,由图8A至图8D的电子空穴非辐射复合机率仿真图可知,图8A的全部量子磊层均掺杂时的非辐射复合机率最低,而图8D的全部量子磊层均不掺杂时的电子空穴非辐射复合机率最高,结合图7A至图7D以及图8A至图8D的结果可知,于量子磊层中掺杂N型杂质可以提供电子,使提高电子空穴辐射复合机率,而有效地提升发光效率,同时降低电子空穴以热等非发光型态的非辐射复合机率,同样可验证N型杂质可以提升发光二极管在222nm至405nm发光波段的发光强度的推论。It can be seen from the electron concentration simulation diagrams in FIG. 5A to FIG. 5D that when the number of doped quantum epitaxy layers increases, the electron concentration gradually increases. From the hole concentration simulation diagrams in Figure 6A to Figure 6D, it can be seen that when the number of doped quantum epitaxy layers increases, the hole concentration gradually decreases, and the overall hole concentration when all quantum epitaxy layers are not doped Highest. From the simulation diagrams of the electron-hole recombination probability in Figure 7A to Figure 7D, it can be seen that although the overall hole distribution is relatively uniform when the quantum epitaxy layers are all doped, it should be that the light-emitting diode in which all the quantum epitaxy layers are not doped in Figure 7D has a higher Electron-hole recombination probability, however, from the trend of Figure 7A to Figure 7D, the electron-hole recombination probability is the highest when all the quantum epitaxy layers 232 in Figure 7A are doped, but all the quantum epitaxy layers 232 in Figure 7D are not doped The probability of electron-hole recombination is the lowest. Therefore, FIG. 7A to FIG. 7D can also verify the inference that N-type impurities can provide electrons for radiative recombination, thus effectively improving the luminous efficiency of light-emitting diodes in the 222nm-405nm light-emitting wavelength band. Furthermore, from the simulation diagrams of electron-hole non-radiative recombination probability in Figure 8A to Figure 8D, it can be seen that the non-radiative recombination probability is the lowest when all the quantum epitaxy layers in Figure 8A are doped, while all the quantum epitaxy layers in Figure 8D are not doped The probability of electron-hole non-radiative recombination is the highest when it is miscellaneous. Combining the results of Figure 7A to Figure 7D and Figure 8A to Figure 8D, it can be known that doping N-type impurities in the quantum epitaxy layer can provide electrons and increase the probability of electron-hole radiative recombination. , and effectively improve the luminous efficiency, while reducing the non-radiative recombination probability of electron holes in non-luminous forms such as heat, which can also verify the inference that N-type impurities can improve the luminous intensity of light-emitting diodes in the 222nm to 405nm luminescent band.

表1中记载当发光二极管中的有源层的结构如图3所示时,发光二极管在不同电流下的发光强度表现、以及顺向电压表现随着掺杂量子磊层与未掺杂量子磊层的层数而改变,其中在表1的实验中,各掺杂量子磊层的掺杂浓度C1、C2、...Ck例如均为2×1018/cm3,而在本发明发光波长为365nm实施例中,量子阱层的材料是IncGa1-cN,其中0≤c≤0.05,量子磊层的材料是AldGa1-dN,d为0至0.25之间,在本实施例中,铝含量最佳值是0.09~0.20之间,量子磊层的厚度例如为5nm~15nm,在本实施例中,厚度较佳为6nm~11nm。并且,将表1的结果显示于图9A与图9B中,其中图9A显示了发光二极管的量子磊层中不同掺杂层数对电流-光输出功率曲线的关系图,而图9B显示了发光二极管的量子磊层中不同掺杂层数对电流-电压曲线的关系图。Table 1 records that when the structure of the active layer in the light-emitting diode is shown in Figure 3, the luminous intensity performance of the light-emitting diode at different currents, and the performance of the forward voltage vary with the difference between the doped quantum epitaxy layer and the undoped quantum epitaxy layer. The number of layers changes. In the experiments in Table 1, the doping concentrations C 1 , C 2 , ... C k of each doped quantum epitaxy layer are, for example, 2×10 18 /cm 3 , while in this In the embodiment of the invention whose emission wavelength is 365nm, the material of the quantum well layer is In c Ga 1-c N, where 0≤c≤0.05, the material of the quantum epitaxy layer is Al d Ga 1-d N, and d is between 0 and 0.25 Between, in this embodiment, the optimal value of the aluminum content is between 0.09-0.20, the thickness of the quantum epitaxial layer is, for example, 5 nm-15 nm, and in this embodiment, the thickness is preferably 6 nm-11 nm. Moreover, the results of Table 1 are shown in Figure 9A and Figure 9B, wherein Figure 9A shows the relationship between the number of doped layers in the quantum epitaxy layer of the light-emitting diode and the current-light output power curve, and Figure 9B shows the luminescence The relationship between the number of doped layers and the current-voltage curve in the quantum epitaxial layer of the diode.

表1Table 1

由表1及图9A的结果可知,发光二极管200A~200E的光输出功率随着在既有量子磊层中掺杂量子磊层数的增加而提升。详言之,首先当不掺杂N型杂质时候,其掺杂浓度为0,但其氮化镓材料会有其本身背景掺杂浓度,浓度会依不同磊晶技术或者不同磊晶质量而有所差异,此实施例中,由于量测不到本身背景掺杂浓度,因此未掺杂的浓度以N.A.来表示,此时当六层量子磊层中均未掺杂N型杂质(例如硅)时的光输出功率为9.5mW(发光二极管200A)。当六层量子磊层中有两层掺杂N型杂质时(例如对图3所示量子磊层232a~232f中有目的地掺杂最靠近N型半导体220的两层量子磊层232a~232b),发光二极管200B的光输出功率可由均未掺杂的9.5mW提升至10.6mW,更佳的是,当六层量子磊层232中有四层掺杂量子磊层232时(如有目的地掺杂图3中最靠近N型半导体220的四层量子磊层232a~232d),发光二极管200C的光输出功率更可大幅度地由未掺杂的9.5mW提升到17.0mW,提升为原来的两倍,因此当掺杂量子磊层232的层数k大于等于量子磊层232的总层数i的一半时,可有效地提升发光二极管200C的发光效率。此外,当掺杂五层量子磊层时,发光二极管200D的光输出功率为24.2mW,而当全部量子磊层232都掺杂时(如将图3中全六层量子磊层232a~232f均进行有目的的掺杂),发光二极管200E的光输出功率可提升到31.1mW,提升为原来的将近三倍之多。From the results in Table 1 and FIG. 9A , it can be seen that the light output power of the light emitting diodes 200A˜ 200E increases as the number of doped quantum epitaxy layers in the existing quantum epitaxy layers increases. In detail, first of all, when no N-type impurities are doped, its doping concentration is 0, but its GaN material will have its own background doping concentration, and the concentration will vary depending on different epitaxy techniques or different epitaxy qualities. The difference is that in this embodiment, since the background doping concentration cannot be measured, the undoped concentration is represented by N.A. At this time, when none of the six quantum epitaxy layers is doped with N-type impurities (such as silicon) When the light output power is 9.5mW (LED 200A). When two of the six quantum epitaxy layers are doped with N-type impurities (for example, in the quantum epitaxy layers 232a-232f shown in FIG. ), the light output power of the light-emitting diode 200B can be raised to 10.6mW from the undoped 9.5mW, and more preferably, when there are four doped quantum epitaxy layers 232 in the six-layer quantum epitaxy layer 232 (if purposefully Doping the four quantum epitaxial layers 232a-232d closest to the N-type semiconductor 220 in FIG. Therefore, when the layer number k of the doped quantum epitaxy layer 232 is greater than or equal to half of the total layer number i of the quantum epitaxy layer 232, the luminous efficiency of the light emitting diode 200C can be effectively improved. In addition, when five quantum epitaxy layers are doped, the light output power of the light emitting diode 200D is 24.2mW, and when all the quantum epitaxy layers 232 are doped (for example, all six quantum epitaxy layers 232a-232f in FIG. purposeful doping), the light output power of the light emitting diode 200E can be increased to 31.1mW, which is nearly three times as much as the original.

另外,由表1及图9B的结果可知,于量子磊层中掺杂N型杂质除可有效增加发光二极管200A的发光效率之外,更可降低量子磊层的阻值,进而降低发光二极管的顺向电压。例如顺向电压由全部量子磊层都未掺杂的4.36V下降到全部量子磊层都掺杂的4.14V。上述结果代表提高量子磊层中的掺杂层数可以补偿缺陷密度对发光二极管在222nm~405nm波段(主峰在365nm附近)的发光效率的影响。换言之,于量子磊层中所掺入的N型杂质能有效地提供电子作为辐射复合之用,降低非辐射复合等如热形式的能量释放,因此可有效的提升发光效率,上述实验结果再次验证了前述图5至图8的仿真结果。In addition, from the results in Table 1 and FIG. 9B, it can be seen that doping N-type impurities in the quantum epitaxy layer can not only effectively increase the luminous efficiency of the light-emitting diode 200A, but also reduce the resistance value of the quantum epitaxy layer, thereby reducing the light-emitting diode. forward voltage. For example, the forward voltage drops from 4.36V where all quantum epitaxy layers are undoped to 4.14V where all quantum epitaxy layers are doped. The above results indicate that increasing the number of doped layers in the quantum epitaxy layer can compensate the influence of defect density on the luminous efficiency of the light emitting diode in the 222nm-405nm wavelength band (the main peak is around 365nm). In other words, the N-type impurities doped in the quantum epitaxy layer can effectively provide electrons for radiative recombination and reduce the energy release of non-radiative recombination such as heat, so it can effectively improve the luminous efficiency. The above experimental results are verified again The simulation results of the aforementioned Figures 5 to 8 are shown.

因此,由上文可知,本发明的发光二极管可使有源层的量子磊层中掺有N型杂质的量子磊层的层数符合特定比例,由此来有效提升发光二极管在222nm~405nm波段的发光效率。尤其当掺杂量子磊层的层数k大于等于量子磊层的总层数i的一半时,发光效率提升的效果显著,具体来说,当i为偶数时,k≥i/2;当i为奇数时,k≥(i-1)/2。Therefore, it can be seen from the above that the light-emitting diode of the present invention can make the number of quantum epitaxy layers doped with N-type impurities in the quantum epitaxy layer of the active layer meet a specific ratio, thereby effectively improving the light-emitting diode in the 222nm-405nm wavelength band. luminous efficiency. Especially when the layer number k of the doped quantum epitaxy layer is greater than or equal to half of the total layer number i of the quantum epitaxy layer, the effect of improving the luminous efficiency is remarkable, specifically, when i is an even number, k≥i/2; when i When it is an odd number, k≥(i-1)/2.

下文进一步探讨掺杂量子磊层中N型杂质的掺杂浓度对发光二极管在222nm~405nm波段的发光效率的影响。The influence of the doping concentration of N-type impurities in the doped quantum epitaxy layer on the luminous efficiency of the light-emitting diode in the 222nm-405nm band will be further discussed below.

表2中记载当发光二极管中的有源层的结构如图3所示时,固定对靠近N型半导体层的四层量子磊层232a~232d进行掺杂,因此表2各实验例中的掺杂量子磊层232为四层,而另外靠近P型半导体层的量子磊层232e~232f未掺杂。表2中表示发光二极管的掺杂量子磊层中不同掺杂浓度对发光强度表现以及顺向电压表现的关系。并且,将表2的结果显示于图10A与图10B中,其中图10A显示了发光二极管中的量子磊层中不同掺杂浓度对电流-光输出功率曲线的关系图,而图10B显示了发光二极管的量子磊层中不同掺杂浓度对电流-电压曲线的关系图。It is recorded in Table 2 that when the structure of the active layer in the light emitting diode is as shown in FIG. The impurity quantum epitaxy layer 232 has four layers, and the other quantum epitaxy layers 232 e - 232 f close to the P-type semiconductor layer are not doped. Table 2 shows the relationship between different doping concentrations in the doped quantum epitaxial layer of the light-emitting diode and the performance of the luminous intensity and the performance of the forward voltage. Moreover, the results of Table 2 are shown in Figure 10A and Figure 10B, wherein Figure 10A shows the relationship between different doping concentrations in the quantum epitaxy layer in the light-emitting diode and the current-light output power curve, and Figure 10B shows the luminescence A plot of different doping concentrations versus current-voltage curves in the quantum epitaxial layer of a diode.

表2Table 2

由表2及图10A的结果并参照图3可知,发光二极管的光输出功率随着掺杂浓度的增加而提升,例如,如前述,当不掺杂N型杂质时,由于量测不到本身背景掺杂浓度,因此未掺杂的浓度以N.A.来表示,其光输出功率为9.5mW(发光二极管200A);当四层掺杂量子磊层232a~232d的掺杂浓度为8×1017cm-3时,发光二极管200F的光输出功率可由均未掺杂的9.5mW提升至11.8mW,更佳的是,当掺杂浓度为2×1018cm-3时,发光二极管200G的光输出功率更可大幅度地由未掺杂的9.5mW提升到两倍的17.0mW,当掺杂浓度为4×1018cm-3时,发光二极管200H的光输出功率为19.1mW,而当掺杂浓度为6×1018cm-3时,发光二极管200E的光输出功率可提升到21.5mW。因此,由表2及图10A可推算出:当发光二极管的量子磊层中,掺杂层数超过总层数的一半,且掺杂浓度为5×1017/cm3至1×1019/cm3时,即可有效地提升发光二极管200F~200I的发光效率。From the results of Table 2 and Figure 10A and referring to Figure 3, it can be seen that the light output power of the light-emitting diode increases with the increase of the doping concentration. The background doping concentration, so the undoped concentration is represented by NA, and its light output power is 9.5mW (light-emitting diode 200A); when the doping concentration of the four-layer doped quantum epitaxy layers 232a-232d is 8×10 17 cm -3 , the light output power of the light emitting diode 200F can be increased from 9.5mW without doping to 11.8mW. Even better, when the doping concentration is 2×10 18 cm -3 , the light output power of the light emitting diode 200G It can be greatly increased from undoped 9.5mW to double 17.0mW. When the doping concentration is 4×10 18 cm -3 , the light output power of the LED 200H is 19.1mW, and when the doping concentration When it is 6×10 18 cm -3 , the light output power of the light emitting diode 200E can be increased to 21.5mW. Therefore, it can be deduced from Table 2 and Figure 10A that when the number of doped layers exceeds half of the total number of layers in the quantum epitaxial layer of the light-emitting diode, and the doping concentration is 5×10 17 /cm 3 to 1×10 19 /cm 3 cm 3 , the luminous efficiency of the light emitting diodes 200F-200I can be effectively improved.

另外,由表2及图10B的结果可知,于四层掺杂量子磊层中当掺杂浓度为5×1017/cm3至1×1019/cm3时,N型杂质除可提升发光二极管的发光效率之外,更可降低量子磊层的阻值,进而降低发光二极管的顺向电压。例如发光二极管的顺向电压由掺杂浓度为0的4.36V下降到掺杂浓度为6×1018的4.09V。上述结果代表提高量子磊层232中N型杂质(例如硅)的掺杂浓度可以有效补偿缺陷密度对发光二极管在222nm~405nm波段的发光效率的影响。换言之,于量子磊层中所掺入的N型杂质能有效地提供电子作为辐射复合之用,降低非辐射复合等如热形式的能量释放,因此可有效的提升发光效率,上述实验结果同样再次验证了前述图5至图8的仿真结果。In addition, from the results in Table 2 and Figure 10B, it can be seen that in the four-layer doped quantum epitaxial layer, when the doping concentration is 5×10 17 /cm 3 to 1×10 19 /cm 3 , the removal of N-type impurities can improve the luminescence In addition to the luminous efficiency of the diode, the resistance value of the quantum epitaxial layer can be reduced, thereby reducing the forward voltage of the light emitting diode. For example, the forward voltage of a light emitting diode drops from 4.36V with a doping concentration of 0 to 4.09V with a doping concentration of 6×10 18 . The above results indicate that increasing the doping concentration of N-type impurities (such as silicon) in the quantum epitaxy layer 232 can effectively compensate the effect of defect density on the luminous efficiency of the light-emitting diode in the 222nm-405nm wavelength band. In other words, the N-type impurities doped in the quantum epitaxy layer can effectively provide electrons for radiative recombination and reduce the energy release of non-radiative recombination, such as heat, so that the luminous efficiency can be effectively improved. The above experimental results are also repeated. The simulation results of the aforementioned Fig. 5 to Fig. 8 are verified.

值得一提的是,依据上述本发明的发光二极管200B~200I的实施例,亦可以选用IV、V和VIA族中的至少一元素来作为N型杂质,其同样可以达到提供电子作为辐射复合之用,由此可有效提升发光效率。此外,掺杂量子磊层中的掺杂浓度除了可如表1与表2般相等之外,亦可以使掺杂浓度具有梯度变化。举例来说,以量子磊层的总层数为6层,而掺杂量子磊层为6层中的4层为例,4层掺杂量子磊层的掺杂浓度自靠近N型半导体侧起算依序为C1、C2、...Ck,且Ck≤Ck-1,例如4层掺杂量子磊层232a~232d的掺杂浓度依序为6×1018cm-3、5×1018cm-3、4×1018cm-3、3×1018cm-3,换言之,掺杂量子磊层的掺杂浓度变化是从靠近N型半导体侧的第一层量子磊层232a渐减至最靠近P型半导体侧的第四层232d,如此,同样可以使得所掺入的N型杂质有效地提供电子作为辐射复合之用,由此可有效的提升发光效率。It is worth mentioning that, according to the above-mentioned embodiments of the light-emitting diodes 200B-200I of the present invention, at least one element from groups IV, V, and VIA can also be selected as an N-type impurity, which can also provide electrons as a result of radiative recombination. Therefore, the luminous efficiency can be effectively improved. In addition, besides the doping concentration in the doped quantum epitaxy layer being equal as shown in Table 1 and Table 2, the doping concentration can also have a gradient change. For example, taking the total number of layers of the quantum epitaxy layer as 6 layers, and the doped quantum epitaxy layer as 4 layers in the 6 layers as an example, the doping concentration of the 4-layer doped quantum epitaxy layer is calculated from the side close to the N-type semiconductor C 1 , C 2 , ... C k in sequence, and C k ≤ C k-1 , for example, the doping concentrations of the four doped quantum epitaxy layers 232 a - 232 d are 6×10 18 cm -3 , 5×10 18 cm -3 , 4×10 18 cm -3 , 3×10 18 cm -3 , in other words, the doping concentration of the doped quantum epitaxy layer changes from the first quantum epitaxy layer near the N-type semiconductor side 232a gradually decreases to the fourth layer 232d closest to the side of the P-type semiconductor, so that the doped N-type impurities can also effectively provide electrons for radiative recombination, thereby effectively improving the luminous efficiency.

再者,掺杂量子磊层中掺杂浓度C1至Ck的梯度变化亦可以是自靠近N型半导体侧起算依序为6×1018cm-3、7×1018cm-3、8×1018cm-3、6×1018cm-3,换言之,其掺杂浓度变化可为中间层数掺杂浓度大于最靠近N型半导体和最靠近P型半导体的型态。另外,掺杂量子磊层中掺杂浓度的梯度变化还可以是自靠近N型半导体侧起算依序为6×1018cm-3、5×1018cm-3、8×1018cm-3、6×1018cm-3。总而言之,只要最靠近P型半导体层的掺杂量子磊层的掺杂浓度小于等于该k层掺杂量子磊层中其他量子磊层的掺杂浓度,即可使所掺入的N型杂质有效地提供电子作为辐射复合之用,由此可有效的提升发光效率。Furthermore, the gradient change of the doping concentration C 1 to C k in the doped quantum epitaxial layer can also be 6×10 18 cm -3 , 7×10 18 cm -3 , 8 ×10 18 cm -3 , 6×10 18 cm -3 , in other words, the change in doping concentration can be that the doping concentration of the middle layer number is greater than that of the closest N-type semiconductor and the closest P-type semiconductor. In addition, the gradient change of the doping concentration in the doped quantum epitaxial layer can also be 6×10 18 cm -3 , 5×10 18 cm -3 , 8×10 18 cm -3 from the side close to the N-type semiconductor , 6×10 18 cm -3 . All in all, as long as the doping concentration of the doped quantum epitaxy layer closest to the P-type semiconductor layer is less than or equal to the doping concentration of other quantum epitaxy layers in the k-doped quantum epitaxy layer, the doped N-type impurity can be effectively Provide electrons for radiative recombination, which can effectively improve the luminous efficiency.

综上所述,本发明的发光二极管中,通过使有源层中掺有N型杂质的量子磊层的层数符合特定关系、或通过使有源层的掺杂有N型杂质的量子磊层中最靠近P型半导体者具有最小的掺杂浓度、或通过使掺杂有N型杂质的量子磊层的掺杂浓度满足特定关系,使得N型杂质可以抚平氮化镓的缺陷对载子的影响,提升发光二极管的载子的复合效率,因此本发明的发光二极管通过上述任一技术手段即可大幅地提升发光二极管在222nm~405nm波段的发光效率。In summary, in the light-emitting diode of the present invention, by making the number of quantum epitaxy layers doped with N-type impurities in the active layer conform to a specific relationship, or by making the quantum epitaxy layer doped with N-type impurities in the active layer The layer closest to the P-type semiconductor has the minimum doping concentration, or the doping concentration of the quantum epitaxial layer doped with N-type impurities satisfies a specific relationship, so that the N-type impurities can smooth the defects of gallium nitride on the carrier. Therefore, the light-emitting diode of the present invention can greatly improve the luminous efficiency of the light-emitting diode in the 222nm-405nm band through any of the above-mentioned technical means.

此外,本发明的发光二极管的实施方式不限于前述所显示的方式,亦可以为水平电极配置或垂直电极配置,均可实现本发明,因此不亦此为限。In addition, the implementation of the light-emitting diode of the present invention is not limited to the above-mentioned manners, and can also be configured with horizontal electrodes or vertical electrodes, both of which can realize the present invention, so it is not limited thereto.

本发明的第二实施方式另提出以下几种发光二极管。The second embodiment of the present invention also proposes the following light emitting diodes.

图11A至图11C分别为本发明一实施例中几种发光二极管的结构图,横轴代表发光二极管中堆叠位置关系中各量子磊层的位置,纵轴代表相对导电带能级图,其各量子磊层的上方标示其厚度变化(厚度单位:纳米)。11A to 11C are structural diagrams of several light-emitting diodes in an embodiment of the present invention. The horizontal axis represents the position of each quantum epitaxial layer in the stacking position relationship in the light-emitting diode, and the vertical axis represents the energy level diagram of the relative conductive band. The upper part of the quantum epitaxy layer indicates its thickness variation (thickness unit: nanometer).

图11A的发光二极管200A表示发光二极管中量子磊层232a~232f的厚度均相同的结构,图11B的发光二极管200B表示发光二极管中量子磊层232a~232f的厚度由P型半导体层240往N型半导体层220递增的结构,图11C的发光二极管200C为量子磊层232a~232f的厚度由P型半导体层240往N型半导体层220递减的结构。The light-emitting diode 200A in FIG. 11A shows the structure in which the thicknesses of the quantum epitaxy layers 232a-232f in the light-emitting diode are all the same, and the light-emitting diode 200B in FIG. The structure of the semiconductor layer 220 increases gradually. The LED 200C in FIG. 11C has a structure in which the thickness of the quantum epitaxy layers 232 a - 232 f decreases from the P-type semiconductor layer 240 to the N-type semiconductor layer 220 .

图12进一步显示了图11A至图11C中各发光二极管的发光强度仿真图。如图12所示,量子磊层232a~232f的厚度由P型半导体层240往N型半导体层220递减的发光二极管200C的发光强度高于量子磊层232a~232f厚度相等的发光二极管200A、亦高于量子磊层232a~232f的厚度由P型半导体层240往N型半导体层220递增的发光二极管200B。其中,发光强度又以量子磊层232a~232f的厚度由P型半导体层240往N型半导体层220递增的发光二极管200B最弱。FIG. 12 further shows the simulation diagram of the luminous intensity of each LED in FIG. 11A to FIG. 11C . As shown in FIG. 12 , the light-emitting diode 200C whose thickness of the quantum epitaxy layers 232a-232f decreases gradually from the P-type semiconductor layer 240 to the N-type semiconductor layer 220 has a higher luminous intensity than the light-emitting diode 200A whose quantum epitaxy layers 232a-232f have the same thickness. The light emitting diode 200B whose thickness is higher than the quantum epitaxy layers 232 a - 232 f gradually increases from the P-type semiconductor layer 240 to the N-type semiconductor layer 220 . Among them, the light emitting diode 200B whose luminous intensity gradually increases from the P-type semiconductor layer 240 to the N-type semiconductor layer 220 with the thickness of the quantum epitaxy layers 232 a - 232 f is the weakest.

进一步探究发光二极管200A~200C中量子磊层厚度变化对发光强度影响的机制。The mechanism of the influence of the thickness change of the quantum epitaxy layer on the luminous intensity in the light-emitting diodes 200A-200C is further explored.

图13A至图13C分别表示图11A至图11C中各发光二极管的电子与空穴浓度仿真图,横轴表示膜层堆叠距离基板的位置(单位:纳米),其中位置2060纳米处为靠近P型半导体层240侧,而位置2000纳米为靠近N型半导体层220侧,粗线与细线则分别表示电子浓度与空穴浓度(单位:cm-3)。Figures 13A to 13C respectively show the electron and hole concentration simulation diagrams of the light-emitting diodes in Figures 11A to 11C, and the horizontal axis indicates the position (unit: nanometer) of the film stack from the substrate, where the position at 2060 nanometers is close to the P-type The side of the semiconductor layer 240 , and the position 2000 nm is close to the side of the N-type semiconductor layer 220 , and the thick line and the thin line represent electron concentration and hole concentration (unit: cm −3 ), respectively.

发明人依据前述图11A至图11C、图12以及图13A至图13C的结果,推论量子磊层的厚度变化对发光二极管发光强度的影响机制如下。Based on the aforementioned results in FIGS. 11A to 11C , FIG. 12 , and FIGS. 13A to 13C , the inventor deduces that the influence mechanism of the thickness variation of the quantum epitaxy layer on the luminous intensity of the LED is as follows.

请同时参照图11B与图13B所示,对于发光二极管200B的电子迁移而言,当量子磊层232a~232f厚度从P型半导体层240往N型半导体层220递增时,由于电子的迁移从N型半导体层220注入并穿越各量子磊层232a~232f而往P型半导体层240迁移,因此当量子磊层232a~232f的厚度由N型半导体层220向P型半导体层240逐渐变薄时,将使电子更容易往P型半导体层240移动,使得最靠近P型半导体层240的量子阱层234a的电子浓度过高。Please refer to FIG. 11B and FIG. 13B at the same time. For the electron migration of the light-emitting diode 200B, when the thickness of the quantum epitaxy layers 232a-232f increases from the P-type semiconductor layer 240 to the N-type semiconductor layer 220, due to the migration of electrons from the N-type The quantum epitaxy layers 232a-232f are implanted into the P-type semiconductor layer 220 and migrate to the P-type semiconductor layer 240. Therefore, when the thickness of the quantum epitaxy layers 232a-232f gradually becomes thinner from the N-type semiconductor layer 220 to the P-type semiconductor layer 240, This will make it easier for electrons to move to the P-type semiconductor layer 240 , so that the electron concentration in the quantum well layer 234 a closest to the P-type semiconductor layer 240 is too high.

另一方面,对于发光二极管200B的空穴迁移而言,如图13B搭配图11B所示,虽然靠近P型半导体层240的量子磊层232a厚度较薄,使得空穴更容易地往N型半导体层220移动。然而,如前述,由于在最靠近P型半导体层240的量子阱层234a中存在着过多的电子,使得电子产生溢流现象,而非在量子阱层中复合,导致电子与空穴无法有效地产生辐射复合,使得整体空穴注入的浓度下降而导致发光强度降低。On the other hand, for the hole migration of the light-emitting diode 200B, as shown in FIG. 13B and FIG. 11B , although the thickness of the quantum epitaxy layer 232a close to the P-type semiconductor layer 240 is relatively thin, the holes are more easily transferred to the N-type semiconductor layer. Layer 220 moves. However, as mentioned above, because there are too many electrons in the quantum well layer 234a closest to the P-type semiconductor layer 240, the electrons overflow phenomenon instead of recombining in the quantum well layer, causing electrons and holes to be ineffective. Radiative recombination occurs, which reduces the concentration of the overall hole injection and reduces the luminous intensity.

另一方面,请同时参照图11C与图13C所示,对于发光二极管200C的电子迁移而言,当量子磊层232a~232f厚度从N型半导体层220往P型半导体层240递增时,由于电子的迁移从N型半导体层220注入在穿越量子磊层232a~232f后往P型半导体层240移动,量子磊层232的厚度逐渐变厚可以稍稍减缓电子往P型半导体层240移动的趋势,如此一来,可以使得电子浓度均匀地分布在有源层230的各量子阱层234a~234e中。此外,发光二极管200C通过量子磊层232a~232f厚度由N型半导体层220至P型半导体层240逐渐变厚的结构,由此,发光二极管200C的电子可以避免如发光二极管200B般聚集于最后一个量子阱层234a中的现象,因此整体电子注入浓度不会受到最后一个量子阱层234a中电子过剩而产生溢流效应的影响。On the other hand, please refer to FIG. 11C and FIG. 13C at the same time. For the electron migration of the light-emitting diode 200C, when the thickness of the quantum epitaxy layers 232a-232f increases from the N-type semiconductor layer 220 to the P-type semiconductor layer 240, due to the electron The migration of electrons from the N-type semiconductor layer 220 moves to the P-type semiconductor layer 240 after passing through the quantum epitaxy layers 232a-232f, and the thickness of the quantum epitaxy layer 232 gradually becomes thicker, which can slightly slow down the trend of electrons moving to the P-type semiconductor layer 240, so Firstly, the electron concentration can be uniformly distributed in each quantum well layer 234 a - 234 e of the active layer 230 . In addition, the light-emitting diode 200C has a structure in which the thickness of the quantum epitaxy layers 232a-232f gradually becomes thicker from the N-type semiconductor layer 220 to the P-type semiconductor layer 240, so that the electrons of the light-emitting diode 200C can avoid gathering in the last one like the light-emitting diode 200B. Therefore, the overall electron injection concentration will not be affected by the overflow effect caused by the excess electrons in the last quantum well layer 234a.

另一方面,对于发光二极管200C的空穴迁移而言,如图13C搭配图11C所示,当空穴从P型半导体层240注入到最靠近P型半导体层240的量子阱层234(如图11C中的量子阱层234a)时候,由于量子磊层232a~232f的厚度由P型半导体层240往N型半导体层220变薄,因此有利于空穴注入到下一个量子阱层234a~234e中。如此一来,相较于发光二极管200A与发光二极管200B,发光二极管200C的空穴浓度在量子阱层234中的分布较为均匀,使得发光二极管200C的结构会有最佳的发光强度。On the other hand, for the hole migration of the light-emitting diode 200C, as shown in FIG. 13C and FIG. In the case of the quantum well layer 234a), since the thickness of the quantum epitaxial layers 232a-232f becomes thinner from the P-type semiconductor layer 240 to the N-type semiconductor layer 220, it is beneficial to inject holes into the next quantum well layer 234a-234e. In this way, compared with the LED 200A and the LED 200B, the distribution of hole concentration in the quantum well layer 234 of the LED 200C is more uniform, so that the structure of the LED 200C has an optimal luminous intensity.

图14A与图14B分别为图11B与图11C中的发光二极管的能带仿真图,其中横轴的定义与图13A至图13C相同。如图14A搭配图11B所示,当最靠近P型半导体层240的量子磊层232a厚度变薄的情况下,其导电带低于以虚线表示的费米能级,此现象会使得最靠近P型半导体层240的量子阱层234a不具局限的效应,电子将会溢流到P型半导体层240中。FIG. 14A and FIG. 14B are simulation diagrams of energy bands of the light-emitting diodes in FIG. 11B and FIG. 11C respectively, wherein the definition of the horizontal axis is the same as that in FIG. 13A to FIG. 13C . As shown in Figure 14A and Figure 11B, when the thickness of the quantum epitaxial layer 232a closest to the P-type semiconductor layer 240 becomes thinner, its conduction band is lower than the Fermi level indicated by the dotted line, and this phenomenon will make the The quantum well layer 234 a of the P-type semiconductor layer 240 has no confinement effect, and electrons will overflow into the P-type semiconductor layer 240 .

另一方面,如图14B搭配图11C所示,发光二极管200C最靠近P型半导体层240的量子磊层232a厚度较厚,使得导电带高于以虚线表示的费米能级,可使得最靠近P型半导体层240的量子阱层234a发挥适当的局限效应,避免电子溢流到P型半导体层240中而导致电子空穴非辐射复合降低发光强度的现象。On the other hand, as shown in FIG. 14B and FIG. 11C , the thickness of the quantum epitaxy layer 232a closest to the P-type semiconductor layer 240 of the light emitting diode 200C is relatively thick, so that the conduction band is higher than the Fermi level indicated by the dotted line, which can make the closest The quantum well layer 234 a of the P-type semiconductor layer 240 exerts a proper confinement effect to avoid electron-hole non-radiative recombination from overflowing into the P-type semiconductor layer 240 to reduce the luminous intensity.

图15为图11A至图11C中各发光二极管的电子电流密度仿真图,其中横轴的定义与图13A至图13C相同,而纵轴为电子电流密度(单位:A/cm2)。请参照图8,发光二极管200B在P型半导体层240的电子电流密度高于发光二极管200A与发光二极管200C。这显示出发光二极管200B在存在电流溢流的现象。FIG. 15 is a simulation diagram of the electron current density of each LED in FIG. 11A to FIG. 11C , wherein the definition of the horizontal axis is the same as that in FIG. 13A to FIG. 13C , and the vertical axis is the electron current density (unit: A/cm 2 ). Referring to FIG. 8 , the electron current density of the light emitting diode 200B in the P-type semiconductor layer 240 is higher than that of the light emitting diode 200A and the light emitting diode 200C. This shows that the LED 200B has a current overflow phenomenon.

表3为各量子阱层234的波函数重叠机率仿真图。Table 3 is a simulation diagram of the wave function overlap probability of each quantum well layer 234 .

表3table 3

请同时参照表3与图15,由于发光二极管200B的导电带低于费米能级造成最靠近P型半导体层240的量子阱层234a无法局限载子造成过多的电子溢流到P型半导体层240中,搭配图11B中亦可以一并地验证发光二极管200B在最靠近P型半导体层240的量子阱层234a中存在有过多电子浓度的现象。此外,由图15可知,发光二极管200B的电子溢流现象较严重,造成电子空穴对的波函数无法重叠进而复合发光。Please refer to Table 3 and FIG. 15 at the same time. Since the conduction band of the light-emitting diode 200B is lower than the Fermi level, the quantum well layer 234a closest to the P-type semiconductor layer 240 cannot confine carriers and cause excessive electron overflow to the P-type semiconductor. In the layer 240 , together with FIG. 11B , it can also be verified that the light-emitting diode 200B has excessive electron concentration in the quantum well layer 234 a closest to the P-type semiconductor layer 240 . In addition, as can be seen from FIG. 15 , the electron overflow phenomenon of the light emitting diode 200B is serious, which causes the wave functions of the electron-hole pairs to fail to overlap and thus recombine to emit light.

由上述推论可知,当发光二极管200中量子磊层232的厚度变化如发光二极管200B般从N型半导体层220往P型半导体层240逐渐变薄的结构将无法有效地提升发光强度。相对地,当发光二极管200中量子磊层232的厚度变化如发光二极管200C般由N型半导体层220往P型半导体层240逐渐变厚时,电子和空穴浓度可有效地均匀分布在全部量子阱层234中,且此时电子空穴对的波函数重叠机率皆高于量子磊层232厚度均一化的发光二极管200A的波函数重叠机率,因此发光二极管200C在本实施例中有最佳的发光强度。From the above inferences, it can be seen that when the thickness of the quantum epitaxy layer 232 in the LED 200 changes gradually from the N-type semiconductor layer 220 to the P-type semiconductor layer 240 as in the LED 200B, the light intensity cannot be effectively improved. In contrast, when the thickness of the quantum epitaxial layer 232 in the light-emitting diode 200 changes gradually from the N-type semiconductor layer 220 to the P-type semiconductor layer 240 as in the light-emitting diode 200C, the electron and hole concentrations can be effectively uniformly distributed over the entire quantum In the well layer 234, and at this time, the wave function overlap probability of the electron-hole pair is higher than the wave function overlap probability of the light emitting diode 200A with a uniform thickness of the quantum epitaxy layer 232, so the light emitting diode 200C has the best in this embodiment. light intensity.

值得一提的是,在有源层230的量子磊层232中,发光二极管200的发光强度又较受到最靠近P型半导体层240的前几层量子磊层232厚度变化的影响。下文进一步探讨量子磊层232中厚度变化对发光二极管200在222nm~405nm波段的发光强度的影响。It is worth mentioning that, in the quantum epitaxy layer 232 of the active layer 230 , the luminous intensity of the LED 200 is more affected by the thickness variation of the first few quantum epitaxy layers 232 closest to the P-type semiconductor layer 240 . The influence of the thickness variation of the quantum epitaxy layer 232 on the luminous intensity of the light emitting diode 200 in the 222nm-405nm wavelength band will be further discussed below.

表4中记载当发光二极管200中的有源层230的结构如图3所示时,改变不同位置的量子磊层232a~232f的厚度(单位:纳米)时,在350mA与700mA电流注入下发光强度的表现,其中各量子阱层234a~234e的厚度为3纳米。并且,在本实施例中,量子阱层234a~232f的材料例如是IncGa1-cN,其中0≤c≤0.05,而量子磊层232a~232f的材料例如是AldGa1-dN,其中0≤d≤0.25,且较佳为0.09≤d≤0.20。Table 4 records that when the structure of the active layer 230 in the light-emitting diode 200 is as shown in Figure 3, when changing the thickness (unit: nanometer) of the quantum epitaxy layers 232a-232f at different positions, it emits light under the current injection of 350mA and 700mA In terms of strength, the thickness of each quantum well layer 234a-234e is 3 nanometers. Moreover, in this embodiment, the material of the quantum well layers 234a-232f is, for example, Inc Ga 1-c N , where 0≤c≤0.05, and the material of the quantum epitaxy layers 232a-232f is, for example, AldGa1 - d N, where 0≤d≤0.25, and preferably 0.09≤d≤0.20.

换言之,在本实施例中,有源层230中共有6层量子磊层232a~232f,其结构可参考图3,该6层中自P型半导体侧240起算的量子磊层232a~232f的厚度依序为T1、T2、T3...T6,即T1为最靠近P型半导体侧240的量子磊层232a的厚度,而T6(Ti,本实施例是以i=6为例)为最靠近N型半导体侧220的量子磊层232f的厚度。In other words, in this embodiment, there are 6 quantum epitaxy layers 232a-232f in the active layer 230, and its structure can refer to FIG. T 1 , T 2 , T 3 . 6 as an example) is the thickness of the quantum epitaxy layer 232f closest to the N-type semiconductor side 220.

表4Table 4

由表4可知,发光二极管I在350mA电流注入下,其发光强度为17.0mW。由表4的结果并参照图3可知,在发光二极管200最靠近P型半导体层240的前三层量子磊层232a~232c中,当靠近P型半导体层240的量子磊层232a的厚度T1大于较靠近N型半导体层220的量子磊层232b~232c的厚度T2与T3时,亦即当T1大于T2与T3时,即可有效地提升发光二极管的发光强度。It can be known from Table 4 that the luminous intensity of the light-emitting diode I is 17.0mW under the current injection of 350mA. From the results in Table 4 and with reference to FIG. 3 , it can be seen that among the first three quantum epitaxy layers 232 a to 232 c closest to the P-type semiconductor layer 240 in the light-emitting diode 200 , when the thickness T of the quantum epitaxy layer 232 a close to the P-type semiconductor layer 240 is T 1 When the thicknesses T2 and T3 of the quantum epitaxy layers 232 b - 232 c closer to the N-type semiconductor layer 220 are greater than T 2 and T 3 , that is, when T 1 is greater than T 2 and T 3 , the luminous intensity of the LED can be effectively improved.

具体而言,相较于发光二极管I,发光二极管II的发光强度大幅地降低至5.9mW,由于发光二极管II靠近P型半导体层240的量子磊层232a的厚度T1较薄,而未能有效地将电子局限于量子阱层内,使得发光强度大幅下降局限,这与前述所推论的机制相符。Specifically, compared with LED I, the luminous intensity of LED II is greatly reduced to 5.9 mW, because the thickness T1 of the quantum epitaxy layer 232a of LED II close to the P-type semiconductor layer 240 is relatively thin, and cannot effectively Confining the electrons in the quantum well layer effectively reduces the luminous intensity, which is consistent with the mechanism deduced above.

另一方面,发光二极管III将发光二极管I中间层的量子磊层232c、232d厚度T3、T4减薄之后,其发光强度可提升至24.0mW,这代表着当空穴在此厚度设计下更容易地往N型半导体层220注入到更多的量子阱层234a~234e。并且,如发光二极管IV,进一步将量子磊层232e、232f的厚度减薄后,其光输出功率更大幅提升到30.3mW。On the other hand, after light-emitting diode III reduces the thickness T 3 and T 4 of the quantum epitaxial layers 232c and 232d in the middle layer of light-emitting diode I, its luminous intensity can be increased to 24.0mW, which means that when the holes are more More quantum well layers 234 a to 234 e are easily implanted into the N-type semiconductor layer 220 . Moreover, like the light-emitting diode IV, after further reducing the thickness of the quantum epitaxy layers 232e and 232f, its light output power is further increased to 30.3mW.

此外,如发光二极管V,进一步将量子磊层232a~232f的厚度T1由P型半导体层240渐减至N型半导体层220时,如表4中所载,T1渐减至T6,发光强度提升至约两倍的33.1mW。换言之,在发光二极管中,当最靠近P型半导体层240的三层量子磊层232中,其厚度满足T1大于T2与T3的关系,即可有效地使空穴均匀地分布于有源层230的量子阱层中,并抑制电子的溢流现象,由此可有效地提升发光二极管的发光强度。In addition, such as the light emitting diode V, when the thickness T1 of the quantum epitaxy layers 232a - 232f is further gradually reduced from the P-type semiconductor layer 240 to the N-type semiconductor layer 220, as shown in Table 4, T1 is gradually reduced to T6 , The luminous intensity is increased to about twice 33.1mW. In other words, in the light-emitting diode, when the thickness of the three -layer quantum epitaxy layer 232 closest to the P - type semiconductor layer 240 satisfies the relationship that T1 is greater than T2 and T3, the holes can be effectively distributed uniformly in the In the quantum well layer of the source layer 230, the phenomenon of electron overflow can be suppressed, thereby effectively improving the luminous intensity of the light emitting diode.

图16为表4的各发光二极管中光输出曲线对注入电流图。如表4以及图16可知,通过调节有源层230中量子磊层232a~232f的厚度可以达到提升发光二极管的光输出效率的效果,尤其是,对于空穴迁移率较具影响的最靠近P型半导体层240的三层量子磊层232a~232c而言,通过适当地调节这三层量子磊层232a~232c的厚度即可达到有效提升发光强度的效果。FIG. 16 is a graph of the light output curve versus the injected current in each light emitting diode in Table 4. FIG. As can be seen from Table 4 and FIG. 16, by adjusting the thickness of the quantum epitaxy layers 232a-232f in the active layer 230, the effect of improving the light output efficiency of the light-emitting diode can be achieved, especially, the closest P For the three quantum epitaxy layers 232 a - 232 c of the type semiconductor layer 240 , by properly adjusting the thicknesses of the three quantum epitaxy layers 232 a - 232 c, the effect of effectively increasing the luminous intensity can be achieved.

具体来说,当有源层230中的i层中的量子磊层232的厚度满足T1最厚时,即可达到提升发光二极管的发光强度的效果。Specifically, when the thickness of the quantum epitaxial layer 232 in the i-layer of the active layer 230 satisfies the maximum thickness T 1 , the effect of increasing the luminous intensity of the light-emitting diode can be achieved.

依据前述表4的结果可知,中间层的量子磊层的厚度,例如T3、T4,可比靠近N型半导体层220和靠近P型半导体层240量子磊厚度薄,如同发光二极管III所示可有效地提升光输出效率。另一方面,可将靠近N型半导体层220的量子磊层232的厚度小于靠近P型半导体层240量子磊层232a、232b的厚度,而使量子磊层232c~232f的厚度为一致,如同发光二极管IV所示,更可有效地提升光输出效率。并且,当量子磊层232厚度从P型半导体层240往N型半导体层220逐渐变薄,如同发光二极管V所示,发光强度为最佳。According to the results of the aforementioned Table 4, it can be seen that the thickness of the quantum epitaxial layer in the middle layer, such as T 3 and T 4 , can be thinner than the thickness of the quantum epitaxial layer close to the N-type semiconductor layer 220 and close to the P-type semiconductor layer 240, as shown in the light-emitting diode III. Effectively improve light output efficiency. On the other hand, the thickness of the quantum epitaxy layer 232 close to the N-type semiconductor layer 220 can be smaller than the thickness of the quantum epitaxy layers 232a, 232b close to the P-type semiconductor layer 240, so that the thicknesses of the quantum epitaxy layers 232c-232f are consistent, as if emitting light As shown in diode IV, the light output efficiency can be improved more effectively. Moreover, when the thickness of the quantum epitaxy layer 232 gradually decreases from the P-type semiconductor layer 240 to the N-type semiconductor layer 220 , as shown by the light-emitting diode V, the luminous intensity is the best.

依据发明人前述的实验结果以及推论机制可知,可通过使电子空穴对均匀地分布在有源层230的量子阱层中,并提高靠近P型半导体层240的量子磊层载子的局限效应来有效地提升发光二极管的发光效率。According to the inventor's aforementioned experimental results and inference mechanism, it can be known that the electron-hole pairs can be uniformly distributed in the quantum well layer of the active layer 230, and the confinement effect of the quantum epitaxy layer carriers close to the P-type semiconductor layer 240 can be improved. To effectively improve the luminous efficiency of light-emitting diodes.

以前述实验中六层量子磊层232为例,最靠近P型半导体层240的第一层量子磊层232a的厚度T1要最大,而第二层量子磊层232b的厚度T2要小于或等于第一层量子磊层232a的厚度T1,由此可以使得最靠近P型半导体层240的第一层量子阱层有较佳的局限效应,避免电子的溢流效应,提升电子空穴的辐射复合效率。Taking the six-layer quantum epitaxy layer 232 in the aforementioned experiment as an example, the thickness T1 of the first quantum epitaxy layer 232a closest to the P-type semiconductor layer 240 should be the largest, while the thickness T2 of the second quantum epitaxy layer 232b should be less than or Equal to the thickness T 1 of the first layer of quantum epitaxy layer 232a, thus the first layer of quantum well layer closest to the P-type semiconductor layer 240 can have a better confinement effect, avoid the overflow effect of electrons, and improve the electron-hole Radiative recombination efficiency.

由以上实验及推论可知,通过使最靠近P型半导体层240的第一层量子磊层232a的厚度T1为最大,可以有效地避免电子的溢流效应,由此可提升电子空穴的辐射复合效率。因此在此领域的所属技术人员可以推知,当第二层量子磊层232b的厚度T2等于第一层量子磊层232a的厚度T1时,将可使得最靠近P型半导体层240的第一层量子阱层同时发挥较佳的局限效应,由此同样可达到避免电子溢流效应,以提升电子空穴的辐射复合效率的效果。From the above experiments and inferences, it can be known that by making the thickness T1 of the first quantum epitaxy layer 232a closest to the P-type semiconductor layer 240 the maximum, the overflow effect of electrons can be effectively avoided, thereby improving the radiation of electron holes. Compound efficiency. Therefore those skilled in the art can infer that when the thickness T 2 of the second quantum epitaxy layer 232b is equal to the thickness T 1 of the first quantum epitaxy layer 232a, the first layer closest to the P-type semiconductor layer 240 will be able to At the same time, the quantum well layer exerts a better confinement effect, thereby also avoiding the electron overflow effect and improving the radiation recombination efficiency of electron holes.

更进一步的说,第三层量子磊层232c的厚度T3要在T1~T3之间是最薄的,如表4的发光二极管III~V,由此可利于空穴的注入,使空穴更有效地往N型半导体层220侧的量子阱层234注入,使空穴在有源层230中的分布更为均匀。此外,如表4的发光二极管I所示,当T1>T2=T3时,相较于发光二极管II,可有效地提升光输出效率。另外,如表4的发光二极管IV与V所示,当T6最靠近N型半导体侧的量子磊层的厚度Ti(本实施例i=6,因此即为T6)为最薄时,发光二极管IV与V在350mA与700mA电流注入下的发光强度表现优异,亦即通过在该i层量子磊层中,使最靠近该N型半导体层的厚度Ti为最薄,可有效地提升光输出效率。Furthermore, the thickness T3 of the third quantum epitaxial layer 232c should be the thinnest between T1 - T3, as shown in Table 4 for light-emitting diodes III-V, which can facilitate hole injection and make Holes are more effectively injected into the quantum well layer 234 on the side of the N-type semiconductor layer 220 , so that the distribution of the holes in the active layer 230 is more uniform. In addition, as shown in LED I in Table 4, when T 1 >T 2 =T 3 , compared with LED II, the light output efficiency can be effectively improved. In addition, as shown in the light-emitting diodes IV and V in Table 4, when the thickness T i of the quantum epitaxial layer closest to the N-type semiconductor side of T 6 is the thinnest (i=6 in this embodiment, therefore T 6 ), The luminous intensity of light-emitting diodes IV and V under 350mA and 700mA current injection is excellent, that is, by making the thickness T i closest to the N-type semiconductor layer the thinnest in the i-layer quantum epitaxy layer, it can effectively improve light output efficiency.

以下进一步改变有源层中量子阱层以及量子磊层的层数,表5为改变有源层中量子阱层以及量子磊层的层数(六层、九层和十一层量子磊)以及改变不同位置的量子磊层的厚度(单位:纳米)时,在350mA与700mA电流注入下发光强度的表现,其中各量子阱层的厚度均为3纳米。换言之,在表5的结构栏中,各数字代表各层量子磊层232a~232i的厚度T1~Ti,而在该栏中,由右往左的数字分别代表自P型半导体侧起算的量子磊层232a~232i的厚度依序为T1、T2、T3...TiFurther change the number of layers of the quantum well layer and the quantum epitaxy layer in the active layer below, and table 5 is to change the number of layers of the quantum well layer and the quantum epitaxy layer (six layers, nine layers and eleven layers of quantum epitaxy) in the active layer and When changing the thickness (unit: nanometer) of the quantum epitaxy layer at different positions, the performance of the luminous intensity under the current injection of 350mA and 700mA, wherein the thickness of each quantum well layer is 3 nanometers. In other words, in the structure column of Table 5, each number represents the thickness T 1 ~T i of each quantum epitaxy layer 232a ~ 232i, and in this column, the numbers from right to left represent the thickness from the P-type semiconductor side. The thicknesses of the quantum epitaxy layers 232 a - 232 i are T 1 , T 2 , T 3 . . . T i in sequence.

表5table 5

发光二glow two 量子磊层quantum epitaxy layer 结构(Ti/.../T3/T2/T1)Structure (T i /.../T 3 /T 2 /T 1 ) 350mA下的发hair at 350mA 700mA下的发 hair at 700mA

极管polar tube 光强度brightness 光强度brightness II 66 9/9/9/9/9/119/9/9/9/9/11 17.017.0 36.336.3 VV 66 3/3/5/7/9/113/3/5/7/9/11 33.133.1 61.661.6 VIVI 99 9/9/9/9/9/9/9/9/119/9/9/9/9/9/9/9/11 16.416.4 35.535.5 VIIVII 99 2/3/3/5/5/7/7/9/112/3/3/5/5/7/7/9/11 24.724.7 46.846.8 VIIIVIII 1111 9/9/9/9/9/9/9/9/9/9/119/9/9/9/9/9/9/9/9/9/11 11.311.3 25.425.4 IXIX 1111 2/2/3/3/3/5/5/7/7/9/112/2/3/3/3/5/5/7/7/9/11 20.720.7 39.2 39.2

由表4及表5的结果可知,不论有源层230中是使用八层或十层量子阱层234(即九层或十一层的量子磊层232)的结构,当有源层230中的该i层各量子磊层232的厚度满足T1>T2≥T3时,尤其是以量子磊层232作一渐变厚度的设计可有效地提升发光二极管的发光效率。举例来说,比较发光二极管VI与发光二极管VII的八层量子阱层234的结构可以发现,在发光二极管VI的八层量子阱层234的结构中,将其量子磊层232厚度T8到T2均设为9nm,而将T1设为11nm。当将发光二极管VII中调节量子磊层232的厚度T9到T1依序为2/3/3/5/5/7/7/9/11nm,由此可将发光二极管的光输出效率(发光强度)从原本的16.4mW有效地提升到24.7mW。From the results of Table 4 and Table 5, it can be seen that regardless of whether the active layer 230 uses the structure of eight or ten quantum well layers 234 (that is, nine or eleven quantum epitaxy layers 232), when the active layer 230 When the thickness of each quantum epitaxy layer 232 in the i layer satisfies T 1 >T 2 ≥T 3 , especially the design of the quantum epitaxy layer 232 with a gradual thickness can effectively improve the luminous efficiency of the light emitting diode. For example, comparing the structure of the eight-layer quantum well layer 234 of the light-emitting diode VI and the light-emitting diode VII, it can be found that in the structure of the eight-layer quantum well layer 234 of the light-emitting diode VI, the thickness of the quantum epitaxial layer 232 is T 8 to T 2 are both set to 9nm , while T1 is set to 11nm. When adjusting the thickness T9 to T1 of the quantum epitaxy layer 232 in the light-emitting diode VII to be 2/3/3/5/5/7/7/9/11 nm in sequence, the light output efficiency of the light-emitting diode ( Luminous intensity) is effectively increased from the original 16.4mW to 24.7mW.

另一方面,比较发光二极管VIII与发光二极管IX的十层量子阱层234的结构可以发现,将其量子磊层232的厚度T11到T2均设为9nm,并将量子磊层232的厚度T1设为11nm。当调节量子磊层232的厚度为T11到T1依序厚度依序为2/2/3/3/3/5/5/7/7/9/11nm时,由此可将发光二极管的光输出效率(发光强度)从原本的11.3mW有效地提升到20.7mW。On the other hand, comparing the structure of the ten-layer quantum well layer 234 of the light-emitting diode VIII and the light-emitting diode IX, it can be found that the thicknesses T11 to T2 of the quantum epitaxy layer 232 are all set to 9 nm, and the thickness of the quantum epitaxy layer 232 is set to T1 is set to 11nm . When the thickness of the quantum epitaxy layer 232 is adjusted to be 2/2/3/3/3/5/5/7/7/9/11 nm in sequence from T 11 to T 1 , the light emitting diode can be The light output efficiency (luminous intensity) has been effectively increased from the original 11.3mW to 20.7mW.

值得一提的是,为了进一步增加发光二极管的发光强度,发明人提出可通过调节量子磊层232中掺杂量子磊层232的层数、掺杂浓度等,即可通过有目的地(intentionally)掺杂N型杂质来降低活性区的缺陷密度对载子的影响,有效地提升发光效率,特别是对于有源层230所发出的波长范围为222nm至405nm波段的光线更具有显著的提升效果。It is worth mentioning that, in order to further increase the luminous intensity of the light-emitting diode, the inventor proposes that by adjusting the number of layers and doping concentration of the doped quantum epitaxy layer 232 in the quantum epitaxy layer 232, it can be intentionally N-type impurities are doped to reduce the influence of the defect density in the active region on carriers, effectively improving the luminous efficiency, especially for the light emitted by the active layer 230 with a wavelength ranging from 222nm to 405nm.

尤其当掺杂量子磊层232的层数k与量子磊层232的总数i满足下述关系式时,发光效率提升的效果显著:当i为偶数时,k≥i/2;当i为奇数时,k≥(i-1)/2。换言之,当发光二极管的量子磊层232中,掺杂层数超过总层数的一半,且掺杂浓度为5×1017/cm3至1×1019/cm3时,即可有效地进一步提升发光二极管的发光效率。Especially when the layer number k of the doped quantum epitaxy layer 232 and the total number i of the quantum epitaxy layer 232 satisfy the following relational expression, the effect of improving the luminous efficiency is remarkable: when i is an even number, k≥i/2; when i is an odd number , k≥(i-1)/2. In other words, when the number of doped layers in the quantum epitaxial layer 232 of the light-emitting diode exceeds half of the total number of layers, and the doping concentration is 5×10 17 /cm 3 to 1×10 19 /cm 3 , it can effectively further Improve the luminous efficiency of light-emitting diodes.

综上所述,本发明的发光二极管中,通过使有源层中量子磊层的厚度设计符合特定关系,使得空穴可以均匀地分布于量子阱层中,由此提升发光二极管的载子的复合效率,因此本发明的发光二极管通过上述任一技术手段即可大幅地提升发光二极管在222nm~405nm波段的发光强度。In summary, in the light-emitting diode of the present invention, by making the thickness design of the quantum epitaxial layer in the active layer conform to a specific relationship, holes can be evenly distributed in the quantum well layer, thereby increasing the carrier density of the light-emitting diode. Therefore, the light-emitting diode of the present invention can greatly increase the luminous intensity of the light-emitting diode in the 222nm-405nm band by using any of the above-mentioned technical means.

此外,本发明的发光二极管的实施方式不限于前述所显示的型态,亦可以为水平电极配置或垂直电极配置,均可实现本发明,因此不亦此为限。In addition, the implementation of the light-emitting diode of the present invention is not limited to the above-mentioned types, and can also be configured with horizontal electrodes or vertical electrodes, both of which can realize the present invention, so it is not limited thereto.

图17为本发明的发光二极管的一种实施方式。如图17所示,发光二极管300的膜层由上至下依序包括接触层310;前述的N型半导体层220、有源层230、电子磊层270与中间层280、以及P型半导体层240;反射层320;接合层330;以及承载基板340。Fig. 17 is an embodiment of the light emitting diode of the present invention. As shown in FIG. 17 , the film layers of the light emitting diode 300 include the contact layer 310 from top to bottom; the aforementioned N-type semiconductor layer 220, the active layer 230, the epitaxial layer 270 and the intermediate layer 280, and the P-type semiconductor layer. 240 ; reflective layer 320 ; bonding layer 330 ; and carrier substrate 340 .

图18为本发明的发光二极管的另一种实施方式。如图18所示,发光二极管400的膜层由上至下依序包括前述的基板210、氮化物半导体披覆层212、N型半导体层220以及承载基板340,并于N型半导体层220与承载基板340夹设两个叠层,如显示于图18左方主要由前述有源层230、电子磊层270与中间层280、P型半导体层240、接触层310、以及接合层330所构成的第一叠层,以及位于该第一叠层右方并与该第一叠层相隔一段距离的第二叠层,其中该第二叠层主要由接触层310、以及接合层330所构成。并且,发光二极管400可视元件需求而将一反射层设置于右方第一叠层的接触层310与接合层330之间,或者设置承载基板340邻接于左方第二叠层的表面上,本发明并不以此为限。Fig. 18 is another embodiment of the light emitting diode of the present invention. As shown in FIG. 18 , the film layers of the light emitting diode 400 include the substrate 210, the nitride semiconductor coating layer 212, the N-type semiconductor layer 220, and the carrier substrate 340 from top to bottom. The carrier substrate 340 is interposed with two stacked layers, as shown on the left side of FIG. and a second stack located on the right of the first stack and at a distance from the first stack, wherein the second stack is mainly composed of a contact layer 310 and a bonding layer 330 . In addition, depending on the requirements of the components, the light emitting diode 400 may place a reflective layer between the contact layer 310 and the bonding layer 330 of the first stack on the right, or set the carrier substrate 340 adjacent to the surface of the second stack on the left, The present invention is not limited thereto.

图19为本发明的发光二极管的再一种实施方式。如图19所示,发光二极管500的膜层结构与图18类似,惟不同处在于:图19的发光二极管500相较于图18的发光二极管400进一步省略了N型半导体层220上方的基板210与氮化物半导体披覆层212构件,其余部分所标示的相同标号则与前述图18中的相同,不再赘述。并且,同样地,发光二极管500可视元件需求而将一反射层设置于右方第一叠层的接触层310与接合层330之间,或者设置承载基板340邻接于左方第二叠层的表面上,本发明并不以此为限。Fig. 19 is another embodiment of the light emitting diode of the present invention. As shown in FIG. 19 , the film layer structure of the light emitting diode 500 is similar to that in FIG. 18 , except that the light emitting diode 500 in FIG. 19 further omits the substrate 210 above the N-type semiconductor layer 220 compared with the light emitting diode 400 in FIG. 18 . The components of the nitride semiconductor cladding layer 212 and the rest are marked with the same reference numerals as those in FIG. 18 , and will not be repeated here. And, similarly, the light emitting diode 500 can arrange a reflective layer between the contact layer 310 and the bonding layer 330 of the first stacked layer on the right according to the requirements of the device, or arrange the carrier substrate 340 adjacent to the second stacked layer on the left. Apparently, the present invention is not limited thereto.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included in the protection scope of the present invention.

Claims (16)

1.一种发光二极管,包括:1. A light emitting diode, comprising: 一基板;a substrate; 一N型半导体层,位于该基板上;an N-type semiconductor layer located on the substrate; 一有源层,具有一缺陷密度DD,其中DD≥2×107/cm3,该有源层位于该N型半导体层的部分区域上,该有源层发出的光波长λ满足222nm≤λ≤405nm,该有源层包括i层的量子磊层以及(i-1)层量子阱层,各量子阱层位于任意两层量子磊层之间,且i为大于等于2的自然数,其中掺杂N型杂质于所述量子磊层中的至少k层,k为大于等于1的自然数,当i为偶数时,k≥i/2,当i为奇数时,k≥(i-1)/2;An active layer having a defect density DD, wherein DD≥2×10 7 /cm 3 , the active layer is located on a part of the N-type semiconductor layer, and the wavelength λ of light emitted by the active layer satisfies 222nm≤λ ≤405nm, the active layer includes i-layer quantum epitaxy layer and (i-1) quantum well layer, each quantum well layer is located between any two quantum epitaxy layers, and i is a natural number greater than or equal to 2, wherein doped Miscellaneous N-type impurities in at least k layers in the quantum epitaxial layer, k is a natural number greater than or equal to 1, when i is an even number, k≥i/2, when i is an odd number, k≥(i-1)/ 2; 一P型半导体层,位于该有源层上;以及a P-type semiconductor layer located on the active layer; and 一第一电极以及一第二电极,其中该第一电极位于该N型半导体层的部分区域上,且该第二电极位于该P型半导体层的部分区域上。A first electrode and a second electrode, wherein the first electrode is located on a partial area of the N-type semiconductor layer, and the second electrode is located on a partial area of the P-type semiconductor layer. 2.如权利要求1所述的发光二极管,其中所述已掺杂N型杂质的k层量子磊层位于所述量子磊层中最靠近N型半导体层的k层。2. The light emitting diode according to claim 1, wherein the k-layer quantum epitaxy layer doped with N-type impurities is located in the k-layer closest to the N-type semiconductor layer among the quantum epitaxy layers. 3.如权利要求1所述的发光二极管,其中所述量子磊层的材料包括AlxInyGa1-x-yN,其中0≤x≤1,0≤y≤0.3,且x+y≤1。3. The light emitting diode according to claim 1, wherein the material of the quantum epitaxy layer comprises Al x In y Ga 1-xy N, wherein 0≤x≤1, 0≤y≤0.3, and x+y≤1 . 4.如权利要求1所述的发光二极管,其中各该量子磊层的厚度为5nm至15nm之间。4. The light emitting diode as claimed in claim 1, wherein the thickness of each of the quantum epitaxy layers is between 5 nm and 15 nm. 5.如权利要求1所述的发光二极管,其中所述量子阱层的材料包括AlmInnGa1-m-nN,其中0≤m<1,0≤n≤0.5,m+n≤1,且x>m,n≥y。5. The light emitting diode according to claim 1, wherein the material of the quantum well layer comprises Al m In n Ga 1-mn N, wherein 0≤m<1, 0≤n≤0.5, m+n≤1, And x>m, n≥y. 6.一种发光二极管,包括:6. A light emitting diode, comprising: 一基板;a substrate; 一N型半导体层,位于该基板上;an N-type semiconductor layer located on the substrate; 一有源层,具有一缺陷密度DD,其中DD≥2×107/cm3,该有源层位于该N型半导体层的部分区域上且发出的光波长λ满足222nm≤λ≤405nm,该有源层包括i层的量子磊层以及(i-1)层量子阱层,各量子阱层位于任意两层量子磊层之间,且i为大于等于2的自然数,其中掺杂N型杂质于所述量子磊层中的至少k层,k为大于等于1的自然数,当i为偶数时,k≥i/2,当i为奇数时,k≥(i-1)/2;An active layer having a defect density DD, wherein DD≥2×10 7 /cm 3 , the active layer is located on a part of the N-type semiconductor layer and the emitted light wavelength λ satisfies 222nm≤λ≤405nm, the The active layer includes an i-layer quantum epitaxy layer and an (i-1) quantum well layer, each quantum well layer is located between any two quantum epitaxy layers, and i is a natural number greater than or equal to 2, which is doped with N-type impurities For at least k layers in the quantum epitaxy layer, k is a natural number greater than or equal to 1, when i is an even number, k≥i/2, and when i is an odd number, k≥(i-1)/2; 一P型半导体层,位于该有源层上,且该k层量子磊层中最靠近该P型半导体的量子磊层的掺杂浓度小于等于该k层量子磊层中其他量子磊层的掺杂浓度;以及A P-type semiconductor layer is located on the active layer, and the doping concentration of the quantum epitaxy layer closest to the P-type semiconductor in the k-layer quantum epitaxy layer is less than or equal to the doping concentration of other quantum epitaxy layers in the k-layer quantum epitaxy layer impurity concentration; and 一第一电极以及一第二电极,其中该第一电极位于该N型半导体层的部分区域上,且该第二电极位于该P型半导体层的部分区域上。A first electrode and a second electrode, wherein the first electrode is located on a partial area of the N-type semiconductor layer, and the second electrode is located on a partial area of the P-type semiconductor layer. 7.如权利要求6所述的发光二极管,其中所述已掺杂N型杂质的k层量子磊层位于所述量子磊层中最靠近N型半导体层的k层。7. The light emitting diode according to claim 6, wherein the k-layer quantum epitaxy layer doped with N-type impurities is located in the k-layer closest to the N-type semiconductor layer among the quantum epitaxy layers. 8.如权利要求7所述的发光二极管,其中该k层量子磊层的掺杂浓度至少为5×1017/cm38. The light emitting diode as claimed in claim 7, wherein the doping concentration of the k-layer quantum epitaxy layer is at least 5×10 17 /cm 3 . 9.如权利要求7所述的发光二极管,其中该k层中各量子磊层的掺杂浓度自N型半导体侧起算依序为C1、C2、…Ck,且Ck≤Ck-19. The light-emitting diode according to claim 7, wherein the doping concentration of each quantum epitaxial layer in the k layer is C 1 , C 2 , ... C k in sequence from the N-type semiconductor side, and C k ≤ C k -1 . 10.如权利要求6所述的发光二极管,其中所述量子磊层的材料包括AlxInyGa1-x-yN,其中0≤x≤1,0≤y≤0.3,且x+y≤1。10. The light emitting diode according to claim 6, wherein the material of the quantum epitaxy layer comprises Al x In y Ga 1-xy N, wherein 0≤x≤1, 0≤y≤0.3, and x+y≤1 . 11.如权利要求6所述的发光二极管,其中各该量子磊层的厚度为5nm至15nm之间。11. The light emitting diode as claimed in claim 6, wherein the thickness of each of the quantum epitaxy layers is between 5nm and 15nm. 12.如权利要求6所述的发光二极管,其中所述量子阱层的材料包括AlmInnGa1-m-nN,其中0≤m<1,0≤n≤0.5,m+n≤1,且x>m,n≥y。12. The light emitting diode according to claim 6, wherein the material of the quantum well layer comprises Al m In n Ga 1-mn N, wherein 0≤m<1, 0≤n≤0.5, m+n≤1, And x>m, n≥y. 13.一种发光二极管,包括:13. A light emitting diode comprising: 一基板;a substrate; 一N型半导体层,位于该基板上;an N-type semiconductor layer located on the substrate; 一有源层,具有一缺陷密度为DD,其中DD≥2×107/cm3,该有源层位于该N型半导体层的部分区域上,该有源层发出的光波长λ满足222nm≤λ≤405nm,该有源层包括i层的量子磊层以及(i-1)层量子阱层,各量子阱层位于任意两层量子磊层之间,且i为大于等于2的自然数,其中掺杂N型杂质于所述量子磊层中的至少k层,k为大于等于1的自然数,当i为偶数时,k≥i/2,当i为奇数时,k≥(i-1)/2,该k层量子磊层的掺杂浓度为5×1017/cm3至1×1019/cm3An active layer with a defect density of DD, wherein DD≥2×10 7 /cm 3 , the active layer is located on a part of the N-type semiconductor layer, and the wavelength λ of the light emitted by the active layer satisfies 222nm≤ λ≤405nm, the active layer includes an i-layer quantum epitaxy layer and (i-1) quantum well layer, each quantum well layer is located between any two quantum epitaxy layers, and i is a natural number greater than or equal to 2, where Doping N-type impurities in at least k layers of the quantum epitaxy layer, k is a natural number greater than or equal to 1, when i is an even number, k≥i/2, when i is an odd number, k≥(i-1) /2, the doping concentration of the k-layer quantum epitaxial layer is 5×10 17 /cm 3 to 1×10 19 /cm 3 ; 一P型半导体层,位于该有源层上;以及a P-type semiconductor layer located on the active layer; and 一第一电极以及一第二电极,其中该第一电极位于该N型半导体层的部分区域上,且该第二电极位于该P型半导体层的部分区域上。A first electrode and a second electrode, wherein the first electrode is located on a partial area of the N-type semiconductor layer, and the second electrode is located on a partial area of the P-type semiconductor layer. 14.如权利要求13所述的发光二极管,其中所述已掺杂N型杂质的k层量子磊层位于所述量子磊层中最靠近N型半导体层的k层。14. The light emitting diode according to claim 13, wherein the k-layer quantum epitaxy layer doped with N-type impurities is located in the k-layer closest to the N-type semiconductor layer among the quantum epitaxy layers. 15.如权利要求13所述的发光二极管,其中该k层中各量子磊层中最靠近该P型半导体的量子磊层的掺杂浓度小于等于该k层量子磊层中其他量子磊层的掺杂浓度。15. The light-emitting diode as claimed in claim 13, wherein the doping concentration of the quantum epitaxy layer closest to the P-type semiconductor in each quantum epitaxy layer in the k-layer is less than or equal to that of other quantum epitaxy layers in the k-layer quantum epitaxy layer doping concentration. 16.如权利要求13所述的发光二极管,其中各该量子磊层的厚度为5nm至15nm之间。16. The light emitting diode as claimed in claim 13, wherein the thickness of each of the quantum epitaxy layers is between 5nm and 15nm.
CN201310061155.1A 2012-03-01 2013-02-27 led Active CN103296163B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510547355.7A CN105047773B (en) 2012-03-01 2013-02-27 Light emitting diode

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
TW101106753 2012-03-01
TW101106753 2012-03-01
TW101113026 2012-04-12
TW101113026 2012-04-12
TW102103818A TWI549317B (en) 2012-03-01 2013-01-31 Light-emitting diode
TW102103818 2013-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510547355.7A Division CN105047773B (en) 2012-03-01 2013-02-27 Light emitting diode

Publications (2)

Publication Number Publication Date
CN103296163A CN103296163A (en) 2013-09-11
CN103296163B true CN103296163B (en) 2016-08-03

Family

ID=49096746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310061155.1A Active CN103296163B (en) 2012-03-01 2013-02-27 led

Country Status (1)

Country Link
CN (1) CN103296163B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565094B (en) * 2012-11-15 2017-01-01 財團法人工業技術研究院 Nitride semiconductor structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528037A (en) * 2001-03-28 2004-09-08 ���ǻ�ѧ��ҵ��ʽ���� Nitride semiconductor device
WO2009120990A2 (en) * 2008-03-27 2009-10-01 Nitek, Inc. Ultraviolet light emitting diode/laser diode with nested superlattice
CN103296162A (en) * 2012-03-01 2013-09-11 财团法人工业技术研究院 Light emitting diode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630692B2 (en) * 2001-05-29 2003-10-07 Lumileds Lighting U.S., Llc III-Nitride light emitting devices with low driving voltage
KR100887050B1 (en) * 2007-12-06 2009-03-04 삼성전기주식회사 Nitride semiconductor devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528037A (en) * 2001-03-28 2004-09-08 ���ǻ�ѧ��ҵ��ʽ���� Nitride semiconductor device
WO2009120990A2 (en) * 2008-03-27 2009-10-01 Nitek, Inc. Ultraviolet light emitting diode/laser diode with nested superlattice
CN103296162A (en) * 2012-03-01 2013-09-11 财团法人工业技术研究院 Light emitting diode

Also Published As

Publication number Publication date
CN103296163A (en) 2013-09-11

Similar Documents

Publication Publication Date Title
TWI466314B (en) Group III nitrogen compound semiconductor light-emitting diode
CN111223970B (en) light emitting device
CN103824919B (en) Light emitting diode
JP4892618B2 (en) Semiconductor light emitting device
CN105914273B (en) A kind of reddish yellow light-emitting diode epitaxial wafer and preparation method thereof
US20130228743A1 (en) Light emitting diode
CN106057997B (en) A kind of epitaxial wafer and preparation method of yellowish green light-emitting diode
CN103296162A (en) Light emitting diode
CN105047773B (en) Light emitting diode
JP4960465B2 (en) Semiconductor light emitting device
JP5935178B2 (en) Semiconductor light emitting device
WO2016065884A1 (en) Light-emitting diode
CN103296163B (en) led
JP5455852B2 (en) Compound semiconductor light emitting device and method for manufacturing the same
CN103378242A (en) Light emitting diode
CN115714156A (en) Deep ultraviolet light-emitting diode
KR101715839B1 (en) High Efficiency DUV LED using Gradual trap barrier
JP5460754B2 (en) Semiconductor light emitting device
JP5337862B2 (en) Semiconductor light emitting device
CN110473941A (en) A kind of AlGaN base ultraviolet LED epitaxial structure
CN104269476A (en) Green-yellow light LED doped with superlattice structure and manufacturing technology thereof
TWI787646B (en) Ultraviolet c light-emitting diode
JP5554387B2 (en) Semiconductor light emitting device
JP2012060170A (en) Semiconductor light-emitting element and method for manufacturing the same
JP5629814B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221123

Address after: Ruiguang road Taiwan Taipei City Neihu district China No. 392 22 floor

Patentee after: Lite-On Technology Co.,Ltd.

Address before: Hsinchu County, Taiwan, China

Patentee before: Industrial Technology Research Institute