CN103268882A - A kind of high-voltage LED chip with microstructure anti-reflection film - Google Patents
A kind of high-voltage LED chip with microstructure anti-reflection film Download PDFInfo
- Publication number
- CN103268882A CN103268882A CN2013102110745A CN201310211074A CN103268882A CN 103268882 A CN103268882 A CN 103268882A CN 2013102110745 A CN2013102110745 A CN 2013102110745A CN 201310211074 A CN201310211074 A CN 201310211074A CN 103268882 A CN103268882 A CN 103268882A
- Authority
- CN
- China
- Prior art keywords
- microstructure
- reflection film
- layer
- led chip
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 238000000576 coating method Methods 0.000 claims description 29
- 239000011248 coating agent Substances 0.000 claims description 28
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 8
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 abstract description 4
- 239000010980 sapphire Substances 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 abstract description 2
- 230000003139 buffering effect Effects 0.000 abstract 1
- 230000009993 protective function Effects 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000010437 gem Substances 0.000 description 2
- 229910001751 gemstone Inorganic materials 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 241001025261 Neoraja caerulea Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- JYMITAMFTJDTAE-UHFFFAOYSA-N aluminum zinc oxygen(2-) Chemical compound [O-2].[Al+3].[Zn+2] JYMITAMFTJDTAE-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- WUOBERCRSABHOT-UHFFFAOYSA-N diantimony Chemical compound [Sb]#[Sb] WUOBERCRSABHOT-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Led Devices (AREA)
- Led Device Packages (AREA)
Abstract
Description
技术领域technical field
本发明属于半导体发光器件制造领域,具体涉及具有微结构增透膜的高压LED芯片。The invention belongs to the field of manufacturing semiconductor light-emitting devices, and in particular relates to a high-voltage LED chip with a microstructure anti-reflection film.
背景技术Background technique
LED是一种节能、环保和长寿命、无污染的发光器件。它的能耗仅为白炽灯的10%,荧光灯的50%。现有公知的大功率LED的光效已经能达到160lm/w,稳定工作环境为直流350mA的电流,工作电压一般为3V,无法使用市电直接驱动。为了克服上述技术难题,高压LED作为一种新型结构的LED应运而生。高压LED的驱动电流一般为20mA,工作电压一般为45-50V,一般将4颗高压LED直接串联,便可以达到市电的工作电压220V,便于实现市电的直接驱动。现有公知的高压LED一般由蓝宝石衬底、缓冲层、N型层、量子阱层、P型层、P层以及N层上的电极,连接桥、ITO层等构成。由于ITO层的折射率较大,大量的光线因全内反射而转换为热量损耗掉。同时,由于界面折射率的突变引起光线的反射损耗,从而对高压的LED的出光效率造成不良影响。LED is an energy-saving, environmentally friendly, long-life, and pollution-free light-emitting device. Its energy consumption is only 10% of incandescent lamps and 50% of fluorescent lamps. The luminous efficiency of the existing known high-power LEDs can reach 160lm/w, the stable working environment is a DC current of 350mA, and the working voltage is generally 3V, which cannot be directly driven by commercial power. In order to overcome the above-mentioned technical problems, high-voltage LEDs emerged as a new type of LED structure. The driving current of the high-voltage LED is generally 20mA, and the working voltage is generally 45-50V. Generally, 4 high-voltage LEDs are directly connected in series to reach the working voltage of 220V, which is convenient for direct driving of the mains. Existing known high-voltage LEDs generally consist of a sapphire substrate, a buffer layer, an N-type layer, a quantum well layer, a P-type layer, electrodes on the P layer and the N layer, a connecting bridge, an ITO layer, and the like. Due to the high refractive index of the ITO layer, a large amount of light is converted into heat and lost due to total internal reflection. At the same time, the sudden change of the interface refractive index causes the reflection loss of light, which adversely affects the light extraction efficiency of the high-voltage LED.
现在公知的普通工艺高压LED芯片的结构均为阵列结构,它在一个外延片上,将一颗45*45mil的芯粒划分为若干个小芯片颗粒(一般为15-17颗)。主要结构包括:蓝宝石衬底、缓冲层、N型层、量子阱层、P型层、P层以及N层上的电极、连接桥、ITO层。在不考虑材料的光吸收的前提下,当有源层发光,光子到达芯片与空气的分界面的时候,由于折射率的变化,导致大量的光能量被反射回芯片内部最终化为热量散发出去。同时,界面之间折射率的变化,光从芯片射向外界的时候,全反射的发生导致光效进一步减少。直接导致其外量子效应低下。The structure of the known common process high-voltage LED chip is an array structure, which divides a 45*45mil chip into several small chip particles (generally 15-17) on an epitaxial wafer. The main structure includes: a sapphire substrate, a buffer layer, an N-type layer, a quantum well layer, a P-type layer, an electrode on the P layer and the N layer, a connecting bridge, and an ITO layer. Without considering the light absorption of the material, when the active layer emits light and the photons reach the interface between the chip and the air, due to the change of the refractive index, a large amount of light energy is reflected back into the chip and finally turned into heat and emitted. . At the same time, due to the change of the refractive index between the interfaces, when the light is emitted from the chip to the outside, the occurrence of total reflection further reduces the light effect. It directly leads to the low external quantum effect.
目前常用的增透膜材料主要有氮化硅(SiNx)、二氧化硅(SiO2)、氮氧化硅(SiONx)几种,也有使用金属氧化膜的。其中,二氧化硅薄膜的成本最低,但是结构较为疏松,真空密度较高,防潮抗金属离子玷污能力相对较差。氮化硅(一般为Si3N4)薄膜相比二氧化硅在抗杂质扩散和水汽渗透方面有明显的优势,但是氮化硅薄膜与芯片界面之间存在大量的界面电荷和缺陷,导致对器件的电学性质产生了严重的影响(参见刘宝峰,李洪峰,金立国.《半导体器件钝化层Si3N4薄膜的制备与特性研究》[J].哈尔滨理工大学学报,2003,8(6):10)。并且二氧化硅和氮化硅的折射率分别为1.45和2.0,而最好的增透膜材料的折射率应尽量接近1.58。因而前面两者并非具有较佳的透射性能的增透膜材料。而SiON的折射率可以实现1.6-1.7的范围内可调(一般为1.58-1.71)。因此,SiON是目前最为优秀的增透膜材料,可以实现较好的反反射性能。Currently commonly used anti-reflection film materials mainly include silicon nitride (SiN x ), silicon dioxide (SiO 2 ), silicon oxynitride (SiON x ), and metal oxide films are also used. Among them, silicon dioxide film has the lowest cost, but its structure is relatively loose, its vacuum density is high, and its ability to resist moisture and metal ion pollution is relatively poor. Silicon nitride (generally Si 3 N 4 ) films have obvious advantages over silicon dioxide in terms of resistance to impurity diffusion and water vapor penetration, but there are a large number of interface charges and defects between the silicon nitride film and the chip interface, resulting in The electrical properties of the device have a serious impact (see Liu Baofeng, Li Hongfeng, Jin Liguo. "Study on the Preparation and Properties of Passivation Layer Si 3 N 4 Films for Semiconductor Devices" [J]. Journal of Harbin University of Science and Technology, 2003, 8(6 ): 10). And the refractive index of silicon dioxide and silicon nitride are 1.45 and 2.0 respectively, and the best AR coating material should have a refractive index as close to 1.58 as possible. Therefore, the former two are not anti-reflection coating materials with better transmission properties. The refractive index of SiON can be adjusted within the range of 1.6-1.7 (generally 1.58-1.71). Therefore, SiON is currently the most excellent anti-reflection coating material, which can achieve better anti-reflection performance.
发明内容Contents of the invention
为了克服普通工艺高压LED的内全反射以及反射损耗,提高出光效率,本发明提供一种具有微结构增透膜的高压LED芯片。所述增透膜能有效降低由折射率突变引起的反射损耗。而其表面微结构可以有效降低光线的全内反射,从而提高出光效率。In order to overcome the internal total reflection and reflection loss of high-voltage LEDs in ordinary technology and improve light extraction efficiency, the invention provides a high-voltage LED chip with a microstructure anti-reflection film. The anti-reflection coating can effectively reduce the reflection loss caused by sudden changes in the refractive index. And its surface microstructure can effectively reduce the total internal reflection of light, thereby improving the light extraction efficiency.
本发明的技术方案包括:Technical scheme of the present invention comprises:
一种具有微结构增透膜的高压LED芯片,包括多个发光单元,每个发光单元从下至上依次包括宝石衬底1、缓冲层2、N型层3、量子阱层4、P型层5和ITO层6,每个发光单元还包括P型层上的电极7和N型层上的电极8,相邻发光单元之间的电极通过连接桥9连接,每个发光单元还包括覆盖在ITO层上的增透膜10,位于ITO层6上方的增透膜顶面具有圆柱状微结构。A high-voltage LED chip with a microstructure anti-reflection film, including a plurality of light-emitting units, each light-emitting unit sequentially includes a gem substrate 1, a buffer layer 2, an N-type layer 3, a quantum well layer 4, and a P-type layer from bottom to top 5 and ITO layer 6, each light-emitting unit also includes an electrode 7 on the P-type layer and an electrode 8 on the N-type layer, and the electrodes between adjacent light-emitting units are connected by a connecting bridge 9, and each light-emitting unit also includes an electrode covering the The
进一步优化的,增透膜所对应的增透波长与芯片有源层发光波长一致。目前高压芯片均以蓝光为主,发光波长约为455nm。选用SiON作为膜层材料,其折射率在1.6-1.7的范围内可调(一般为1.58-1.71)。Further optimized, the anti-reflection wavelength corresponding to the anti-reflection coating is consistent with the emission wavelength of the active layer of the chip. At present, high-voltage chips are mainly based on blue light, and the light-emitting wavelength is about 455nm. SiON is selected as the film material, and its refractive index is adjustable within the range of 1.6-1.7 (generally 1.58-1.71).
进一步优化的,所述增透膜厚度为LED发光波长的四分之一。Further optimized, the thickness of the anti-reflection film is a quarter of the light emitting wavelength of the LED.
进一步优化的,所述微结构的厚度为增透膜厚度的1/10。Further optimized, the thickness of the microstructure is 1/10 of the thickness of the antireflection film.
进一步优化的,所述增透膜除覆盖ITO层上方外,还覆盖ITO层上表面至N型层上的电极8之间的侧面,且只有ITO层上方的增透膜具有圆柱状微结构。Further optimized, in addition to covering the top of the ITO layer, the anti-reflection film also covers the side between the upper surface of the ITO layer and the electrode 8 on the N-type layer, and only the anti-reflection film above the ITO layer has a cylindrical microstructure.
进一步优化的,所述增透覆盖芯片的ITO层整个外表面。Further optimized, the antireflection covers the entire outer surface of the ITO layer of the chip.
进一步优化的,所述的圆柱状微结构的圆柱底面半径为1.5um,高为100埃。Further optimized, the cylindrical microstructure has a base radius of 1.5um and a height of 100 angstroms.
进一步优化的,所述圆柱状微结构的相邻圆柱底面圆心距离为4um~6um。Further optimized, the distance between the centers of adjacent cylindrical bottom surfaces of the cylindrical microstructure is 4um-6um.
进一步优化的,所述增透膜采用PECVD(等离子体增强化学气相沉积法)沉积SiON薄膜形成,并由ICP(Inductively Coupled Plasma–电感耦合等离子体)蚀刻出圆柱状微结构。Further optimized, the anti-reflection film is formed by depositing SiON film by PECVD (Plasma Enhanced Chemical Vapor Deposition), and the cylindrical microstructure is etched by ICP (Inductively Coupled Plasma-Inductively Coupled Plasma).
进一步优化的,利用SiH4和N2O、NH3反应淀积SiON膜,SiON膜的折射率为1.58~1.71。For further optimization, the SiON film is deposited by reaction with SiH 4 , N 2 O, and NH 3 , and the refractive index of the SiON film is 1.58-1.71.
目前已有的方案中,有使用SiO2作为增透膜的,其成本虽低,但是致密性差,防潮抗金属离子玷污能力相对较差。有使用SiON作为增透膜材料的,但是其表面不具有微结构,虽然能有效减少反射能量,从而增加透射,但是由于全反射角的存在,促使出射能量只有原来的39.1%,并不能真正有效的提高出光效率。也有使用随机钝化的金属氧化膜作为增透膜材料的,其使用氧化锡、氧化铝、氧化镁、氧化锌铝、氧化铟、二氧化锡、氧化铟锡、三氧化二锑、三氧化二铋几种材料中的一种来作为抗反射增透膜。但是,金属材料成本高,且折射率不好控制,并不能真正达到增透的效果。Among the currently existing solutions, some use SiO 2 as an anti-reflection coating. Although its cost is low, its compactness is poor, and its ability to resist moisture and metal ion contamination is relatively poor. Some use SiON as the anti-reflection coating material, but its surface does not have a microstructure. Although it can effectively reduce the reflected energy and increase the transmission, due to the existence of the total reflection angle, the outgoing energy is only 39.1% of the original, which is not really effective. Improve light extraction efficiency. There are also random passivated metal oxide films used as antireflection film materials, which use tin oxide, aluminum oxide, magnesium oxide, zinc aluminum oxide, indium oxide, tin dioxide, indium tin oxide, antimony trioxide, diantimony trioxide Bismuth is one of several materials used as an anti-reflection and anti-reflection coating. However, the cost of metal materials is high, and the refractive index is not easy to control, so the anti-reflection effect cannot be really achieved.
与现有技术相比,本发明具有如下优点和技术效果:Compared with the prior art, the present invention has the following advantages and technical effects:
(1)相比普通工艺的高压LED,能有效减少芯片内部的反射损耗,提升出光效率;(1) Compared with the high-voltage LED of ordinary technology, it can effectively reduce the reflection loss inside the chip and improve the light output efficiency;
(2)通过表面的微结构,可以有效破坏芯片内全反射,有效提高出射能量;(2) Through the microstructure of the surface, the total reflection inside the chip can be effectively destroyed, and the outgoing energy can be effectively increased;
(3)微结构采用圆柱状且高度不超过100埃,能保持上出光表面的平整性,从而保证了增透膜的有效性。(3) The microstructure adopts a cylindrical shape and the height does not exceed 100 angstroms, which can maintain the flatness of the upper light-emitting surface, thereby ensuring the effectiveness of the anti-reflection coating.
附图说明Description of drawings
图1是高压LED芯片结构的剖面示意图。图中,1-蓝宝石衬底、2-缓冲层、3-N型层、4-量子阱层、5-P型层、7,8-P层以及N层上的电极、9-连接桥、6-ITO层、10-增透膜。FIG. 1 is a schematic cross-sectional view of a high-voltage LED chip structure. In the figure, 1-sapphire substrate, 2-buffer layer, 3-N-type layer, 4-quantum well layer, 5-P-type layer, 7, 8-P layer and electrodes on the N layer, 9-connection bridge, 6-ITO layer, 10-anti-reflection coating.
具体实施方式Detailed ways
以下结合附图和实例,对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。The specific implementation of the present invention will be further described below in conjunction with the accompanying drawings and examples, but the implementation and protection of the present invention are not limited thereto.
请参见图1,一种具有微结构增透膜的高压LED芯片,包括多个发光单元,每个发光单元从下至上依次包括宝石衬底1、缓冲层2、N型层3、量子阱层4、P型层5和ITO层6,每个发光单元还包括P型层上的电极7和N型层上的电极8,相邻发光单元之间的电极通过连接桥9连接,每个发光单元还包括覆盖在ITO层上的增透膜10,位于ITO层6上方的增透膜顶面具有圆柱状微结构。Please refer to Figure 1, a high-voltage LED chip with a microstructure anti-reflection film, including multiple light-emitting units, each light-emitting unit includes a gem substrate 1, a buffer layer 2, an N-type layer 3, and a quantum well layer from bottom to top. 4. P-type layer 5 and ITO layer 6, each light-emitting unit also includes an electrode 7 on the P-type layer and an electrode 8 on the N-type layer, the electrodes between adjacent light-emitting units are connected by a connecting bridge 9, and each light-emitting unit The unit also includes an
一般蓝光芯片的主要发光波长为455nm,则增透膜厚度为1140埃左右,实际制程时,应大于1140埃,以便在增透膜上表面蚀刻微结构。Generally, the main luminescent wavelength of a blue-ray chip is 455nm, so the thickness of the anti-reflection film is about 1140 angstroms. In the actual process, it should be greater than 1140 angstroms in order to etch the microstructure on the surface of the anti-reflection film.
增透膜膜层厚度应为主要出光波长的1/4。当光从芯片进入薄膜的时候,发生一次反射,设为反射光线A。紧接着光将在薄膜与外界之间产生第二次反射,反射光线B。以直射光线为例,光线B相比光线A多走2倍于薄膜厚度的路程,而当光线A与光线B发生相消干涉的时候,增透膜的增透效果达到最大值。则薄膜厚度d满足公式:The thickness of the anti-reflection coating should be 1/4 of the main wavelength of light. When light enters the film from the chip, one reflection occurs, which is set as reflected ray A. Then the light will have a second reflection between the film and the outside world, reflecting ray B. Taking direct light as an example, light B travels twice the distance of the film thickness compared with light A, and when light A and light B destructively interfere, the anti-reflection effect of the anti-reflection coating reaches the maximum. Then the film thickness d satisfies the formula:
一般取k=0,则薄膜厚度为 Generally take k=0, then the film thickness is
如果芯片的光直接出射,由菲涅耳反射率公式:If the light of the chip exits directly, according to the Fresnel reflectivity formula:
光从芯片内部出射到空气当中,n1=1(空气折射率),n2=2.54(GaN的折射率),计算结果反射损耗将近19%。增加了增透膜的情况下,光从芯片到达增透膜,再有增透膜射出去。Light is emitted from the inside of the chip into the air, n 1 =1 (refractive index of air), n 2 =2.54 (refractive index of GaN), and the calculated reflection loss is nearly 19%. When the anti-reflection coating is added, the light reaches the anti-reflection coating from the chip, and then the anti-reflection coating is emitted.
当光从芯片到达增透膜的时候,由于氮氧化硅的折射率约为1.6,此时n1=1.6,由菲涅耳反射率可以计算得到反射损耗为5.1%。即有t1=94.9%的能量到达增透膜。而当光从增透膜出射的时候,反射损耗计算可得5.3%,透射能量t2=94.7%。则总出射能量为t=t1*t2=89.9%。相比之下,光直接从芯片入射到空气中,反射损耗为19%,出射能量t0为原来的81%,则出光效率提高了(t-t0)/t0=11%。When the light reaches the AR coating from the chip, since the refractive index of silicon oxynitride is about 1.6, n 1 =1.6 at this time, and the reflection loss can be calculated as 5.1% from the Fresnel reflectivity. That is, t 1 =94.9% of the energy reaches the AR coating. When the light exits from the AR coating, the reflection loss can be calculated to be 5.3%, and the transmission energy t 2 =94.7%. Then the total outgoing energy is t=t 1 *t 2 =89.9%. In contrast, when the light is directly incident from the chip into the air, the reflection loss is 19%, the output energy t 0 is 81% of the original, and the light extraction efficiency is increased by (tt 0 )/t 0 =11%.
另一方面,在没有微结构的情况下,光从氮氧化硅的表面出射的时候,会发生内全反射。由全反射公式:On the other hand, in the absence of microstructures, total internal reflection occurs when light emerges from the surface of silicon oxynitride. From the total reflection formula:
其中,n1=1,n2=1.6,计算可得θall=38.7°。由公式:Among them, n 1 =1, n 2 =1.6, the calculation can get θ all =38.7°. By the formula:
则计算可得到,芯片正面出射能量只有芯片与空气分界面以上2π立体角范围内的能量的39.1%。增加了圆柱状表面微结构之后,将会破坏原有的内全反射,从而提高其出射能量。Then it can be calculated that the energy emitted from the front of the chip is only 39.1% of the energy within the range of 2π solid angle above the interface between the chip and the air. After adding the cylindrical surface microstructure, the original total internal reflection will be destroyed, thereby increasing its outgoing energy.
本发明公开上述结构的一种制作工艺。增透膜材料选取SiON,其镀膜厚度为主要出光波长的1/4,约1100埃,具体工艺包括:The invention discloses a manufacturing process of the above structure. The anti-reflection coating material is SiON, and its coating thickness is 1/4 of the main light emission wavelength, about 1100 angstroms. The specific process includes:
(1)将完成了其他工艺步骤的芯片通过QDR清洗制程清洗干净;(1) Clean the chips that have completed other process steps through the QDR cleaning process;
(2)将芯片放入PECVD,并放置镀膜材料;(2) Put the chip into PECVD and place the coating material;
(3)按照设定程序进行镀膜制程;(3) Carry out the coating process according to the set procedure;
(4)镀膜完成后,检查其镀膜厚度,镀膜厚度应大于1100埃,以便在膜层表面蚀刻微结构;(4) After the coating is completed, check the thickness of the coating. The thickness of the coating should be greater than 1100 angstroms in order to etch the microstructure on the surface of the coating;
(5)使用ICP蚀刻制程,在膜层表面蚀刻出圆柱状微结构;(5) Use ICP etching process to etch a cylindrical microstructure on the surface of the film layer;
(6)清洗蚀刻完成的芯片,并在光学显微镜下检查蚀刻质量。(6) Clean the etched chip and check the etching quality under an optical microscope.
本发明对高压LED芯片的出光效率的提高超过11%。以上所述仅为本发明的具体实施例,并非用以限定本发明的保护范围,凡是其它未脱离权利要求书范围内所进行的各种改型和修改,均应包含在本发明的范围内。The invention improves the light extraction efficiency of the high-voltage LED chip by more than 11%. The above descriptions are only specific embodiments of the present invention, and are not intended to limit the protection scope of the present invention. All other modifications and modifications that do not depart from the scope of the claims should be included in the scope of the present invention. .
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102110745A CN103268882A (en) | 2013-05-30 | 2013-05-30 | A kind of high-voltage LED chip with microstructure anti-reflection film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102110745A CN103268882A (en) | 2013-05-30 | 2013-05-30 | A kind of high-voltage LED chip with microstructure anti-reflection film |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103268882A true CN103268882A (en) | 2013-08-28 |
Family
ID=49012503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013102110745A Pending CN103268882A (en) | 2013-05-30 | 2013-05-30 | A kind of high-voltage LED chip with microstructure anti-reflection film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103268882A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103981508A (en) * | 2014-04-25 | 2014-08-13 | 武汉新芯集成电路制造有限公司 | Silicon oxynitride gradient anti-reflection thin film and preparation process thereof |
CN111129257A (en) * | 2019-12-30 | 2020-05-08 | 广东德力光电有限公司 | A composite electrode with high ultraviolet reflectivity and preparation method thereof |
CN111710766A (en) * | 2020-06-19 | 2020-09-25 | 中国工程物理研究院电子工程研究所 | A visible light LED chip with a composite antireflection coating with tunable refractive index |
WO2023273098A1 (en) * | 2021-06-29 | 2023-01-05 | 河源市众拓光电科技有限公司 | Led device for visible light communication |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1819290A (en) * | 2005-02-10 | 2006-08-16 | 株式会社东芝 | White led and manufacturing method therefor |
CN102790045A (en) * | 2011-05-18 | 2012-11-21 | 展晶科技(深圳)有限公司 | Light emitting diode array and manufacturing method thereof |
WO2013070421A1 (en) * | 2011-11-09 | 2013-05-16 | Bridgelux, Inc. | Series connected segmented led |
CN203288594U (en) * | 2013-05-30 | 2013-11-13 | 华南理工大学 | High-voltage LED chip having microstructure reflection reducing coating |
-
2013
- 2013-05-30 CN CN2013102110745A patent/CN103268882A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1819290A (en) * | 2005-02-10 | 2006-08-16 | 株式会社东芝 | White led and manufacturing method therefor |
CN102790045A (en) * | 2011-05-18 | 2012-11-21 | 展晶科技(深圳)有限公司 | Light emitting diode array and manufacturing method thereof |
WO2013070421A1 (en) * | 2011-11-09 | 2013-05-16 | Bridgelux, Inc. | Series connected segmented led |
CN203288594U (en) * | 2013-05-30 | 2013-11-13 | 华南理工大学 | High-voltage LED chip having microstructure reflection reducing coating |
Non-Patent Citations (1)
Title |
---|
达小丽: "钝化膜提高GaN基LED光提取效率研究", 《固体电子学研究与进展》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103981508A (en) * | 2014-04-25 | 2014-08-13 | 武汉新芯集成电路制造有限公司 | Silicon oxynitride gradient anti-reflection thin film and preparation process thereof |
CN111129257A (en) * | 2019-12-30 | 2020-05-08 | 广东德力光电有限公司 | A composite electrode with high ultraviolet reflectivity and preparation method thereof |
CN111710766A (en) * | 2020-06-19 | 2020-09-25 | 中国工程物理研究院电子工程研究所 | A visible light LED chip with a composite antireflection coating with tunable refractive index |
WO2023273098A1 (en) * | 2021-06-29 | 2023-01-05 | 河源市众拓光电科技有限公司 | Led device for visible light communication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN203288594U (en) | High-voltage LED chip having microstructure reflection reducing coating | |
US9190547B2 (en) | Photo-electric device with inverse pyramid shaped recesses | |
CN107516701B (en) | A high-voltage light-emitting diode chip and its manufacturing method | |
CN109935674A (en) | A flip-chip LED chip and method of making the same | |
JP7498368B2 (en) | Tandem photovoltaic device | |
CN103268882A (en) | A kind of high-voltage LED chip with microstructure anti-reflection film | |
CN110212071A (en) | Light-emitting diode chip for backlight unit and preparation method thereof | |
CN114725267B (en) | Semiconductor device and semiconductor device package including the same | |
CN106410008A (en) | High-brightness light-emitting diode chip and preparation method thereof | |
CN103682022B (en) | LED device structure | |
CN101969091A (en) | Light emitting diode | |
CN100375304C (en) | High extraction efficiency semiconductor light-emitting diode structure and preparation method thereof | |
CN206364047U (en) | Light Emitting Diode (LED) chip | |
TWI474504B (en) | Light-emitting diode structure and manufacturing method thereof | |
CN203218311U (en) | A power LED chip with N-type transparent electrode structure | |
CN210325841U (en) | Light emitting diode chip and light emitting diode | |
CN103426992A (en) | Semiconductor light emitting device | |
TW201322489A (en) | Light-emitting diode element and flip-chip light-emitting diode package component | |
CN110034220A (en) | A kind of flip LED chips and preparation method thereof | |
CN103199171A (en) | Power type light-emitting diode (LED) chip of N type transparent electrode structure | |
KR101030322B1 (en) | Manufacturing method of solar cell | |
CN108039400B (en) | Preparation method and structure of double-color LED chip | |
CN106159044B (en) | LED chip structure and preparation method thereof | |
CN203659931U (en) | LED chip and array type LED chip having structure of same | |
CN102130251B (en) | Light emitting diode (LED) and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130828 |