CN103293953B - 具有用来补偿模型失配的调节的鲁棒的自适应模型预测控制器 - Google Patents
具有用来补偿模型失配的调节的鲁棒的自适应模型预测控制器 Download PDFInfo
- Publication number
- CN103293953B CN103293953B CN201310062691.3A CN201310062691A CN103293953B CN 103293953 B CN103293953 B CN 103293953B CN 201310062691 A CN201310062691 A CN 201310062691A CN 103293953 B CN103293953 B CN 103293953B
- Authority
- CN
- China
- Prior art keywords
- controller
- model
- control
- error signal
- mpc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000033228 biological regulation Effects 0.000 title claims abstract description 220
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 claims abstract description 459
- 230000008569 process Effects 0.000 claims abstract description 316
- 230000008859 change Effects 0.000 claims description 84
- 238000004458 analytical method Methods 0.000 claims description 67
- 230000001105 regulatory effect Effects 0.000 claims description 49
- 238000012545 processing Methods 0.000 claims description 30
- 230000004044 response Effects 0.000 claims description 14
- 230000001276 controlling effect Effects 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 5
- 238000010219 correlation analysis Methods 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 86
- 238000005516 engineering process Methods 0.000 abstract description 66
- 238000005457 optimization Methods 0.000 abstract description 49
- 238000013459 approach Methods 0.000 abstract description 7
- 241000196324 Embryophyta Species 0.000 description 37
- 238000005259 measurement Methods 0.000 description 30
- 230000006870 function Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 18
- 238000004886 process control Methods 0.000 description 17
- 238000012360 testing method Methods 0.000 description 16
- 238000004891 communication Methods 0.000 description 11
- 238000001914 filtration Methods 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 10
- 238000004422 calculation algorithm Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 238000004088 simulation Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 230000010354 integration Effects 0.000 description 7
- 238000004821 distillation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000007667 floating Methods 0.000 description 6
- 238000012369 In process control Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 5
- 238000010965 in-process control Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000011217 control strategy Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000012800 visualization Methods 0.000 description 4
- 241000208340 Araliaceae Species 0.000 description 3
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 3
- 235000003140 Panax quinquefolius Nutrition 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000001143 conditioned effect Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 235000008434 ginseng Nutrition 0.000 description 3
- 238000012994 industrial processing Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000005311 autocorrelation function Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000009514 concussion Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005314 correlation function Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000012905 input function Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000032696 parturition Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 238000012731 temporal analysis Methods 0.000 description 1
- 238000000700 time series analysis Methods 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/048—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41885—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Feedback Control In General (AREA)
Abstract
一种MPC自适应和调节技术,其集成反馈控制性能优于今天在MPC类型控制器中通常使用的方法。该MPC控制器性能通过给MPC控制器添加控制器自适应/调节单元得到了加强,存在特定的模型失配量或模型失配范围时,该自适应/调节单元在在线过程控制期间执行优化例程以确定要在MPC控制器内使用的最好或最佳的一组控制器设计和/或调节参数。基于以前确定的过程模型以及已知或预期的过程模型失配或者过程模型失配范围,所述自适应/调节单元确定一个或多个MPC控制器调节和设计参数,其中包括例如MPC形式、用于MPC控制器和观察器中的任一个或两个的惩罚系数以及在MPC控制器中使用的控制器模型。
Description
本申请是由费希尔-罗斯蒙特系统公司申请的、发明名称为“具有用来补偿模型失配的调节的鲁棒的自适应模型预测控制器”、申请号为200980103330.0一案的分案申请。
相关申请
本申请是于2008年1月31提交的、名称为“Robust Adaptive Model PredictiveController with Automatic Correction for Model Mismatch”的第61/025,190号美国临时专利申请的正式提交的申请,并要求该临时申请的优先权和申请日的权益,所以此处通过引用特别并入该临时申请的全部公开内容。
技术领域
本申请涉及在例如工业加工厂中执行的过程控制,并且更具体地说,涉及在有模型失配的情况下,使用模型预测控制器来执行加工厂的控制的改进的方法。
背景技术
过程控制硬件和软件在几乎所有的化学、制药和精炼工业设施中都是很重要组件,并且在世界范围内有着数十亿美元的业务。尽管过去在任何特定实例中获得尽可能最好的控制并不总是主要焦点,然而近年来,新的工厂诸如工业加工厂的设计越来越多地考虑可控性和可优化性。另外,许多现有的加工厂以此为目标进行了改造。这种改造不仅包括对安装的硬件的几何结构诸如反应器、罐、管等的位置的改造,而且还包括对用于执行过程控制的控制、监控和测量单元的位置与类型的改造。随着自然资源成本以及与排放有关的实际成本的增加,能源的消耗也变成了设计工厂时要考虑的重要因素。
控制性能监控与控制器重调或模型调度协同工作,能够显著地改进工业工厂的效率,并由此每年节约数百万美元。另一种在近些年变得越来越流行的技术是异常情况监控和预防(ASP)。在一些情况下,现代设备和控制系统设计包括新颖的传感器和嵌入式统计算法,这能够预测可能的失败或者即将到来的维护周期。这些预测维护系统能够显著地增加工厂操作的正常运行时间,并且预防代价高昂且危险的意外停机现象。另外,在过去十年间这些技术的可靠性已有了显著的增加,从而导致工厂效率的增加。
作为这些成果的一部分,一类预测控制技术,一般称为模型预测控制(MPC)技术,自从大约25年前被开发并应用以来,在工业领域得到了重要的承认。一般来说,MPC指的是一类控制算法,该算法通过利用过程模型(典型地在本质上为线性的)计算受控变量曲线以在未来的时间范围内受约束地优化线性或二次的开环性能指标。这种开环的第一个作用是,在过程中实现最佳受控变量曲线,并且在每个控制间隔或控制器周期上重复该程序以执行过程控制。在正在进行的控制期间,过程测量被用来更新优化问题。这类控制算法也被称为滚动域控制(receding horizon control)或移动域控制(moving horizon control)。
然而,由于其复杂性,MPC主要是在高级控制界中确立了它的位置,并因此MPC的配置典型地是由控制专家开发并委托他们管理的。因此,MPC的实现通常仅值得应用在那些有希望大幅增加利润以回报实现的高成本的过程中。这里,就输入和输出的数量而言,MPC应用的规模通常很大,这也是为什么MPC典型地不被用在低端回路控制诸如单变量回路控制中的一个原因。
更具体地,控制系统的委托成本是相当大的,并且实际上很少仔细注意在特定的加工厂中每条控制回路的配置。因此,所有控制回路中大约有百分之90受传统线性反馈控制器控制,诸如比例-积分-微分(PID)控制器或者比例-积分(PI)控制器。另外,对于MPC控制器被使用的程度,这些控制器在本质上也典型地为线性。遗憾的是,虽然过程控制工业中使用线性控制器是主流,但是大多数真实过程却显示出非线性的工作状况。这种矛盾的后果是模型失配不可避免。未解决的模型失配不仅导致未达最佳标准的控制性能,而且还无效化了很多被开发用于改进控制性能和正常运行时间的技术的优势。因此,模型失配不仅就控制硬件和软件而言是代价高昂的,而且实际上还减小了其他相关工厂技术所带来的成本节约。
一般来说,工业控制器的性能能够以各种方法测量,而且不同过程可拥有极为不同的质量和安全要求。实际上,工厂工程师可以使用一个或多个不同的性能标准,诸如超调、停止时间(arrest time)(积分过程)、振荡特性、误差积分以及绝对误差积分(IAE),以评估特定控制回路的性能。然而,对于PID控制器,关于给定控制器的被测量控制性能典型地为设定点跟踪与抗干扰行为之间的折衷结果,即设定点跟踪性能较好则导致抗干扰性能较差,反之亦然。例如,已知长的时间常数(即,诸如存在于滞后主导的过程中的时间常数)会在PID控制器中导致差的抗干扰性能,所述PID控制器关于设定点跟踪性能被调节。这种在PID控制器发展中的固有折衷,能够通过下列事实来解释,即为了抗负载干扰被理想调节的PID控制器必须有相对高的积分作用(即,相对小的积分时间常数),而该高积分作用不利于控制器的设定点改变性能。更具体地说,在设定点改变期间,甚至当受控制的变量(y)接近设定点(SP)时,过程误差(e)在一段时间按内保持为大。由于非常大的积分增益,积分项快速且超乎所需地增长,从而引起设定点超调。因此,目标为设定点改变性能的PID调节具有较小的积分作用和较差的抗负载改变或干扰性能。因为如以上注意到的,在所有工业领域中传统PID控制仍是最流行的控制器选择,受这一问题所困扰,已提出了许多途径来试图减小该问题的影响,其中包括对PID控制器结构上的修正和设定点过滤。
然而,即便使用了这些修正,在正确指定设定点跟踪与抗干扰性能之间的折衷方面,PID控制器的调节仍然存在困难。典型地,不同的PID调节方法偏爱设定点跟踪性能或抗干扰性能中的一个胜过另一个。另外为了受控制的过程,许多基于模型的调节技术将PID控制器的内部参数匹配模型的内部参数,其结果是产生这种相同的折衷。例如,PID调节方法诸如极点消除和lambda调节会将控制器的积分时间匹配过程的主导时间常数。这里,设定控制器增益以实现某种闭环时间常数和某种设定点改变响应(例如,没有超调)。因为这种控制器的所得积分作用相对较小,所以这种技术显示出非常好的设定点改变性能,但很差的抗干扰性能。另一方面,以经验为依据的PID调节方法诸如Ziegler-Nichols方法被特别设计用于抗干扰性能。然而,因为这种控制器的积分作用足够强以致能非常迅速地将过程变量返回设定点,这会引起响应于设定点改变的非期望的设定点超调。
在极少数情况下,回路的用途仅为抗干扰(例如,没有设定点改变的缓冲罐水平(buffer tank level))或者仅为设定点跟踪(例如,在不带干扰的级联策略中的次级回路)。虽然在这些情况下,可容易地选择调节配置,但上述折衷常常被完全忽视,并典型地选择默认的调节方法作为代替,这使所述调节在任何特定过程状况中均低于最佳标准。如以上所注意到的,虽然已经开发出为数众多的调节方法以克服PID调节的这一限制,包括了设定点过滤和双自由度结构,这些调节方法典型地偏爱抗干扰性能,并因此对于设定点改变的控制器反应被人为地减小了。例如,如果选择了设定点过滤,则通过操作员进行的设定点改变被过滤以预防超调,其结果是产生对于设定点改变较慢的反应。
在任何情况下,以上所讨论性能折衷的直接结果是需要为不同的控制目标选择不同的调节方法,这就是为什么会对PID调节提出这么多调节方法的原因之一。对于有这么多PID调节技术可用的另一个原因是不同的调节规则或方法会使用不同的输入变量,则其中仅有一些能够简单地用在任何特定过程中。例如,虽然许多调节方法基于过程模型计算调节,但是其他方法可基于其他过程特性计算调节。作为后面这种方法的例子,Ziegler-Nichols调节规则使用临界增益和临界频率,虽然对一些机械过程而言该临界增益和临界频率可易于确定,但在许多工业化学过程中实际上却不能确定。
另一方面,预测控制器诸如MPC控制器应当能够相类似地执行用于设定点改变和负载改变,这是因为MPC控制器的积分部分不会受如关于PID控制器所观察到的一样的折衷困扰。更具体地说,MPC控制器一般不会显示出设定点跟踪与抗干扰之间的性能折衷,这是因为关于误差惩罚和移动惩罚的项是固有地分离的,理论上这就使MPC控制器成为了PID控制器所期望的替代者。而且,在预测控制器中,当受控制的变量或过程输出(y)接近设定点时,误差(e)也不会增加。实际上,在第一执行周期之后所述误差理论上能够为零,由此降低或消除了PID控制中固有的积分增益问题。遗憾的是,当存在过程模型失配时,即当由MPC控制器使用的过程模型不完美匹配实际过程特性时,MPC控制器的性能会迅速衰退。
更进一步已知的是,当PID控制器为抗干扰而被特殊调节时,工业MPC控制器的抗干扰性能落后于PID控制器的抗干扰性能。若假设MPC技术中所使用的观察器模型被认为是完美的,则近来MPC在状态更新方面的改进已多少拉近了这种性能差距。然而,面对模型失配问题时,PID控制器的控制性能,如通过积分绝对误差(IAE)测量到的,仍然优于带有尽可能最好的调节的MPC控制器的控制性能。
即便如此,MPC仍被视为用来取代PID控制器的首要控制技术之一,因为MPC控制器被认为是能够结合预测控制性能的好处以及仅使用或多或少的几个直观调节参数的这种便利性。然而目前,MPC控制器一般仅在PID控制执行得很差或者过于困难以至于无法实现或维护的工业环境中取得了成功,尽管有学术界和控制系统厂商在近些年付出了巨大的努力以推广MPC的应用范围的事实。从根本上说,因为对于大量过程而言,执行PID控制仍优于MPC,并且因为较之MPC类型控制器,部署PID控制器更廉价和更快捷,所以MPC控制器实际上仅取代了实际加工厂配置中的一小部分PID控制器。
如上面所指明的,为什么MPC控制器的执行往往差于PID控制器的主要原因之一是,由于其过程模型失配多于PID控制器(除可能的滞后主导过程之外),所以MPC控制器更易受性能降低的影响。虽然有解决由过程中的非线性(或其他来源)所引起的模型失配的实际方法,诸如控制单元与传送器的线性化以及使用控制器增益调度,但解决模型失配最普通的技术是实现控制器调节。然而,因为调节控制器很困难,过程操作员或工程师经常关于最差的情况场景(例如最高的过程增益)调节控制器,并且对于过程的其他部分接受未达最佳标准的调节。因此,工业PID或MPC控制器的默认调节参数典型地是保守的,以便这些调节参数最初能够工作于各种不同的过程应用。然而,控制器通常无限期地留在它们的默认设定上,其结果则是总体较差的性能。即便不是这种情况,由识别误差或由工厂偏差所引起的模型失配更难以用调节来解决。实际上,很难发现这类型的模型失配,这是因为需要足够的过程扰动来实现模型识别,其典型地与过程控制的目标(即,响应过程干扰将过程保持在稳态)相矛盾。另外,很难区别过程扰动和未被测量的干扰。
一种响应模型失配“调节”MPC控制器的方法,其根据过程改变重新生成过程模型,并随后在MPC控制器内使用这种新模型。遗憾的是,首先对开发基于模型的控制器所使用的精确过程模型有许多实际阻碍。例如,即使许多工业过程是最小相移的,但大多数闭环却不是最小相移的。时延,也称为死区时间,和更高阶滞后产生右手极点(right hand pole),其使得精确过程模型的开发变得非常复杂。在大多数情况下,闭环死区时间由管道中材料的输送延迟,以及计算机控制系统中不可避免的离散采样机制所产生,同时较高阶的滞后通常是测量与控制设备中滤波器的时间常数的结果。在定义关于工业工厂的过程模型时常常能发现的其他困难包括由阀的机械特性与封装所产生的分辨率和死区。
为控制器开发过程模型时,这些和其他因素给工业工厂领域中的控制工程师提出了许多困难。例如,即使期望某一过程表现得像带有确定增益和时间常数的一阶滤波器,依赖于容器的几何结构,控制工程师要考虑来自传送器的额外时间常数、控制单元计算机采样以及抖动。尤其是,任何数字控制系统具有中央处理单元(CPU)和通信约束,这意味着为工厂中所有类型的回路提供充足的过采样是不实际的。例如,虽然三倍最大时间常数加上死区时间的采样率或五倍死区时间的采样率,无论哪一个较大,通常都有理由认为是足够的,但这一采样率对于工厂中的许多控制回路(诸如流量回路和压力回路)却通常是不可能实现的。因此,工程师通常不能够单依靠可用于反应中一部分的第一原理模型。另外,过程模型识别由集成的自动工具理想地执行。然而,典型地在实际工厂中使用以识别过程模型的第一原理建模和通用第三方解决方案,通过直接连接到现场仪表这么做。所以,这些解决方案不是综合的,因为它们不考虑(或者充其量仅近似)计算机控制系统本身在回路性能上的影响。所有这些因素能够引起所述过程与被开发以控制该过程的过程模型之间相当大的失配,使基于模型的控制和调节方法在实际状况中是不值得期望的。
发明内容
已确定的是,MPC控制器反馈控制能力中的不足是关于PID与MPC控制器之间性能差距的一个原因,尤其是存在过程模型失配时。认识到这一事实,此处所描述的MPC自适应和调节技术集成反馈控制性能,这要胜过现在MPC类型控制器中常用的方法,其结果是产生了一种在存在过程模型失配时执行优于传统MPC技术的MPC自适应/调节技术。
尤其是,MPC控制器的性能可通过为MPC控制器添加自适应/调节单元来增强,其中自适应/调节单元确定在线过程控制期间MPC控制器内要使用的最好或最佳的一组过程模型、MPC设计和/或调节参数,以改进在存在特定数量或一系列模型失配时MPC控制器的抗干扰性能。更具体地,所述自适应/调节单元实现确定了一个或多个MPC控制器调节和设计参数的优化例程,所述调节和设计参数包括例如MPC形式、用于MPC控制器和观察器诸如卡尔曼滤波器中的任一个或两个的惩罚因子、和用于MPC控制器内的控制器模型,这基于事先确定的过程模型以及不是已知或预期的过程模型失配就是已知或预期的过程模型失配范围。这种自适应/调节单元可以用来周期性地或连续地自适应和/或调节MPC控制器,以开发在存在已知或预期的模型失配或模型失配范围时有最好总体性能的MPC控制器,而完全不需要重新生成原始过程模型。因此,这种自动自适应/调节MPC控制器的方法基于模型失配或模型失配范围来确定最佳调节参数,使得存在模型失配时MPC控制器能够被最佳地操作,并且能够被有利地使用以执行闭环自适应控制,使其在许多实例中成为优于PID控制技术的选择。
此外,可在例如MPC控制器单元中使用的方法使用了控制误差和/或预测误差的自相关函数以确定模型失配的估计大小或改变,所述模型失配是当前MPC控制器中所使用的过程模型与实际过程之间的失配。这种估计可用来开始新的自适应/调节周期以更新MPC控制器设计和调节参数,由此在存在新的数量的模型失配时执行更好的控制。这种发现模型失配的方法可以用来确定,什么时候以使其更易受过程状态的改变影响的方式来调节控制器,尤其是当这种状态改变会伴随着过程模型中的改变,并因此能用来先于过程改变的发生修正或重调MPC控制器,而所述过程改变对于当前被调节的MPC控制器而言或许还不能够被很好地处理。
附图说明
图1是过程控制系统的框图,所述过程控制系统包括的控制模块具有实现了MPC控制器的高级控制器功能块;
图2是典型的MPC控制器的框图;
图3是典型的MPC控制器单元的框图,所述MPC控制器单元具有被连接以控制加工厂的MPC控制器和状态观察器;
图4是自适应/调节块的原理图,所述自适应/调节块耦合到MPC控制器单元以基于过程模型和一个或多个过程模型参数中的模型失配来确定MPC设计和调节参数;
图5是最小积分绝对误差的示例曲线图,所述最小积分绝对误差与在存在过程模型的过程增益参数中的模型失配时确定最佳调节有关;
图6是最小可获得的积分绝对误差示例曲线图,所述最小可获得的积分绝对误差与在存在过程模型的一阶时间常数中的模型失配时确定最佳调节有关;
图7是最小可获得的积分绝对误差示例曲线图,所述最小可获得的积分绝对误差与在存在过程模型的二阶时间常数中的模型失配时确定最佳调节有关;
图8描绘了尽可能最好的积分绝对误差的三维表面图,所述尽可能最好的积分绝对误差如通过图4的自适应/调节块计算的一样,用于带有一般卡尔曼滤波器状态更新的MPC控制器中的两个过程模型参数的模型失配;
图9描绘了尽可能最好的积分绝对误差的三维表面图,所述尽可能最好的积分绝对误差如通过图4的自适应/调节块计算的一样,用于带有简化的卡尔曼滤波器状态更新的MPC控制器中的两个过程模型参数的模型失配;
图10是二维子空间中模型失配范围的示图;
图11是图10的二维模型失配子空间的示图,其在假设的过程模型中心点上叠加于图8的三维曲线图以规定二维模型失配范围子空间;
图12是一种方式的示图,所述方式是将图11的二维模型失配范围子空间移动到图11的三维曲线图上的不同位置处,以确定新的一组控制器模型参数以及新的一组最佳MPC调节和设计参数,它们与模型失配范围子空间有关;
图13是自适应/调节块的框图,所述自适应/调节块基于过程或工厂模型以及模型失配范围优化MPC控制器;
图14是示出将图13中自适应/调节块的应用到使用了开环调节的MPC控制的框图;
图15是示出将图13中自适应/调节块的应用到使用了耦合到过程的特性估计器块的闭环调节配置中的MPC控制的框图;
图16是示出将图13中自适应/调节块的应用到使用了耦合到MPC控制器的新息分析块的闭环调节配置中的MPC控制的框图;
图17示出二元精馏塔的P&ID,其被用于此处所描述的MPC控制器自适应/调节方法的实验性测试;
图18示出了当以第一汽耗率控制图17二元精馏塔内的水平时,三个被不同地调节的MPC控制器和一个PID控制器的性能曲线图;
图19示出了当在从第一汽耗率到第二汽耗率的蒸汽流量率中引入人为的未测量干扰之后,控制图17二元精馏塔内的水平时,三个被不同地调节的MPC控制器和一个PID控制器的性能曲线图;
图20示出了当以第二汽耗率控制图17二元精馏塔内的水平时,两个被不同地调节的MPC控制器和一个PID控制器的性能曲线图;
图21示出了当以与图18曲线图有关的第一汽耗率操作时,以三个不同MPC调节设定的MPC控制器中预测误差的自相关的曲线图;
图22示出了当以与图20曲线图有关的第二汽耗率操作时,关于三个不同MPC调节设定中的两个的MPC控制器中的预测误差的自相关的曲线图;
图23示出了当在抑制与图19曲线图有关的未测量的干扰期间操作时,关于三个不同MPC调节设定的MPC控制器中的预测误差的自相关的曲线图;
图24示出了当在以与图18曲线图有关的第一汽耗率期间操作时,以三个不同MPC调节设定的MPC控制器(以及PID控制器)中的控制误差的自相关的曲线图;
图25示出了在与将蒸汽流量率从第一汽耗率改变到第二汽耗率相关联的未测量的干扰的抑制期间进行操作时,以三个不同MPC调节设定的MPC控制器(以及PID控制器)中的控制误差的自相关的曲线图;以及
图26是示出了将图13的自适应/调节块应用到闭环调节配置中的MPC控制的框图,该闭环调节配置包括的估计器依赖于过程估计和新息分析估计中的一个或两个以发起MPC控制器的自适应调节。
具体实施方式
一般来说,此处讨论的新控制器自适应、设计和调节方法可以应用到各种不同类型的模型预测控制(MPC)控制器,供任何期望的或适当的控制器设置使用。然而,这种新的控制器自适应、设计和调节方法对于加工厂中,诸如像药品和化学制造工厂、精炼厂,等等的工业加工厂中所使用的控制系统是尤其有用的。另外,虽然新MPC控制器自适应、设计和调节技术在此处被描述成作为分布式过程控制网络中的一部分被实现,但其还能够被实现在其他类型的控制环境中,例如包括作为集中控制系统的部分、作为可编程逻辑控制(PLC)系统的部分、作为独立控制系统的部分,等等。
现在参考图1,在其中此处所描述的MPC控制器自适应、设计和调节技术可以被实现的过程控制系统10包括过程控制器11,其通信地连接到数据历史数据库12和每个都具有显示屏幕14的一个或多个主工作站或主机13(其可以是任何类型的个人计算机、工作站,等等)。控制器11也经由输入/输出(I/O)卡26和28连接到现场设备15-22。数据历史数据库12可以是任何期望类型的数据收集单元,其具有用于存储数据的任何期望类型的存储器和任何期望或已知的软件、硬件或者固件,并且数据历史数据库12可以从工作站13之一分离出来(如图1中示出的)或者可以是工作站13之一的一部分。仅通过举例的方式,控制器11可以是由Emerson Process Management出售的DeltaVTM控制器,该控制器11经由例如以太网连接或任何其他期望的通信网络29通信地连接到主机13和数据历史数据库12。所述通信网络29可以用局域网(LAN)、广域网(WAN)、电信网络等等的形式,并且可使用硬连线或无线技术来实现。控制器11使用与例如,标准4-20ma设备和/或任何智能通信协议诸如现场总线协议(现场总线)、协议、无线HARTTM协议等等相关的任何期望硬件和软件,通信地连接到的现场设备15-22。
现场设备15-22可以是任何类型的设备,诸如传感器、阀、传送器、定位器等等,而I/O卡26和28可以是符合任何期望通信或控制器协议的任何类型的I/O设备。在图1示出的实施方式中,现场设备15-18是标准4-20ma设备或设备,其通过模拟线路或者组合的模拟/数字线路与I/O卡26通信,同时现场设备19-22是智能设备,诸如Fieldbus现场设备,其使用Fieldbus协议通信通过数字总线与I/O卡28通信。当然,现场设备15-22能够遵从任何其他期望的标准或协议,其中包括现在已有的或者未来被形成的任何标准或协议。同样地,现场设备15-22之间的通信能够使用有线技术、无线技术或者如果需要的话使用有线与无线技术的组合来实现。
可以是工厂10内许多分布式控制器之一的控制器11具有至少一个处理器,其中该控制器实现或监视存储在其中或者以其他方式与之相关的一个或多个过程控制例程,该过程控制例程可包括控制回路。控制器11还与设备15-22、主机13以及数据历史数据库12通信来以任何期望的方式来控制过程。应当注意的是,此处所描述的任何控制例程或单元,其可具有的部分由不同控制器或者如果需要的话由其他设备实现或执行。同样地,此处所描述要实现在过程控制系统10内的控制例程或单元可以采用任何形式,其中包括软件、固件、硬件等等。出于讨论的目的,过程控制单元可以是过程控制系统的任何部件或部分,所述过程控制系统包括例如存储在任何计算机可读介质上的例程、块或者模块,以便能够由处理器诸如计算机设备的CPU来执行。控制例程,其可以是模块或者控制程序的任何部分,诸如子例程、子例程的部分(诸如几行代码)等等,可以用任何期望的软件格式实现,所述软件格式诸如使用了梯形逻辑、顺序功能图、功能框图、面向对象编程的语言或任何其他的软件编程语言或者设计范例。同样地,控制例程可以被硬编码到例如,一个或多个EPROM、EEPROM、专用集成电路(ASIC)、或者任何其他的硬件或固件单元。更近一步,控制例程可以使用任何设计工具来设计,其中包括图形设计工具或任何其他类型的软件、硬件、或固件编程或设计工具。因此,控制器11一般可以被配置成以任何期望方式来实现控制策略或控制例程。
在一个实施方式中,控制器11实现了控制策略,其使用通常所称的功能块,其中每个功能块是整个控制例程的部分或对象并且连同其他功能块(经由称为链接的通信)一起操作,以实现过程控制系统10内的过程控制回路。典型地,功能块执行诸如与传送器、传感器或其他过程参数测量设备有关的输入功能、诸如与执行PID、MPC、模糊逻辑等控制的控制例程有关的控制功能、或控制一些设备诸如阀的操作以执行过程控制系统10内的一些物理功能的输出功能中之一。当然存在着混合类型或其他类型的功能块。功能块可以存储在控制器11中并由其执行,这典型地是当所述功能块被用于、或者相关于标准4-20ma设备和一些类型的智能现场设备诸如设备时的情况,或者功能块可以被存储在现场设备中并由现场设备本身实现,这可以是使用Fieldbus设备的情况。更进一步,执行控制例程的功能块,可以被全部地或部分地实现在主工作站或主机13或者任何其他的计算机设备中,控制例程诸如这里描述的控制器自适应和调节例程或技术。虽然此处所提供的对控制系统的描述使用采用了面向对象的编程范例的功能块控制策略,但是控制策略或控制回路或模块也能够使用其它惯例并且使用任何期望的编程语言或范例来被实现或设计。
如通过图1的扩展块30所示出的,控制器11可如例程32和34所示出的包括许多单回路控制例程,并且可如控制回路36所示出的实现一个或多个高级控制回路。每条这种回路被典型地称为控制模块。单回路控制例程32和34被示出为执行单个回路控制,其各自使用单输入/单输出模糊逻辑控制块和单输入/单输出PID控制块,所述回路控制连接到适当的模拟输入(AI)和模拟输出(AO)功能块,其可以与过程控制设备诸如阀,与测量设备诸如温度和压力传送器,或者与过程控制系统10内的任何其他设备有关。高级控制回路36被示出为包括高级控制块38,该高级控制块38具有通信地连接到为数众多的AI功能块的输入以及通信地连接到为数众多的AO功能块的输出,虽然高级控制块38的输入和输出可以被通信地连接到任何其他期望的功能块或控制单元,以接收其它类型的输入并提供其它类型的输出。另外,虽然高级控制块38被示出为实现多变量(例如,多/输入、多/输出)控制,其也可以被用来实现单变量(例如,单/输入、单/输出)控制。如将要被进一步描述的,高级控制块38可以是将模型预测控制(MPC)例程与控制器自适应/调节块集成在一起的控制块,该控制器自适应/调节块将控制器的设计和调节参数提供到MPC控制器例程以执行过程或过程中一部分的控制。虽然,此处高级控制块38将被描述为一般包括模型预测控制(MPC)块,但是高级控制块38实际上能够实现许多不同类型的MPC技术中的任何,并且如此处将要以更多细节描述的,在一些情况下甚至能够在这些技术之间进行切换。要理解的是,图1中所示出的控制模块或者这些模块的子组件,包括了高级控制块38或其组件,能够由控制器11执行,或者可供选择地能够位于任何其他的处理设备,诸如工作站13之一或者甚至现场设备19-22之一中,并且由该任何其他的处理设备执行。例如,在一个实施方式中,MPC控制器自适应/调节块42可以被存储在计算机13中,并且可以在计算机13上被执行以向MPC控制器提供MPC控制器调节参数、设计参数和过程模型参数,所述MPC控制器存储在高级控制块38内,该高级控制块38则在控制器11中执行。
如图1中示出的,工作站13之一包括高级控制块生成例程44,其用来产生、下载并且实现高级控制块38。虽然高级控制块生成例程44可以被存储在工作站13内的存储器中,并且由其中的处理器执行,但是如果需要的话,这种例程(或其任何部分)能够额外地或可供选择地存储在过程控制系统10内的任何其他设备中,并且该其他设备执行。更进一步地,用户界面例程46可以允许用户诸如过程操作员、控制工程师等等指定或改变与高级控制块38有关的调节、设计或控制参数,以改变设定点,发起由自适应/调节块42所执行的自适应/调节程序,提供新的模型参数,提供模型失配值或模型失配范围值,等等。
如背景中的方法,MPC技术的许多工业实现包括模型算法控制(MAC)技术和动态矩阵控制(DMC)技术。DMC技术使用所述过程的线性阶跃响应或脉冲响应模型,并且在这种情况下,最佳控制途径是离线预计算并存储在大型矩阵中。这种控制器矩阵则用来通过叠加计算受控变量的在线移动。因此,与在线求解最佳方程的MPC方法相比,计算的成本被大幅减小。DMC技术的另一个优势是,其中所使用的状态变量从过程模型中被直观地算出,并代表了明确的未来输出预测,这就意味着过程输出的未来预测,诸如与限制有关的变量能够容易地得到并能够显示给用户。
其他的MPC实现包括:IDCOM和线性动态矩阵控制(LDMC),其使用线性目标函数且明确地并入限制;二次动态矩阵控制(QDMC),其为并入了二次性能函数的DMC的扩展且在限制的并入中是明确的;IDCOM-M,其为IDCOM的扩展,使用了二次编程算法以取代最初实现中的迭代求解技术;以及Shell多变量优化控制(SMOC),其为状态空间实现。另一类MPC技术使用状态观察器以提供更好的MPC性能。
图2示出多变量MPC控制器单元52一个实施方式的详细框图,所述多变量MPC控制器单元52(通信地耦合到过程50)可通过图1中的高级控制块38实现,以执行多变量过程控制。在这种情况下,MPC控制器单元52可以用来实现DMC控制技术。然而,这种讨论为MPC控制广义的理解提供了良好的基础。如图2中所示,高级控制块38产生一组被提供给其他功能块的受控变量(MVS),所述功能块转而连接到过程50的控制输入。如图2中示出的,高级控制块38包括MPC控制器块52,其可以包括或实现任何标准的MPC例程或程序,典型地具有与输出相同数量的输入,尽管这个要求并不是必须的。作为输入,MPC控制器52接收一组N个受控制的变量(CVS)和辅助变量(AVS),它们典型地构成数值的向量,正如在过程50内所测量到的一样;一组干扰变量(DVS),其为在未来某个时刻被提供到过程50的已知或期望的改变或干扰;以及一组稳态目标控制(CVT)和辅助变量(AVT),其从例如优化器(未显示)、用户或任何其他的来源被提供。MPC控制器52使用这些输入来以控制信号的形式产生一组M个受控变量(MV)信号,并且将所述受控变量信号MV送达至过程50的控制输入,所述控制输入可以是阀的致动器、燃烧器、泵等等。
更进一步,MPC控制器52在控制范围上计算并生成一组预测的稳态控制变量(CVSS)和辅助变量(AVSS)连同一组各自代表了控制变量(CVS)、辅助变量(AVS)以及受控变量(MVS)的预测的稳态受控变量(MVSS)。这些变量可以用于一个或多个MPC优化例程以形成目标控制和辅助变量CVT和AVT,以便将过程50驱动至最佳的操作状态。
无论如何形成,目标控制变量CVT和辅助变量AVT都会被提供作为到达MPC控制器52的输入,如之前注意到的,所述MPC控制器52使用这些目标值CVT和AVT以确定新的一组稳态受控变量MVSS(在控制范围上),其在控制范围的末端将当前控制和受控变量CV和AV驱动至目标值CVT和AVT。当然,正如已知的,MPC控制器52逐步地改变受控变量,以试图达到稳态受控变量MVSS的稳态值,理论上所述稳态值将导致过程获得目标控制变量CVT和辅助变量AVT。因为MPC控制器52如上所述在每个过程扫描期间进行操作,所以受控变量的目标值可以逐扫描地改变,并因此MPC控制器52可能永远无法实际达到目标受控变量MV的这些组的中任何特定的一个,尤其是在过程50中存在噪声、意外干扰、变化时。
如已知的,MPC控制器52包括控制预测过程模型70(也称为“控制器模型”),其可以是各种不同MPC控制技术中的任何一个中所使用的任何类型的模型。例如,模型70可以是N乘M+D阶的响应矩阵(这里N是控制变量CV的数量加上辅助变量AV的数量,M是受控变量MV的数量并且D是干扰变量DV的数量)。然而,模型70可以是一阶、二阶、三阶等等的预测或第一原理模型(first principles model)、状态空间模型、卷积过程模型、或者任何其他类型的过程模型。控制器模型70可以从过程扰动测试中确定,所述过程扰动测试使用了不需要很大的基础建模努力的时序分析技术,或者控制器模型70可以使用任何其他的已知过程建模技术来确定,所述已知过程建模技术包括那些叠加了一组或多组线性模型或非线性模型的建模技术。在任何情况下,控制预测过程模型70产生输出72,其为控制变量CV和辅助变量AV中的每一个确定事先计算的预测,并且向量加法器74从控制变量CV和辅助变量AV的实际测量值减去当前时间的这些预测值,以在输入76上生成误差向量或校正向量。这种误差被典型地称为预测误差。
随后,控制预测过程模型70在控制范围上为控制变量CV和辅助变量AV中的每一个预测未来控制参数,这是基于被提供给控制预测过程模型70中其他输入的干扰变量和受控变量。控制预测过程模型70还产生上面所讨论的控制变量CVSS和辅助变量AVSS的预测稳态值。
控制目标块80为N个目标控制变量CVT和辅助变量AVT中的每一个确定控制目标向量,所述目标控制变量CVT和辅助变量AVT通过目标转换块55被提供到控制目标块80,其使用的轨迹滤波器82是事先为块38所建立的。尤其是,轨迹滤波器提供的单位向量规定了随着时间推移将控制变量和辅助变量驱动至它们的目标值的方式。控制目标块80使用这种单位向量CVT和目标变量AVT以为控制变量和辅助变量中每一个产生动态控制目标向量,其在由控制范围时间所规定的时间段内,规定了在目标变量CVT和AVT中的改变。随后,向量加法器84从动态控制向量减去关于控制变量CV和辅助变量AV中每一个的未来控制参数向量,以为控制变量CV和辅助变量AV中每一个规定未来误差向量。随后,关于控制变量CV和辅助变量AV中每一个的未来误差向量被提供到MPC算法86,该MPC算法86在控制范围上操作以选择最小化了例如最小平方误差或积分绝对误差(IAE)的受控变量MV步骤。在一些实施方式中,MPC算法86可以使用M乘M的控制矩阵,如果需要的话,所述控制矩阵从输入到MPC控制器52的N个控制和辅助变量与从MPC控制器52输出的M个受控变量之间的关系来形成。更具体地说,MPC算法86具有两个主要目标。首先,MPC算法86尝试在操作限制内以最小的MV移动最小化CV控制误差;以及其次,MPC算法86尝试达到最佳稳态MV值和目标CV值,其直接从最佳稳态MV值中计算得来。
关于典型模型预测控制器的状态方程可以被表达为:
这里Q、R、S分别为关于误差、控制器移动和增量移动的惩罚权重,xk是模型状态矩阵,yk是过程输出以及uk是控制器输出。因为Q、R和S惩罚向量固有地分离,则MPC控制器一般不具有设定点跟踪与抗干扰之间的性能折衷。然而,MPC控制器仍需要被调节用于特定多变量过程控制目标。虽然所述过程模型总是与MPC控制器的内部结构相匹配(例如,过程状态空间与状态空间MPC表达式),但还要有额外的调节参数来确定关于设定点改变和抗干扰的工作状况。
尤其是,根据与最终用户所规定的特定过程的控制目标,惩罚向量能够用来强调一个变量胜过其他变量。如果怀疑有模型失配,则惩罚向量Q和R还能够用来使控制器更具鲁棒性(即,失调(detune)控制器)。然而,因为一些方法诸如漏斗控制(funnel control)或者参考轨迹有效地过滤误差向量,则它们在鲁棒性上具有更明显的影响,这也就是为什么这些方法对于工程师和操作员在工业过程应用中调节模型预测控制器而言是优选的方法。因为模型预测控制器固有地“匹配”所述过程,则对于特定的过程模型控制移动总是最佳的。这一事实意味着控制器仅能够被失调(根据最终控制单元上的物理限制)并且永远不能够被非常积极地调节。例如,阀打开速度永远不能无限大,并因此,R的值实际上永远不能为零。已知的是,当PID控制器关于抗干扰被具体调节时,工业MPC控制器的抗干扰落后于PID控制器。如果假设MPC例程中使用的观察器模型被认为是完美的,近来MPC在状态更新领域上的发展已经拉近了这种性能差距。然而,存在模型失配时,PID控制器的控制性能(例如,IAE中测量的)仍然优于带有尽可能好的调节的MPC控制器的控制性能。即便如此,使用观察器的MPC技术能够用来改进反馈控制性能,并且在这一点上执行MPC技术典型地优于DMC技术。
图3中示出了一个基于观察器的MPC控制器系统88的例子。这里,MPC控制器系统88包括MPC控制器90和观察器92,在这种情况下,所述观察器92被假设为卡尔曼滤波器。MPC控制器90将控制信号u提供给加工厂94和卡尔曼滤波器92。另外,MPC控制器和卡尔曼滤波器92接收干扰输入d并且从工厂94接收反馈,所述干扰输入也被提供给加工厂94或者存在于其中,所述反馈则是以被测量的受控制变量y的形式。在图3中以建模的形式示出了加工厂94,其中工厂94包括接收了控制信号u和干扰信号d以及各种意外的误差源或干扰源的工厂传递函数96。尤其是,干扰和噪声模型98(传递函数GW)接收噪声w(其可例如为白噪声),并且噪声模型98的输出被添加(纯理论性的加法器100)到工厂传递函数96的输出。加法器100的输出则在另一个理论性的加法器102中被添加到测量误差或测量噪声z,以产生被测量的过程输出y。
在这一模型中,特征为随机状态空间模型的过程的状态变量x的更新可以被表达为:
yk=Cxk+nk (5)
关于高斯分布过程噪声wk和测量噪声nk。
状态观察器,诸如图3中的观察器92的一般目标是基于所有可测量的系统输入和输出来提供对系统内部状态的估计。尤其是,如果方程(4)和(5)假设前提之一是向量A、B和C(其建模了所述过程)是完全已知的,则观察器增益能够被计算。于1960形成出的、被称为卡尔曼滤波器的滤波器表达式已经成为过程控制中最流行的方法,其用来基于有噪声的或未完成的测量来估计内部过程状态。关于使用在方程(1)到(3)中被给出的MPC表达式的离散采样系统,则用于估计下一状态xk+1的卡尔曼滤波器方程为:
这里J为卡尔曼滤波器增益,为带有状态变量k的状态向量,yk是预测的过程输出并且是过程输出的实际值。如果关于未测量干扰和测量噪声的协方差已知,则一般的卡尔曼滤波器结构能够通过扩大到达工厂模型的GW(干扰和噪声模型)来产生,并且随后重新计算关于被扩大模型(图3中所示)的MPC控制器增益。滤波器增益J能够通过以数值方法求解里卡蒂(Riccati)方程来确定,这里QKF是代表了w中干扰的协方差的正半定矩阵,并且RKF为代表了测量噪声z的协方差的正定矩阵。如果协方差未知,则能够使用卡尔曼滤波器的简化版本。这一表达式假设干扰w独立,并由此干扰w中的每个元素会影响过程输出y的一个(且仅有一个)元素。作为这种假设前提的结果,不需要有QKF和RKF,即输入和测量噪声协方差。作为替代,这种简化使用了滤波器时间常数τi以及对每次干扰的信噪比SNRi的估计,以产生如下的干扰模型:
这里ai=e-T/τi,0≤τi≤∞,并且T为采样周期。当τi→0时,Gwi(q)接近单位增益,同时当τi→∞时,Gwi变为积分器。Δw的元素i是有零平均值和标准偏差σwi(这里wi(k)=wi(k)-wi(k-1))的稳态白噪声信号。z的元素i是有零平均值和标准偏差σZi的稳态白噪声信号。
状态更新的目标是找出在时间的每个实例上(即,在离散控制器的每个扫描周期上)对当前状态变量尽可能好的估计。然而,在调节好的MPC控制器中利用尽可能好的状态估计并不一定意味着将会导致尽可能好的控制性能。尤其是,状态更新模型的闭环反馈路径的动态工作状况依赖于观察器增益J。然而,因为观察器增益J来源于噪声协方差(或者在简化卡尔曼滤波器表达式的情况下为信噪比),所以不存在考虑到观察器传递函数的调节参数或通用变量。因此,闭环控制性能可能以非期望的方式(未达最佳标准)被影响。然而,已确定的是,用于大范围J的闭环响应对于特定控制器状况而言是非常类似的。因此,看起来J的值对控制性能仅具有很小的影响。出人意外地,这种观察对于完美模型和有模型失配的情况这两者都适用。实际上已确定的是,对与有和没有模型失配这两种情况,在观察器内对移动惩罚和误差惩罚的调节对控制性能有大得多的影响,并因此这些调节参数将被用在以下所提供的对调讨节的论中。
虽然观察器改进了MPC反馈性能,它们仍有一些假设前提,即不具有以经验为依据调节的控制器,诸如PID控制器。更近一步,带有或不带有基于模型的观察器的任何基于模型的预测控制器将假设所述模型被认为是完美的,这对与于实际加工厂的情况几乎是永远不可能出现的。遗憾的是,甚至小的模型误差都能够导致会引起较差控制器性能的大预测和状态更新误差。
如以上所讨论的,用于模型预测控制器的调节参数通常被用来调整控制器工作状况,这是以期望用于特定工厂应用的方式。例如,某种期望的速度响应可以通过将移动惩罚R调节成某数值来设定。然而,由调试工程师所设计的预期工作状况仅在模型失配无关紧要时会出现,而这对于工业工厂的情况是极少见的。为解释明显的模型失配,专业人员通常借助于迭代调节直到期望的工作状况能够被观察为止。因为其非常耗时所以这一过程是代价高昂的,并且因为很难覆盖所有可能的控制和运行中工厂的限制情况,所以该过程可能不是最佳的。即使这一方法导致了关于给定模型失配的期望的工厂工作状况时,如果模型失配的大小改变的话,则能够预期所述工作状况发生改变。此外,即使模型失配量及其变化已知的话,没有方法能从这一信息取得调节信息。
以下所描述的MPC自适应和调节技术使用了过程模型失配的知识,以确定在存在恒定或改变的模型失配时关于最佳控制性能的调节。一般来说,这种MPC自适应和调节技术基于特定过程模型(例如,工厂试运转时所确定的过程或工厂模型)实现优化标准,以及过程模型失配的指示,以形成最佳的一组MPC控制器设计和调节参数,当它们使用在带有最初过程模型的MPC控制器中时可提供更好或更佳的控制。这种MPC控制器自适应和调节技术能够与许多不同类型的MPC控制器一起使用,所述MPC控制器包括例如带有观察器(诸如卡尔曼滤波器)的MPC控制器、DMC控制器、或者任何其他上述的MPC控制器类型。然而,为说明起见,将所述MPC控制器自适应和调节技术描述为被应用以为带有以卡尔曼滤波器形式的观察器的MPC控制器确定各种设计和调节标准。在这种情况下,正如以下将要看到的,自适应和调节技术能够选择要使用的卡尔曼滤波器类型,所述调节参数不但被用于该类型的卡尔曼滤波器,而且该调节参数也被用于MPC控制器本身。另外,在一些实施方式中,MPC控制器自适应和调节技术将开发一新控制器模型而不需重新形成或重新确定过程模型,所述新控制模型被用作在MPC控制器中而不是最初开发的工厂模型中的预测模型。
当然,虽然讨论了两个类型的卡尔曼过滤技术(包括一般的卡尔曼滤波器和简化的卡尔曼滤波器),作为在此处所描述的被公开自适应/调节技术中可供选择的控制器形式,其他类型的MPC控制器形式能够被认为同样是以这种技术,或者代替了以下特别描述的技术。此外,虽然特定的控制器设计和调节参数被描述为能够用于卡尔曼滤波器和MPC控制器,但是在其他的实施方式中可使用其他的设计和调节参数,这些设计和调节参数基于由所述调节技术所考虑的特定MPC控制器形式。
新MPC控制器自适应和调节技术所依赖的第一普遍原理是,使调节参数影响MPC控制器的工作状况并因此影响闭环控制性能的方式,其依赖于在任何给定时间上出现的模型失配量。在一些情况下,这些关系可能是非常重要的和/或甚至可能是非线性的。此处所描述的新MPC控制器自适应和调节系统,其在存在模型失配时很好地工作,所述新MPC控制器自适应和调节系统包括各种不同的可能MPC设计和调节参数的可能选择,以确定MPC控制器形式和/或设计和调节设定,其在存在模型失配时提供了最佳的控制工作状况。在一个实施方式中,以下MPC控制器自适应和调节技术可以在基于观察器的MPC控制器的不同形式之间进行选择,这里所讨论的是以使用了卡尔曼过滤的MPC控制器的形式。然而,其他MPC控制器形式之间的选择可以被同样使用或者替代使用。在以下所描述的特定实施方式中,卡尔曼滤波器类型(TKF)可以是普遍的(即,一般卡尔曼滤波器)或简化的(简化的卡尔曼滤波器)。在这种情况下,可以用选择预测范围(P)、控制范围(M)、移动惩罚(Q)和误差惩罚(R)的形式为两种MPC控制器确定设计和调节参数。同样地,调节参数可以被确定用于卡尔曼滤波器,对于一般卡尔曼滤波器该调节参数可以是w(QKF)中干扰的协方差以及测量噪声(RKF)的协方差,并且对于简化的卡尔曼滤波器的情况该调节参数可以是滤波器时间常数τi(T)的向量和关于每个干扰的信噪比(SNR)。以下对这些设计和调节参数进行概括,以可使用在计算机实现中的数据类型的指示来具体指定这些参数。
·MPC控制器调节:
οP(预测范围),整数
οM(控制范围),整数
οQ(移动惩罚),浮点型向量
οR(误差惩罚),浮点型向量
·卡尔曼滤波器(TKF)类型:一般的或简化的,布尔
·卡尔曼滤波器调节
ο一般的
■QKF(w中干扰的协方差),浮点型矩阵
■RKF(测量噪声的协方差,z),浮点型矩阵
ο简化的
■T(滤波器时间常数τi),浮点型向量
■SNR(关于每个干扰的信噪比),浮点型向量
MPC的不同实现可以使用额外的或不同的调节参数,诸如最大移动速率或参考轨迹。然而,这些参数通常旨在操作员特定需要,并且最终影响能够与以上被识别的参数叠加。因此,即使有其他影响了MPC控制器的动态工作状况的手段存在,许多期望的过程工作状况能够用以上所描述的参数来解决。更近一步,此处所描述的设计/调节参数包括控制器形式的参数(即,TFK),其在这种情况下特别指定一种形式的MPC控制器作为两种不同类型的基于观察器的MPC控制器之一(即,作为一般的卡尔曼滤波器或简化的卡尔曼滤波器形式之一)。然而,控制器形式参数能够指定不同形式的控制器,诸如在基于观察器的控制器形式与非基于观察器的控制器形式之间,在DMC控制器与MAC控制器之间,等等。
因为模型失配和调节参数高度地相关于闭环控制性能,则MPC控制器自适应和调节技术能够被表征为具有限制的优化问题,其能够被解决以确定存在模型失配时最佳的一组MPC控制器设计和调节参数。图4示出的配置实现并解决了这一优化问题,以形成并提供设计参数和调节参数这二者之一或这二者给MPC控制器。尤其是,图4的优化块110确定理想的或最佳的设计和调节参数,用于MPC控制器单元112,其具有的MPC控制器114耦合到以卡尔曼滤波器106形式的观察器,这是基于MPC控制器114中所使用的过程模型的知识和模型失配量。这里,MPC控制器114和卡尔曼滤波器116各自可以是以上关于图3所讨论的控制器90和观察器92。
图4的优化块110接收,作为输入,最初被开发用于工厂的过程模型,其很可能由MPC控制器使用(表示为“工厂模型”),以及出现模型失配的指示。出现的模型失配量可以由用户经由例如图1的输入例程46来输入,或者可以用诸如以下所描述的其他方式来确定。基于这些输入,优化块110确定理想的或最合适的MPC控制器类型或形式(根据被考虑的可用类型)以用于,以及特定设计参数和控制器与滤波器调节参数以用于考虑到存在特定过程模型和模型失配的确定的MPC控制器类型。因此,如通过离开图4优化块110的顶部线所示出的,优化块110确定使用在MPC控制器单元112中的卡尔曼过滤技术类型(被识别为TKF),以及用于这一MPC控制器类型的调节参数(如果TKF为一般卡尔曼滤波器的话识别为QKF和RKF,或者如果TKF为简化的卡尔曼滤波器的话则识别为T和SNR)。块110将这些设计和调节参数提供给卡尔曼滤波器116。另外作为优化的一部分,优化块110确定一组由MPC控制器114使用的设计和调节参数,图4中将这些参数识别为M和P(设计参数)以及Q和R(调节参数)。这些参数被显示为由优化块110在离开块110的较低的两条线上进行输出。一般来说,由优化块110确定的设计和调节参数是那些最小化了目标函数的参数,所述目标函数存储在优化块110中并由其执行(在被提供到目标函数的限制内),所述优化块110则识别考虑到过程或工厂模型以及存在模型失配的最好控制器性能。很重要的是,图4的优化块110基于其目标函数形成一组MPC设计和调节参数的值用于MPC控制器单元112,这些设计和调节参数导致给定当前过程或工厂模型和模型失配的尽可能好的或最理想的控制,而不需要变化或重新生成工厂模型本身。
在一个实施方式中,优化块110使用目标函数,其试图在稳定时间(settlingtime)内最小化函数f(x)(目标函数)的积分绝对误差(IAE)。然而,这种优化能够在移动范围诸如MPC控制器的控制范围或预测范围上,或者如果需要的话在其他的时间段上被确定。当然,为了评估最佳控制性能,能够使用任何数量的不同目标函数,并且这些目标函数能够被实现以确定最小的IAE或者一些其他的测量,诸如最小均方误差、积分误差、可变性、标准偏差,等等。更近一步,可以为优化算法添加限制以任意方式解决物理的和逻辑边界,以便防止优化块110指定导致了一些过程或控制限制的控制器设计或一组调节参数。然而典型地,限制的准确值仅影响计算的范围而非总体结果。
在一个特定的实施方式中,通过图4的优化块110执行的优化计算可以实现以下目标函数:
服从条件:g(Γ)≥0
这里Γ是一组设计和调节参数(在这个例子中其可以为[P,M,Q,R,TKF,QKF,RKF,T,SNR]T),Ξ是过程或工厂模型(在这个例子中其可以=[G,τ1,τ2]T),是一个或多个过程模型参数中的过程模型失配,并且g(Γ)规定的计算限制描述了例如控制算法的计算限制、过程限制,等等。这里,G为过程模型增益参数,并且τ1,τ2为过程模型的第一和第二阶时间常数参数。当然,IAE是被用作控制性能测量的积分绝对误差,并且可以被计算为:
这里y(t)是受控制过程的输出变量,并且SP(t)为关于该受控制的输出变量的操作设定点。
基本上,当控制器使用最初过程模型被设计但在存在过程模型失配时操作,图4的优化块110模拟MPC控制器的操作,并且优化块110为数个不同组的控制器设计/调节参数中的每一个(为特定模型失配)执行这种模拟,以确定在特定模型失配上数个不同组的控制器设计/调节参数中的每一个的控制器性能测量(例如,IAE)。在一个例子中,优化块110基于过程模型和预期的或观察到的模型失配计算预期的过程误差(以IAE的形式),其从调节参数不同值的一组各种有可能的组合(对于MPC控制器和卡尔曼滤波器这二者)中每一个的使用中得来,所述组合关于不同有可能的MPC控制器形式(例如,可能的卡尔曼滤波器类型)。然后,优化块110考虑到过程模型失配确定导致了最低IAE(即,最好的性能)的特定的一组设计和/或调节参数,并由此基于控制器性能测量来确定用于模型预测控制器的控制器设计/调节参数的组中最佳的一组。然后,这些设计和调节参数可以用在图4的MPC控制器单元112中,以执行存在模型失配量时更好或更佳的控制,而不改变由MPC控制器114使用的控制器模型,而且无疑的是不需要重新形成或重新生成所述工厂模型本身。
为了以更多细节示出优化块110的操作,图5提供的曲线图描绘了关于过程模型增益中给定模型失配量的尽可能好的IAE(即,最小IAE),该曲线图通过关于带有一般卡尔曼滤波器的MPC控制器和带有简化卡尔曼滤波器的MPC控制器的不同模型失配值,来求解方程(9)的优化获得。下面的表1中所示为详细的优化结果,其中与有效约束相关联的IAE值,即调节参数具有约束的IAE值,被表示为前面有星号。另外,模型失配被表达为实际过程增益K与建模的或预期的过程增益的比率(即,)。因为这一实现是一种其中使用了MPC控制器单元112的单输入/单输出控制器,而不是多变量控制器,则将MPC控制器调节参数Q设定为1,并仅允许改变MPC控制器调节参数R。这种数学操作之所以能够实现是因为在单回路的MPC实现中仅有Q与R的比率对调节是决定性的。
表1
从表1中能够看到的是,优化块110使用所有可能的调节参数以完成如通过为任何特定的模型失配所找到的最小IAE规定的最佳控制性能。有趣的是,只要未达到限制时,优化器110确定关于不同模型失配值的不同调节参数,这会导致极相似的控制性能。而当达到限制时,因为优化块110用完补偿模型失配的自由度(即,调节参数),所以控制性能典型地受到影响。而且,正如能够从表1中所看到的,如果过程增益K中的失配使得则带有一般卡尔曼过滤的MPC胜过带有简化卡尔曼过滤的MPC,这里K是实际过程增益,并且是建模的或预期的过程增益。然而,如果过程增益中的失配使得则带有简化卡尔曼过滤的MPC胜过带有一般卡尔曼过滤的MPC。当然,一般卡尔曼过滤的表达式比简化卡尔曼过滤技术的表达式更加严格,所述简化卡尔曼过滤技术使用了指数加权移动平均(EWMA)过滤以更新状态变量。因此,简化卡尔曼过滤技术不能被很好地调节以处理大于预期的增益,但擅长处理小于预期的增益。换句话说,因为带有简化卡尔曼过滤的MPC是基于过滤的,所以如果过程响应具有小于预期的大小(即,如果的话),则带有简化卡尔曼过滤的MPC比带有一般卡尔曼过滤的MPC更具鲁棒性。然而,对于带有简化卡尔曼过滤的MPC产生比带有一般卡尔曼过滤的MPC略高的积分绝对误差。
如果模型失配归咎于或者存在于一阶时间常数(τ1)中,则两种卡尔曼过滤方法之间的积分绝对误差的差会变得更加明显。如图6和以下表2中示出的,如果过程比预期的更加敏感(即这里τ1是实际的一阶时间常数,并且是与过程模型有关的一阶时间常数),由于振荡的发生所以IAE以非常陡的坡度上升。卡尔曼过滤的两种方法相类似地被振荡影响,并且用于存在恒定的或变化的模型失配时进行最佳控制的自动方法应当尝试尽一切办法来避免振荡。然而,如果过程反应慢于预期(即,),则带有简化卡尔曼过滤的MPC明显执行得更好,这意味着一般卡尔曼过滤尽管稳定但不应当使用在这种情况中。因为简化卡尔曼滤波器表达式使用滤波器时间常数作为调节参数之一,则一种优化方法能够容易地使用这种调节参数以补偿工厂模型与实际的工厂特性之间时间常数的失配。这种补偿能够容易地从表2中的数值观察出来(再次说明,表2中与有效约束有关的值前面有星号)。虽然一般卡尔曼滤波器调节参数在限制上是固定的,并且仍然仅允许移动MPC控制器调节参数,则简化的卡尔曼滤波器的T参数在大范围上移动并补偿模型失配,由此将IAE保持在很低的水平上。当然,如上面所指明的,卡尔曼滤波器类型被特别提供作为图4中所描述优化方法的布尔输出,并且这一输出导致图4的卡尔曼滤波器116在使用简化卡尔曼过滤与使用一般卡尔曼过滤之间进行切换。
表2
如能够从表2和图6中看到的,关于一般卡尔曼滤波器,最小的可能IAE位于(即,这里模型失配比率=1)的左侧(图6的曲线图中)。如果实际过程的一阶时间常数改变为MPC控制器和一般卡尔曼滤波器为()所设计的值的一半时IAE会降低,这意味着关于卡尔曼滤波器增益J的推荐调节不会产生出尽可能好的控制性能。这种状况之所以出现是因为,在MPC控制器内执行的控制器优化问题被设计在最小化移动的同时最小化静态误差,而自适应/调节优化问题被设计以最小化受控制的变量误差的IAE,由此直接最大化控制性能。
二阶时间常数(τ2)中模型失配的影响在图7中被示出,并且在以下的表3中被提供,并且其非常类似于上面所描绘的一阶时间常数(τ1)中的模型失配。虽然一般的与简化的卡尔曼滤波器之间差的大小会比较小,但其趋势基本上是相同的。
表格3
虽然关于MPC控制和状态更新的最佳调节参数在上面是根据关于使用了优化的工厂模型和模型失配的知识被确定的,但是模型失配的影响和用于补偿这种失配的最佳控制器的设计和调节关于以上例子中每个模型参数被分离地分析。在真实的工厂情况中,相应于规定模型的所有过程模型参数(以及出于各种原因未被建模的其他参数)可以并且很可能会同时变化。这些受最大影响的模型参数主要依赖于过程类型和模型失配的原因(例如管道结垢、燃料的变化的热系数,等等)。更近一步,依赖于所使用的模型识别方法,前置(lead)时间常数中的模型失配,例如可以被解释为模型死区时间或时间常数中的模型失配。因此,一个或两个模型参数常常明显有助于同时发生的模型失配。因此很有利的是,在多维空间中分析模型失配以确定最好的一组模型参数,其用在任何具体情况中,以代替如执行上面例子的一维空间。就是说,代替确定关于一个过程模型参数中失配的最佳的一组设计和调节参数,很有利的是确定最佳的一组设计和调节参数,其用于多个过程模型参数(例如,在两个或多个过程增益、一阶时间常数和二阶时间常数)中同时有失配的状况。
图8描绘在使用了一般卡尔曼滤波器状态更新技术的模拟MPC控制器中尽可能好的IAE的表面图,正如当允许过程模型二维失配,即允许过程增益K和一阶时间常数τ1这两者同时具有模型失配时,通过图4中的优化方法计算出的。在这种情况下,关于一阶时间常数和二阶时间常数的模型失配的最佳调节是非常类似的,而对一阶时间常数则更加明显。因为三维可视化优于四维可视化,则二阶时间常数τ2中模型失配的影响可在图8的曲线图中忽略,并且实际上,二阶时间常数τ2完全不允许变化,但假设其中没有失配。下面的表4提供了一组失配值的各种组合中每一个的最小IAE的值,其关于在图8的曲线图中所示的过程增益K和一阶时间常数τ1。关于MPC控制器和与MPC控制器一起使用的一般卡尔曼滤波器的最佳调节参数值未在表4中显示,但使用以上所描述的优化技术来计算,所述MPC控制器与在表格4中的每个单元格有关。再者,这里模型失配被表示为实际过程参数值与建模的过程参数值的比率(即,和)。
表4
为了更简单的可视性,和(即,其中未出现模型失配)的数值被指明为图8中的虚线。这些线的交叉点代表了带有完美匹配的过程模型的控制性能。沿着这些线中每一条的横截面准确地代表了图5和6中的曲线。如之前所讨论的,在方向上的一阶时间常数中的模型失配引起振动的工作状况。然而能够看到的是,如果还有在过程增益中的模型失配使得在相同时间上的话,则这种震荡不会出现。正如预期的一样,使用增益中的模型失配使得则该问题变差。在固有不同的模型参数中的模型失配能够抵消或放大在控制性能上的总体影响,这一事实示出在计算最佳控制器设计和调节参数期间对所有维度的模型失配进行评估是有利的。从图8可知,还很明显的是,尽可能好的控制性能不必使用完美模型来完成。例如,在图8的曲线图中,如果和则代替和时的0.1226的IAE,控制性能具有0.0545的IAE。假设所述调节参数通过所描述的优化表达式被最佳地计算,则这一差异等于56%的改进。
当然,如果假设的过程模型和准确的过程模型失配已知的话,则由MPC控制器和观察器(卡尔曼滤波器)所使用的过程模型能够使用完美模型代替以完成甚至更好的性能。然而,在实际的控制状况中,很难测量模型失配并由此,此处所描述的MPC设计和调节技术的目标是朝着更好或最佳的MPC控制器操作,而不必知道准确的或完美的过程模型。实际上,此处所描述的设计和调节方法调整MPC控制器单元调节参数(例如,如图4所规定的)并且留下假设工厂模型不改变(因为这将是在工厂中工程师最好的猜想)。
图9描绘了关于带有简化卡尔曼过滤的MPC的等价三维最佳调节图,即以如图8中关于带有一般卡尔曼过滤的MPC控制器所使用的相同方式来表达调节图。再者,这里允许在过程增益模型参数K和在一阶过程时间常数模型参数τ1这两者中出现模型失配,但不能出现在二阶时间常数模型参数τ2中。以下表5提供了关于图9中图的点。
表5
两个最佳调节图(图8和9的)左上角都指明了一个不稳定的区域。另外,两条曲线在IAE=2处截止。在这两种情况的任何一个中,很明显的是这个区域以非常陡的坡度被接近。计算并绘制三维调节图允许容易地估计这种非稳定区域的大小、位置和陡度。因为这种区域应当尽一切办法来避免,则关于被高度惩罚的松弛变量的限制能够被添加入由图4中的块110所使用的优化方程以避免这种区域。在任何情况下,当比较使用了不同卡尔曼滤波器方法的MPC的最佳调节图时,变得很明显的是两个控制器在的区域中会变得不稳定。然而,只有带有一般卡尔曼滤波器的MPC会在的区域中变得不稳定。如之前所建议的,仅在简化的卡尔曼滤波器中找到的固有过滤充当了稳定机制。
在任何情况下,关于图4所描述的、基于优化的调节方法使得能够确定最好的MPC控制器形式以及设计和调节参数,该MPC控制器形式以及设计和调节参数考虑到了关于特定过程的过程模型失配。因此,图4的优化块110确定关于模型失配的特殊值的最佳调节,并且这种最佳调节能够被表达为调节图,其对于确定特定MPC与观察器的设计和调节来说是有用的,这将确保存在模型失配时的最佳控制性能。与图4有关的技术能够被有利地使用,这是因为MPC控制器的工业用户通常不得不手动调整调节“旋钮”直到看来好像已经达到了期望的工作状况为止。在这种情况下,用户可以查看调节可视化图、曲线以及数据诸如在图5-9和表1-5中所示的,以给定一个或多个过程模型参数中过程模型失配的预定或预期数值,来确定最好的控制器形式和调节参数。
因此,如果期望的话,当例如由用户或由一些其他的半自动或自动方法输入到块110时,图4的优化块110可以计算关于特定的模型失配量(在一个或多个过程模型参数中)的最好的设计和/或调节参数。当块110在考虑到这些特定的过程模型失配量的情况下(在一个或多个过程模型参数中)确定了要在MPC控制器单元112中使用的最好的一组设计和调节参数之后,这些设计和调节参数可以送达MPC控制器单元112并且在在线控制期间内使用以执行更好的控制。可供选择地或者附加地,块110可以确定最佳IAE图,诸如图8和9的图,其示出过程模型参数失配的许多组合中的每一组上的尽可能小的IAE,并且向用户提供或显示这些图以允许用户考虑到图本身来选择期望的或适当的调节点。然后,基于被选择的点,块110可将设计和调节参数值提供给要在在线控制期间内使用的控制器112。因为块110可以独立地操作控制器单元112,所以块110可以存储并执行在与控制器单元112相同或者不同的设备中。因此,例如块110可以存储并执行在图1的计算机13之一中,并且经由通信网络29与控制器单元112通信,该控制单元112可以在图1的控制器11中、在图1的一个或多个现场设备15-22中、或者在任何其他期望的设备中。
当然要预期的是,当不存在模型失配或者当存在不同模型失配量的时候,关于给定模型失配和过程模型的最佳的一组设计和调节参数将会是未达最佳标准的。而且,尽管其可以比正确的模型更容易确定模型失配的存在,但是其在任何特定情况下仍可能很难确定关于任何特定模型参数的特殊模型失配量。同样地,虽然因为确定模型失配量要求较少的过程扰动,确定模型失配量可比确定精确过程模型更容易,但是模型失配量可能仍会随着时间的推移而改变,因此需要形成新的设计和调节参数以最佳地解释这种改变的模型失配。出于这些原因,在一些实例中可能期望指定和使用图4优化块110的各种过程模型参数中每一个的模型失配范围,而不是使用关于每个过程模型参数的模型失配的特殊值以形成一组适当的设计和调节参数值。
在二维子空间中模型失配范围的例子(在这种情况下其忽略二阶时间常数)可以被写为实际过程增益Kactual=2±0.5和实际一阶时间常数tactual=20s±5s。这些范围在图10的二维子空间中被示出,这里增益范围等于1(即,ΔK=1)并且一阶时间常数范围等于10秒(即,Δt=10s)。当模型失配被定义为有可能的范围,则模型失配范围能够与如上面所描述关于图8和9计算的最佳调节图相叠加,以提供额外的MPC控制器自适应和调节优势。在图11中示出了这种叠加的示例性示图。
如果期望的话,这种叠加能够在软件包中实现,所述软件包向过程工程师显示这一叠加,例如,这是在最佳调节图诸如图8和9的图之一上完成的。这种可视化可以使得工程师能够基于被指定范围内可能的模型失配来查看并确定控制器移动进入不期望的操作区域中的可能性。这种范围也能够或可供选择地能够被用于进一步的MPC控制器设计和调节优化。尤其是,当MPC控制器试运转时,这种显示对工程师而言可能是非常有用的,因为工程师能够容易地以视觉评估尽可能差和尽可能好的控制性能,并且能够如期望地进行手动校正,所述控制性能随关于特定调节的预期模型失配范围而变化。这种用于显示优化图诸如图8、9和11的图(带有或不带有叠加范围)的显示软件,可以由块110生成或者可以被生成为图1的用户显示软件46的一部分。在这种情况下,所述用户显示软件46可以与块110通信,或者可以包括该块110以生成这些图。
任何情况下,在图11的例子中,如果Kactual=1.5且tactual=25s的话,则模型失配范围内(大约以增益或时间常数任一中的无失配点为中心)的最差控制出现。然而,在该点上的IAE为0.7,无论如何该IAE可以被工程师认为是能够接受的,尤其在是考虑到因为模型失配范围的表面积仅有一小部分会与值在0.5以上的IAE叠加,所以最差控制出现在该区域内的可能性相对较小这一事实之后更是如此。如果可得到关于模型失配的更多了解(例如,物理过程限制)的话,则如图10中所描绘的二维模型失配子空间能够被修正以解释其发生的可能性。因此,例如基于模型失配可能性的了解,图10的模型失配子空间能够采用除了所描绘矩形之外的其他形状,其包括例如椭圆、圆形或者任何其他期望的形状。
如对图4中调节方法的进一步改良,可能有利的是确定关于给定的工厂模型的最理想调节点,其随一个或多个过程模型参数的值中有可能的或预期的模型失配范围的量而变化。尤其是在看图11时,能够看出被计算的调节参数不需要在模型失配范围子空间中的任何点上提供图11的图中尽可能最低的IAE,这是因为在假设的“完美”模型中模型失配范围子空间的中心点是固定的。如果在这个二维例子中以表面代表的子空间被允许移动的话,则图4中所示被修正的优化技术或许能够找到关于模型失配范围表面内最差(最大)IAE的较低数值,由此增加控制器的总体性能。换句话说,给出一个指定可能的、预期的或者有可能的模型失配范围(在由过程模型参数所规定的各种维度的每一个中),其可以期望使用用上面所描述的技术来计算的一组最佳调节参数,其一般最大化由这些范围所规定的子空间内的MPC控制器操作,即使在所述子空间的中心点上甚至在该子空间内都未找到最好的控制器操作时,以及即使模型失配范围子空间的中心点不相应于为工厂实际开发的过程模型时也是如此。
在这种情况下,虽然此处所描述的MPC控制器设计和调节技术不使用关于模型失配的了解来更新或改变假设的过程模型(作为输入被提供到图4中的块110)(因为其结果可能和第一假设模型一样不确定),这种技术考虑到已知或者怀疑的过程模型失配范围自适应和调节MPC控制器,以执行考虑到模型失配范围的更好的总体控制。尤其是,如图12中示出的,模型失配范围子空间的中心点可以大约在建模的调节区域内被重新定位或者移动,以定位调节空间最好的总体子区域,其中考虑到预期的过程模型失配进行操作。为了在这个子区域中操作,控制器模型(在用于计算MPC控制移动的MPC控制器中使用)可以被自适应以便将调节图上的新中心点作为中心,该中心点和模型失配子空间导致总体调节图内操作的最好子区域。在一个情况下,调节图中的总体最好子区域可以被确定,这是通过当模型失配子空间贯穿整个调节图被移动时,计算特定子区域内存在的最差(最大)IAE的尽可能小的值。当然,同样可以使用用于确定最好的操作子区间的其他测量,其包括基于统计的测量,所述其他测量诸如在整个失配区域子空间上的最低平均IAE,在整个失配区域子空间上的最低权重平均值,等等。
如果期望的话,特定的最好失配子区域能够通过表达并解决第二优化问题来找到,所述第二优化问题被定义为:
条件是:gψ(Γ)≥0
这里ψ为关于模型失配的任意组合通过迭代方程(9)计算的调节图,gψ(Γ)规定描述了调节图ψ的维度的不等性约束,并且iψ规定了调节图ψ的维度。方程(11)的特定优化确定了模型失配范围子空间,其包括调节图中IAE的最低值。应当注意的是,对于这种操作不要求额外的过程模型知识,这是因为所述调节图还基于由工程师最初提供的过程模型(假设的过程模型)来形成。方程(11)的优化结果是被修正的控制器模型和一组控制器调节参数,其实质上被用来开发MPC控制器,以便根据预期模型失配范围获得较好的性能。然而,例如图11或图12的调节图不会基于新过程模型被重新计算,这是因为确定新控制器模型的唯一目的是最小化当前调节图内的IAE。
通过为图4的优化块110添加这种操作,MPC控制器的设计和调节参数被改变为重新确定的(新中心点的)理想值以最大化控制性能,这甚至会超过在最初中心点上使用MPC和观察器调节的有可能的控制性能。从某种意义上说,在这种情况下过程模型参数现在还变成了控制器设计/调节参数,这是因为它们被用来确定MPC控制器内使用的新控制器模型。虽然这是事实,但如果没有模型失配的话,可以期望带有修正模型的控制器的控制性能会差于带有最初模型的控制器的控制性能。然而,如以上所讨论的,没有模型失配的可能性非常小。在真实工厂的情况下,最初控制器的性能可能差于大多数模型失配情况所使用的修正控制器的性能,这是因为所述修正控制器的性能恰好是方程(11)的优化计算的目标函数。另外,在假设的与修正的模型之间最差IAE点中的差通常很明显,这是因为一方面会引起不稳定而另一方面会降低性能的坡度典型地是非常陡的。图13示出了图4的优化块110能够被如何修正来使用模型失配范围以确定MPC控制器中使用的被修正控制器模型以及一组控制器设计和调节参数。
如图13中示出的,包括或执行了两种优化的优化块110A通过包括了方程(9)的优化的方程(11)来指明,并且到达块110A的输入从指定特定模型失配改变成模型失配范围(关于一个或多个模型参数)。这里,优化块110A还形成了新的一组数值,其关于要用来形成新控制模型的模型参数(即,在图13的块110A的输出之一上所示的被修正控制器模型)。实质上,通过优化块110A确定的模型失配子空间的新中心点具有特定的一组值,用于与其相关的过程模型参数,并且这些模型参数值不同于与最初中心点有关的模型参数值(即,不同于与最初工厂模型有关的模型参数值)。然后,这些新过程模型参数值被用来形成新控制器模型(不用实际上改变到块110A的工厂模型输入),并且将这种控制器模型作为控制器设计参数,连同与新中心点有关的其他设计和调节参数(例如,Q、R、M、P)一起提供给MPC控制器。
将用于最佳调节的方法从具体的模型失配扩展到模型失配的范围,这显著地增加它的有用性。这种新的基于范围的失配技术能够被应用到许多工业过程,其具有已知的固有过程参数变化,但很难准确测量。另外如下面所描述的,为改变模型失配,所述自适应/调节方法可以使用模型失配反馈以自适应图13中提出的双优化方法,由此提供最佳控制器设计和调节参数的自动或在线确定,以在线控制期间内的任何特定时刻上使用。
更具体地说,有可能使用上面所描述的MPC控制器自适应和调节方法以执行带有自适应调节(即,自适应控制)的闭环控制。当通过可被检测的事件诸如过程值的改变、操作设定点的改变等等所触发时,用于自适应控制的大多数方法一般地或者连续地(例如,周期性地)或者自发地通过改良或重新生成过程模型来操作。在新模型被确定后,则可由该模型计算控制器移动或调节参数。然而,这些方法一般依靠的过程变化可以通过干扰或设定点改变而被引入,并因此这些方法的效率、精度和稳定性会随着过程变化量成比例地增加。
然而,一般来说,确定模型失配的统计量或变化比确定或产生精确过程模型要容易。虽然已经提出了许多方法诸如自相关来确定闭环工厂操作期间的模型失配量,但是在闭环工厂操作期间确定好的过程模型却极其困难,这是因为控制器目标(为了最小化过程输出的变化)与模型识别的要求(操作所述过程通过过程干扰以最大化过程输出的变化)相矛盾。
一种自动执行下面所描述的控制器自适应和调节的方法,其使用模型失配量来确定何时调整MPC控制器单元的设计和调节参数,即何时实现图4和13的优化单元110或110A。虽然这种自适应调节方法依赖并且事实上要求一些过程变化量,但是这种自适应调节方法不需要最大化过程变量以取得最大化了控制性能的调节参数。
一种在领域中被称为新息(innovation)(Ik),并且还被称为剩余误差或预测误差的概念,其被定义为:
这里yk是预测的过程输出并且是过程输出的实际值。这个项被用在卡尔曼滤波器方程(6)中以计算更新的状态变量。虽然研究人员已经提出了许多分析新息的方法,但是这种方法的应用典型地出现在预测控制系统或者软测量项目(例如,神经网络)的试运转阶段或维护阶段。例如,自相关是一种研究人员/工程师经常用来分析新息的方法,这是因为自相关能够在工厂的试运转阶段中在模型误差与未测量干扰之间做出区别。然而,因为未测量干扰以与模型误差向操作员显示自身的方式相同的方式来显示自己,也就是说,与预测的过程值与实际的或测量的过程值之间的差一样,所以在在线控制操作期间很难在模型误差与未测量干扰之间进行区别,并因此出现的误差仅能够使用反馈控制技术来校正。
一般来说,新息(Ik)的自相关提供了有多少误差信号是由于非随机贡献的指示。新息的自相关值越高,则出现的过程模型失配的量就越高。对于带有已知均值和方差的长度为n的离散时间序列{例如,y1、y2…yn},对其自相关的估计能够被得到,如:
这里R(k)是位于范围[-1,1]之间的自相关,σ2是方差,是均值以及k是延时。因为被最佳调节的控制器仅能够除去相关信号,并且不能除去完全随机的干扰(例如,白噪声),则白噪声与相关信号的比例是控制器调节最佳性的很好的指示。因此,例如如果闭环控制系统的过程输出具有大的自相关,则其中所使用的特定控制器的调节不是最佳的。
基于自相关的分析方法经常被使用在手动地调节和重调回路的过程中。如果自相关分析返回高的模型失配量,则工程师通常知道控制器配置不完善,并且在控制器的试运转之前工程师必须改良或重新确定过程模型。工厂工程师通常使用第二种标准以验证调节的性能改进。尤其是,工厂工程师可以考虑幅度谱以确保在最有可能的操作频率上幅度比是可接受的。虽然这种手动控制器设计方法可以使用新息分析变得自动,但是在在线控制器操作期间其仍不能够被例如连续地应用。另外,该方法仅仅使用模型失配量以形成或生成减小模型失配的新过程模型的方式来触发过程模型改进周期。
另一方面,使用了新息或者下面所描述的其他误差分析的自动自适应调节方法可以在在线控制器的操作期间被连续地或以其他方式执行,并且使用模型失配的量,不触发过程模型重新生成周期,而是触发用于控制器的自适应调节周期(以返回控制器以最佳地解释新的模型失配量),而不重新生成新的工厂模型。因此,这种方法不需要新的一组过程测量、过程干扰以确定新的一组过程模型参数,等等。尤其是,对于模型预测控制器,控制器输出计算直接来源于过程模型,并因此能够将自相关归咎于模型失配。
在工业过程控制中使用的现有做法是以非常基本的方式来处理新息中的模型失配和未测量干扰的组合。例如,DMC控制器假设新息的某一部分是由未测量干扰所贡献的。虽然已经尝试了基于新息的自相关来调节卡尔曼滤波器增益,但是这种方法试图通过自适应所设计的和实际的信噪比来最小化误差协方差,其由卡尔曼滤波器所观察。这种技术在本质上最大化了滤波器性能,但不必要地最大化闭环性能。另外,这种自适应方法仅计算误差的协方差,并且仅能够在如果完美模型已知的情况下被使用。
图14示出了一种方式,以这种方式图13的基于优化器的调节块110A能够与现有的MPC控制器和观察器(表示为卡尔曼滤波器“KF”)组合以产生增益调度MPC控制器。如已知的,增益调度方法在工业工厂中非常流行,其用于具有改变的过程参数值的过程。这种方法可以调度控制器调节,或者可以调度过程模型和调节参数的更新。只要过程参数发生决定性的改变,能够使用这种方法能够实现令人满意的结果。实际上在工业工厂中,许多原料和设备性能经常改变。例子包括燃料的燃烧系数的改变以及反应物浓度的改变。如果能够测量的话,这些性能改变经常被前馈控制策略用于直接地减小变化,或者被增益调度策略用于抵消建模误差并间接地消除影响。
图13的调节块110A能用来执行增益调度,并且更具体地说,如果过程模型的一个或多个参数已经改变且已知,则过程模型参数能够在最佳MPC自适应/调节块110A(经由工厂模型输入)中被更新,这导致了自适应/调节块110A生成新的一组设计和调节参数(考虑到新的过程模型和当前模型失配范围),用于MPC控制器和卡尔曼滤波器。这种更新能够由工厂工程师或操作员手动执行,或者能够基于过程状态变化被自动执行。后者可比得上PID控制器的基于模型的增益调度。在图14中,调节块110A与控制器单元112之间的交互作用可以通过虚线来指明,并且示出从块110A到控制器单元112的信息流动是严格单向的。假设的模型失配范围可以由设计工程师输入MPC自适应/调节块110A,或者保留在默认设定。和使用任何增益调度控制器一样,如果可用的话,状态变量能够被硬布线到特定的过程测量,或者状态变量能够由分离的性能估计器进行估计。过程工业中,当过程性能能够从过程测量中推断出时,神经网络经常被使用作为性能估计器。还能使用与神经网络一样的外部性能估计器,或者动态线性估计器以直接估计关键的模型参数。
一种自适应/调节块110A的实施方式被配置成增益调度器,其使用图15中示出的性能估计器。这里,如将要注意到的,性能估计器120可以被耦合以从过程94接收一个或多个输入和/或输出(例如,被测量的)变量或信号,并且使用这些变量以估计一个或多个过程模型性能或参数(例如,A、B、C、D)的值。当然,在这个例子中可以使用任何期望的适当的性能估计器以确定新的过程模型参数值。这种技术闭合关于模型参数的回路,并由此能够被认为是自适应的。然而,为了适当地操作,识别过程模型参数的大多数方法需要相当数量的设定点改变或过程扰动。但遗憾的是,这种过程扰动在在线控制中是不可取的,并且不维持上面所描述的自适应/调节方法的主要假设,即工厂模型不能够精确已知,并且这种工厂模型应当不需要在自适应/调节周期期间内被重新形成。
估计器可以连接到许多变量,包括那些不通过控制回路测量或操纵的变量。实际上,估计器可以单独地依赖于卡尔曼滤波器116的输入。图16示出了自适应调节系统125,其使用自适应/调节块110A作为增益调度控制器系统的一部分以执行自适应控制。如图16中示出的,估计器126(其可以实现新息分析或其他误差分析)耦合到观察器即卡尔曼滤波器116,并分析与卡尔曼滤波器有关的新息项以确定关于一个或多个过程模型参数的模型失配的量(例如,范围)的估计。也可以或者代替地耦合到控制器114的估计器126执行新息分析,以确定过程模型失配或失配范围,并且向自适应/调节块110A提供被确定的过程模型失配或失配范围,以激励用于控制器单元112的新的自适应/调节周期。尤其是,由估计器126所使用的新息分析可以被使用来自动地更新图16系统中的模型失配范围。如果期望的话,所有的或仅一部分的模型失配范围能够以这种方式在任何特定时刻被更新。相类似地,对于其考虑失配范围的所有的或部分的模型参数可以被修正,这依赖于新息方法关于模型参数的数量的广泛程度。换句话说,有时候新息分析可仅允许关于实际过程模型中模型参数的一个子集做出结论。如果是这种情况的话,关于未知参数的范围可以被保守地设定以包括所有的或者大多数预期或可能的模型失配情况。
最佳MPC自适应/调节块110A的输出使用与上面所描述的按需更新应用相同的方式来起作用,但是当检测到相当数量的模型失配,例如用于一个或多个模型参数的失配超出预定或者预设的阈值(诸如用户提供的阈值,之前在调节块110A中使用的失配范围等等)时,会通过执行控制器自适应和调节来闭合自适应回路。自适应方法的唯一性是指,最初假设的过程模型绝不会通过自适应/调节机制、预防失控过程识别、增加鲁棒性以及简化增益调度来修正。如果期望的话,假设的过程模型能够在任何时刻被手动更新,而不必停止或重置自适应,这又是超过当前最新水平模型更新方法的另一个优势。
如下面将要以更多细节描述的,用于实现手动或自动自适应/调节周期的触发能容易地从新息的值得到,或者从确定的模型失配范围得到(即要么来自由估计器126所执行的新息分析的输入要么来自所述新息分析的输出)。当然,这种触发能够依靠对新息分析或其输出与预定阈值的比较,以辨别何时应当通过块110A来执行新的自适应/调节周期。在任何情况下,已经发现的是,使用上面所描述的新息计算的自相关可将无模型的和较少扰动的备选方案提供给其他事先已知的、实现控制器自适应的方法。尤其是,自相关分析能够被用来确定回路的控制性能是否能够改进,而不需要识别或重新识别过程模型。更具体地说,已经发现的是,控制误差(被测量的过程输出变量与该变量的设定点之间的差)的自相关在稳态操作期间是有用的,以确定是否存在重大的模型失配,同时预测误差的自相关(被测量的过程输出变量与该变量的事先预测值之间的差)在过程干扰状况期间可能是有用的,以确定是否存在重大的过程模型失配,或者确定模型失配的量或范围。如此处所使用的,新息分析能够包括MPC控制器单元112内控制误差,预测误差,或者其他误差的自相关。当例如自相关分析确定了相当数量的模型失配量时,则这些自相关可以被用作触发以实现新的自适应/调节周期。更近一步,对于在不同时刻相同过程变量的控制误差或预测误差的自相关的比较能够被用来检测模型失配的改变,其也能用作触发以实现新的自适应/调节周期。
为了验证上面所提出的概念,上面描述的自适应/调节方法中的某些方法被应用到试验性的二元精馏塔。下面提供了来自二元精馏塔的试验性测试运行的结果,所述二元精馏塔使用实现了关于图16所描述的最佳调节方法的模型预测控制器(使用了实际近似以估计来自卡尔曼滤波器中新息的自相关的模型失配)。在这些试验中所使用的特定精馏塔是小于平均规模的试验工厂,其被典型地用来分离水和乙醇。图17中所示为关于试验性工厂的过程和仪器图(P&ID)200。因为对本领域中的技术人员而言该P&ID是容易地易读的,所以除了对于讨论所需的细节之外,此处将不会以大量细节描述所述P&ID。
因为从贮料塔(accumulator)202出来的流量能够被测量,则选择允许分离快速流量和慢速流量的集成水平动态(integrating level dynamics)的级联控制策略。这种在水平控制器204(LIC-091)与流量控制器206(FIC-100)之间的分离一般会增加鲁棒性。然而,为了实现这种效果,控制器204和206这两者必须被调整得相当好。因为当塔(column)的能量输入变化时过程参数会改变,所以在工厂中这种要求是一个具有挑战性的任务。因为蒸汽流量被用来控制底部温度以便控制纯度,所以贮料塔202中的过程水平参数和流量控制回路能够在正常操作期间明显地改变。执行手动步骤测试来确定以0.55千克/分钟的蒸汽流量的过程模型。步骤测试产生以下初始过程模型,其被用作假设的模型,用于基于模型的MPC控制器的模型,并且用来以0.55千克/分钟汽耗率为PID控制器提供初始的调节:
以下确定了以0.4千克/分钟汽耗率的工厂模型:
对于该试验,通常为PID控制器的(LIC-091)水平控制器204用MPC控制器取代,所述MPC控制器以著名的模拟程序执行。这种控制器的实现是通过将PID控制器留在手动模式,并且将OPC记录从运行了模拟的便携计算机上的OPC客户端发送到DeltaVTM控制器系统中PID控制器的输出,所述DeltaVTM控制器系统在工厂200内实现。因为LIC-091控制器204的输出连接到第二FIC-100流量控制器206的级联输入,到LIC-091控制器204的写入间接地操纵FIC-100流量控制器206的流量设定点和实现级联控制工作状况,这相当于最初工厂配置。
三个不同的移动惩罚调节在MPC控制器204中使用(尤其是,Q=50、Q=100和Q=1000),并且在两个不同工作点上分析控制性能(尤其是,以0.4千克/分钟的蒸汽流量率和0.55千克/分钟的蒸汽流量率)。图18示出使用三个不同的调节设定的、以0.5千克/分钟汽耗率的MPC控制器204的三个不同的运行。这些数据被顺序记录并随后被叠加用于比较。第四个试验使用了最初PID控制器设定进行运行以执行PI控制,该试验被执行以允许在MPC与PID控制之间进行比较。PI调节参数(增益=l.54并且重置=141.68s)使用被修正的Ziegler-Nichols调节,被根据过程的最终增益、最终时间段(period)和死区时间计算。在这种稳态状态下,关于四个不同控制器的标准偏差被确定为σQ=50=0.057、σQ=100=0.066、σQ=1000=0.052、σPI=0.036。
如图18中示出的,Q=1000的水平控制的时域曲线图看起来最稳定。Q=1000的MPC也完成最低的标准偏差(σQ=1000=0.052)。然而在真实的工厂设定中,当前控制变量的曲线图常常是查看数据的数据的主要方式,仅从实时趋势中得出的结论可能会产生误导。图19示出了其中控制器会对未测量干扰做出反应的方式,所述未测量干扰被选择为蒸汽流量率中的改变,因为这种类型的干扰会对控制器造成多于一个的困难。首先,这种类型的干扰改变了到达贮料塔202的冷凝物的量,其要求控制器204改变贮料塔的输出流量。其次,这种类型的干扰改变了回流时间常数,由此改变了模型失配的量。蒸汽流量率中的改变也是真实的输入干扰,并且实际上其在工业工厂中是常见的。更进一步,蒸汽流量率的改变也是最常见的未测量量。来自不同过程工业的例子具有与人为蒸汽流量率的改变(其使用在这个试验中)相类似的影响,其中包括(1)在燃料的BTU额定值中的改变(其影响温度回路的温度和增益);(2)原料浓度和/或成分的改变(其影响塔的装载量、质量平衡以及能量供应到产品纯度之间的增益);(3)锅炉中管道的结垢(其改变热传递系数和关于相同热传递所需要的流量这两者,前者转而改变了过程增益,后者则因此改变了死区时间);以及(4)露天温度的改变和/或暴风雨的发生(其改变温度并且也改变到大气的热传递系数,这由此改变了增益)。
在任何情况下,在这个模拟的“未测量的”过程干扰(如图19中示出的)期间,其中蒸汽流量率设定点从0.55千克/分钟改变成0.4千克/分钟,控制器的性能使得IAEQ=50=0.122、IAEQ=100=0.468、IAEQ=1000=∞(在这种情况下,控制不令人满意并且工厂不得不使用人为干预来稳定),以及IAEPI=0.3。如图19中示出的,虽然MPCQ=50和MPCQ=100控制器相当好地抑制未测量干扰(各自使用IAEQ=50=0.122,IAEQ=100=0.468),但是相同的试验却不能够使用MPCQ=1000来执行,这是因为大的移动惩罚防止了该控制器对水平下降进行及时反应,这就切断了塔泵的联锁。在泵跳脱以后,对于控制器204而言,贮料塔202被过快地填充以至于来不及反应,其导致不可接受的控制性能。
这个例子示出的是控制器的过于谨慎地失调(即,Q=1000),其可能有潜在的破坏性和危险。这里操作员若不进行人为干预的话,将会发生溢出(塔溢流)。在谱线的另一端,MPCQ=50性能的曲线图被确定接近于稳定性的边缘,这在进一步试验中被确定为是真实的,因为当应用较快的调节(Q<50)或者工厂在工作区域内以较高汽耗率运行时,这些控制器会变得不稳定(未描绘)。
当工厂以0.4千克/分钟的蒸汽操作时,图20示出曲线图,其中控制器性能在σQ=50=0.053、σQ=100=0.028处被测量,而Q=1000的控制器不能令人满意地控制工厂,并且σPI=0.032也是如此,因此,具有和用于55千克/分钟的蒸汽(图18)的调节相同的调节的MPC控制器显示较低的标准偏差。Q=1000的MPC未在图19中显示出来,这是因为如上所述,其没有令人满意地控制工厂并重复地切断塔泵的联锁。
概括地说,图17精馏塔的试验性运行示出了Q值为50和100的MPC调节参数适用于模型失配,其横跨期望的工作区域(这里蒸汽是从0.4千克/分钟到0.55千克/分钟)。而在50以下和200以上的调节(被测试但未描绘)则是不适合的。如上面关于最佳调节所建议的,能发现具体的一组调节参数,其导致关于模型失配变化量的理想反馈控制性能。这在实验上是有可能,甚至不需要关于工厂模型的新的知识。没有模型的重新识别或模型的更新被执行。实际上,试验自始至终都使用假设的工厂模型,即使已知其中有重大的错误也是如此,这里不仅模型参数的值很可能是不正确的,而且模型形式也不会匹配整合过程(即,水平控制回路)的基本过程特性。有意地选择不正确的模型表达式(一阶加上死区时间)以确保在试验期间存在模型失配,这是因为其不可能确定在试验期间存在的准确模型失配量。
对图17过程的四个不同过程状况中四个不同控制器的试验性能的概括被提供在在下面的表6中,其中所有MPC控制器基于相同的模型假设来调节。这里,所述控制器为PI控制器,以及Q值为50、100、1000的MPC控制器。如能够从表6中看到的,响应蒸汽的改变,Q值为50的MPC使用甚至低于PI控制器的IAE进行操作,而响应蒸汽的改变状况,Q设定到100的MPC更差,并且Q值为1000的MPC操作也得非常差(或者未测试),但是在0.55千克/分钟的工作点上的控制却执行得最好。
表6
然而,重要的是,在工厂的实际控制中要能够知道,当在一个工作点上运行工厂的同时,如何改变到另一个工作点将影响关于某种调节的性能。因此,对于上面的例子很重要的一点是,操作员能够知道在汽耗率从0.55千克/分钟改变到0.4千克/分钟之前,虽然Q=1000的惩罚调节显示出以0.55千克/分钟的最好控制,但这种调节将不足以用于较大的干扰,这有可能会导致工厂停机。手动穿过通过所有可能的过程区域,并且确定将在所有这些区域中工作的调节是可实行的,并且不需要模型识别。然而,这种操作产生了一定量的浪费或者低质量的产品,如果工厂模型改变的话可能不得不重做,而且仅当影响了模型失配的参数已知并且能够被控制(如这个例子中的蒸汽)时,这种操作才是可能的。
然而已经被确定的是,以上关于图16所讨论的自相关分析的使用能够被用作触发,以确定考虑到操作参数中可能的改变(以及考虑到工厂模型中的改变)的适当调节设定,并且考虑到这些改变选择一组适当的或最佳的调节参数。尤其是,预测误差或控制误差的误差分析可以被用来确定MPC控制器与工厂匹配得有多好,以及存在什么程度和类型的模型失配。提供图21-25以示出这一点。图21提供了以0.55千克/分钟的蒸汽稳态操作、在上面所讨论的示例性工厂的三种不同调节设定处的MPC控制器中预测误差的自相关比较。根据这个曲线图,看来不能做出关于哪个MPC控制器表现出更好或更差质量的决定性说明。但就滞后轴而言这些幅度不同,没有关于下述的指示:对于给定滞后时间来说这些曲线中的任何一个明显更加自相关,即使三个控制器调节设定表现出在IAE方面明显不同的反馈性能,如图19中所示。关于以0.4千克/分钟稳态操作的预测误差的自相关曲线,被提供在图22中,并示出了相同的难题。这一事实支持找到最好状态更新(最低预测误差),其不必导致最好的反馈控制性能。这里Q=50的MPC显示了最低的预测误差但最差的积分绝对误差,并且Q=1000的MPC显示了带有最差预测误差的最好IAE。然而,当确定了在大的未测量干扰改变期间的预测误差的自相关时,则能够观察到三个控制器设定之间的差异,如图23中示出的,其描绘了MPC控制器中预测误差的自相关,其在抑制未测量干扰期间以汽耗率从0.55千克/分钟改变到0.4千克/分钟的形式以三种不同的调节设定。
这里,控制误差中大的改变显示出自相关曲线之间明显的差异,否则其会被噪声除去。很遗憾地在这一点上,太晚而不能认识到控制器已经被不好地调节,这是因为在大的干扰出现需要信息以重新调节控制器。在任何情况下,这条曲线示出为什么使用自相关分析作为用于确定模型失配的标准的现有技术的程序会使用过程激励以获得自相关的决定性比较。即使一些方法可以被认为“非侵入的”,因为它们等待未测量的干扰改变而不是注入扰乱过程的脉冲,但是它们在稳态控制,就像在这个试验中以0.55千克/分钟的蒸汽的稳态操作期间将不能很好地起作用。
因此,虽然在干扰抑制的时间段内使用预测误差的自相关以执行控制性能估计可有助于确定过程模型的失配,但在稳态操作时间段内使用预测误差的自相关以执行控制性能估计结果却完全不是非常有用的。另外,虽然在几次过程干扰(例如,未测量干扰或设定点改变)期间使用预测误差的自相关有助于触发控制器自适应/调节周期,这种技术还需要一定程度的过程改变或干扰,其一般是不太期望的。
然而,已经发现了在稳态操作期间查看控制误差的自相关可以很好地作为过程模型失配的测量起作用,并且这种类型的误差分析可以用作MPC控制器自适应/重调的触发器。例如,图24示出受控制变量的自相关,其相当于关于纯反馈控制,即使用恒定设定点的控制误差的自相关。图24中所描绘的是使用了三个相同的调节设定的MPC控制器的操作,该操作以0.55千克/分钟的汽耗率,并且连同最初的PI控制器性能一起使用这种汽耗率,所述PI控制器性能被添加用于参考比较。
从图24很清楚地看出MPCQ=1000明显地突出,并且容易地确定为具有固有的调节问题(例如,高度的过程模型失配)。尤其是,Q=1000的MPC的受控制变量的自相关与所有其他的控制器调节设定有很大的不同。以稳态操作,并且没有任何明显未测量的干扰,这种调节能够被容易地被识别为不好的,这是因为这种调节显示明显高于滞后时间的所有数值的自相关。对这种曲线的最明显的区别标准是,曲线仅停留在横坐标的一侧并且永远不会穿过零值。
图25描绘了在为贮料塔水平人为地引入干扰期间相同的误差分析计算,所述贮料塔水平与从0.55千克/分钟改变到0.4千克/分钟的汽耗率有关。虽然自相关中的差能够被指出,但其远不如像没有未测量干扰(其在图24中示出)时所执行的自相关一样明显。然而,这一事实不提出重大的问题,这是因为自适应/调节逻辑能够自动地检测干扰,并且能够在这两个不同的情况下从分析控制误差的自相关切换到分析预测误差的自相关,以提供更好的自适应/调节发起。例如,当控制误差到某一阈值以上时,在两种不同类型计算之间的切换能够被执行,其典型地响应未测量干扰发生,或者直接在设定点的改变之后发生。
以上所讨论的自相关分析简化的定性概括被提供在下面的表7中。这里,关于四种不同控制器的试验性数据被显示为自相关分析大小的结果的总量指示(即,小、中和大)。能够用来区分或识别模型失配的自相关分析可在中间两行中找到,这是因为关于这些分析的不同控制器的自相关分析的大小有差异。尤其是,表7提供关于三个不同的MPC控制器的不同自相关的试验性数据的定性估计的概括,其中所有的控制器是基于相同的模型估计来调节的。在这个表中,R1(k)是预测误差的自相关,并且Ry(k)是控制误差的自相关。添加PI控制器操作用于进行比较。
PI | MPCQ=50 | MPCQ=100 | MPCQ=1000 | |
R1(k)蒸汽=0.55千克/分钟 | 不适用 | 小 | 小 | 小 |
R1(k)蒸汽=0.4千克/分钟 | 不适用 | 小 | 小 | 未测试 |
R1(k)蒸汽变化0.55→0.4千克/分钟 | 不适用 | 小 | 中 | 大 |
Ry(k)蒸汽=0.55千克/分钟 | 小 | 小 | 中 | 大 |
Ry(k)蒸汽=0.4千克/分钟 | 小 | 中 | 中 | 未测试 |
Ry(k)蒸汽变化0.55→0.4千克/分钟 | 大 | 大 | 大 | 大 |
表7
一般来说,较大的自相关值被认为是指示了较大的过程模型失配量。概括的说,MPC设计和调节参数的闭环自适应控制能够使用分析MPC控制器信息,诸如受控制变量的控制误差或者受控制变量的预测误差的自相关的方法来激励。然而如以上所讨论的,自相关是从预测误差还是从控制误差中计算出来,都会产生很大的差异。例如,预测误差的自相关可能仅在设定点改变或者未测量干扰的抑制期间是决定性的,而控制误差的自相关可能在稳态操作期间是最有用的。最有用(但也最有挑战性)的是,在为测量干扰发生之前而不是在干扰发生期间或之后,将调节调整到过程特征,正如大多数当前技术水平的自适应调节方法所需要的一样。尝试重新识别过程模型的方法通常依靠过程改变,并且不能在稳态操作期间检测模型改变。这种改变可由干扰或设定点改变导致,并且必须足够大以便能够从噪声带中区分出来。因此,基于以上的讨论,图16的自动自适应/调节方法应该优选地包括:以上面所描述方式的预测误差的分析和控制误差的分析。这种分析的结果是当前调节能够多好地适用于当前过程。任何变差的自相关函数(当和关于相同的一组设计/调节参数所计算出的预期或先前的自相关的函数进行比较时)必须是增加的模型失配的结果,并且能够通过新的自适应/调节进行解释或补偿。
使用自相关作为开发关于模型失配的有用反馈信息的技术,将其用在关于图13所描述的自适应/调节技术中,这对各种各样的过程和模型类型都是有用的。虽然这些结果可依赖遇到的特定类型的模型失配而变化,但是一般来说,最佳设计/调节方法关于较宽范围的模型失配计算出的设计和调节参数值将比从较窄失配范围所得的设计/调节参数值更加保守。换句话说,以上提出的自动自适应/调节方法使MPC控制器失调,以防止当检测到大的过程模型失配(或者过程模型失配中的增加)时的振荡和不稳定,其表现得像每逢需要时都会产生作用的自动安全网。另一方面,如果自相关分析指示过程模型失配降低,可以实现新的自适应/调节周期来加强控制器形式和调节参数以提供更好的总体控制。这种自动方法显然比主动地使控制器失调为安全的(工业中的惯例)更可取,这是因为当模型失配较小时该自动方法应用较快调节,并且当模型失配较大时该自动方法应用较慢或松弛的调节。
重要的是,此处所描述的自动自适应/调节方法基于控制器模型的失配来自适应由基于模型的控制器所使用的形式、控制器模型、以及设计和调节参数,而不执行新的工厂模型识别。因此,这种方法非常有用,这是因为工厂模型识别,尤其是闭环工厂模型识别已经被证明在工业过程应用中或者受到较大干扰或者不可靠。
图26示出了闭环自适应调节系统的另外一个实施方式,其类似于图16中调节系统的实施方式,但是该实施方式包括估计器130,其可使用上面所讨论的误差分析中的一种或两种以及过程估计,以确定在调节块110A中使用的一个或多个模型失配或失配范围。块130可以由此使用控制器的误差(例如,新息)分析和加工厂分析的一种或两种,以确定或检测对控制器模型与工厂之间的模型失配的值或范围的估计,并且可以使用这种估计以开始用于MPC控制器112的调节周期。
因此,正如将要理解的,此处所描述的自适应调节技术可用来自适应在以下情况或者其各种组合中的控制器调节,其中包括:(1)基于新的过程模型的手动输入;(2)基于从加工厂的输入和输出形成的自动性能估计或模型识别;(3)基于一个或多个新的模型失配或模型失配范围的手动输入;或者(4)基于从状态估计的误差分析形成的对模型失配(量或范围)的自动估计。
虽然本发明是关于旨在介绍和示出本发明的特定示例性实施方式进行讨论的,但是这些被公开的自适应/调节设备和方法却不限于这些实施方式。各种修正、改进和增补能够由本领域中的技术人员实现,并且这些修正、改进和增补将不会偏离本发明的范围。
例如,虽然上面所描述的自适应/调节设备和方法是连同以一阶加死区时间的模型形式的过程模型的使用一起描述的,但是这些技术能够用于其他类型的过程模型,所述其他类型的过程模型包括例如:状态空间过程模型、回归模型诸如ARX模型、有限脉冲响应模型(FIR)、阶跃响应模型,等等。同样地,此处所描述的自适应/调节设备和方法可以进行操作,以自适应使用了所有或仅一部分可用的MPC模型、设计和调节参数的MPC控制器,MPC模型、设计和调节参数基于任何具体情况中的模型失配或模型失配范围。尤其是在自适应/调节过程期间,所述自适应/调节设备或方法可以集中于在任何特定情况或环境中存在的一个或多个“重要”的模型、设计和/或调节参数,而不用自适应或改变一个或多个其他的参数。另外,此处所提供自适应调节技术的描述已经在单回路MPC控制器的背景中被提供,但这些技术也能够应用和被扩展到多变量MPC控制器配置,或者由多变量MPC控制器配置所取代。
另外,本领域中的技术人员将会理解的是,此处所描述自适应/调节块和控制器单元中个别组件的划分对于负责控制器的实现和操作来说是随意的。要理解的是,所有这些函数能够以任何期望的方式实现在任何期望的设备上。另外,虽然此处所描述的自适应/调节技术是优选地以软件实现的,但其或其任何部分却可以用硬件、固件等等来实现,并且可以通过与过程控制系统有关的任何其他处理器来实现。因此,此处所描述的单元可以根据需要被实现在标准的多用途CPU中或者在被特殊设计的硬件或固件中,诸如专用集成电路(ASIC)或者其他硬布线的设备。当以软件实现时,所述软件例程可以存储在任何计算机可读的存储器诸如磁盘、光盘(诸如CD、DVD,等等)、闪存或者其他储存介质中,在计算机或处理器的RAM或ROM中,在任何数据库中,等等。同样地,这种软件可以经由任何已知的或期望的送达方法包括例如在计算机可读碟片、智能卡存储器、闪存、或其他可移动的计算机储存机制,或者通过通信信道诸如电话线、互联网,等等(这被视为与经由可移动介质提供这种软件是相同或可互换的)被送达到用户或加工厂。
还要认识到的是,此处所描述的具体方法代表但实质性上偏离以上所描述发明的实施方式。因此,此处所提供的权利要求被适当地解释为包含所有落于本发明真实的精神和范围内更改、变化和改进,以及其实质等同形式。因此,虽然此处没有特殊描述,但是本发明的其他实施方式是包含在本发明的范围内的。
Claims (21)
1.一种对基于可调节模型的过程控制器进行调节的方法,所述过程控制器被用来控制加工厂,所述方法包括:
获得与所述过程控制器的操作相关联的误差信号;
对所述误差信号执行自相关分析,以确定在当前所调节的所述过程控制器与所述加工厂之间模型失配的存在的指示;以及
基于所述自相关分析的结果来实现调节周期以重新调节所述过程控制器。
2.如权利要求1所述的方法,其中获得与所述过程控制器的操作相关联的所述误差信号包括:将与所述过程控制器相关联的控制误差信号确定为过程变量的测量值与关于所述过程变量的设定点之间的差。
3.如权利要求2所述的方法,其中执行所述自相关分析包括:对与时间段相关联的控制误差信号执行自相关分析,在所述时间段期间所述过程变量处于稳态状态中。
4.如权利要求1所述的方法,其中获得与所述过程控制器的操作相关联的所述误差信号包括:将与所述过程控制器相关联的预测误差信号确定为过程变量的测量值与由所述过程控制器所生成的所述过程变量的预测值之间的差。
5.如权利要求4所述的方法,其中所述预测误差信号指示与模型预测控制器的操作相关联的预测误差。
6.如权利要求4所述的方法,其中执行所述自相关分析包括:对与时间段相关联的预测误差信号执行所述自相关分析,在所述时间段期间所述过程变量响应于干扰而被控制。
7.如权利要求1所述的方法,其中获得与所述过程控制器的操作相关联的所述误差信号包括:获得关于第一时间段的误差信号,并获得关于晚于所述第一时间段的第二时间段的误差信号,并且其中对所述误差信号执行所述自相关分析以确定模型失配的存在的指示包括:对关于所述第一时间段的所述误差信号执行自相关分析,对关于所述第二时间段的所述误差信号执行自相关分析,以及比较关于所述第一时间段和所述第二时间段的所述自相关分析的结果以确定所述第一时间段和所述第二时间段之间模型失配的改变。
8.一种用于控制加工厂的自适应控制器,所述自适应控制器包括:
控制器单元,所述控制器单元产生用于控制所述加工厂的控制信号,所述控制器单元包括一个或多个可变的调节参数;
调节单元,所述调节单元确定一个或多个调节参数值以用在所述控制器单元中;
估计器,所述估计器耦合在所述控制器单元与所述调节单元之间,其中所述估计器对与所述控制器单元相关联的误差信号执行自相关分析,以确定在当前调节的所述控制器单元与所述加工厂之间的模型失配的指示,所述估计器单元基于所述模型失配的指示触发所述调节单元以执行调节周期。
9.如权利要求8所述的自适应控制器,其中所述估计器对与所述控制器单元相关联的控制误差信号执行所述自相关分析,所述控制误差信号指示过程变量的测量值与所述过程变量的设定点之间的差。
10.如权利要求9所述的自适应控制器,其中所述估计器基于所述过程变量处于稳态状态的时间段期间收集的控制误差数据,对与所述控制器单元相关联的所述控制误差信号执行所述自相关分析。
11.如权利要求8所述的自适应控制器,其中所述估计器对与所述控制器单元相关联的预测误差信号执行所述自相关分析,所述预测误差信号指示过程变量的测量值与所述过程变量的预测值之间的差。
12.如权利要求11所述的自适应控制器,其中所述估计器基于所述过程变量经历干扰的时间段期间收集的预测误差数据,对与所述控制器单元相关联的所述预测误差信号执行所述自相关分析。
13.如权利要求8所述的自适应控制器,其中所述估计器获得关于第一时间段的所述误差信号,并获得关于晚于所述第一时间段的第二时间段的所述误差信号,并且其中所述估计器对关于所述第一时间段的所述误差信号执行自相关分析,对关于所述第二时间段的所述误差信号执行自相关分析,以及比较关于所述第一时间段和所述第二时间段的所述自相关分析的结果以确定所述第一时间段和所述第二时间段之间模型失配的改变。
14.如权利要求8所述的自适应控制器,其中所述控制器单元是模型预测控制器。
15.如权利要求8所述的自适应控制器,其中所述控制器单元是带有卡尔曼滤波器的模型预测控制器。
16.一种检测由预测过程控制器所使用的控制器模型与加工厂之间的过程模型失配的方法,所述方法包括:
确定与所述加工厂的控制相关联的误差信号;
对所述误差信号执行自相关分析;以及
分析所述自相关分析以检测所述控制器模型与所述加工厂之间的过程模型失配;
其中,定与所述加工厂的控制相关联的所述误差信号包括:将与所述预测过程控制器相关联的控制误差信号确定为过程变量的测量值与所述过程变量的设定点之间的差。
17.如权利要求16所述的方法,其中对所述误差信号执行所述自相关分析包括:对所述过程变量处于稳态状态的时间段期间收集的控制误差数据执行所述自相关分析。
18.一种检测由预测过程控制器所使用的控制器模型与加工厂之间的过程模型失配的方法,所述方法包括:
确定与所述加工厂的控制相关联的误差信号;
对所述误差信号执行自相关分析;以及
分析所述自相关分析以检测所述控制器模型与所述加工厂之间的过程模型失配;
其中确定与所述加工厂的控制相关联的所述误差信号包括:将与所述预测过程控制器相关联的预测误差信号确定为过程变量的预测值与所述过程变量的测量值之间的差;
其中,确定与所述加工厂的控制相关联的所述误差信号包括:获得关于第一时间段的第一控制误差信号为在所述第一时间段期间过程变量的测量值与所述过程变量的设定点之间的差,以及获得关于晚于所述第一时间段的第二时间段的第二控制误差信号为在所述第二时间段期间所述过程变量的测量值与所述过程变量的设定点之间的差。
19.如权利要求18所述的方法,其中对所述误差信号执行所述自相关分析包括:对所述过程变量响应于干扰而被控制的时间段期间收集的预测误差数据执行所述自相关分析。
20.如权利要求19所述的方法,其中对所述误差信号执行自相关分析包括:对所述第一控制误差信号执行自相关分析和对所述第二控制误差信号执行自相关分析;以及其中分析所述自相关分析以检测过程模型失配包括:比较对所述第一控制误差信号和所述第二控制误差信号的所述自相关分析的结果,以确定所述第一时间段和所述第二时间段之间过程模型失配的改变。
21.如权利要求20所述的方法,其中获得所述第一控制误差信号和获得所述第二控制误差信号包括:在所述过程变量处于稳态状态的第一时间段和第二时间段期间,获得所述第一控制误差信号和所述第二控制误差信号。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2519008P | 2008-01-31 | 2008-01-31 | |
US61/025,190 | 2008-01-31 | ||
CN200980103330.0A CN101925866B (zh) | 2008-01-31 | 2009-01-30 | 具有用来补偿模型失配的调节的鲁棒的自适应模型预测控制器 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980103330.0A Division CN101925866B (zh) | 2008-01-31 | 2009-01-30 | 具有用来补偿模型失配的调节的鲁棒的自适应模型预测控制器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103293953A CN103293953A (zh) | 2013-09-11 |
CN103293953B true CN103293953B (zh) | 2017-10-31 |
Family
ID=40677553
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310062691.3A Active CN103293953B (zh) | 2008-01-31 | 2009-01-30 | 具有用来补偿模型失配的调节的鲁棒的自适应模型预测控制器 |
CN200980103330.0A Active CN101925866B (zh) | 2008-01-31 | 2009-01-30 | 具有用来补偿模型失配的调节的鲁棒的自适应模型预测控制器 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980103330.0A Active CN101925866B (zh) | 2008-01-31 | 2009-01-30 | 具有用来补偿模型失配的调节的鲁棒的自适应模型预测控制器 |
Country Status (7)
Country | Link |
---|---|
US (2) | US8185217B2 (zh) |
JP (3) | JP5504175B2 (zh) |
CN (2) | CN103293953B (zh) |
DE (2) | DE112009005510A5 (zh) |
GB (2) | GB2469239B (zh) |
HK (1) | HK1145885A1 (zh) |
WO (1) | WO2009099944A2 (zh) |
Families Citing this family (276)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8280533B2 (en) * | 2000-06-20 | 2012-10-02 | Fisher-Rosemount Systems, Inc. | Continuously scheduled model parameter based adaptive controller |
US7389773B2 (en) | 2005-08-18 | 2008-06-24 | Honeywell International Inc. | Emissions sensors for fuel control in engines |
US7444191B2 (en) | 2005-10-04 | 2008-10-28 | Fisher-Rosemount Systems, Inc. | Process model identification in a process control system |
US8036760B2 (en) * | 2005-10-04 | 2011-10-11 | Fisher-Rosemount Systems, Inc. | Method and apparatus for intelligent control and monitoring in a process control system |
US7738975B2 (en) | 2005-10-04 | 2010-06-15 | Fisher-Rosemount Systems, Inc. | Analytical server integrated in a process control network |
US7840287B2 (en) * | 2006-04-13 | 2010-11-23 | Fisher-Rosemount Systems, Inc. | Robust process model identification in model based control techniques |
GB2469239B (en) | 2008-01-31 | 2012-09-26 | Fisher Rosemount Systems Inc | Robust adaptive model predictive controller with tuning to compensate for model mismatch |
US8060290B2 (en) | 2008-07-17 | 2011-11-15 | Honeywell International Inc. | Configurable automotive controller |
US7959598B2 (en) | 2008-08-20 | 2011-06-14 | Asante Solutions, Inc. | Infusion pump systems and methods |
EP2161637B1 (en) * | 2008-09-04 | 2015-05-20 | Siemens Aktiengesellschaft | Method for updating manufacturing planning data for a production process |
US8200347B2 (en) * | 2009-01-22 | 2012-06-12 | Mitsubishi Electric Research Laboratories, Inc. | Method and apparatus for hybrid resetting states proportional-integral-derivative and lag controllers |
EP2244011A1 (de) * | 2009-03-24 | 2010-10-27 | Siemens AG | Verfahren und Vorrichtung zum Regeln der Temperatur von Dampf für eine Dampfkraftanlage |
US9760067B2 (en) * | 2009-09-10 | 2017-09-12 | Honeywell International Inc. | System and method for predicting future disturbances in model predictive control applications |
US8620461B2 (en) | 2009-09-24 | 2013-12-31 | Honeywell International, Inc. | Method and system for updating tuning parameters of a controller |
US8473079B2 (en) * | 2009-11-25 | 2013-06-25 | Honeywell International Inc. | Fast algorithm for model predictive control |
ES2842967T3 (es) * | 2010-04-19 | 2021-07-15 | Abb Schweiz Ag | Método y sistema para actualizar un modelo en un controlador predictivo por modelo |
US9760073B2 (en) * | 2010-05-21 | 2017-09-12 | Honeywell International Inc. | Technique and tool for efficient testing of controllers in development |
US8504175B2 (en) * | 2010-06-02 | 2013-08-06 | Honeywell International Inc. | Using model predictive control to optimize variable trajectories and system control |
US8606375B2 (en) * | 2010-06-04 | 2013-12-10 | The Mathworks, Inc. | Interactive control of multiple input multiple output control structures |
US8682453B2 (en) | 2010-06-04 | 2014-03-25 | The Mathworks, Inc. | Interactive system for controlling multiple input multiple output control (MIMO) structures |
US8706310B2 (en) | 2010-06-15 | 2014-04-22 | Redwood Systems, Inc. | Goal-based control of lighting |
US9447963B2 (en) | 2010-08-16 | 2016-09-20 | Emerson Process Management Power & Water Solutions, Inc. | Dynamic tuning of dynamic matrix control of steam temperature |
US9335042B2 (en) | 2010-08-16 | 2016-05-10 | Emerson Process Management Power & Water Solutions, Inc. | Steam temperature control using dynamic matrix control |
US9217565B2 (en) | 2010-08-16 | 2015-12-22 | Emerson Process Management Power & Water Solutions, Inc. | Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater |
US20120109620A1 (en) * | 2010-11-01 | 2012-05-03 | Honeywell International Inc. | Apparatus and method for model predictive control (mpc) using approximate window-based estimators |
JP2012099071A (ja) * | 2010-11-05 | 2012-05-24 | Yokogawa Electric Corp | プラント解析システム |
CN102620943B (zh) * | 2011-01-30 | 2015-06-03 | 国际商业机器公司 | 在车轮检测中调整卡尔曼滤波器的参数的方法及装置 |
JP5799528B2 (ja) * | 2011-03-02 | 2015-10-28 | 富士電機株式会社 | システム同定装置及び同定方法 |
EP2527053A1 (de) * | 2011-05-24 | 2012-11-28 | Siemens Aktiengesellschaft | Steuerverfahren für eine Walzstraße |
EP2527054A1 (de) * | 2011-05-24 | 2012-11-28 | Siemens Aktiengesellschaft | Steuerverfahren für eine Walzstraße |
US9170572B2 (en) * | 2011-07-06 | 2015-10-27 | Honeywell International Inc. | Dynamic model generation for implementing hybrid linear/non-linear controller |
DE102011086116A1 (de) * | 2011-07-20 | 2013-01-24 | Siemens Aktiengesellschaft | Vorrichtung und Verfahren zur Bestimmung von Modellparametern einer regelungstechnischen Modellstruktur eines Prozesses, Regeleinrichtung und Computerprogrammprodukt |
EP2549342A1 (fr) * | 2011-07-20 | 2013-01-23 | Alstom Technology Ltd. | Procédé de régulation |
EP2549343A1 (fr) * | 2011-07-20 | 2013-01-23 | Alstom Technology Ltd. | Procédé de régulation |
US9677493B2 (en) | 2011-09-19 | 2017-06-13 | Honeywell Spol, S.R.O. | Coordinated engine and emissions control system |
US9110452B2 (en) * | 2011-09-19 | 2015-08-18 | Fisher-Rosemount Systems, Inc. | Inferential process modeling, quality prediction and fault detection using multi-stage data segregation |
US8930001B2 (en) * | 2011-09-19 | 2015-01-06 | Yokogawa Electric Corporation | Method of model identification for a process with unknown initial conditions in an industrial plant |
EP2573631B1 (en) * | 2011-09-23 | 2015-10-21 | Honeywell spol s.r.o. | Controller that estimates delayed manipulated variables |
WO2013061126A1 (en) * | 2011-10-24 | 2013-05-02 | Abb Research Ltd | A method and a system for tuning multivariable pid controller |
EP2587416A1 (en) * | 2011-10-31 | 2013-05-01 | Hewlett-Packard Development Company, L.P. | Systems and methods for monitoring compliance status based on time-ordered reference periods |
US9163828B2 (en) | 2011-10-31 | 2015-10-20 | Emerson Process Management Power & Water Solutions, Inc. | Model-based load demand control |
US20130111905A1 (en) | 2011-11-04 | 2013-05-09 | Honeywell Spol. S.R.O. | Integrated optimization and control of an engine and aftertreatment system |
US9650934B2 (en) | 2011-11-04 | 2017-05-16 | Honeywell spol.s.r.o. | Engine and aftertreatment optimization system |
CN104053866B (zh) * | 2011-11-17 | 2016-01-27 | 西门子公司 | 调节用于蒸汽发电设备的蒸汽温度的方法和装置 |
WO2013076184A2 (en) * | 2011-11-25 | 2013-05-30 | Shell Internationale Research Maatschappij B.V. | Method and system for controlling vibrations in a drilling system |
US9529348B2 (en) | 2012-01-24 | 2016-12-27 | Emerson Process Management Power & Water Solutions, Inc. | Method and apparatus for deploying industrial plant simulators using cloud computing technologies |
SE539125C2 (sv) * | 2012-04-05 | 2017-04-11 | Scania Cv Ab | Förfarande och system för styrning av åtminstone en hastighetsregulator |
US10451471B2 (en) * | 2012-04-12 | 2019-10-22 | Itt Manufacturing Enterprises Llc | Method of determining pump flow in twin screw positive displacement pumps |
US9678511B2 (en) * | 2012-04-12 | 2017-06-13 | Itt Manufacturing Enterprises Llc. | Method of determining pump flow in rotary positive displacement pumps |
US9134713B2 (en) * | 2012-05-11 | 2015-09-15 | Siemens Corporation | System and method for fault prognostics enhanced MPC framework |
US9008807B2 (en) * | 2012-05-25 | 2015-04-14 | Statistics & Control, Inc. | Method of large scale process optimization and optimal planning based on real time dynamic simulation |
US10222769B2 (en) | 2012-10-12 | 2019-03-05 | Emerson Process Management Power & Water Solutions, Inc. | Method for determining and tuning process characteristic parameters using a simulation system |
US9292010B2 (en) * | 2012-11-05 | 2016-03-22 | Rockwell Automation Technologies, Inc. | Online integration of model-based optimization and model-less control |
US9920697B2 (en) | 2014-03-26 | 2018-03-20 | GM Global Technology Operations LLC | Engine control systems and methods for future torque request increases |
US9797318B2 (en) | 2013-08-02 | 2017-10-24 | GM Global Technology Operations LLC | Calibration systems and methods for model predictive controllers |
US9784198B2 (en) | 2015-02-12 | 2017-10-10 | GM Global Technology Operations LLC | Model predictive control systems and methods for increasing computational efficiency |
US9714616B2 (en) * | 2014-03-26 | 2017-07-25 | GM Global Technology Operations LLC | Non-model predictive control to model predictive control transitions |
US9863345B2 (en) | 2012-11-27 | 2018-01-09 | GM Global Technology Operations LLC | System and method for adjusting weighting values assigned to errors in target actuator values of an engine when controlling the engine using model predictive control |
US10767427B2 (en) * | 2012-12-05 | 2020-09-08 | Schlumberger Technology Corporation | Control of managed pressure drilling |
CN103019267B (zh) * | 2012-12-10 | 2016-06-22 | 华东交通大学 | 高速列车anfis建模与运行速度预测控制方法 |
DE102012223007A1 (de) * | 2012-12-13 | 2014-06-18 | Hilti Aktiengesellschaft | Handgeführtes oder halbstationäres Werkzeuggerät und Verfahren zum Betreiben eines derartigen Werkzeuggeräts |
US9436174B2 (en) * | 2013-03-01 | 2016-09-06 | Fisher-Rosemount Systems, Inc. | Kalman filters in process control systems |
US10678225B2 (en) | 2013-03-04 | 2020-06-09 | Fisher-Rosemount Systems, Inc. | Data analytic services for distributed industrial performance monitoring |
US10909137B2 (en) | 2014-10-06 | 2021-02-02 | Fisher-Rosemount Systems, Inc. | Streaming data for analytics in process control systems |
US9804588B2 (en) * | 2014-03-14 | 2017-10-31 | Fisher-Rosemount Systems, Inc. | Determining associations and alignments of process elements and measurements in a process |
US10223327B2 (en) | 2013-03-14 | 2019-03-05 | Fisher-Rosemount Systems, Inc. | Collecting and delivering data to a big data machine in a process control system |
US10866952B2 (en) | 2013-03-04 | 2020-12-15 | Fisher-Rosemount Systems, Inc. | Source-independent queries in distributed industrial system |
US10649449B2 (en) | 2013-03-04 | 2020-05-12 | Fisher-Rosemount Systems, Inc. | Distributed industrial performance monitoring and analytics |
US10282676B2 (en) | 2014-10-06 | 2019-05-07 | Fisher-Rosemount Systems, Inc. | Automatic signal processing-based learning in a process plant |
US10386827B2 (en) | 2013-03-04 | 2019-08-20 | Fisher-Rosemount Systems, Inc. | Distributed industrial performance monitoring and analytics platform |
US9558220B2 (en) | 2013-03-04 | 2017-01-31 | Fisher-Rosemount Systems, Inc. | Big data in process control systems |
US10649424B2 (en) | 2013-03-04 | 2020-05-12 | Fisher-Rosemount Systems, Inc. | Distributed industrial performance monitoring and analytics |
US9665088B2 (en) | 2014-01-31 | 2017-05-30 | Fisher-Rosemount Systems, Inc. | Managing big data in process control systems |
US10418833B2 (en) | 2015-10-08 | 2019-09-17 | Con Edison Battery Storage, Llc | Electrical energy storage system with cascaded frequency response optimization |
US9436179B1 (en) | 2013-03-13 | 2016-09-06 | Johnson Controls Technology Company | Systems and methods for energy cost optimization in a building system |
US9852481B1 (en) | 2013-03-13 | 2017-12-26 | Johnson Controls Technology Company | Systems and methods for cascaded model predictive control |
US9235657B1 (en) | 2013-03-13 | 2016-01-12 | Johnson Controls Technology Company | System identification and model development |
JP6595980B2 (ja) | 2013-03-15 | 2019-10-23 | フィッシャー−ローズマウント システムズ,インコーポレイテッド | コンピュータシステム、及びコンピュータで実装される方法 |
US10133243B2 (en) | 2013-03-15 | 2018-11-20 | Fisher-Rosemount Systems, Inc. | Method and apparatus for seamless state transfer between user interface devices in a mobile control room |
EP2639657B1 (de) * | 2013-04-24 | 2018-04-04 | MOOG GmbH | Verzögerungsminimierte Erfassung einer Hilfsregelgröße |
US9507344B2 (en) * | 2013-05-10 | 2016-11-29 | Honeywell International Inc. | Index generation and embedded fusion for controller performance monitoring |
US8797199B1 (en) * | 2013-05-16 | 2014-08-05 | Amazon Technologies, Inc. | Continuous adaptive digital to analog control |
DK177915B1 (en) * | 2013-05-28 | 2015-01-05 | Core As | Process control method |
US9557724B2 (en) * | 2013-05-31 | 2017-01-31 | Honeywell Limited | Technique for converting a model predictive control (MPC) system into an explicit two-degrees of freedom (2DOF) control system |
US9886008B1 (en) * | 2013-06-07 | 2018-02-06 | The Mathworks, Inc. | Automated PID controller design, using parameters that satisfy a merit function |
US20140365199A1 (en) * | 2013-06-11 | 2014-12-11 | The Mathworks, Inc. | Pairing a physical device with a model element |
US9561324B2 (en) | 2013-07-19 | 2017-02-07 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US10360052B1 (en) | 2013-08-08 | 2019-07-23 | The Mathworks, Inc. | Automatic generation of models from detected hardware |
DE102013215752A1 (de) * | 2013-08-09 | 2015-02-12 | Robert Bosch Gmbh | Prozessoptimierung mittels regelungstechnischen Beobachters |
DE102013109412A1 (de) * | 2013-08-29 | 2015-03-05 | Prominent Gmbh | Verfahren zur Verbesserung von Dosierprofilen von Verdrängerpumpen |
US10437203B2 (en) * | 2013-10-08 | 2019-10-08 | General Electric Company | Methods and systems for dynamic workflow prioritization and tasking |
US9804580B2 (en) * | 2013-11-22 | 2017-10-31 | Mitsubishi Electric Research Laboratories, Inc. | Feasible tracking control of machine |
WO2015077890A1 (en) * | 2013-11-27 | 2015-06-04 | Adept Ai Systems Inc. | Method and system for artificially intelligent model-based control of dynamic processes using probabilistic agents |
CN105874159B (zh) | 2013-12-06 | 2019-12-31 | 哈利伯顿能源服务公司 | 控制井下钻井设备的计算机实现方法和井筒系统 |
GB2534793B (en) * | 2013-12-06 | 2020-08-12 | Halliburton Energy Services Inc | Controlling wellbore operations |
EP2884354A1 (en) * | 2013-12-12 | 2015-06-17 | Honeywell spol s.r.o. | Model-based predictive controller with steady-state model adaptation |
EA025476B1 (ru) * | 2013-12-17 | 2016-12-30 | Азербайджанский Технический Университет | Система робастного управления |
GB2523989B (en) | 2014-01-30 | 2020-07-29 | Insulet Netherlands B V | Therapeutic product delivery system and method of pairing |
US10208947B2 (en) | 2014-03-26 | 2019-02-19 | Rockwell Automation Technologies, Inc. | Cloud-level analytics for boiler networks |
US9886012B2 (en) | 2014-03-26 | 2018-02-06 | Rockwell Automation Technologies, Inc. | Component factory for human-machine interface migration to a cloud platform |
US9614963B2 (en) | 2014-03-26 | 2017-04-04 | Rockwell Automation Technologies, Inc. | Cloud-based global alarm annunciation system for industrial systems |
US9866635B2 (en) | 2014-03-26 | 2018-01-09 | Rockwell Automation Technologies, Inc. | Unified data ingestion adapter for migration of industrial data to a cloud platform |
US9971317B2 (en) * | 2014-03-26 | 2018-05-15 | Rockwell Automation Technologies, Inc. | Cloud-level industrial controller loop gain tuning based on industrial application type |
US9838476B2 (en) | 2014-03-26 | 2017-12-05 | Rockwell Automation Technologies, Inc. | On-premise data collection and ingestion using industrial cloud agents |
US9825949B2 (en) | 2014-03-26 | 2017-11-21 | Rockwell Automation Technologies, Inc. | Device authentication to facilitate secure cloud management of industrial data |
US10095202B2 (en) | 2014-03-26 | 2018-10-09 | Rockwell Automation Technologies, Inc. | Multiple controllers configuration management interface for system connectivity |
US9843617B2 (en) * | 2014-03-26 | 2017-12-12 | Rockwell Automation Technologies, Inc. | Cloud manifest configuration management system |
US10386820B2 (en) | 2014-05-01 | 2019-08-20 | Johnson Controls Technology Company | Incorporating a demand charge in central plant optimization |
CN104009735B (zh) * | 2014-05-28 | 2017-04-05 | 重庆科技学院 | 卡尔曼滤波器在s7‑300系列plc中的实现方法 |
US9733629B2 (en) * | 2014-07-21 | 2017-08-15 | Honeywell International Inc. | Cascaded model predictive control (MPC) approach for plantwide control and optimization |
US10545482B2 (en) * | 2014-07-23 | 2020-01-28 | Honeywell International Inc. | Robust control design approach for chemical processing industries and other industries |
CN106714874B (zh) * | 2014-08-06 | 2019-10-08 | 加利福尼亚大学董事会 | 用于控制应用的滚动时域状态初始化器 |
DE112015003733T5 (de) | 2014-08-13 | 2017-05-18 | Fisher-Rosemount Systems, Inc. | Modellprädiktive Regelung unter Verwendung drahtloser Prozesssignale |
US9747543B1 (en) * | 2014-09-30 | 2017-08-29 | Hrl Laboratories, Llc | System and method for controller adaptation |
US10168691B2 (en) | 2014-10-06 | 2019-01-01 | Fisher-Rosemount Systems, Inc. | Data pipeline for process control system analytics |
US9765621B2 (en) | 2014-10-21 | 2017-09-19 | Toyota Motor Engineering & Manufacturing North America, Inc. | Switch gain scheduled explicit model predictive control of diesel engines |
KR101637701B1 (ko) * | 2014-10-21 | 2016-07-07 | 현대자동차주식회사 | 차량 내 장치의 제어를 위한 튜닝맵의 제작 방법 |
US10386796B2 (en) * | 2014-12-11 | 2019-08-20 | University Of New Brunswick | Model predictive controller and method with correction parameter to compensate for time lag |
CN104647389B (zh) * | 2014-12-30 | 2016-04-06 | 北京欣奕华科技有限公司 | 一种机器人控制系统、机器人设备 |
EP3051367B1 (en) | 2015-01-28 | 2020-11-25 | Honeywell spol s.r.o. | An approach and system for handling constraints for measured disturbances with uncertain preview |
EP3056706A1 (en) | 2015-02-16 | 2016-08-17 | Honeywell International Inc. | An approach for aftertreatment system modeling and model identification |
US10737024B2 (en) | 2015-02-18 | 2020-08-11 | Insulet Corporation | Fluid delivery and infusion devices, and methods of use thereof |
EP3091212A1 (en) | 2015-05-06 | 2016-11-09 | Honeywell International Inc. | An identification approach for internal combustion engine mean value models |
WO2016191849A1 (en) * | 2015-06-03 | 2016-12-08 | HONEYWELL LIMITED/HONEYWELL LlMITEE | Method and apparatus for robust tuning of model-based process controllers used with uncertain multiple-input, multiple-output (mimo) processes |
DE112015000231B4 (de) * | 2015-06-18 | 2024-08-01 | Mitsubishi Electric Corporation | Werkzeugmaschinensystem |
US10429800B2 (en) | 2015-06-26 | 2019-10-01 | Honeywell Limited | Layered approach to economic optimization and model-based control of paper machines and other systems |
EP3125052B1 (en) | 2015-07-31 | 2020-09-02 | Garrett Transportation I Inc. | Quadratic program solver for mpc using variable ordering |
US10272779B2 (en) | 2015-08-05 | 2019-04-30 | Garrett Transportation I Inc. | System and approach for dynamic vehicle speed optimization |
EP3147729B1 (de) * | 2015-09-25 | 2019-06-12 | Göcke, Tobias | Verfahren und vorrichtung zur adaptiven und optimierenden prozesssteuerung, verwendung des verfahrens |
WO2017055948A1 (en) * | 2015-09-28 | 2017-04-06 | Koninklijke Philips N.V. | Methods and systems for controlling gas flow using a proportional flow valve |
US10190789B2 (en) | 2015-09-30 | 2019-01-29 | Johnson Controls Technology Company | Central plant with coordinated HVAC equipment staging across multiple subplants |
US11210617B2 (en) | 2015-10-08 | 2021-12-28 | Johnson Controls Technology Company | Building management system with electrical energy storage optimization based on benefits and costs of participating in PDBR and IBDR programs |
US10186889B2 (en) | 2015-10-08 | 2019-01-22 | Taurus Des, Llc | Electrical energy storage system with variable state-of-charge frequency response optimization |
US10700541B2 (en) | 2015-10-08 | 2020-06-30 | Con Edison Battery Storage, Llc | Power control system with battery power setpoint optimization using one-step-ahead prediction |
US10283968B2 (en) | 2015-10-08 | 2019-05-07 | Con Edison Battery Storage, Llc | Power control system with power setpoint adjustment based on POI power limits |
US10389136B2 (en) | 2015-10-08 | 2019-08-20 | Con Edison Battery Storage, Llc | Photovoltaic energy system with value function optimization |
US10222427B2 (en) | 2015-10-08 | 2019-03-05 | Con Edison Battery Storage, Llc | Electrical energy storage system with battery power setpoint optimization based on battery degradation costs and expected frequency response revenue |
US10250039B2 (en) | 2015-10-08 | 2019-04-02 | Con Edison Battery Storage, Llc | Energy storage controller with battery life model |
US10554170B2 (en) | 2015-10-08 | 2020-02-04 | Con Edison Battery Storage, Llc | Photovoltaic energy system with solar intensity prediction |
US10418832B2 (en) | 2015-10-08 | 2019-09-17 | Con Edison Battery Storage, Llc | Electrical energy storage system with constant state-of charge frequency response optimization |
US10190793B2 (en) | 2015-10-08 | 2019-01-29 | Johnson Controls Technology Company | Building management system with electrical energy storage optimization based on statistical estimates of IBDR event probabilities |
US10197632B2 (en) | 2015-10-08 | 2019-02-05 | Taurus Des, Llc | Electrical energy storage system with battery power setpoint optimization using predicted values of a frequency regulation signal |
US10742055B2 (en) | 2015-10-08 | 2020-08-11 | Con Edison Battery Storage, Llc | Renewable energy system with simultaneous ramp rate control and frequency regulation |
US10564610B2 (en) | 2015-10-08 | 2020-02-18 | Con Edison Battery Storage, Llc | Photovoltaic energy system with preemptive ramp rate control |
CN105320127B (zh) * | 2015-11-17 | 2018-03-27 | 国网宁夏电力公司电力科学研究院 | 一种电力系统广域闭环控制系统闭环时延的测量方法 |
CN105759606B (zh) * | 2015-12-24 | 2019-01-25 | 浙江中控软件技术有限公司 | 一种针对模型失配的稳态目标鲁棒优化方法和装置 |
US10275573B2 (en) | 2016-01-13 | 2019-04-30 | Bigfoot Biomedical, Inc. | User interface for diabetes management system |
US10139809B2 (en) * | 2016-01-14 | 2018-11-27 | Rockwell Automation Technologies, Inc. | Optimization based controller tuning systems and methods |
WO2017124006A1 (en) | 2016-01-14 | 2017-07-20 | Bigfoot Biomedical, Inc. | Adjusting insulin delivery rates |
WO2017123703A2 (en) | 2016-01-14 | 2017-07-20 | Bigfoot Biomedical, Inc. | Occlusion resolution in medication delivery devices, systems, and methods |
US10415492B2 (en) | 2016-01-29 | 2019-09-17 | Garrett Transportation I Inc. | Engine system with inferential sensor |
US10503483B2 (en) | 2016-02-12 | 2019-12-10 | Fisher-Rosemount Systems, Inc. | Rule builder in a process control network |
US10459428B2 (en) | 2016-03-08 | 2019-10-29 | Honeywell Limited | Optimal closed-loop input design for identification of flat-sheet process models |
CN107179685B (zh) * | 2016-03-09 | 2019-12-10 | 中国科学院沈阳自动化研究所 | 一种适用于多变量模型预测控制的分程控制实现方法 |
JP6253860B1 (ja) * | 2016-03-28 | 2017-12-27 | 三菱電機株式会社 | 品質管理装置、品質管理方法及び品質管理プログラム |
US10124750B2 (en) | 2016-04-26 | 2018-11-13 | Honeywell International Inc. | Vehicle security module system |
US10036338B2 (en) | 2016-04-26 | 2018-07-31 | Honeywell International Inc. | Condition-based powertrain control system |
US10235818B2 (en) * | 2016-05-13 | 2019-03-19 | Ford Global Technologies, Llc | Adaptive vehicle control |
CN105824251B (zh) * | 2016-05-18 | 2018-06-15 | 重庆邮电大学 | 一种基于神经网络的仿生趋温行为方法 |
US9938908B2 (en) | 2016-06-14 | 2018-04-10 | GM Global Technology Operations LLC | System and method for predicting a pedal position based on driver behavior and controlling one or more engine actuators based on the predicted pedal position |
EP3479091B1 (en) * | 2016-06-29 | 2023-05-03 | Illinois Tool Works Inc. | A testing system with real-time compensation of varying system parameters |
US10990067B2 (en) * | 2016-07-07 | 2021-04-27 | Aspen Technology, Inc. | Computer system and method for the dynamic construction and online deployment of an operation-centric first-principles process model for predictive analytics |
US10534325B2 (en) * | 2016-07-14 | 2020-01-14 | Honeywell International Inc. | Adaptive control techniques for pH control or control of other industrial processes |
US10643167B2 (en) | 2016-07-28 | 2020-05-05 | Honeywell International Inc. | MPC with unconstrained dependent variables for KPI performance analysis |
US10778012B2 (en) | 2016-07-29 | 2020-09-15 | Con Edison Battery Storage, Llc | Battery optimization control system with data fusion systems and methods |
US10594153B2 (en) | 2016-07-29 | 2020-03-17 | Con Edison Battery Storage, Llc | Frequency response optimization control system |
JP6497367B2 (ja) * | 2016-08-31 | 2019-04-10 | 横河電機株式会社 | プラント制御装置、プラント制御方法、プラント制御プログラム及び記録媒体 |
US10606254B2 (en) * | 2016-09-14 | 2020-03-31 | Emerson Process Management Power & Water Solutions, Inc. | Method for improving process/equipment fault diagnosis |
US10809674B2 (en) * | 2016-09-16 | 2020-10-20 | Honeywell Limited | Model-plant mismatch detection using model parameter data clustering for paper machines or other systems |
US10761522B2 (en) * | 2016-09-16 | 2020-09-01 | Honeywell Limited | Closed-loop model parameter identification techniques for industrial model-based process controllers |
US11449046B2 (en) * | 2016-09-16 | 2022-09-20 | Honeywell Limited | Model-plant mismatch detection with support vector machine for cross-directional process behavior monitoring |
US10764255B2 (en) | 2016-09-21 | 2020-09-01 | Rockwell Automation Technologies, Inc. | Secure command execution from a cloud monitoring system to a remote cloud agent |
WO2018058041A1 (en) | 2016-09-23 | 2018-03-29 | Insulet Corporation | Fluid delivery device with sensor |
US10309059B2 (en) * | 2016-09-23 | 2019-06-04 | Honeywell International Inc. | Method of designing model predictive control for cross directional flat sheet manufacturing processes to guarantee temporal robust stability and performance |
KR101878254B1 (ko) * | 2016-10-31 | 2018-07-13 | 부산외국어대학교 산학협력단 | 컴퓨터를 포함하는 스마트 신발 시스템 및 이의 구현방법 |
US20180136617A1 (en) * | 2016-11-11 | 2018-05-17 | General Electric Company | Systems and methods for continuously modeling industrial asset performance |
EP3548729B1 (en) | 2016-11-29 | 2023-02-22 | Garrett Transportation I Inc. | An inferential flow sensor |
FR3059777B1 (fr) * | 2016-12-06 | 2019-08-09 | Safran Aircraft Engines | Procede d'essai |
US11096624B2 (en) | 2016-12-12 | 2021-08-24 | Bigfoot Biomedical, Inc. | Alarms and alerts for medication delivery devices and systems |
US10337753B2 (en) * | 2016-12-23 | 2019-07-02 | Abb Ag | Adaptive modeling method and system for MPC-based building energy control |
US11033682B2 (en) | 2017-01-13 | 2021-06-15 | Bigfoot Biomedical, Inc. | Insulin delivery methods, systems and devices |
US10881792B2 (en) | 2017-01-13 | 2021-01-05 | Bigfoot Biomedical, Inc. | System and method for adjusting insulin delivery |
US10761496B2 (en) | 2017-06-12 | 2020-09-01 | Honeywell International Inc. | Apparatus and method for identifying impacts and causes of variability or control giveaway on model-based controller performance |
US11327473B2 (en) | 2017-07-11 | 2022-05-10 | Rockwell Automation Technologies, Inc. | Dynamically reconfigurable data collection agent for fracking pump asset |
US11616367B2 (en) * | 2017-07-17 | 2023-03-28 | Johnson Controls Technology Company | Energy storage system with virtual device manager |
US10482063B2 (en) | 2017-08-14 | 2019-11-19 | Rockwell Automation Technologies, Inc. | Modular control manifest generator for cloud automation |
US10969749B2 (en) * | 2017-08-22 | 2021-04-06 | Honeywell Limited | Application of model predictive control (MPC)-based forced ramping of process input variables and process output reference trajectory design over a prediction horizon for MPC-based paper machine grade change control |
US10416660B2 (en) | 2017-08-31 | 2019-09-17 | Rockwell Automation Technologies, Inc. | Discrete manufacturing hybrid cloud solution architecture |
US11057213B2 (en) | 2017-10-13 | 2021-07-06 | Garrett Transportation I, Inc. | Authentication system for electronic control unit on a bus |
CN109725526B (zh) * | 2017-10-31 | 2020-12-25 | 中国科学院沈阳自动化研究所 | 一种多变量半自适应预测控制方法 |
US10838440B2 (en) | 2017-11-28 | 2020-11-17 | Johnson Controls Technology Company | Multistage HVAC system with discrete device selection prioritization |
US10838441B2 (en) | 2017-11-28 | 2020-11-17 | Johnson Controls Technology Company | Multistage HVAC system with modulating device demand control |
CN107942731B (zh) * | 2017-12-11 | 2021-03-30 | 上海电机学院 | 一种基于预测的人行栈桥主动波浪补偿装置及方法 |
US10976712B2 (en) * | 2018-02-05 | 2021-04-13 | Honeywell International Inc. | Method and system to provide cost of lost opportunity to operators in real time using advance process control |
USD928199S1 (en) | 2018-04-02 | 2021-08-17 | Bigfoot Biomedical, Inc. | Medication delivery device with icons |
US11084225B2 (en) | 2018-04-02 | 2021-08-10 | Nanotronics Imaging, Inc. | Systems, methods, and media for artificial intelligence process control in additive manufacturing |
CN108549228B (zh) * | 2018-04-18 | 2021-02-02 | 南京工业大学 | 一种基于交叉评估的多变量dmc系统模型失配通道定位方法 |
JP7124120B2 (ja) | 2018-05-04 | 2022-08-23 | インスレット コーポレイション | 制御アルゴリズムベースの薬物送達システムのための安全制約 |
JP7095834B2 (ja) * | 2018-05-21 | 2022-07-05 | 株式会社トランストロン | 制御パラメータ計算方法、制御パラメータ計算プログラム、及び制御パラメータ計算装置 |
US11573542B2 (en) * | 2018-07-13 | 2023-02-07 | Siemens Aktiengesellschaft | Method and apparatus for adjusting process control prediction model and process controller |
US11163271B2 (en) | 2018-08-28 | 2021-11-02 | Johnson Controls Technology Company | Cloud based building energy optimization system with a dynamically trained load prediction model |
US11159022B2 (en) | 2018-08-28 | 2021-10-26 | Johnson Controls Tyco IP Holdings LLP | Building energy optimization system with a dynamically trained load prediction model |
CA3112209C (en) | 2018-09-28 | 2023-08-29 | Insulet Corporation | Activity mode for artificial pancreas system |
EP3864668A1 (en) | 2018-10-11 | 2021-08-18 | Insulet Corporation | Event detection for drug delivery system |
US20200118053A1 (en) * | 2018-10-15 | 2020-04-16 | General Electric Company | Asset performance manager |
US12196177B2 (en) * | 2018-12-21 | 2025-01-14 | Vestas Wind Systems A/S | Wind turbine control based on optimicing and non-optimicing controller routines |
USD920343S1 (en) | 2019-01-09 | 2021-05-25 | Bigfoot Biomedical, Inc. | Display screen or portion thereof with graphical user interface associated with insulin delivery |
CN109995067B (zh) * | 2019-01-15 | 2022-02-08 | 东北电力大学 | 一种直流配电网换流站多功能备用电源控制方法 |
US11209795B2 (en) | 2019-02-28 | 2021-12-28 | Nanotronics Imaging, Inc. | Assembly error correction for assembly lines |
WO2020188331A1 (en) * | 2019-03-15 | 2020-09-24 | 3M Innovative Properties Company | Deep causal learning for continuous testing, diagnosis, and optimization |
JP7460657B2 (ja) | 2019-05-09 | 2024-04-02 | アスペンテック・コーポレーション | 機械学習を専門知識及び第一原理と組み合わせて行うプロセス産業のモデリング |
US11156991B2 (en) | 2019-06-24 | 2021-10-26 | Nanotronics Imaging, Inc. | Predictive process control for a manufacturing process |
JP7270489B2 (ja) * | 2019-07-10 | 2023-05-10 | 東京エレクトロン株式会社 | 性能算出方法および処理装置 |
WO2021019551A1 (en) * | 2019-07-26 | 2021-02-04 | Tata Consultancy Services Limited | System and method for real-time self-optimization of manufacturing operations |
CN110442991B (zh) * | 2019-08-12 | 2021-05-04 | 江南大学 | 一种基于参数化fir模型的动态硫回收软测量建模方法 |
KR20220054673A (ko) | 2019-09-10 | 2022-05-03 | 나노트로닉스 이미징, 인코포레이티드 | 제조 공정을 위한 시스템, 방법 및 매체 |
US11801344B2 (en) | 2019-09-13 | 2023-10-31 | Insulet Corporation | Blood glucose rate of change modulation of meal and correction insulin bolus quantity |
US11467543B2 (en) * | 2019-09-20 | 2022-10-11 | Fisher-Rosemount Systems, Inc. | Process controller design with process approximation and lambda tuning |
US11935637B2 (en) | 2019-09-27 | 2024-03-19 | Insulet Corporation | Onboarding and total daily insulin adaptivity |
US11063965B1 (en) | 2019-12-19 | 2021-07-13 | Nanotronics Imaging, Inc. | Dynamic monitoring and securing of factory processes, equipment and automated systems |
US11100221B2 (en) | 2019-10-08 | 2021-08-24 | Nanotronics Imaging, Inc. | Dynamic monitoring and securing of factory processes, equipment and automated systems |
WO2021076760A1 (en) | 2019-10-18 | 2021-04-22 | Aspen Technology, Inc. | System and methods for automated model development from plant historical data for advanced process control |
CN110687793B (zh) * | 2019-11-04 | 2022-03-22 | 青岛科技大学 | 一种基于输入增量的船舶动力定位系统非线性无偏预测控制方法 |
TW202223567A (zh) | 2019-11-06 | 2022-06-16 | 美商奈米創尼克影像公司 | 用於工廠自動化生產線之製造系統及方法 |
US12153408B2 (en) | 2019-11-06 | 2024-11-26 | Nanotronics Imaging, Inc. | Systems, methods, and media for manufacturing processes |
US12165353B2 (en) | 2019-11-06 | 2024-12-10 | Nanotronics Imaging, Inc. | Systems, methods, and media for manufacturing processes |
TW202347125A (zh) | 2019-11-20 | 2023-12-01 | 美商奈米創尼克影像公司 | 用於判定網路攻擊及產生警告之製造系統及電腦實施方法 |
US11957875B2 (en) | 2019-12-06 | 2024-04-16 | Insulet Corporation | Techniques and devices providing adaptivity and personalization in diabetes treatment |
US11833329B2 (en) | 2019-12-20 | 2023-12-05 | Insulet Corporation | Techniques for improved automatic drug delivery performance using delivery tendencies from past delivery history and use patterns |
CN111176155B (zh) * | 2019-12-20 | 2021-07-02 | 华中科技大学 | 一种闭环模型预测控制系统的过程模型失配检测方法 |
EP4088286A1 (en) | 2020-01-06 | 2022-11-16 | Insulet Corporation | Prediction of meal and/or exercise events based on persistent residuals |
US11551802B2 (en) | 2020-02-11 | 2023-01-10 | Insulet Corporation | Early meal detection and calorie intake detection |
US11547800B2 (en) | 2020-02-12 | 2023-01-10 | Insulet Corporation | User parameter dependent cost function for personalized reduction of hypoglycemia and/or hyperglycemia in a closed loop artificial pancreas system |
US11986630B2 (en) | 2020-02-12 | 2024-05-21 | Insulet Corporation | Dual hormone delivery system for reducing impending hypoglycemia and/or hyperglycemia risk |
US11324889B2 (en) | 2020-02-14 | 2022-05-10 | Insulet Corporation | Compensation for missing readings from a glucose monitor in an automated insulin delivery system |
JP2023505617A (ja) * | 2020-02-28 | 2023-02-09 | スリーエム イノベイティブ プロパティズ カンパニー | 高度モデル予測制御のための深層因果学習 |
US11086988B1 (en) | 2020-02-28 | 2021-08-10 | Nanotronics Imaging, Inc. | Method, systems and apparatus for intelligently emulating factory control systems and simulating response data |
CN111308979B (zh) * | 2020-03-09 | 2020-11-24 | 常熟理工学院 | 基于多率迟延状态空间模型的u控制系统 |
CN111240209B (zh) | 2020-03-16 | 2020-10-09 | 广东工业大学 | 构型动型控型优型联动响应的自适应组态方法及系统 |
EP3889696B1 (en) * | 2020-04-01 | 2023-08-16 | Bono Energia S.p.A. | A model predictive control method for an industrial boiler and relating boiler structure |
CN111456856B (zh) * | 2020-04-04 | 2023-03-24 | 西北工业大学 | 航空发动机最大推力状态降保守性鲁棒控制器 |
US11607493B2 (en) | 2020-04-06 | 2023-03-21 | Insulet Corporation | Initial total daily insulin setting for user onboarding |
CN111537679B (zh) * | 2020-05-25 | 2021-06-08 | 北京化工大学 | 一种基于非线性滤波的隔离壁精馏塔浓度软测量方法 |
WO2022020197A1 (en) | 2020-07-22 | 2022-01-27 | Insulet Corporation | Open-loop insulin delivery basal parameters based on insulin delivery records |
JP2023535756A (ja) * | 2020-07-27 | 2023-08-21 | ワットロー・エレクトリック・マニュファクチャリング・カンパニー | システム制御および診断を改善するために中間データを使用するためのシステムおよび方法 |
US11684716B2 (en) | 2020-07-31 | 2023-06-27 | Insulet Corporation | Techniques to reduce risk of occlusions in drug delivery systems |
CN112114103B (zh) * | 2020-08-18 | 2021-07-20 | 华南理工大学 | 基于鲁棒自适应典型相关分析的污水厂污泥膨胀检测方法 |
CN112130494A (zh) * | 2020-09-22 | 2020-12-25 | 杭州坤法环保科技有限公司 | 一种基于外挂式炉排炉燃烧自动优化装置 |
WO2022072618A1 (en) | 2020-09-30 | 2022-04-07 | Insulet Corporation | Secure wireless communications between a glucose monitor and other devices |
WO2022072332A1 (en) | 2020-09-30 | 2022-04-07 | Insulet Corporation | Drug delivery device with integrated optical-based glucose monitor |
US11288115B1 (en) | 2020-11-05 | 2022-03-29 | International Business Machines Corporation | Error analysis of a predictive model |
US12217198B2 (en) * | 2020-12-03 | 2025-02-04 | Aspentech Corporation | Method and system for process schedule reconciliation using machine learning and algebraic model optimization |
CN112540803B (zh) * | 2020-12-18 | 2023-08-11 | 深圳赛安特技术服务有限公司 | 一种表单设计适配方法、装置、设备及存储介质 |
US11160925B1 (en) | 2021-01-29 | 2021-11-02 | Insulet Corporation | Automatic drug delivery system for delivery of a GLP-1 therapeutic |
US11630446B2 (en) | 2021-02-16 | 2023-04-18 | Aspentech Corporation | Reluctant first principles models |
US11904140B2 (en) | 2021-03-10 | 2024-02-20 | Insulet Corporation | Adaptable asymmetric medicament cost component in a control system for medicament delivery |
CN113063024B (zh) * | 2021-03-22 | 2022-06-14 | 南昌智能新能源汽车研究院 | 电磁阀压力的闭环控制方法及其控制器设计方法 |
CN113050604B (zh) * | 2021-03-29 | 2022-03-04 | 江南大学 | 一种基于综合性能指标的数据驱动控制器校正方法 |
AU2022292996A1 (en) * | 2021-06-16 | 2024-01-18 | Rio Tinto Alcan International Limited | Method and system for forecasting a process |
CN113626983B (zh) * | 2021-07-06 | 2022-09-13 | 南京理工大学 | 基于状态方程递推预测高炮射弹脱靶量的方法 |
CN113485109B (zh) * | 2021-07-12 | 2022-07-12 | 山东大学 | 一种基于可变优先级的变流器动态级联控制方法及系统 |
US11977374B2 (en) * | 2021-08-02 | 2024-05-07 | Mitsubishi Electric Research Laboratories, Inc. | System and method for calibrating feedback controllers |
CN113835340B (zh) * | 2021-09-08 | 2023-07-25 | 哈尔滨工程大学 | 一种考虑输入量化和非线性死区的水下机器人无模型控制方法 |
WO2023049900A1 (en) | 2021-09-27 | 2023-03-30 | Insulet Corporation | Techniques enabling adaptation of parameters in aid systems by user input |
US11439754B1 (en) | 2021-12-01 | 2022-09-13 | Insulet Corporation | Optimizing embedded formulations for drug delivery |
CN114384800B (zh) * | 2021-12-09 | 2023-09-12 | 上海工程技术大学 | 一种具有输入信号延时的未知非线性系统反推控制方法 |
CN114571451B (zh) * | 2022-02-25 | 2023-08-22 | 山东新一代信息产业技术研究院有限公司 | 一种可调漏斗边界的自适应滑模控制方法及设备 |
CN114942592B (zh) * | 2022-06-01 | 2024-07-02 | 曲阜师范大学 | 一种柔性航天器的双端事件触发自适应抗干扰控制方法 |
CN115562013B (zh) * | 2022-09-29 | 2024-08-09 | 国网四川省电力公司电力科学研究院 | 全功率抽蓄机组最大功率阶跃量评估方法、调控方法 |
CN116165885B (zh) * | 2022-11-29 | 2023-11-14 | 华东交通大学 | 一种高速列车的无模型自适应鲁棒控制方法及系统 |
CN115755627B (zh) * | 2022-12-16 | 2023-06-02 | 哈尔滨工业大学 | 基于模型预测的纳米级精密运动台前馈控制方法 |
WO2024147928A1 (en) | 2023-01-06 | 2024-07-11 | Insulet Corporation | Automatically or manually initiated meal bolus delivery with subsequent automatic safety constraint relaxation |
CN116224802B (zh) * | 2023-03-31 | 2023-12-05 | 上海理工大学 | 基于干扰观测器和管道模型预测的车队纵向复合控制方法 |
CN116587327B (zh) * | 2023-06-20 | 2024-06-18 | 广东电网有限责任公司广州供电局 | 运动控制系统、带电作业机器人检测方法及相关设备 |
CN119002275B (zh) * | 2024-08-13 | 2025-02-28 | 安徽大学 | 一种处理含参数不确定性和输入时延系统的自适应鲁棒mpc方法 |
CN119247859B (zh) * | 2024-12-04 | 2025-03-04 | 中控技术股份有限公司 | 一种基于预测控制的动态矩阵降维方法和设备 |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE427508B (sv) * | 1981-08-24 | 1983-04-11 | Naf Ab | Forfarande for instellning av en pid-regulator for en process |
US5394322A (en) * | 1990-07-16 | 1995-02-28 | The Foxboro Company | Self-tuning controller that extracts process model characteristics |
JPH04309101A (ja) * | 1991-04-08 | 1992-10-30 | Toshiba Corp | モデル予測制御の入力装置 |
JPH0695706A (ja) * | 1992-09-11 | 1994-04-08 | Toshiba Corp | モデル予測制御装置 |
US5740033A (en) * | 1992-10-13 | 1998-04-14 | The Dow Chemical Company | Model predictive controller |
US5453925A (en) * | 1993-05-28 | 1995-09-26 | Fisher Controls International, Inc. | System and method for automatically tuning a process controller |
JPH0784608A (ja) * | 1993-09-14 | 1995-03-31 | Toshiba Corp | 制御装置 |
JP3348952B2 (ja) | 1994-01-31 | 2002-11-20 | 株式会社ニデック | 視力検査装置 |
JPH0883104A (ja) * | 1994-09-12 | 1996-03-26 | Toshiba Corp | プラント制御装置 |
US5519605A (en) | 1994-10-24 | 1996-05-21 | Olin Corporation | Model predictive control apparatus and method |
US5933345A (en) * | 1996-05-06 | 1999-08-03 | Pavilion Technologies, Inc. | Method and apparatus for dynamic and steady state modeling over a desired path between two end points |
JP3377163B2 (ja) * | 1997-03-06 | 2003-02-17 | 株式会社日立製作所 | 自律的制御システム |
US6459939B1 (en) * | 1999-06-29 | 2002-10-01 | Alan J. Hugo | Performance assessment of model predictive controllers |
GB2353608B (en) * | 1999-08-23 | 2003-10-08 | Fisher Rosemount Systems Inc | Control loop auto-tuner with nonlinear tuning rules estimators |
US6847954B1 (en) * | 1999-08-23 | 2005-01-25 | Fisher Rosemount Systems, Inc. | Control-loop auto-tuner with nonlinear tuning rules estimators |
GB2393528B (en) * | 1999-10-04 | 2004-05-12 | Fisher Rosemount Systems Inc | Integrated advanced control blocks in process control systems |
US6978229B1 (en) * | 1999-11-18 | 2005-12-20 | Pdf Solutions, Inc. | Efficient method for modeling and simulation of the impact of local and global variation on integrated circuits |
JP3742966B2 (ja) * | 2000-02-23 | 2006-02-08 | 株式会社日立製作所 | 制御装置 |
JP2001282309A (ja) * | 2000-03-29 | 2001-10-12 | Yokogawa Electric Corp | 画面表示方法及びこれを用いたプロセス制御装置 |
JP2002041108A (ja) | 2000-07-25 | 2002-02-08 | Yokogawa Electric Corp | プロセス制御方法及びこれを用いたプロセス制御装置 |
US7050863B2 (en) * | 2002-09-11 | 2006-05-23 | Fisher-Rosemount Systems, Inc. | Integrated model predictive control and optimization within a process control system |
JP3904506B2 (ja) | 2002-11-05 | 2007-04-11 | 株式会社日立製作所 | トンネル換気制御方法および装置 |
JP3978117B2 (ja) * | 2002-11-19 | 2007-09-19 | 株式会社日立製作所 | トンネル換気制御方法および装置 |
CA2513091A1 (en) * | 2003-01-31 | 2004-08-19 | Fakhruddin T. Attarwala | Integrated optimization and control using modular model predictive controller |
US7529651B2 (en) * | 2003-03-31 | 2009-05-05 | University Of Florida Research Foundation, Inc. | Accurate linear parameter estimation with noisy inputs |
JP4722461B2 (ja) * | 2003-12-03 | 2011-07-13 | フィッシャー−ローズマウント システムズ, インコーポレイテッド | モデルスイッチングおよび属性補間を用いた適応型多変数プロセスコントローラ |
JP2006146764A (ja) * | 2004-11-24 | 2006-06-08 | Fujitsu Ten Ltd | モデル予測制御装置及びモデル予測制御方法 |
JP4112561B2 (ja) * | 2005-03-24 | 2008-07-02 | 高木産業株式会社 | 予測制御装置、予測制御方法、予測制御プログラム及び記憶媒体 |
GB2430764B (en) * | 2005-09-30 | 2011-03-09 | Fisher Rosemount Systems Inc | On-line adaptive model predictive control in a process control system |
US7451004B2 (en) * | 2005-09-30 | 2008-11-11 | Fisher-Rosemount Systems, Inc. | On-line adaptive model predictive control in a process control system |
JP4536666B2 (ja) * | 2006-02-13 | 2010-09-01 | 出光興産株式会社 | Pid制御器の最適調整システム及び最適調整方法 |
US7840287B2 (en) * | 2006-04-13 | 2010-11-23 | Fisher-Rosemount Systems, Inc. | Robust process model identification in model based control techniques |
US7577483B2 (en) * | 2006-05-25 | 2009-08-18 | Honeywell Asca Inc. | Automatic tuning method for multivariable model predictive controllers |
JP4109303B2 (ja) * | 2006-11-02 | 2008-07-02 | 株式会社日立製作所 | トンネル換気制御方法および装置 |
US7653445B2 (en) | 2007-04-13 | 2010-01-26 | Controlsoft, Inc. | Apparatus and method for model-based control |
WO2009086220A1 (en) | 2007-12-21 | 2009-07-09 | University Of Florida | Systems and methods for offset-free model predictive control |
GB2469239B (en) | 2008-01-31 | 2012-09-26 | Fisher Rosemount Systems Inc | Robust adaptive model predictive controller with tuning to compensate for model mismatch |
US7987145B2 (en) * | 2008-03-19 | 2011-07-26 | Honeywell Internationa | Target trajectory generator for predictive control of nonlinear systems using extended Kalman filter |
GB2479315B (en) | 2009-02-02 | 2014-12-10 | Fisher Rosemount Systems Inc | Model predictive controller with tunable integral component to compensate for model mismatch |
-
2009
- 2009-01-30 GB GB1012001.2A patent/GB2469239B/en active Active
- 2009-01-30 US US12/363,305 patent/US8185217B2/en active Active
- 2009-01-30 WO PCT/US2009/032650 patent/WO2009099944A2/en active Application Filing
- 2009-01-30 CN CN201310062691.3A patent/CN103293953B/zh active Active
- 2009-01-30 DE DE112009005510T patent/DE112009005510A5/de active Pending
- 2009-01-30 JP JP2010545206A patent/JP5504175B2/ja active Active
- 2009-01-30 DE DE112009000224T patent/DE112009000224T5/de active Pending
- 2009-01-30 GB GB1211484.9A patent/GB2490267B/en active Active
- 2009-01-30 CN CN200980103330.0A patent/CN101925866B/zh active Active
-
2011
- 2011-01-05 HK HK11100051.3A patent/HK1145885A1/xx not_active IP Right Cessation
-
2012
- 2012-05-07 US US13/465,764 patent/US9904257B2/en active Active
- 2012-10-15 JP JP2012227726A patent/JP5649633B2/ja active Active
-
2014
- 2014-09-22 JP JP2014192445A patent/JP5965953B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
WO2009099944A3 (en) | 2009-11-26 |
JP5965953B2 (ja) | 2016-08-10 |
DE112009005510A5 (de) | 2013-06-20 |
US8185217B2 (en) | 2012-05-22 |
JP2013012249A (ja) | 2013-01-17 |
GB2490267B (en) | 2013-01-16 |
GB201211484D0 (en) | 2012-08-08 |
JP5649633B2 (ja) | 2015-01-07 |
US20120221124A1 (en) | 2012-08-30 |
CN101925866A (zh) | 2010-12-22 |
US20090198350A1 (en) | 2009-08-06 |
HK1145885A1 (en) | 2011-05-06 |
CN101925866B (zh) | 2016-06-01 |
GB201012001D0 (en) | 2010-09-01 |
WO2009099944A2 (en) | 2009-08-13 |
GB2469239B (en) | 2012-09-26 |
US9904257B2 (en) | 2018-02-27 |
JP2015028804A (ja) | 2015-02-12 |
GB2469239A (en) | 2010-10-06 |
CN103293953A (zh) | 2013-09-11 |
JP2011511374A (ja) | 2011-04-07 |
DE112009000224T5 (de) | 2011-01-05 |
GB2490267A (en) | 2012-10-24 |
JP5504175B2 (ja) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103293953B (zh) | 具有用来补偿模型失配的调节的鲁棒的自适应模型预测控制器 | |
JP4542323B2 (ja) | プロセス制御システムにおける統合型モデル予測制御および最適化 | |
JP5016002B2 (ja) | プロセス制御システムにおける統合型モデル予測制御および最適化 | |
US8295952B2 (en) | Apparatus and method for automated closed-loop identification of an industrial process in a process control system | |
US7577483B2 (en) | Automatic tuning method for multivariable model predictive controllers | |
CN105589448A (zh) | 具有用以补偿模型失配的可调节积分分量的模型预测控制器 | |
US10139809B2 (en) | Optimization based controller tuning systems and methods | |
US10545482B2 (en) | Robust control design approach for chemical processing industries and other industries | |
US11467545B2 (en) | Dual-mode model-based control of a process | |
Mahapatra et al. | Integrated dynamic modeling and advanced process control of carbon capture systems | |
Prabhu et al. | Performance assessment of run-to-run EWMA controllers | |
Olivier | On lights-out process control in the minerals processing industry | |
Ootakara et al. | Closed-Loop Identification and PID Retuning of Self-Excited Oscillatory Process from Poor PID Controller Tuning | |
Masuda | A Model Reference Adaptive Control Based on On-line Frit Approaches Using a Normalized Recursive Least Square Method | |
Yakovis et al. | Controller tuning for inertia objects with time delay | |
Kocian et al. | The concept of knowledge adaptation of pid controller with plc implementation | |
Tamboli et al. | Comparative analysis of concentration control for nonlinear continuous stirred tank reactor | |
Chia et al. | Expert-based adaptive control: Controlsoft's intune adaptive and diagnostic software | |
Olvera Rodríguez et al. | Control of a Production-Inventory System Optimized with Lqr For Dynamic Demand Management | |
Iglesias et al. | A Fuzzy Proposal to Improve Parametric PMC Performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |