CN102633504A - Zirconium diboride/silicon carbide composite material and method for preparing same by means of arc melting in-suit reaction - Google Patents
Zirconium diboride/silicon carbide composite material and method for preparing same by means of arc melting in-suit reaction Download PDFInfo
- Publication number
- CN102633504A CN102633504A CN2012101269707A CN201210126970A CN102633504A CN 102633504 A CN102633504 A CN 102633504A CN 2012101269707 A CN2012101269707 A CN 2012101269707A CN 201210126970 A CN201210126970 A CN 201210126970A CN 102633504 A CN102633504 A CN 102633504A
- Authority
- CN
- China
- Prior art keywords
- powder
- silicon carbide
- composite material
- arc
- zirconium diboride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 51
- 239000002131 composite material Substances 0.000 title claims abstract description 38
- 229910007948 ZrB2 Inorganic materials 0.000 title claims abstract description 35
- VWZIXVXBCBBRGP-UHFFFAOYSA-N boron;zirconium Chemical compound B#[Zr]#B VWZIXVXBCBBRGP-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 25
- 238000002844 melting Methods 0.000 title claims abstract description 15
- 230000008018 melting Effects 0.000 title claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 26
- 239000000843 powder Substances 0.000 claims abstract description 24
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 11
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000002994 raw material Substances 0.000 claims abstract description 10
- 229910052786 argon Inorganic materials 0.000 claims abstract description 9
- 239000011812 mixed powder Substances 0.000 claims abstract description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 229910002804 graphite Inorganic materials 0.000 claims description 10
- 239000010439 graphite Substances 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 9
- 229910052580 B4C Inorganic materials 0.000 claims description 8
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000011065 in-situ storage Methods 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 7
- 235000019353 potassium silicate Nutrition 0.000 claims description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 7
- 239000001307 helium Substances 0.000 claims description 6
- 229910052734 helium Inorganic materials 0.000 claims description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000004570 mortar (masonry) Substances 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims 4
- 238000002360 preparation method Methods 0.000 abstract description 13
- 238000001778 solid-state sintering Methods 0.000 abstract description 3
- 230000008023 solidification Effects 0.000 abstract 2
- 238000007711 solidification Methods 0.000 abstract 2
- 229910052799 carbon Inorganic materials 0.000 abstract 1
- 238000002425 crystallisation Methods 0.000 abstract 1
- 230000008025 crystallization Effects 0.000 abstract 1
- 239000013077 target material Substances 0.000 abstract 1
- 239000013590 bulk material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910006249 ZrSi Inorganic materials 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000011153 ceramic matrix composite Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007656 fracture toughness test Methods 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- -1 metalloid structure compound Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- RCKBMGHMPOIFND-UHFFFAOYSA-N sulfanylidene(sulfanylidenegallanylsulfanyl)gallane Chemical compound S=[Ga]S[Ga]=S RCKBMGHMPOIFND-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域 technical field
本发明涉及陶瓷材料技术领域,更加具体地说,特别涉及一种高性能二硼化锆/碳化硅复合材料及其制备方法。The invention relates to the technical field of ceramic materials, and more specifically relates to a high-performance zirconium diboride/silicon carbide composite material and a preparation method thereof.
背景技术 Background technique
二硼化锆(ZrB2)是六方晶系C32型结构的准金属结构化合物,因其具有高熔点、高硬度、良好的导电导热性能、良好的中子控制能力等特点而在高温结构陶瓷材料、复合材料、耐火材料、电极材料以及核控制材料等领域中得到人们的重视和广泛应用。许多报告表明SiC的加入可以提高材料的抗氧化性能并增强其力学性能。因此,人们通过传统的热压(HP)、无压等方法对二硼化锆/碳化硅复合材料的力学性能及高温性能做了大量研究。中国专利“一种高强高韧性的二硼化锆-碳化硅-氧化锆陶瓷基复合材料及及制备方法”(申请号201010565353.8,申请日2010.11.30,申请公布日:2011.05.18)公开了以二硼化锆粉末、碳化硅粉末及二氧化硅纤维为原料,经湿混、烘干及研磨用热压烧结制备二硼化锆-碳化硅-氧化锆陶瓷基复合材料及其制备方法。然而研究表明应用固态烧结方法制备二硼化锆/碳化硅复合材料具有以下局限性:一、由于ZrB2及SiC具有很强的共价键,传统烧结中扩散过程难以进行,难以制备出致密度且强韧性高的二硼化锆/碳化硅复合材料;二、为了改善材料性能,常常需要选择合适的烧结助剂(如:CoB、Ni3B4、Y2O3、ZrO2等),这会对复合材料的性能造成不利影响;三、传统方法对原材料及工艺过程有较为严格的要求,使得制备过程复杂且效率低下,增加了制备材料成本;因此,选择高效、廉价的方法制备高性能的高温陶瓷材料是解决制约其大规模应用瓶颈的重要途径。Zirconium diboride (ZrB 2 ) is a metalloid structure compound of hexagonal C32 structure. , Composite materials, refractory materials, electrode materials and nuclear control materials and other fields have been paid attention to and widely used. Many reports have shown that the addition of SiC can improve the oxidation resistance of materials and enhance their mechanical properties. Therefore, people have done a lot of research on the mechanical properties and high temperature properties of zirconium diboride/silicon carbide composites through traditional hot pressing (HP) and pressureless methods. The Chinese patent "a high-strength and high-toughness zirconium diboride-silicon carbide-zirconia ceramic matrix composite material and its preparation method" (application number 201010565353.8, application date 2010.11.30, application publication date: 2011.05.18) discloses the following Zirconium diboride powder, silicon carbide powder and silicon dioxide fiber are used as raw materials to prepare zirconium diboride-silicon carbide-zirconia ceramic matrix composite material and its preparation method through wet mixing, drying, grinding and hot pressing sintering. However, studies have shown that the application of solid-state sintering to prepare zirconium diboride/silicon carbide composites has the following limitations: 1. Due to the strong covalent bonds between ZrB 2 and SiC, it is difficult to carry out the diffusion process in traditional sintering, and it is difficult to prepare dense Zirconium diboride/silicon carbide composite material with high strength and toughness; Second, in order to improve material properties, it is often necessary to select appropriate sintering aids (such as: CoB, Ni 3 B 4 , Y 2 O 3 , ZrO 2 , etc.), This will adversely affect the performance of composite materials; 3. The traditional method has strict requirements on raw materials and process, which makes the preparation process complicated and inefficient, and increases the cost of preparation materials; therefore, it is necessary to choose an efficient and cheap method to prepare high High-performance high-temperature ceramic materials are an important way to solve the bottleneck restricting their large-scale application.
发明内容 Contents of the invention
本发明的目的在于克服现有技术的不足,解决固态烧结方法制备二硼化锆/碳化硅复合材料过程中存在的问题,而提供一种提高二硼化锆/碳化硅复合材料力学性能的快速制备方法。The purpose of the present invention is to overcome the deficiencies of the prior art, solve the problems existing in the process of preparing zirconium diboride/silicon carbide composite materials by the solid-state sintering method, and provide a fast method for improving the mechanical properties of zirconium diboride/silicon carbide composite materials. Preparation.
本发明的目的通过下述技术方案予以实现:The purpose of the present invention is achieved through the following technical solutions:
二硼化锆/碳化硅复合材料的制备选用的反应原材料为锆粉、碳化硼粉及碳化硅粉(普通商用的药品即可),通过改变组分,用电弧熔化原位反应的方法可以制备出以二硼化锆/碳化硅为主相的复合材料,同时生成C、ZrC、ZrSi2物相实现材料的复合;利用熔化及反应合成的新相结构不仅可以使二硼化锆/碳化硅复合材料有更高的致密度,还可以提高其力学及高温性能。Zirconium diboride/silicon carbide composite materials are prepared by using zirconium powder, boron carbide powder and silicon carbide powder (common commercial medicines are enough) as raw materials for the reaction. By changing the components, it can be prepared by arc melting in situ reaction. A composite material with zirconium diboride/silicon carbide as the main phase is produced, and C, ZrC, and ZrSi 2 phases are generated at the same time to realize the compounding of materials; the new phase structure synthesized by melting and reaction can not only make zirconium diboride/silicon carbide Composite materials have higher density, which can also improve their mechanical and high temperature properties.
一种电弧熔化原位反应制备二硼化锆/碳化硅复合材料的方法,按照下述步骤进行:A method for preparing zirconium diboride/silicon carbide composite material by in-situ reaction by arc melting is carried out according to the following steps:
(1)将20~100目的锆粉(Zr;纯度≥992)、碳化硼粉(B4C;纯度≥95)及碳化硅粉(SiC;纯度≥95)作为反应原材料,根据化学反应按照物质的量比Zr∶B4C∶SiC为1.56~3∶1∶0.5~3配制粉末;在玛瑙研钵中将混合粉末混合均匀,研磨时间为15~60分钟,配制水玻璃与水体积比为1∶1的溶液作为粘结剂加入到混合粉末中,加入量为混合粉末总质量的3%-5%,将湿粉预制在石墨板基体上并用石墨模具压制成型;(1) Use 20-100 mesh zirconium powder (Zr; purity ≥992), boron carbide powder (B 4 C; purity ≥95) and silicon carbide powder (SiC; purity ≥95) as raw materials for the reaction, according to the chemical reaction according to the substance The amount ratio of Zr: B 4 C: SiC is 1.56~3:1:0.5~3 to prepare the powder; in the agate mortar, the mixed powder is mixed evenly, the grinding time is 15~60 minutes, and the volume ratio of the prepared water glass and water is The 1:1 solution is added to the mixed powder as a binder, the amount added is 3%-5% of the total mass of the mixed powder, and the wet powder is prefabricated on the graphite plate substrate and pressed into shape with a graphite mold;
(2)将模具成型后的试样进行干燥处理,以去除水分的影响:将试样放置在室温环境中阴干12~24小时后在烘干炉中以2℃/s的加热速度加热至350~450℃并在最高温度停留烘干0.5~1小时,期间可选用使用空气或者惰性气体气氛(例如氩气、氮气、氦气)(2) Dry the molded sample to remove the influence of moisture: place the sample at room temperature and dry it in the shade for 12 to 24 hours, then heat it to 350°C at a heating rate of 2°C/s in a drying oven. ~450°C and stay at the highest temperature for 0.5~1 hour to dry, during which you can choose to use air or inert gas atmosphere (such as argon, nitrogen, helium)
(3)电弧加工条件:将烘干后的试样进行电弧快速熔化(例如将试样置于阴极用电弧进行快速熔化),整个电弧处于流动惰性气氛中(例如氩气、氮气、氦气保护下),在直流电流为180~250A,电压为28~35V,保护气体流量为10L/min及电弧扫描速度为1.00~3.00mm/s的工艺条件下完成的。(3) Arc processing conditions: quickly melt the dried sample by arc (for example, place the sample on the cathode and use the arc for rapid melting), and the entire arc is in a flowing inert atmosphere (such as argon, nitrogen, helium protection Bottom), completed under the process conditions of DC current of 180-250A, voltage of 28-35V, protective gas flow rate of 10L/min and arc scanning speed of 1.00-3.00mm/s.
所述步骤(1)中,锆粉的纯度≥99.2,碳化硼粉的纯度≥95,碳化硅粉纯度≥95。In the step (1), the purity of the zirconium powder is ≥99.2, the purity of the boron carbide powder is ≥95, and the purity of the silicon carbide powder is ≥95.
所述步骤(3)中,直流电流优选200~250A,电压优选30~35V,电弧扫描速度为1.5~2.5mm/s。In the step (3), the DC current is preferably 200-250A, the voltage is preferably 30-35V, and the arc scanning speed is 1.5-2.5mm/s.
本发明提供了一种利用电弧熔化原位反应制备二硼化锆/碳化硅复合材料的方法。采用普通商用粉体,通过快速熔化及反应来得到致密度高、显微结构可控且力学性能良好的材料。此外,该方法制备效率高、能耗低、生成成本低且使材料的可加工性、产品的可靠性得以大大提高。具有良好产业化前景。The invention provides a method for preparing zirconium diboride/silicon carbide composite material by means of electric arc melting in-situ reaction. Using ordinary commercial powder, through rapid melting and reaction to obtain materials with high density, controllable microstructure and good mechanical properties. In addition, the method has high preparation efficiency, low energy consumption, and low production cost, and greatly improves the processability of the material and the reliability of the product. It has good industrialization prospect.
本发明制备的二硼化锆/碳化硅复合材料形貌是由纹理及多晶状组织构成的,纹理状组织主要由镶嵌在SiC基体中整齐排列的ZrB2棒状结构组成,具有结合良好的界面,其中ZrB2棒状晶粒的宽度约为1μm,长度范围是7~10μm,平均的长宽比为8.0,ZrB2棒状晶粒的生长表现出一定方向性;纹理状组织的生成使得ZrB2与SiC两相间界面复杂,增加了材料致密度及裂纹扩展阻力。经测试材料的显微硬度为24.0±0.8GPa,断裂韧性为6.7±0.7MPa m1/2,其强韧性与其它方法下的二硼化锆/碳化硅复合材料性能相比有大幅度提高。The appearance of the zirconium diboride/silicon carbide composite material prepared by the present invention is composed of texture and polycrystalline structure, and the texture-like structure is mainly composed of ZrB2 rod-like structures embedded in the SiC matrix and arranged neatly, with a well-bonded interface , wherein the width of ZrB 2 rod-shaped grains is about 1 μm, the length range is 7-10 μm, and the average aspect ratio is 8.0. The growth of ZrB 2 rod-shaped grains shows a certain direction; the formation of textured structure makes ZrB 2 and The complex interface between the two phases of SiC increases the material density and crack growth resistance. The microhardness of the tested material is 24.0±0.8GPa, the fracture toughness is 6.7±0.7MPa m 1/2 , and its strength and toughness are greatly improved compared with the properties of zirconium diboride/silicon carbide composite materials under other methods.
附图说明 Description of drawings
图1为实施例1的XRD衍射图谱(XRD,D/Max-2500V Rigaku,东京,日本)Fig. 1 is the XRD diffraction pattern of embodiment 1 (XRD, D/Max-2500V Rigaku, Tokyo, Japan)
图2为实施例1的抛光截面的扫描电镜微观图像(SEM;Hitachi S-4800,东京,日本)Fig. 2 is the scanning electron microscope microscopic image (SEM of the polished section of embodiment 1; Hitachi S-4800, Tokyo, Japan)
图3为实施例4的XRD衍射图谱(XRD,D/Max-2500V Rigaku,东京,日本)Fig. 3 is the XRD diffraction pattern of embodiment 4 (XRD, D/Max-2500V Rigaku, Tokyo, Japan)
图4为实施例4的抛光截面的扫描电镜微观图像(SEM;Hitachi S-4800,东京,日本)Fig. 4 is the scanning electron microscope microscopic image (SEM of the polished section of embodiment 4; Hitachi S-4800, Tokyo, Japan)
图5为实施例5的XRD衍射图谱(XRD,D/Max-2500V Rigaku,东京,日本)Fig. 5 is the XRD diffraction pattern of embodiment 5 (XRD, D/Max-2500V Rigaku, Tokyo, Japan)
图6为实施例5的抛光截面的扫描电镜微观图像(SEM;Hitachi S-4800,东京,日本)Fig. 6 is the scanning electron microscope microscopic image (SEM of the polished section of embodiment 5; Hitachi S-4800, Tokyo, Japan)
具体实施方式 Detailed ways
下面结合具体实施例进一步说明本发明的技术方案。对制备的材料进行硬度测试和断裂韧性测试,其中硬度测试标准为GB/T 16534-1996工程陶瓷维氏硬度试验方法,使用仪器为自动转塔维氏硬度计Wolpert Wilson Instruments 432SVD,依工测试仪器(上海)有限公司;断裂韧性测试依据为“Testing Methods for Fracture Toughness ofFine Ceramics,’Japanese Industrial Standard No.JIS R 1607,(1995)。The technical solutions of the present invention will be further described below in conjunction with specific embodiments. The hardness test and fracture toughness test are carried out on the prepared materials, the hardness test standard is GB/T 16534-1996 Vickers hardness test method for engineering ceramics, the instrument used is the automatic turret Vickers hardness tester Wolpert Wilson Instruments 432SVD, and the industrial test instrument (Shanghai) Co., Ltd.; the fracture toughness test is based on "Testing Methods for Fracture Toughness of Fine Ceramics," Japanese Industrial Standard No. JIS R 1607, (1995).
实施例1Example 1
按照配方为Zr∶B4C质量比为72∶28称量配料,即摩尔比1.56∶1进行配料,加入Zr和B4C粉末质量的质量分数为30%的SiC(相当于B4C∶SiC摩尔比为1∶1.5),置于研钵中研磨15分钟,之后加3wt%水玻璃溶液(水玻璃与水的体积比为1∶1)作为粘结剂,用石墨模具将混合粉末压制于石墨基体表面,将试样放置在室温环境中阴干24小时后在烘干炉中以2℃/s的加热速度加热至450℃并停留1小时,将烘干后的试样置于阴极用电弧进行快速熔化,整个电弧处于流动氩气保护下,在250A直流电,35V电压下,10L/min保护气体流量及1.67mm/s的电弧扫描速度下完成的。最终制备出长宽厚为50mm×10mm×3mm的二硼化锆/碳化硅复合块体材料,材料的显微硬度为24.0±0.8GPa,断裂韧性为6.7±0.7MPa m1/2,其SEM和XRD分析如附图所示。According to the formula, the Zr: B 4 C mass ratio is 72: 28, that is, the molar ratio is 1.56: 1 for batching, and the mass fraction of Zr and B 4 C powder is 30% SiC (equivalent to B 4 C: SiC molar ratio is 1: 1.5), placed in a mortar and ground for 15 minutes, then added 3wt% water glass solution (the volume ratio of water glass and water is 1: 1) as a binder, and the mixed powder was pressed with a graphite mold On the surface of the graphite substrate, place the sample at room temperature and dry it in the shade for 24 hours, then heat it to 450°C in a drying oven at a heating rate of 2°C/s and stay there for 1 hour, and place the dried sample on the cathode The arc is rapidly melted, and the entire arc is under the protection of flowing argon gas. It is completed under the condition of 250A DC, 35V voltage, 10L/min shielding gas flow rate and 1.67mm/s arc scanning speed. Finally, a zirconium diboride/silicon carbide composite block material with a length, width, and thickness of 50mm×10mm×3mm was prepared. The microhardness of the material was 24.0±0.8GPa, and the fracture toughness was 6.7±0.7MPa m 1/2 . XRD analysis is as shown in the accompanying drawing.
实施例2Example 2
按照配方为Zr∶B4C质量比为72∶28称量配料,即摩尔比1.56∶1进行配料,加入Zr和B4C粉末质量的质量分数为30%的SiC(相当于B4C∶SiC摩尔比为1∶1.5),置于研钵中研磨15分钟,之后加5wt%水玻璃溶液(水玻璃与水的体积比为1∶1)作为粘结剂,用石墨模具将混合粉末压制与石墨基体表面,将试样放置在室温环境中阴干12小时后在烘干炉中以2℃/s的加热速度加热至350℃并停留0.5小时,将烘干后的试样置于阴极用电弧进行快速熔化,整个电弧处于流动氩气保护下,在200A直流电,30V电压下,10L/min保护气体流量及1.67mm/s的电弧扫描速度下完成的,最终制备出长宽厚为50mm×10mm×3mm的二硼化锆/碳化硅复合块体材料。According to the formula, the Zr: B 4 C mass ratio is 72: 28, that is, the molar ratio is 1.56: 1 for batching, and the mass fraction of Zr and B 4 C powder is 30% SiC (equivalent to B 4 C: SiC molar ratio is 1: 1.5), put it in a mortar and grind for 15 minutes, then add 5wt% water glass solution (the volume ratio of water glass and water is 1: 1) as a binder, and compress the mixed powder with a graphite mold With the surface of the graphite substrate, place the sample at room temperature and dry it in the shade for 12 hours, then heat it to 350°C in a drying furnace at a heating rate of 2°C/s and stay for 0.5 hours, and place the dried sample on the cathode The arc is rapidly melted, and the entire arc is under the protection of flowing argon gas. It is completed under 200A DC, 30V voltage, 10L/min shielding gas flow rate and 1.67mm/s arc scanning speed. Finally, the length, width and thickness are 50mm×10mm. ×3mm zirconium diboride/silicon carbide composite bulk material.
实施例3Example 3
与实施例1不同的是:在2.5mm/s的电弧扫描速度下完成的,最终制备出二硼化锆/碳化硅复合块体材料。The difference from Example 1 is that it is completed at an arc scanning speed of 2.5mm/s, and a zirconium diboride/silicon carbide composite block material is finally prepared.
实施例4Example 4
与实施例1不同的是:按照配方为Zr∶B4C质量比为77∶23称量配料,即按化学式(1)中x∶y=2∶1进行配料,180A直流电,28V电压下,10L/min保护气体流量及1mm/s的电弧扫描速度,最终制备出尺寸为50mm×10mm×3mm的ZrB2-ZrC-C-SiC复合块体材料。材料的显微硬度为20.0±1.0GPa,断裂韧性为5.8±0.5MPa m1/2,其SEM和XRD分析如附图所示。The difference from Example 1 is that according to the formula, Zr: B 4 C mass ratio is 77: 23 and the ingredients are weighed, that is, the ingredients are weighed according to x: y=2: 1 in the chemical formula (1), 180A DC, 28V voltage, 10L/min shielding gas flow rate and 1mm/s arc scanning speed, the ZrB 2 -ZrC-C-SiC composite bulk material with a size of 50mm×10mm×3mm was finally prepared. The microhardness of the material is 20.0±1.0GPa, the fracture toughness is 5.8±0.5MPa m 1/2 , and its SEM and XRD analysis are shown in the accompanying drawings.
实施例5Example 5
与实施例1不同的是:按照配方为Zr∶B4C质量比为83∶17称量配料,即按化学式(1)中x∶y=3∶1进行配料,200A直流电,30V电压下,10L/min保护气体流量及3mm/s的电弧扫描速度,最终制备出尺寸为50mm×10mm×3mm的ZrB2-ZrC-ZrSi2-SiC复合块体材料。材料的显微硬度为16.0±0.9GPa,断裂韧性为4.9±0.4MPa m1/2,其SEM和XRD分析如附图所示。The difference from Example 1 is: According to the formula, Zr: B 4 C mass ratio is 83:17, and the ingredients are weighed according to x:y=3:1 in the chemical formula (1), 200A direct current, 30V voltage, The shielding gas flow rate of 10L/min and the arc scanning speed of 3mm/s finally prepared a ZrB 2 -ZrC-ZrSi 2 -SiC composite bulk material with a size of 50mm×10mm×3mm. The microhardness of the material is 16.0±0.9GPa, the fracture toughness is 4.9±0.4MPa m 1/2 , and its SEM and XRD analysis are shown in the accompanying drawings.
实施例6Example 6
与实施例1不同的是:加入质量分数为10%的SiC,即反应材料的摩尔比Zr∶B4C∶SiC=1.56∶1∶0.5时,可制备出ZrB2-SiC复合块体材料。The difference from Example 1 is that the ZrB 2 -SiC composite bulk material can be prepared by adding SiC with a mass fraction of 10%, that is, when the molar ratio of the reaction material Zr:B 4 C:SiC=1.56:1:0.5.
实施例7Example 7
与实施例1不同的是:加入质量分数为60%的SiC,即反应材料的摩尔比Zr∶B4C∶SiC=1.56∶1∶3时,可制备出不同的ZrB2-SiC复合块体材料。The difference from Example 1 is that when SiC with a mass fraction of 60% is added, that is, when the molar ratio of reaction materials Zr:B 4 C:SiC=1.56:1:3, different ZrB 2 -SiC composite blocks can be prepared Material.
上述实施例中采用不同的原料配比和工艺参数进行制备,制备的复合块体材料中以二硼化锆/碳化硅为主相,并与现有技术制备材料相比在性能上有明显提升。在制备中过程中会根据原料的配比,生成C、ZrSi2、ZrC物相。当Zr∶B4C=1.56∶1时,B4C会过量,当Zr∶B4C=2∶1及Zr∶B4C=3∶1时,反应完全进行。然而实际情况下,当B4C会有损耗,所以在制备时当B4C要求过量才能获得较纯净的ZrB2-SiC复合材料。In the above examples, different raw material ratios and process parameters were used for preparation, and the prepared composite block material was mainly composed of zirconium diboride/silicon carbide, and compared with the materials prepared in the prior art, the performance was significantly improved . During the preparation process, C, ZrSi 2 , and ZrC phases will be generated according to the ratio of raw materials. When Zr:B 4 C=1.56:1, B 4 C will be in excess, and when Zr:B 4 C=2:1 and Zr:B 4 C=3:1, the reaction will proceed completely. However, in practice, B 4 C will be lost, so when B 4 C is required to be excessive in preparation, a relatively pure ZrB 2 -SiC composite material can be obtained.
本发明并不局限于实例所描述的技术,它的描述是说明性的,并非限制性的,本发明的权限由权利要求所限定,基于本技术领域人员依据本发明所能够变化、重组等方法得到的与本发明相关的技术,都在本发明的保护范围。The present invention is not limited to the technology described in the example, its description is illustrative, not restrictive, the authority of the present invention is defined by the claims, based on methods such as changes, recombination, etc. that those skilled in the art can according to the present invention The obtained technologies related to the present invention are all within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101269707A CN102633504A (en) | 2012-04-26 | 2012-04-26 | Zirconium diboride/silicon carbide composite material and method for preparing same by means of arc melting in-suit reaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101269707A CN102633504A (en) | 2012-04-26 | 2012-04-26 | Zirconium diboride/silicon carbide composite material and method for preparing same by means of arc melting in-suit reaction |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102633504A true CN102633504A (en) | 2012-08-15 |
Family
ID=46618105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101269707A Pending CN102633504A (en) | 2012-04-26 | 2012-04-26 | Zirconium diboride/silicon carbide composite material and method for preparing same by means of arc melting in-suit reaction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102633504A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103073304A (en) * | 2013-01-16 | 2013-05-01 | 郑州大学 | A preparation process of ZrB2-SiC composite powder by electromelting method |
CN105523763A (en) * | 2016-03-03 | 2016-04-27 | 刘佩佩 | Silicon carbide-chromium boride composite ceramic material and preparation method thereof |
CN105777135A (en) * | 2016-03-03 | 2016-07-20 | 刘佩佩 | Silicon carbide-molybdenum boride composite ceramic material and preparation method thereof |
CN107056334A (en) * | 2017-04-28 | 2017-08-18 | 哈尔滨理工大学 | A kind of ZrC ceramic material surfaces ZrB2The preparation method of SiC composite coatings |
CN107353010A (en) * | 2017-07-31 | 2017-11-17 | 武汉理工大学 | A kind of ZrC ZrB2SiC ternary eutectic composite ceramic materials and preparation method thereof |
CN111334743A (en) * | 2020-03-15 | 2020-06-26 | 河北工业大学 | Preparation method of zirconium boride-zirconium carbide-silicon carbide composite coating |
CN111825096A (en) * | 2020-07-23 | 2020-10-27 | 辽宁中色新材科技有限公司 | Method for producing zirconium disilicide |
CN112500178A (en) * | 2020-12-08 | 2021-03-16 | 郑州大学 | ZrB is generated to normal position2-SiC toughened PcBN cutter and preparation method thereof |
CN112500137A (en) * | 2021-02-05 | 2021-03-16 | 北京利尔高温材料股份有限公司 | Ladle anti-erosion magnesia refractory mortar and preparation method thereof |
CN112500171A (en) * | 2020-12-30 | 2021-03-16 | 山东东大新材料研究院有限公司 | Preparation method of densified zirconium boride-silicon carbide composite ceramic |
CN115893990A (en) * | 2022-11-28 | 2023-04-04 | 安徽工业大学 | Low-carbon magnesia carbon brick |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101509133A (en) * | 2009-03-27 | 2009-08-19 | 天津大学 | Method for producing zirconium diboride coating by using plasma arc technology |
-
2012
- 2012-04-26 CN CN2012101269707A patent/CN102633504A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101509133A (en) * | 2009-03-27 | 2009-08-19 | 天津大学 | Method for producing zirconium diboride coating by using plasma arc technology |
Non-Patent Citations (2)
Title |
---|
RONG TU ET AL: "Preparation of ZrB2-SiC compositions by arc melting and their properties", 《JOURNAL OF THE CERAMIC SOCIETY OF JAPAN》, vol. 116, no. 3, 21 January 2008 (2008-01-21), pages 431 - 435 * |
王振廷 等: "氩弧熔覆原位自生ZrC-ZrB2颗粒增强金属基涂层的组织与性能", 《中国表面工程》, vol. 24, no. 3, 30 June 2011 (2011-06-30), pages 74 - 77 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103073304A (en) * | 2013-01-16 | 2013-05-01 | 郑州大学 | A preparation process of ZrB2-SiC composite powder by electromelting method |
CN105523763A (en) * | 2016-03-03 | 2016-04-27 | 刘佩佩 | Silicon carbide-chromium boride composite ceramic material and preparation method thereof |
CN105777135A (en) * | 2016-03-03 | 2016-07-20 | 刘佩佩 | Silicon carbide-molybdenum boride composite ceramic material and preparation method thereof |
CN107056334A (en) * | 2017-04-28 | 2017-08-18 | 哈尔滨理工大学 | A kind of ZrC ceramic material surfaces ZrB2The preparation method of SiC composite coatings |
CN107056334B (en) * | 2017-04-28 | 2020-04-17 | 哈尔滨理工大学 | ZrB ceramic material surface ZrB2Preparation method of-SiC composite coating |
CN107353010A (en) * | 2017-07-31 | 2017-11-17 | 武汉理工大学 | A kind of ZrC ZrB2SiC ternary eutectic composite ceramic materials and preparation method thereof |
CN111334743A (en) * | 2020-03-15 | 2020-06-26 | 河北工业大学 | Preparation method of zirconium boride-zirconium carbide-silicon carbide composite coating |
CN111825096A (en) * | 2020-07-23 | 2020-10-27 | 辽宁中色新材科技有限公司 | Method for producing zirconium disilicide |
CN111825096B (en) * | 2020-07-23 | 2022-05-31 | 辽宁中色新材科技有限公司 | Method for producing zirconium disilicide |
CN112500178A (en) * | 2020-12-08 | 2021-03-16 | 郑州大学 | ZrB is generated to normal position2-SiC toughened PcBN cutter and preparation method thereof |
CN112500178B (en) * | 2020-12-08 | 2022-11-04 | 郑州大学 | ZrB generated in situ 2 -SiC toughened PcBN cutter and preparation method thereof |
CN112500171A (en) * | 2020-12-30 | 2021-03-16 | 山东东大新材料研究院有限公司 | Preparation method of densified zirconium boride-silicon carbide composite ceramic |
CN112500137A (en) * | 2021-02-05 | 2021-03-16 | 北京利尔高温材料股份有限公司 | Ladle anti-erosion magnesia refractory mortar and preparation method thereof |
CN115893990A (en) * | 2022-11-28 | 2023-04-04 | 安徽工业大学 | Low-carbon magnesia carbon brick |
CN115893990B (en) * | 2022-11-28 | 2023-09-08 | 安徽工业大学 | Low-carbon magnesia carbon brick |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102633504A (en) | Zirconium diboride/silicon carbide composite material and method for preparing same by means of arc melting in-suit reaction | |
CN101456737B (en) | Boron carbide base composite ceramic and preparation method thereof | |
Heydari et al. | Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites | |
WO2020133928A1 (en) | Preparation method for dense hfc(si)-hfb2 composite ceramics | |
CN101215173B (en) | Method for preparing ZrB2-SiC-ZrC diphase ceramic material | |
CN102167592B (en) | Preparation method of ZrB2-ZrC based ultra-high temperature resistant ceramics | |
CN101182193B (en) | A kind of preparation method of in-situ self-toughened alumina ceramics | |
CN106915961B (en) | A kind of graphene-zirconia composite material and preparation method thereof | |
CN103011827A (en) | Preparation method of zirconium diboride ceramic with in-situ-introduced boron as additive | |
CN105859301B (en) | A kind of silicon nitride ceramics and preparation method thereof | |
CN105152670B (en) | A kind of preparation method of SiC nanowire enhancing SiBCN ceramics | |
CN101104515A (en) | A kind of SiC nanowire and preparation method thereof | |
CN106167413B (en) | A kind of 90 aluminium oxide ceramics of On In-situ Synthesis of Mullite Whisker toughening and preparation method | |
CN105884359A (en) | A kind of B4C composite ceramics with composite structure as toughening phase and preparation method thereof | |
CN107059129A (en) | Co-precipitation and the preparation method of thermal evaporation techniques fabricated in situ taper SiC whiskers | |
CN109320259A (en) | A kind of silicon nitride-based diamond composite material and preparation method thereof | |
CN110467467A (en) | A kind of bulky silicon carbide polymer precursor is ceramic and blending cracks preparation method again | |
CN107337453A (en) | A kind of method that combination gas-solid reaction method prepares recrystallized silicon carbide porous ceramics | |
CN102976760A (en) | RE2O3-added ZrB2-SiC composite ceramic material and preparation method thereof | |
CN102603344B (en) | Preparing process of silicon carbide whisker toughened zirconium diboride ceramic | |
CN109180186A (en) | The preparation method of bionical nacre MAX phase carbide ceramics based composites | |
CN116444283A (en) | Continuous carbon fiber reinforced and toughened ultra-high temperature ceramic matrix composite material and preparation method thereof | |
CN104016685B (en) | Method for synthesizing carbon nano tube modified ultra-high temperature ceramic hybrid powder in situ | |
Mousavi et al. | Mechanical properties of pressure-less sintered ZrB2 with molybdenum, iron and carbon additives | |
CN117164361B (en) | A high entropy carbide ceramic material and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120815 |