CN103276389B - Aluminium oxide strengthens aluminum-based in-situ composite materials and preparation method thereof with zirconium diboride - Google Patents
Aluminium oxide strengthens aluminum-based in-situ composite materials and preparation method thereof with zirconium diboride Download PDFInfo
- Publication number
- CN103276389B CN103276389B CN201310247841.8A CN201310247841A CN103276389B CN 103276389 B CN103276389 B CN 103276389B CN 201310247841 A CN201310247841 A CN 201310247841A CN 103276389 B CN103276389 B CN 103276389B
- Authority
- CN
- China
- Prior art keywords
- aluminum
- particles
- zirconium diboride
- preparation
- aluminium oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 38
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 35
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 34
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 229910007948 ZrB2 Inorganic materials 0.000 title claims abstract description 14
- VWZIXVXBCBBRGP-UHFFFAOYSA-N boron;zirconium Chemical compound B#[Zr]#B VWZIXVXBCBBRGP-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 239000002245 particle Substances 0.000 claims abstract description 57
- 239000011159 matrix material Substances 0.000 claims abstract description 25
- 238000003756 stirring Methods 0.000 claims abstract description 23
- 238000000498 ball milling Methods 0.000 claims abstract description 12
- 229910052796 boron Inorganic materials 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 17
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 239000008187 granular material Substances 0.000 claims 6
- 239000004411 aluminium Substances 0.000 claims 1
- 238000000227 grinding Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract description 7
- 238000011049 filling Methods 0.000 abstract description 3
- 238000003825 pressing Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910001094 6061 aluminium alloy Inorganic materials 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- -1 gold-aluminum Chemical compound 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明涉及一种氧化铝与二硼化锆增强铝基原位复合材料及其制备方法,将ZrO2颗粒与B或B2O3颗粒混合球磨,将球磨后混合颗粒加入基体内,对基体的颗粒填充区域进行搅拌摩擦加工,搅拌工具旋转速度为600~3000r/min,行进速度为30~60mm/min,下压量为0.05~0.6mm,倾斜角为0~3°,加工次数为3~8次,加工过程中ZrO2、B或B2O3颗粒与铝基体共同发生化学反应,最终得到氧化铝与二硼化锆增强铝基原位复合材料。本发明制备的铝基复合材料中,原位合成颗粒Al2O3和ZrB2均具有极高的硬度和热稳定性,使得该类复合材料具有较高的耐高温磨损性能。
The invention relates to an alumina and zirconium diboride reinforced aluminum-based in-situ composite material and a preparation method thereof. ZrO 2 particles and B or B 2 O 3 particles are mixed and ball-milled, and the mixed particles are added into a matrix after ball milling, and the matrix is The particle filling area is subjected to friction stir processing, the rotation speed of the stirring tool is 600-3000r/min, the travel speed is 30-60mm/min, the pressing amount is 0.05-0.6mm, the inclination angle is 0-3°, and the processing times are 3 ~8 times, the ZrO 2 , B or B 2 O 3 particles react with the aluminum matrix during the processing, and finally obtain the alumina and zirconium diboride reinforced aluminum matrix in-situ composite material. In the aluminum-based composite material prepared by the present invention, the in-situ synthesized particles Al 2 O 3 and ZrB 2 both have extremely high hardness and thermal stability, so that this type of composite material has higher high temperature wear resistance.
Description
技术领域technical field
本发明涉及铝基复合材料制备方法领域,特别涉及一种搅拌摩擦加工原位合成(Al2O3+ZrB2)颗粒增强铝基复合材料的方法。The invention relates to the field of preparation methods of aluminum-based composite materials, in particular to a method for in-situ synthesis of (Al 2 O 3 +ZrB 2 ) particle-reinforced aluminum-based composite materials through friction stir processing.
背景技术Background technique
铝基复合材料具有比强度高、比模量高、热导率高、热膨胀系数低、耐高温、耐磨损等优点,在航空航天、汽车等制造领域占有重要地位。与纤维增强铝基复合材料相比,颗粒增强铝基复合材料具有各向同性、制备相对简单、成本相对低廉等优点,是目前金属基复合材料领域研究的重点。Aluminum matrix composites have the advantages of high specific strength, high specific modulus, high thermal conductivity, low thermal expansion coefficient, high temperature resistance, wear resistance, etc., and occupy an important position in aerospace, automobile and other manufacturing fields. Compared with fiber-reinforced aluminum-matrix composites, particle-reinforced aluminum-matrix composites have the advantages of isotropy, relatively simple preparation, and relatively low cost, and are currently the focus of research in the field of metal matrix composites.
目前颗粒增强铝基复合材料制备主要包括液态、固态、半固态、沉积及原位合成五种加工工艺。与其它几种工艺相比,原位合成法制备颗粒增强金铝基复合材料具有以下优点:(1)原位生成增强体热力学性能稳定;(2)增强体与基体界面无污染且结合强度高;(3)增强体细小且均匀分布在基体内;(4)增强体尺寸不受初始加入颗粒尺寸限制。At present, the preparation of particle-reinforced aluminum matrix composites mainly includes five processing techniques: liquid state, solid state, semi-solid state, deposition and in-situ synthesis. Compared with several other processes, the preparation of particle-reinforced gold-aluminum matrix composites by in-situ synthesis method has the following advantages: (1) The thermodynamic properties of the in-situ-generated reinforcement are stable; (2) The interface between the reinforcement and the matrix is pollution-free and has high bonding strength ; (3) The reinforcement is fine and uniformly distributed in the matrix; (4) The size of the reinforcement is not limited by the size of the initially added particles.
经对现有技术的文献检索发现,朱和国等在《Powder Technology》(2012年,第217卷,第401-408页)发表的“Microstructure and high temperature wear of aluminum matrix compositesfabricated by reaction from Al-ZrO2-B elemental powders”,该文中提出采用放热弥散反应(XD)法合成(Al2O3+ZrB2)颗粒增强铝基复合材料,具体方法为:用Al粉、B粉和ZrO2粉为作原料,球磨、压块,在真空炉中加热反应生成Al2O3和ZrB2颗粒,研究表明该类复合材料具有较高的耐高温磨损性能。其不足在于:合成颗粒在微米级,颗粒较粗大,反应需在真空及高温(800℃)下进行,生产成本高。After searching the literature of the prior art, it was found that "Microstructure and high temperature wear of aluminum matrix composites fabricated by reaction from Al-ZrO 2 " published in "Powder Technology" (2012, Vol. -B elemental powders”, which proposed to synthesize (Al 2 O 3 +ZrB 2 ) particle-reinforced aluminum matrix composites by exothermic dispersion reaction (XD). The specific method is: use Al powder, B powder and ZrO 2 powder as As raw materials, ball milling, briquetting, and heating in a vacuum furnace to generate Al 2 O 3 and ZrB 2 particles. Studies have shown that this type of composite material has high temperature and wear resistance. The disadvantages are: the synthetic particles are in the micron scale, the particles are relatively coarse, and the reaction needs to be carried out under vacuum and high temperature (800°C), resulting in high production costs.
搅拌摩擦加工技术是在搅拌摩擦焊接技术基础上发展而成的一种固态加工方法。该技术制备颗粒增强铝基复合材料具有以下独特优势:(1)加工过程中复合材料发生动态再结晶形成细小等轴晶,其力学性能明显提高;(2)加工过程便于通过调节加工参数实现精确控制;(3)复合材料深度可通过改变搅拌工具的长度自由选择;(4)复合材料中颗粒增强相加入量可通过改变盲孔或沟槽尺寸及间距自由调整;(5)加工过程不产生有害气体,是一种无辐射、噪音少的绿色节能工艺。Friction stir processing technology is a solid-state processing method developed on the basis of friction stir welding technology. The preparation of particle-reinforced aluminum matrix composites by this technology has the following unique advantages: (1) During the processing, the composite material undergoes dynamic recrystallization to form fine equiaxed grains, and its mechanical properties are significantly improved; (2) The processing process is easy to achieve precise control; (3) The depth of the composite material can be freely selected by changing the length of the stirring tool; (4) The amount of particle reinforcement phase in the composite material can be freely adjusted by changing the size and spacing of blind holes or grooves; (5) The process does not produce Harmful gas is a green and energy-saving process with no radiation and less noise.
搅拌摩擦加工原位合成技术是基于搅拌摩擦加工技术和原位合成技术基础上的一种复合制备工艺,其原理是利用搅拌摩擦加工过程中高温和剧烈塑性变形使颗粒与基体发生化学反应生成并分散所需的增强颗粒。该技术兼有搅拌摩擦加工技术和原位合成技术优点。Friction stir processing in situ synthesis technology is a composite preparation process based on friction stir processing technology and in situ synthesis technology. Disperse the desired reinforcing particles. This technology combines the advantages of friction stir processing technology and in situ synthesis technology.
中国专利CN102021557A公开了一种铝合金表面Al2O3+TiB2复合涂层及其制备方法,首先,在铝合金表面开出若干深为0.5mm~2mm,宽为0.5mm~2mm的沟槽,在沟槽中填充球磨好的含30%~70%TiO2、30%~70%B2O3混合粉末,再通过搅拌摩擦加工,使TiO2和B2O3混合粉末均匀分布在铝合金的表面层中,最后对这一表面层进行感应加热,产生化学反应3TiO2+3B2O3+10Al=3TiB2+5Al2O3,获得Al2O3+TiB2复合涂层,涂层和基体间形成冶金结合界面。该专利中化学反应发生在搅拌摩擦加工之后,其不足在于:搅拌摩擦加工后需要后续感应加热过程才能发生化学反应,工艺步骤复杂,且感应加热过程中TiO2和B2O3颗粒接触不充分,不利于反应完全进行。Chinese patent CN102021557A discloses an Al 2 O 3 +TiB 2 composite coating on the surface of an aluminum alloy and its preparation method. First, a number of grooves with a depth of 0.5 mm to 2 mm and a width of 0.5 mm to 2 mm are opened on the surface of the aluminum alloy. , fill the ball-milled mixed powder containing 30% to 70% TiO 2 and 30% to 70% B 2 O 3 in the groove, and then through friction stir processing, so that the mixed powder of TiO 2 and B 2 O 3 is evenly distributed on the aluminum In the surface layer of the alloy, the surface layer is finally heated by induction to produce a chemical reaction 3TiO 2 +3B 2 O 3 +10Al=3TiB 2 +5Al 2 O 3 to obtain an Al 2 O 3 +TiB 2 composite coating. A metallurgical bonding interface is formed between the layer and the substrate. In this patent, the chemical reaction occurs after the friction stir processing, and its disadvantages are: after the friction stir processing, a subsequent induction heating process is required for the chemical reaction to occur, the process steps are complicated, and the contact between TiO 2 and B 2 O 3 particles is insufficient during the induction heating process , which is not conducive to complete reaction.
发明内容Contents of the invention
本发明的目的是提供一种氧化铝与二硼化锆增强铝基原位复合材料及其制备方法。The object of the present invention is to provide an alumina and zirconium diboride reinforced aluminum-based in-situ composite material and a preparation method thereof.
本发明采取技术方案为:The technical scheme adopted by the present invention is:
氧化铝与二硼化锆增强铝基原位复合材料的制备方法,包括步骤如下:A method for preparing aluminum oxide and zirconium diboride reinforced aluminum-based in-situ composite materials, comprising the following steps:
(1)将ZrO2颗粒与B颗粒按质量比11:2混合,或将ZrO2颗粒与B2O3颗粒按质量比5:2混合,并对混合颗粒进行球磨;( 1 ) Mix ZrO2 particles with B particles at a mass ratio of 11: 2 , or mix ZrO2 particles with B2O3 particles at a mass ratio of 5 : 2 , and ball mill the mixed particles;
(2)以纯铝或铝合金板为基体,将球磨后混合颗粒加入基体内;(2) Use pure aluminum or aluminum alloy plate as the matrix, and add the mixed particles into the matrix after ball milling;
(3)对基体的颗粒填充区域进行搅拌摩擦加工,搅拌工具旋转速度为600~3000r/min,行进速度为30~60mm/min,下压量为0.05~0.6mm,倾斜角为0~3°,加工次数为3~8次,加工过程中ZrO2、B或B2O3颗粒与铝基体共同发生化学反应,最终得到氧化铝与二硼化锆增强铝基原位复合材料。(3) Perform friction stir processing on the particle-filled area of the matrix, the rotation speed of the stirring tool is 600-3000r/min, the travel speed is 30-60mm/min, the pressing amount is 0.05-0.6mm, and the inclination angle is 0-3° , the processing times are 3 to 8 times. During the processing, the ZrO 2 , B or B 2 O 3 particles and the aluminum matrix undergo a chemical reaction together, and finally the alumina and zirconium diboride reinforced aluminum matrix in-situ composite material is obtained.
上述步骤(1)所述的球磨时间为1~10小时,转速为50~100r/min,球料比为5-15:1。The ball milling time in the above step (1) is 1-10 hours, the rotation speed is 50-100 r/min, and the ball-to-material ratio is 5-15:1.
ZrO2颗粒平均粒径为10nm~10μm之间,纯度为90~99.9%,B或B2O3颗粒平均粒径为10nm~100μm之间,纯度为90~99.9%。The average particle size of ZrO 2 particles is between 10nm and 10μm, and the purity is 90% to 99.9%. The average particle size of B or B 2 O 3 particles is between 10nm and 100μm, and the purity is 90% to 99.9%.
上述步骤(2)所述的混合颗粒加入基体内的方式有:(1)在基体表面或内部开沟槽或盲孔,将混合颗粒加入沟槽或盲孔内,并填实;(2)用喷涂或涂覆的方法将混合颗粒加入基体表面。The method of adding the mixed particles described in the above step (2) into the matrix includes: (1) opening grooves or blind holes on the surface or inside of the matrix, adding the mixed particles into the grooves or blind holes, and filling them; (2) The mixed particles are added to the surface of the substrate by spraying or coating.
上述步骤(3)的加工前后两次的加工方向或者旋转方向相同或相反。The processing direction or rotation direction of the two times before and after the processing in the above step (3) is the same or opposite.
上述的化学反应产物为Al2O3和ZrB2颗粒,化学反应方程式为:4Al+3ZrO2+6B→2Al2O3+3ZrB2或10Al+3ZrO2+3B2O3→5Al2O3+2ZrB2。上述方法制备的氧化铝与二硼化锆增强铝基原位复合材料。The above chemical reaction products are Al 2 O 3 and ZrB 2 particles, and the chemical reaction equation is: 4Al+3ZrO 2 +6B→2Al 2 O 3 +3ZrB 2 or 10Al+3ZrO 2 +3B 2 O 3 →5Al 2 O 3 + 2ZrB 2 . The aluminum oxide and zirconium diboride reinforced aluminum-based in-situ composite material prepared by the above method.
本发明的上述技术方案与现有技术方案相比具有以下优点:利用本发明制备铝基复合材料中,原位合成颗粒Al2O3和ZrB2均具有极高的硬度和热稳定性,使得该类复合材料具有较高的耐高温磨损性能。本发明与专利CN102021557A相比,化学反应发生在搅拌摩擦加工过程中,不需要后续加热过程,节约生产成本,且搅拌摩擦加工过程中,ZrO2、B与Al基体在剧烈搅拌作用下反应充分。Compared with the prior art solutions, the above-mentioned technical solution of the present invention has the following advantages: in the preparation of aluminum-based composite materials by using the present invention, the in - situ synthesized particles Al2O3 and ZrB2 have extremely high hardness and thermal stability, so that This type of composite material has high temperature and wear resistance. Compared with the patent CN102021557A, the present invention takes place in the friction stir processing process without the need for subsequent heating process, saving production cost, and in the friction stir processing process, the ZrO 2 , B and Al substrates react fully under the action of vigorous stirring.
附图说明Description of drawings
图1是本发明制备方法搅拌摩擦加工工作原理示意图;Fig. 1 is a schematic diagram of the working principle of friction stir processing of the preparation method of the present invention;
图2为本发明制得产品形貌图;Fig. 2 is the product appearance figure that the present invention makes;
其中,1.铝板,2.搅拌工具,3.颗粒填充区域,4.铝基复合材料区域。Among them, 1. Aluminum plate, 2. Stirring tool, 3. Particle filling area, 4. Aluminum matrix composite material area.
具体实施方式detailed description
下面结合实施例进一步说明。Below in conjunction with embodiment further illustrate.
实施例1Example 1
基体材料:10mm厚6061铝合金板。Base material: 10mm thick 6061 aluminum alloy plate.
加入颗粒:单斜氧化锆(平均粒径80nm,纯度99.8%)、无定形硼(平均粒径500nm,纯度为96%)。Added particles: monoclinic zirconia (average particle size 80nm, purity 99.8%), amorphous boron (average particle size 500nm, purity 96%).
ZrO2颗粒与B颗粒按质量比11:2混合,对混合颗粒进行球磨;球磨时间为2小时,转速为80r/min,球料比为15:1。ZrO 2 particles and B particles were mixed at a mass ratio of 11:2, and the mixed particles were ball milled; the ball milling time was 2 hours, the speed was 80r/min, and the ball-to-material ratio was 15:1.
在铝板中间区域加工三排盲孔,孔深度和直径均为4mm,孔间距均为2mm。Three rows of blind holes are processed in the middle area of the aluminum plate, the hole depth and diameter are both 4mm, and the hole spacing is 2mm.
球磨后混合颗粒倒入挥发性有机溶剂内,混合均匀后加入盲孔或沟槽内;待有机溶剂挥发后再次填充,直至填实;After ball milling, the mixed particles are poured into the volatile organic solvent, mixed evenly and then added into the blind hole or groove; after the organic solvent volatilizes, fill again until it is filled;
搅拌摩擦加工原位合成工艺参数:旋转速度900r/min,行进速度60mm/min,下压量0.1mm,倾斜角2.5°,加工次数为5次,5次均沿着相同行进方向。Friction stir processing in-situ synthesis process parameters: rotation speed 900r/min, travel speed 60mm/min, press amount 0.1mm, inclination angle 2.5°, processing times 5 times, all 5 times along the same travel direction.
制得的材料复合层显微硬度约为母材2.5倍,耐高温磨损性能为母材1.4倍。The microhardness of the obtained material composite layer is about 2.5 times that of the base material, and the high temperature wear resistance is 1.4 times that of the base material.
实施例2Example 2
基体材料:10mm厚6061铝合金板。Base material: 10mm thick 6061 aluminum alloy plate.
加入颗粒:单斜氧化锆(平均粒径80nm,纯度99.8%)、无定形硼(平均粒径500nm,纯度为96%)。Added particles: monoclinic zirconia (average particle size 80nm, purity 99.8%), amorphous boron (average particle size 500nm, purity 96%).
ZrO2颗粒与B颗粒按质量比11:2混合,对混合颗粒进行球磨;球磨时间为3小时,转速为60r/min,球料比为15:1。ZrO 2 particles and B particles were mixed at a mass ratio of 11:2, and the mixed particles were ball milled; the ball milling time was 3 hours, the speed was 60r/min, and the ball-to-material ratio was 15:1.
在铝板中间区域加工三排盲孔,孔深度和直径均为4mm,孔间距均为2mm。Three rows of blind holes are processed in the middle area of the aluminum plate, the hole depth and diameter are both 4mm, and the hole spacing is 2mm.
球磨后混合颗粒倒入挥发性有机溶剂内,混合均匀后加入盲孔或沟槽内;待有机溶剂挥发后再次填充,直至填实;After ball milling, the mixed particles are poured into the volatile organic solvent, mixed evenly and then added into the blind hole or groove; after the organic solvent volatilizes, fill again until it is filled;
搅拌摩擦加工原位合成工艺参数:旋转速度1100r/min,行进速度50mm/min,下压量0.2mm,倾斜角2°,加工次数为6次,6次均沿着相同行进方向。Friction stir processing in-situ synthesis process parameters: rotation speed 1100r/min, travel speed 50mm/min, press amount 0.2mm, inclination angle 2°, processing times 6 times, all 6 times along the same travel direction.
制得的材料复合层显微硬度约为母材2.3倍,耐高温磨损性能为母材1.6倍。The microhardness of the obtained material composite layer is about 2.3 times that of the base material, and the high temperature wear resistance is 1.6 times that of the base material.
实施例3Example 3
基体材料:10mm厚铝板。Base material: 10mm thick aluminum plate.
加入颗粒:单斜氧化锆(平均粒径80nm,纯度99.8%)、无定形硼(平均粒径500nm,纯度为96%)。Added particles: monoclinic zirconia (average particle size 80nm, purity 99.8%), amorphous boron (average particle size 500nm, purity 96%).
ZrO2颗粒与B颗粒按质量比11:2混合,对混合颗粒进行球磨;球磨时间为8小时,转速为40r/min,球料比为15:1。ZrO 2 particles and B particles were mixed at a mass ratio of 11:2, and the mixed particles were ball milled; the ball milling time was 8 hours, the speed was 40r/min, and the ball-to-material ratio was 15:1.
在铝板中间区域加工三排盲孔,孔深度和直径均为4mm,孔间距均为2mm。Three rows of blind holes are processed in the middle area of the aluminum plate, the hole depth and diameter are both 4mm, and the hole spacing is 2mm.
球磨后混合颗粒倒入挥发性有机溶剂内,混合均匀后加入盲孔或沟槽内;待有机溶剂挥发后再次填充,直至填实;After ball milling, the mixed particles are poured into the volatile organic solvent, mixed evenly and then added into the blind hole or groove; after the organic solvent volatilizes, fill again until it is filled;
搅拌摩擦加工原位合成工艺参数:旋转速度600r/min,行进速度40mm/min,下压量0.1mm,倾斜角2.5°,加工次数为4次,4次均沿着相同行进方向。Friction stir processing in-situ synthesis process parameters: rotation speed 600r/min, travel speed 40mm/min, press amount 0.1mm, inclination angle 2.5°, processing times 4 times, all 4 times along the same travel direction.
制得的材料复合层显微硬度约为母材2.1倍,耐高温磨损性能为母材1.5倍。The microhardness of the obtained material composite layer is about 2.1 times that of the base material, and the high temperature wear resistance is 1.5 times that of the base material.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310247841.8A CN103276389B (en) | 2013-06-20 | 2013-06-20 | Aluminium oxide strengthens aluminum-based in-situ composite materials and preparation method thereof with zirconium diboride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310247841.8A CN103276389B (en) | 2013-06-20 | 2013-06-20 | Aluminium oxide strengthens aluminum-based in-situ composite materials and preparation method thereof with zirconium diboride |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103276389A CN103276389A (en) | 2013-09-04 |
CN103276389B true CN103276389B (en) | 2016-08-17 |
Family
ID=49058998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310247841.8A Expired - Fee Related CN103276389B (en) | 2013-06-20 | 2013-06-20 | Aluminium oxide strengthens aluminum-based in-situ composite materials and preparation method thereof with zirconium diboride |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103276389B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104451236B (en) * | 2014-11-07 | 2016-12-07 | 江苏大学 | A kind of in-situ preparation method of nano ZrB2 particle reinforced aluminum matrix composite |
CN104674085A (en) * | 2015-02-02 | 2015-06-03 | 安徽省斯特嘉汽车零部件有限公司 | Preparation method of zirconium diboride reinforced 7A04 aluminium alloy hub |
CN109234562B (en) * | 2018-10-31 | 2020-12-18 | 江苏大学 | A method for regulating the preparation of in-situ binary nanoparticle-reinforced aluminum matrix composites |
CN109676328B (en) * | 2019-02-12 | 2023-11-21 | 黄山学院 | Inclined plane workpiece surface modification method and device |
CN110042280B (en) * | 2019-06-05 | 2020-09-08 | 山东大学 | A kind of in-situ endogenous multiphase particle reinforced aluminum matrix composite material and preparation method thereof |
CN110666447B (en) * | 2019-09-02 | 2021-07-27 | 西安建筑科技大学 | A kind of magnesium alloy material with mixed crystal structure and preparation method thereof |
CN111531266B (en) * | 2020-05-07 | 2021-08-31 | 广东省科学院中乌焊接研究所 | Friction stir welding equipment and method for particle-reinforced gradient composite material |
CN116121581B (en) * | 2023-01-17 | 2024-03-19 | 江苏大学 | A kind of particle reinforced aluminum matrix composite master alloy, aluminum matrix composite material and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6179776A (en) * | 1984-09-26 | 1986-04-23 | Agency Of Ind Science & Technol | Manufacturing method of composite pipe |
CN1796036A (en) * | 2004-12-23 | 2006-07-05 | 中国科学院金属研究所 | Method for preparing surface aluminium based composite material |
CN101250700A (en) * | 2008-04-03 | 2008-08-27 | 清华大学 | A solid-state processing method for producing deep, bulky, macroscale composites |
CN102021557A (en) * | 2010-12-03 | 2011-04-20 | 湖北工业大学 | A12O3+TiB2 Composite Coating Synthesized by Friction Stir Processing and Heating Reaction on Aluminum Alloy Surface and Its Preparation Method |
-
2013
- 2013-06-20 CN CN201310247841.8A patent/CN103276389B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6179776A (en) * | 1984-09-26 | 1986-04-23 | Agency Of Ind Science & Technol | Manufacturing method of composite pipe |
CN1796036A (en) * | 2004-12-23 | 2006-07-05 | 中国科学院金属研究所 | Method for preparing surface aluminium based composite material |
CN101250700A (en) * | 2008-04-03 | 2008-08-27 | 清华大学 | A solid-state processing method for producing deep, bulky, macroscale composites |
CN102021557A (en) * | 2010-12-03 | 2011-04-20 | 湖北工业大学 | A12O3+TiB2 Composite Coating Synthesized by Friction Stir Processing and Heating Reaction on Aluminum Alloy Surface and Its Preparation Method |
Also Published As
Publication number | Publication date |
---|---|
CN103276389A (en) | 2013-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103276389B (en) | Aluminium oxide strengthens aluminum-based in-situ composite materials and preparation method thereof with zirconium diboride | |
CN109053206B (en) | A kind of short fiber reinforced oriented MAX phase ceramic matrix composite material and preparation method | |
CN103710581B (en) | A kind of nanometer Al 2o 3the preparation method of particle enhanced aluminum-based composite material | |
CN102251234B (en) | A kind of preparation method of Al2O3 coated cemented carbide based on sol-gel method | |
KR20080108577A (en) | Polycrystalline Polishing Compact | |
CN106167413B (en) | A kind of 90 aluminium oxide ceramics of On In-situ Synthesis of Mullite Whisker toughening and preparation method | |
CN102633504A (en) | Zirconium diboride/silicon carbide composite material and method for preparing same by means of arc melting in-suit reaction | |
CN103011827A (en) | Preparation method of zirconium diboride ceramic with in-situ-introduced boron as additive | |
CN115677364B (en) | A multi-layered zirconium carbide reinforced carbon-based composite material and its preparation method and application | |
CN106882965A (en) | A kind of method that normal pressure prepares the aluminium toner body material of high purity titanium two | |
CN108794013A (en) | A kind of B4C ceramic blocks and its fast preparation method | |
CN109231990A (en) | A kind of preparation method of tungsten carbide-diamond composite | |
CN108129151A (en) | A kind of graphene/carbon SiClx nano composite structure layered ceramic and preparation method thereof | |
CN101704674A (en) | Method for preparing titanium diboride ceramic micro powder by self-propagation high temperature synthesis | |
CN101704678A (en) | Self-propagation high-temperature synthesizing preparation method of TiB2-TiC complex ceramic micropowder | |
CN100515994C (en) | A Production Process of Liquid Phase Sintered Silicon Carbide Ceramics | |
CN106116617B (en) | A kind of ultra-fine boron nitride porous fibre toughening WC composite material and preparation method | |
CN109136915B (en) | A kind of method of titanium-oxide-coated graphene oxide/aluminum matrix composite surface laser cladding | |
CN103305825B (en) | A kind of aluminum oxide and three calorize zirconiums strengthen base surface in-situ composite material and preparation method thereof | |
CN101747049A (en) | Preparation method of Nb4AlC3 blocky ceramic | |
CN113941708A (en) | A kind of preparation method to enhance the interface bonding ability of PcBN composite sheet | |
CN1331759C (en) | Method for synthesizing tin-titanium carbide at low temperature | |
CN109652679A (en) | Carbon nanotubes and Nei Sheng nano-TiC particle hybrid reinforced aluminum-matrix composite material and preparation method thereof | |
CN105728715B (en) | A kind of coated SiO2The preparation method of/Al composite granules | |
CN102392149B (en) | Method for microwave sintering preparation of nano-metric rare earth modified steel-bonded hard alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160817 Termination date: 20200620 |