CN103252761A - Long-stroke two-dimensional nano worktable system with angle compensation function - Google Patents
Long-stroke two-dimensional nano worktable system with angle compensation function Download PDFInfo
- Publication number
- CN103252761A CN103252761A CN2013101560561A CN201310156056A CN103252761A CN 103252761 A CN103252761 A CN 103252761A CN 2013101560561 A CN2013101560561 A CN 2013101560561A CN 201310156056 A CN201310156056 A CN 201310156056A CN 103252761 A CN103252761 A CN 103252761A
- Authority
- CN
- China
- Prior art keywords
- degree
- freedom
- stroke
- axis
- frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Details Of Measuring And Other Instruments (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
本发明公开了一种具有角度补偿功能的大行程二维纳米工作台系统,采用基于压电陶瓷致动器和柔性铰链设计的六自由度微动工作台对大行程二维工作台进行直线定位及角度误差的综合补偿。本发明中,大行程二维工作台采用步进电机结合滚珠丝杠的驱动方式,具有较大的俯仰角、偏摆角、滚转角误差,定位精度在微米级;六自由度微动工作台具有纳米级的直线定位精度和毫秒级的角度定位精度。两者结合,组成了大行程二维纳米工作台系统。该系统在闭环控制系统的控制下通过六自由度微动工作台对大行程二维纳米工作台进行直线定位误差和角度误差的综合补偿,实现了二维大行程纳米定位。
The invention discloses a large-stroke two-dimensional nanometer workbench system with angle compensation function, which uses a six-degree-of-freedom micro-motion workbench based on piezoelectric ceramic actuators and flexible hinges to perform linear positioning on the large-stroke two-dimensional workbench And the comprehensive compensation of angle error. In the present invention, the large-stroke two-dimensional workbench adopts the driving method of stepping motor combined with ball screw, which has large pitch angle, yaw angle, and roll angle error, and the positioning accuracy is at the micron level; the six-degree-of-freedom micro-motion workbench It has nanometer-level linear positioning accuracy and millisecond-level angular positioning accuracy. The combination of the two forms a large-stroke two-dimensional nano-table system. Under the control of the closed-loop control system, the system comprehensively compensates the linear positioning error and angular error of the large-stroke two-dimensional nano-table through a six-degree-of-freedom micro-motion table, and realizes two-dimensional large-stroke nanopositioning.
Description
技术领域 technical field
本发明涉及大范围高精度定位工作台系统领域,具体为一种具有角度补偿功能的大行程二维纳米工作台系统。 The invention relates to the field of large-scale and high-precision positioning workbench systems, in particular to a large-stroke two-dimensional nanometer workbench system with an angle compensation function.
背景技术 Background technique
在测量系统中,工作台不仅需要具有极高的直线定位精度,而且需要尽可能的减小其运动角度误差。工作台的角度误差对其定位误差有着放大作用,尤其在违背阿贝原则的测量系统中,因工作台角度误差及阿贝臂引起的阿贝误差更是不可忽略。传统的x-y二维工作台多由两个可单轴运动的工作台叠加而成,导轨的不完善性导致运动台产生俯仰、偏摆和滚摆运动,如果此时两个工作台在空间上存在高度差,则会将导轨的定位误差放大反映到载物台所处的测量平面上。例如堆叠而成的二维测量平台,两导轨运动面不重合,存在S=5cm的高度差,下层工作台运动倾斜角度为,则给上一层工作台造成的运动定位误差=250nm,这个误差量级对于纳米测量是不可忽略的。在普通精度测量系统中,可以通过软件补偿对此误差进行一定程度的补偿,但是在纳米级测量系统中,由于工作台力变形及测量环境的变化,甚至是工件放置位置的不同都会造成工作台的附加微小变形,当测量机行程较大时,单靠补偿很难达到纳米级。为了解决此问题,有研究提出了共平面导轨设计方案,这种导向与测量面的共平面设计,消除了导轨角运动误差和导轨高度差对平台定位误差的放大作用。但是在测量时,对于有一定高度的被测件,工作台的角度误差仍会引入不可忽略的测量误差,并且此误差随着工件的形状及放置位置不同而变化,难以补偿。通过提高工作台导轨的加工精度和装配精度对减小工作台的定位误差和角度偏差有一定的效果,但是在大行程及高精度的要求下,成本极高且难以实现。 In the measurement system, the table not only needs to have extremely high linear positioning accuracy, but also needs to reduce its movement angle error as much as possible. The angular error of the worktable has a magnifying effect on its positioning error, especially in the measurement system that violates Abbe's principle, the Abbe error caused by the angular error of the worktable and the Abbe arm cannot be ignored. The traditional x-y two-dimensional worktable is mostly composed of two single-axis movable worktables. The imperfection of the guide rail causes the motion table to produce pitch, yaw, and roll motions. If the two worktables are in space at this time If there is a height difference, the positioning error of the guide rail will be amplified and reflected on the measurement plane where the stage is located. For example, the stacked two-dimensional measurement platform, the moving surfaces of the two guide rails do not overlap, there is a height difference of S = 5cm, and the inclination angle of the lower workbench is , the motion positioning error caused by the upper workbench = 250nm, this error The magnitude is not negligible for nanoscale measurements. In the ordinary precision measurement system, this error can be compensated to a certain extent through software compensation, but in the nanoscale measurement system, due to the deformation of the worktable and the change of the measurement environment, and even the difference in the position of the workpiece will cause the worktable When the stroke of the measuring machine is large, it is difficult to reach the nanometer level by compensation alone. In order to solve this problem, some studies have proposed a coplanar guide rail design. This coplanar design of the guide and measurement surfaces eliminates the amplification effect of the angular motion error of the guide rail and the height difference of the guide rail on the platform positioning error. However, when measuring, for a test piece with a certain height, the angle error of the worktable will still introduce a non-negligible measurement error, and this error varies with the shape and placement of the workpiece, making it difficult to compensate. By improving the machining accuracy and assembly accuracy of the guide rail of the worktable, there is a certain effect on reducing the positioning error and angular deviation of the worktable, but under the requirements of large stroke and high precision, the cost is extremely high and it is difficult to achieve.
发明内容 Contents of the invention
本发明的目的是提供一种具有角度补偿功能的大行程二维纳米工作台系统,以解决现有技术存在的问题。 The purpose of the present invention is to provide a large stroke two-dimensional nano-table system with angle compensation function to solve the problems existing in the prior art.
为了达到上述目的,本发明所采用的技术方案为: In order to achieve the above object, the technical scheme adopted in the present invention is:
具有角度补偿功能的大行程二维纳米工作台系统,其特征在于:包括有底座、设置在底座上的大行程二维工作台、由大行程二维工作台支撑的六自由度微动工作台、分布在六自由度微动工作台两相邻侧外并互呈90度夹角的两个光学测长测角系统,其中: The large-stroke two-dimensional nano-table system with angle compensation function is characterized in that it includes a base, a large-stroke two-dimensional workbench arranged on the base, and a six-degree-of-freedom micro-motion workbench supported by the large-stroke two-dimensional workbench , Two optical length measuring and angle measuring systems distributed on two adjacent sides of the six-degree-of-freedom micro-motion table and forming an angle of 90 degrees to each other, wherein:
所述的大行程二维工作台由分别沿X向、Y向设置的两组单轴工作台上下交叉叠加而成,每个单轴工作台以循环滚珠导轨副作为导向元件,以步进电机配合滚珠丝杠为驱动方式,其中位于上部的单轴工作台固定在位于下部的单轴工作台的导轨滑块上; The two-dimensional large-stroke workbench is composed of two groups of single-axis workbenches arranged along the X and Y directions, which are superimposed up and down. The ball screw is used as the driving method, and the upper single-axis worktable is fixed on the guide rail slider of the lower single-axis worktable;
所述的六自由度微动工作台的驱动元件为压电陶瓷,所用八个压电陶瓷均通过压电陶瓷无应力夹持预紧机构进行夹持和预紧,导向机构为柔性铰链弹性导轨,六自由度微动工作台包括连接板,所述连接板安装在大行程二维工作台中位于上部的单轴工作台的导轨滑块上并刚性相连,连接板上沿Z向设置有四组压电陶瓷驱动单元,四组压电陶瓷驱动单元在连接板上呈中心对称并围成矩形,且矩形的侧边分别与X向、Y向平行,连接板上还支撑有多自由度板,所述多自由度板由外框、设置在外框中的中框和设置在中框中的内基板构成,所述多自由度板通过其内基板固定在四组压电陶瓷驱动单元组成的矩形顶部,且多自由度板侧边与四组压电陶瓷驱动单元组成的矩形边缘平行,两个光学测长测角系统分布在多自由度板两相邻的侧边外,多自由度板外框位于其中一个光学测长测角系统同侧的框边顶部设置有X轴反射镜调整支架,多自由度板外框位于另一个光学测长测角系统同侧的框边顶部设置有Y轴反射镜调整支架,X轴反射镜调整支架与Y轴反射镜调整支架彼此呈90度分布在多自由度板外框顶部,且X轴反射镜调整支架顶部设置有作为X向光学测长测角系统靶镜的X轴反射镜、Y轴反射镜调整支架顶部设置有作为Y向光学测长测角系统靶镜的Y轴反射镜, X轴反射镜、Y轴反射镜各自对侧的多自由度板外框框边顶部分别安装有反射镜调整支架,反射镜调整支架上分别固定有平衡对侧反射镜重量的配重块,所述X、Y轴反射镜调整支架及X、Y轴反射镜调整支架对侧的配重用的反射镜调整支架在多自由度板外框顶部框接构成框形,且框形中间的多自由度板外框顶部还安装有载物台。 The driving element of the six-degree-of-freedom micro-motion workbench is piezoelectric ceramics, and the eight piezoelectric ceramics used are clamped and pre-tightened by piezoelectric ceramic stress-free clamping and pre-tightening mechanisms, and the guiding mechanism is a flexible hinge elastic guide rail , the six-degree-of-freedom micro-motion workbench includes a connecting plate, which is installed on the guide rail slider of the upper single-axis workbench in the large-travel two-dimensional workbench and rigidly connected, and four groups are arranged on the connecting plate along the Z direction. Piezoelectric ceramic drive unit, four groups of piezoelectric ceramic drive units are centrally symmetrical on the connecting plate and form a rectangle, and the sides of the rectangle are parallel to the X and Y directions respectively, and the connecting plate also supports a multi-degree-of-freedom plate, The multi-degree-of-freedom board is composed of an outer frame, a middle frame arranged in the outer frame, and an inner substrate arranged in the middle frame. The multi-degree-of-freedom board is fixed on a rectangular shape composed of four sets of piezoelectric ceramic drive units through its inner substrate. The top, and the side of the multi-degree-of-freedom board is parallel to the rectangular edge composed of four sets of piezoelectric ceramic drive units. Two optical length and angle measurement systems are distributed outside the two adjacent sides of the multi-degree-of-freedom board. The frame is located on the same side of one of the optical length measuring and angle measuring systems, and the top of the frame is equipped with an X-axis mirror adjustment bracket, and the outer frame of the multi-degree-of-freedom board is located on the same side of the other optical length and angle measuring system. The top of the frame is equipped with a Y-axis The mirror adjustment bracket, the X-axis mirror adjustment bracket and the Y-axis mirror adjustment bracket are distributed on the top of the multi-degree-of-freedom board frame at 90 degrees to each other, and the top of the X-axis mirror adjustment bracket is provided with an X-axis optical length measurement angle The X-axis reflector and Y-axis reflector of the system target mirror are adjusted on the top of the bracket. There is a Y-axis reflector as the target mirror of the Y-direction optical length measurement and angle measurement system. Mirror adjustment brackets are respectively installed on the top of the outer frame of the degree plate, and counterweights for balancing the weight of the opposite side mirrors are respectively fixed on the mirror adjustment brackets. The X, Y axis mirror adjustment brackets and the X, Y axis mirrors The mirror adjustment bracket used for the counterweight on the opposite side of the adjustment bracket is framed on the top of the multi-degree-of-freedom plate outer frame to form a frame shape, and the top of the multi-degree-of-freedom plate outer frame in the middle of the frame shape is also equipped with a loading platform.
所述的具有角度补偿功能的大行程二维纳米工作台系统,其特征在于:所述光学测长测角系统分别由光电自准直仪和迈克尔逊激光干涉仪构成。 The large-stroke two-dimensional nano-table system with angle compensation function is characterized in that: the optical length measurement and angle measurement system is composed of a photoelectric autocollimator and a Michelson laser interferometer.
所述的具有角度补偿功能的大行程二维纳米工作台系统,其特征在于:所述压电陶瓷无应力夹持预紧机构包括矩形压电陶瓷、分别无应力夹持在压电陶瓷顶部和底部绝缘陶瓷片上的垫片、嵌在其中一个垫片的锥形孔与固定基板的锥形孔之间的直径3mm的钢球、嵌在另一垫片的锥形孔与预紧螺钉头部锥形孔之间的直径3mm的钢球、预紧螺钉和预紧螺母,垫片的正面加工有滑槽,垫片的背面加工有锥形孔,两个垫片正面相对且使滑槽方向成90度角卡在压电陶瓷两端的绝缘陶瓷片上,使得压电陶瓷的位置被限定,而滑槽的存在使得在预紧螺钉和固定基板的锥形孔由于加工及装配精度低而不同轴时,两垫片可以在装配时沿滑槽方向进行微小滑动以补偿由于预紧螺钉和固定基板的锥形孔由于加工及装配精度低而不同轴时可能引入的附加应力,两垫片的背面、固定基板以及预紧螺钉的前端都加工有锥形孔,直径3mm的钢球分别卡在其中,在对应两锥形孔之间起定位及传递力的作用,压电陶瓷的预紧通过嵌在移动基板中的预紧螺母和预紧螺钉实现,所用螺距为0.35mm。 The large-stroke two-dimensional nano-table system with angle compensation function is characterized in that: the piezoelectric ceramic stress-free clamping and pre-tightening mechanism includes rectangular piezoelectric ceramics, which are respectively stress-free clamped on the top of the piezoelectric ceramics and The gasket on the bottom insulating ceramic sheet, the steel ball with a diameter of 3mm embedded between the tapered hole of one gasket and the tapered hole of the fixed substrate, the tapered hole embedded in the other gasket and the head of the pre-tightening screw Steel balls with a diameter of 3 mm, pre-tightening screws and pre-tightening nuts between the tapered holes. The front of the gasket is processed with a chute, and the back of the gasket is processed with a tapered hole. The fronts of the two gaskets face each other and the direction of the chute It is stuck on the insulating ceramic sheet at both ends of the piezoelectric ceramic at an angle of 90 degrees, so that the position of the piezoelectric ceramic is limited, and the existence of the slide groove makes the difference between the pre-tightening screw and the tapered hole of the fixed substrate due to low processing and assembly accuracy. When the axis is used, the two gaskets can slide slightly along the direction of the chute during assembly to compensate for the additional stress that may be introduced when the pre-tightening screw and the tapered hole of the fixed base plate are not aligned due to low machining and assembly accuracy. The two gaskets Tapered holes are processed on the back of the back, the fixed base plate and the front end of the pre-tightening screw, and steel balls with a diameter of 3mm are respectively stuck in them, which play the role of positioning and transmitting force between the corresponding two tapered holes. The pre-tightening of piezoelectric ceramics Realized by pre-tightening nuts and pre-tightening screws embedded in the mobile base plate, the pitch used is 0.35mm. the
所述的具有角度补偿功能的大行程二维纳米工作台系统,其特征在于:多自由度板采用7075铝合金经线切割加工而成,由内基板、中框和外框构成,内基板和中框之间安装有两个压电陶瓷,两个压电陶瓷的夹持和预紧方式和所述压电陶瓷无应力夹持预紧机构结构一致,内基板和中框之间的两个陶瓷同时伸长时,中框相对于内基板做旋转运动,中框和外框之间沿X方向和沿Y方向分别安装有X方向压电陶瓷和Y方向压电陶瓷,两个压电陶瓷的夹持和预紧方式和所述压电陶瓷无应力夹持预紧机构结构一致,X方向压电陶瓷伸长时,外框相对中框向X方向移动,Y方向压电陶瓷伸长时,外框相对中框向Y方向移动,X方向压电陶瓷和Y方向压电陶瓷同时伸长时,外框相对中框做沿XY方向的合运动,内基板的四周均布有四组Z向压电陶瓷驱动单元固定孔和四个Z向压电陶瓷驱动单元预紧螺钉孔,内基板的外侧四角分别加工有平行板柔性铰链,内基板和中框通过四组平行板柔性铰链相连,中框的框边外四角分别加工有双向平行板柔性铰链,中框和外框通过双向平行板柔性铰链相连,外框的框口四角均布共八个载物台固定孔,外框在外侧和X方向驱动陶瓷、Y方向驱动陶瓷相对的位置分别均布三个反射镜调整支架固定孔,X方向驱动陶瓷、Y方向驱动陶瓷同侧的位置分别均布有两个反射镜调整支架固定孔。 The large-stroke two-dimensional nano-table system with angle compensation function is characterized in that: the multi-degree-of-freedom plate is made of 7075 aluminum alloy through wire cutting, and is composed of an inner base plate, a middle frame and an outer frame, and the inner base plate and the middle Two piezoelectric ceramics are installed between the frames. The clamping and preloading methods of the two piezoelectric ceramics are consistent with the structure of the stress-free clamping and preloading mechanism of the piezoelectric ceramics. The two ceramics between the inner substrate and the middle frame When elongated at the same time, the middle frame rotates relative to the inner substrate, and X-direction piezoelectric ceramics and Y-direction piezoelectric ceramics are respectively installed between the middle frame and the outer frame along the X direction and along the Y direction. The clamping and pre-tightening methods are consistent with the structure of the piezoelectric ceramic stress-free clamping and pre-tightening mechanism. When the piezoelectric ceramics are stretched in the X direction, the outer frame moves in the X direction relative to the middle frame, and when the piezoelectric ceramics are stretched in the Y direction, The outer frame moves in the Y direction relative to the middle frame. When the piezoelectric ceramics in the X direction and the piezoelectric ceramics in the Y direction are extended at the same time, the outer frame moves in the XY direction relative to the middle frame. Four groups of Z direction The piezoelectric ceramic drive unit fixing hole and four Z-direction piezoelectric ceramic drive unit pre-tightening screw holes. The four outer corners of the inner base plate are respectively processed with parallel plate flexible hinges. The inner base plate and the middle frame are connected by four sets of parallel plate flexible hinges. The outer four corners of the frame are respectively processed with two-way parallel plate flexible hinges. The middle frame and the outer frame are connected by two-way parallel plate flexible hinges. The X-direction driving ceramics and the Y-direction driving ceramics are respectively evenly distributed with three mirror adjustment bracket fixing holes, and the positions of the X-direction driving ceramics and the Y-direction driving ceramics are respectively evenly distributed with two mirror adjustment bracket fixing holes. the
所述的具有角度补偿功能的大行程二维纳米工作台系统,其特征在于:所述柔性铰链均为平行板柔性铰链。 The large-stroke two-dimensional nano-table system with angle compensation function is characterized in that: the flexible hinges are all parallel plate flexible hinges.
所述的具有角度补偿功能的大行程二维纳米工作台系统,其特征在于:Z向压电陶瓷驱动单元由基体、设置在基体中的压电陶瓷构成,压电陶瓷的夹持和预紧方式和所述压电陶瓷无应力夹持预紧机构结构一致,其中基体的顶部设有上连接孔,基体的顶部中心开有通孔,基体的底部设有下连接孔,所述基体底部通过安装在下连接孔中的螺栓固定在连接板上,所述基体顶部的上连接孔和多自由度板内基板的Z向压电陶瓷驱动单元固定孔通过螺栓固定在一起,预紧螺母嵌入多自由度板内基板上的Z向压电陶瓷驱动单元预紧螺钉孔中,预紧螺钉从多自由度板上侧旋入,穿过基体顶部中心的通孔,对压电陶瓷进行夹持和预紧。 The described large-stroke two-dimensional nano-table system with angle compensation function is characterized in that: the Z-direction piezoelectric ceramic driving unit is composed of a base body and piezoelectric ceramics arranged in the base body, and the clamping and preloading of the piezoelectric ceramics The method is consistent with the structure of the piezoelectric ceramic stress-free clamping and pre-tightening mechanism, wherein the top of the substrate is provided with an upper connection hole, the center of the top of the substrate is provided with a through hole, the bottom of the substrate is provided with a lower connection hole, and the bottom of the substrate passes through The bolts installed in the lower connection hole are fixed on the connection plate, the upper connection hole on the top of the base body and the Z-direction piezoelectric ceramic drive unit fixing hole of the inner substrate of the multi-degree-of-freedom plate are fixed together by bolts, and the pre-tightening nut is embedded in the multi-degree-of-freedom plate. The Z-direction piezoelectric ceramic drive unit pre-tightening screw hole on the base plate in the multi-degree-of-freedom board, the pre-tightening screw is screwed in from the upper side of the multi-degree-of-freedom board, and passes through the through hole at the top center of the substrate to clamp and pre-tighten the piezoelectric ceramics. tight.
本发明基于宏微组合驱动方式提出一种大行程二维纳米工作台的设计方案,采用基于压电陶瓷致动器和柔性铰链设计的六自由度微动工作台对宏动工作台进行定位及角度误差的综合补偿,最大限度提高整个工作台系统的精度。 The present invention proposes a design scheme of a large-stroke two-dimensional nano-table based on the macro-micro combination drive method, and uses a six-degree-of-freedom micro-motion table based on piezoelectric ceramic actuators and flexible hinges to position and control the macro-motion table. The comprehensive compensation of angle error maximizes the accuracy of the entire workbench system.
本发明的有益效果在于:具有200mm×200mm的大运动范围,成本低廉,控制简单;控制方式简单,无须复杂算法,各自由度之间寄生运动小;具有运动范围大、定位精度高、运动角度误差小、成本低廉的优点。 The beneficial effects of the present invention are: a large motion range of 200mm×200mm, low cost, and simple control; the control method is simple, no complicated algorithm is required, and the parasitic motion between each degree of freedom is small; the motion range is large, the positioning accuracy is high, and the motion angle The advantages of small error and low cost.
附图说明 Description of drawings
图1为本发明整体结构示意图。 Figure 1 is a schematic diagram of the overall structure of the present invention.
图2为本发明大行程二维工作台结构图。 Fig. 2 is a structural diagram of a large-travel two-dimensional workbench of the present invention.
图3为本发明六自由度微动工作台结构图。 Fig. 3 is a structural diagram of a six-degree-of-freedom micro-motion workbench of the present invention.
图4为本发明压电陶瓷无应力夹持预紧机构。 Fig. 4 is a stress-free clamping and pre-tightening mechanism for piezoelectric ceramics of the present invention.
图5为本发明多自由度板结构图。 Fig. 5 is a structure diagram of the multi-degree-of-freedom plate of the present invention.
图6为本发明Z向压电陶瓷驱动单元结构图。 Fig. 6 is a structural diagram of a Z-direction piezoelectric ceramic driving unit of the present invention.
具体实施方式 Detailed ways
参见图1、图2、图3,本发明包括一个底座1,一个大行程二维工作台5,一个六自由度微动工作台3,两套呈90度夹角布置的光学测长测角系统2和4;为使工作台定位系统的X、Y轴直线定位精度达到纳米级,利用六自由度微动工作台3的直线运动对大行程二维工作台5进行直线定位误差的补偿,为使工作台定位系统获得极小的角度误差,通过六自由度微动台3的转角运动对大行程二维工作台5进行角度误差的补偿;
Referring to Fig. 1, Fig. 2 and Fig. 3, the present invention includes a base 1, a two-
大行程二维工作台5由分别沿X向、Y向设置的两组单轴工作台上下交叉叠加而成,每个单轴工作台以循环滚珠导轨副7作为导向元件,以步进电机6配合滚珠丝杠8作为驱动方式,其中位于上部的单轴工作台固定在位于下部的单轴工作台的导轨滑块10上,叠加之后的大行程二维工作台5行程为200mm×200mm。
The large-stroke two-
六自由度微动工作台3通过转接板11和大行程二维工作台5的位于上部的单轴工作台的导轨滑块9刚性相连,固定于转接板11上的四组Z向压电陶瓷驱动单元12提供工作台沿Z向的升降和绕X轴、Y轴的转动,四组Z向压电陶瓷驱动单元12在连接板11上呈中心对称并围成矩形,且矩形的侧边分别与X向、Y向平行,多自由度板13通过其内基板39固定在四组压电陶瓷驱动单元12组成的矩形顶部,且多自由度板13侧边与四组压电陶瓷驱动单元12组成的矩形边缘平行,两个光学测长测角系统2和4分布在多自由度板13两相邻的侧边外,工作台沿X方向和Y方向的平动以及绕Z轴的转动由多自由度板13实现,多自由度板13的内基板39与四组Z向压电陶瓷驱动单元12通过内基板39四周的Z向压电陶瓷驱动单元固定孔38相连,使得四个Z向压电陶瓷驱动单元12组合运动产生的俯仰运动能够传递给多自由度板13,多自由度板13外框41位于其中一个光学测长测角系统同侧的框边顶部设置有X轴反射镜调整支架17,多自由度板外框位于另一个光学测长测角系统同侧的框边顶部设置有Y轴反射镜调整支架14,X轴反射镜调整支架17与Y轴反射镜调整支架14彼此呈90度分布在多自由度板13的外框41顶部,通过三个螺钉和多自由度板13的外框41相连,具有偏摆角和俯仰角的微调功能,且X轴反射镜调整支架17顶部设置有作为X向光学测长测角系统靶镜的X轴反射镜16、Y轴反射镜调整支架14顶部设置有作为Y向光学测长测角系统靶镜的Y轴反射镜15, X轴反射镜16、Y轴反射镜15各自对侧的多自由度板外框框边顶部分别安装有反射镜调整支架21和20,反射镜调整支架21和20上分别固定有平衡对侧反射镜重量的配重块22和19,所述X、Y轴反射镜调整支架17和14及X、Y轴反射镜调整支架对侧的配重用的反射镜调整支架21和20在多自由度板外框顶部框接构成框形,且框形中间的多自由度板外框顶部还安装有载物台18,载物台18通过螺钉和多自由板13的外框41相连。
The six-degree-of-freedom micro-motion workbench 3 is rigidly connected to the
大行程二维工作台5和六自由度微动工作台3采用共用的位置检测系统2和4,位置检测系统2由光电自准直仪和迈克尔逊激光干涉仪两部分组成,位置检测系统4的结构和位置检测系统2相同;光电自准直仪用于测量载物台18的俯仰角和偏摆角,迈克尔逊激光干涉仪用于测量载物台18的直线定位误差;位置检测系统2和4以固定于六自由度微动工作台3上的两个成90度夹角布置的高精度长条状平面反射镜16和15为靶镜,避免大行程二维工作台5和六自由度微动工作台3分别进行位置测量时因测量基准不统一而引入的累积误差。
The two-dimensional large-
参见图4,六自由度微动工作台中的八个压电陶瓷均采用无应力夹持预紧机构进行夹装,两个垫片25和27面对面并使滑槽成90度角卡在压电陶瓷26两端的绝缘陶瓷片上,等效为将压电陶瓷26卡在一个十字滑槽中,使得压电陶瓷26的位置被限定,而滑槽32的存在使得在预紧螺钉31和固定基板23的锥形孔由于加工及装配精度低而不同轴时,两垫片25和27可以在装配时沿滑槽方向进行微小滑动以补偿由于预紧螺钉31和固定基板23的锥形孔由于加工及装配精度低而不同轴时可能引入的附加应力,垫片25和27的背面加工有锥形孔33,固定基板23以及预紧螺钉31的前端同样加工有锥形孔,直径3mm的钢球24和28分别卡在垫片25和固定基板23之间的锥形孔、垫片27和预紧螺钉31前端的锥形孔之间,在对应两锥形孔之间起定位及传递力的作用,压电陶瓷26的预紧通过嵌在移动基板30中的预紧螺母29和预紧螺钉31实现。
Referring to Figure 4, the eight piezoelectric ceramics in the six-degree-of-freedom micro-motion workbench are clamped by a stress-free clamping and pre-tightening mechanism. The insulating ceramic sheets at both ends of the ceramic 26 are equivalent to clamping the piezoelectric ceramic 26 in a cross chute, so that the position of the piezoelectric ceramic 26 is limited, and the existence of the
参见图3、图5、图6,柔性铰链均为平行板柔性铰链,平行板柔性铰链结构简单,加工方便,无原理误差。 Referring to Fig. 3, Fig. 5, and Fig. 6, the flexible hinges are all parallel plate flexible hinges, and the parallel plate flexible hinges have a simple structure, are easy to process, and have no principle error.
参加图5,多自由度板13采用7075铝合金经线切割加工而成,由内基板39、中框40和外框41构成,内基板39和中框40之间安装有两个压电陶瓷42和44,两个压电陶瓷42和44的夹持和预紧方式和所述压电陶瓷无应力夹持预紧机构结构一致,内基板39和中框40之间的两个压电陶瓷42和44同时伸长时,中框40相对于内基板39做绕Z轴的旋转运动,中框40和外框41之间沿X方向和沿Y方向分别安装有X方向压电陶瓷37和Y方向压电陶瓷34,两个压电陶瓷37和34的夹持和预紧方式和所述压电陶瓷无应力夹持预紧机构结构一致,X方向压电陶瓷37伸长时,外框41相对中框40向X方向移动,Y方向压电陶瓷34伸长时,外框41相对中框40向Y方向移动,X方向压电陶瓷37和Y方向压电陶瓷34同时伸长时,外框41相对中框40做沿XY方向的合运动,内基板39的四周均布有四组Z向压电陶瓷驱动单元固定孔38和四个Z向压电陶瓷驱动单元预紧螺钉孔43,内基板39的外侧四角分别加工有平行板柔性铰链36,内基板39和中框40通过四组平行板柔性铰链36相连,中框40的框边外四角分别加工有双向平行板柔性铰链35,中框40和外框41通过双向平行板柔性铰链35相连,外框41的框口四角均布共八个载物台固定孔45,外框41在外侧和X方向驱动陶瓷37、Y方向驱动陶瓷34相对的位置分别均布三个反射镜调整支架固定孔46,反射镜调整支架固定孔46用于反射镜调整支架17和14的微调与固定,X方向驱动陶瓷37、Y方向驱动陶瓷34同侧的位置分别均布有两个反射镜调整支架固定孔47,用于反射镜调整支架21和20的固定。
Referring to Figure 5, the multi-degree-of-freedom board 13 is made of 7075 aluminum alloy through wire cutting, and is composed of an inner substrate 39, a middle frame 40 and an outer frame 41, and two piezoelectric ceramics 42 are installed between the inner substrate 39 and the middle frame 40 and 44, the clamping and preloading methods of the two piezoelectric ceramics 42 and 44 are consistent with the structure of the piezoelectric ceramic stress-free clamping and preloading mechanism, and the two piezoelectric ceramics 42 between the inner substrate 39 and the middle frame 40 When stretching at the same time as 44, the middle frame 40 rotates around the Z-axis relative to the inner substrate 39, and X-direction piezoelectric ceramics 37 and Y-direction piezoelectric ceramics 37 and Y direction piezoelectric ceramic 34, the clamping and pre-tightening methods of the two piezoelectric ceramics 37 and 34 are consistent with the structure of the piezoelectric ceramic stress-free clamping and pre-tightening mechanism, when the X-direction piezoelectric ceramic 37 is elongated, the outer frame 41 Relative to the middle frame 40, when the piezoelectric ceramics 34 in the Y direction move in the X direction, the outer frame 41 moves in the Y direction relative to the middle frame 40, and when the X direction piezoelectric ceramics 37 and the Y direction piezoelectric ceramics 34 elongate simultaneously, the outer frame 41 The frame 41 performs joint movement along the XY direction relative to the middle frame 40. Four sets of Z-direction piezoelectric ceramic drive
参见图6,Z向压电陶瓷驱动单元12由基体55、设置在基体55中的压电陶瓷54构成,压电陶瓷54的夹持预紧方式和所述压电陶瓷无应力夹持预紧机构一致,其中基体55的顶部设有上连接孔49,基体55的顶部中心开有通孔52,基体55的底部设有下连接孔48,所述基体55底部通过安装在下连接孔48中的螺栓固定在连接板11上,所述基体55顶部的上连接孔49和多自由度板13的内基板39的Z向压电陶瓷驱动单元固定孔38通过螺栓固定在一起,预紧螺母嵌入多自由度板13的内基板39上的Z向压电陶瓷驱动单元预紧螺钉孔43中,预紧螺钉51从多自由度板13上方旋入,穿过基体55顶部中心的通孔52,对压电陶瓷54进行夹持和预紧。
Referring to Fig. 6, the Z-direction piezoelectric
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310156056.1A CN103252761B (en) | 2013-04-28 | 2013-04-28 | There is the Long Distances two-dimensional nano work system of angle compensation function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310156056.1A CN103252761B (en) | 2013-04-28 | 2013-04-28 | There is the Long Distances two-dimensional nano work system of angle compensation function |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103252761A true CN103252761A (en) | 2013-08-21 |
CN103252761B CN103252761B (en) | 2015-11-11 |
Family
ID=48957144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310156056.1A Active CN103252761B (en) | 2013-04-28 | 2013-04-28 | There is the Long Distances two-dimensional nano work system of angle compensation function |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103252761B (en) |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105436336A (en) * | 2015-12-28 | 2016-03-30 | 嵊州市意海电机配件厂 | Adjusting device for stamping of aluminum plate |
CN105500454A (en) * | 2016-01-29 | 2016-04-20 | 深圳市前海野马自动化设备有限公司 | Automatic reinforcing laminating machine |
CN105537779A (en) * | 2016-02-23 | 2016-05-04 | 大族激光科技产业集团股份有限公司 | Three-dimensional adjusting mechanism and auxiliary laser cutting device employing same |
CN105666158A (en) * | 2016-03-15 | 2016-06-15 | 安徽机电职业技术学院 | Worktable with electric adjusting device |
CN105666225A (en) * | 2016-04-22 | 2016-06-15 | 清华大学 | Ultra-precise low-speed ball screw linear feeding device |
CN105729141A (en) * | 2016-04-08 | 2016-07-06 | 武汉理工大学 | Precise linear two-dimensional double-drive workbench based on control of open numerical-control system |
CN105834762A (en) * | 2016-06-07 | 2016-08-10 | 石狮市固定科锁具有限公司 | Position-adjustable floating worktable equipment |
CN105834761A (en) * | 2016-06-07 | 2016-08-10 | 石狮市固定科锁具有限公司 | Operation-smooth floating worktable structure |
CN105881039A (en) * | 2016-06-07 | 2016-08-24 | 石狮市固定科锁具有限公司 | Overtravel-preventing floating working table structure |
CN105881038A (en) * | 2016-06-07 | 2016-08-24 | 石狮市固定科锁具有限公司 | Double-shaft adjustable floating type workbench device |
CN105922021A (en) * | 2016-06-07 | 2016-09-07 | 石狮市固定科锁具有限公司 | Worktable mechanism with double-shaft adjustment function |
CN106002320A (en) * | 2016-06-07 | 2016-10-12 | 石狮市固定科锁具有限公司 | Workbench device capable of being regulated in biaxial manner |
CN106002318A (en) * | 2016-06-07 | 2016-10-12 | 石狮市固定科锁具有限公司 | Workbench equipment having double-axis adjustment function |
CN106002319A (en) * | 2016-06-07 | 2016-10-12 | 石狮市固定科锁具有限公司 | Floating type workbench structure used for industrial processing |
CN106002337A (en) * | 2016-06-07 | 2016-10-12 | 石狮市固定科锁具有限公司 | Floating type workbench device facilitating clearance adjustment |
CN106002335A (en) * | 2016-06-07 | 2016-10-12 | 石狮市固定科锁具有限公司 | Floating type workbench structure capable of achieving double-axis adjustment |
CN106041552A (en) * | 2016-06-07 | 2016-10-26 | 石狮市固定科锁具有限公司 | Machining workbench structure capable of achieving double-shaft adjustment |
CN106041545A (en) * | 2016-06-07 | 2016-10-26 | 石狮市固定科锁具有限公司 | Machining workbench device capable of achieving double-shaft adjustment |
CN106078247A (en) * | 2016-06-07 | 2016-11-09 | 石狮市固定科锁具有限公司 | A kind of convenient Working table structure adjusting gap |
CN106272286A (en) * | 2016-10-11 | 2017-01-04 | 南宁钛银科技有限公司 | Universal working carriage |
CN106594070A (en) * | 2016-12-21 | 2017-04-26 | 西安理工大学 | Sub-nanometer precision driving workbench based on flexible structure |
CN106647175A (en) * | 2015-10-30 | 2017-05-10 | 上海微电子装备有限公司 | Moving body measurement and initialization apparatus |
CN106679595A (en) * | 2016-12-29 | 2017-05-17 | 福州华友光学仪器有限公司 | Center offset and wedge angle detecting instrument for wedge angle spherical lens and measurement method |
CN106783694A (en) * | 2017-02-06 | 2017-05-31 | 广东工业大学 | A kind of wafer stage chip upside-down mounting locating platform |
CN106767652A (en) * | 2016-12-06 | 2017-05-31 | 天津津航技术物理研究所 | A kind of optical filter angle of wedge detecting tool and detection method |
CN106862846A (en) * | 2017-04-21 | 2017-06-20 | 广州众顶建筑工程科技有限公司 | A kind of welder |
CN106996504A (en) * | 2017-04-21 | 2017-08-01 | 广州雅隆自动化设备有限公司 | Television bracket structure |
CN107402549A (en) * | 2016-05-18 | 2017-11-28 | 艾罗德克有限公司 | The parallel shaft flexible platform of open frame with deflection compensated |
CN107435796A (en) * | 2017-04-21 | 2017-12-05 | 广州雅隆自动化设备有限公司 | Television bracket |
CN107435795A (en) * | 2017-04-21 | 2017-12-05 | 广州雅隆自动化设备有限公司 | Television bracket device |
CN107584489A (en) * | 2017-04-05 | 2018-01-16 | 鲁东大学 | The light-duty intermediate module of two dimensional surface self compensation linkage |
CN108000459A (en) * | 2018-01-15 | 2018-05-08 | 大连交通大学 | A kind of six degree of freedom series-parallel connection curved beam space compliant mechanism |
CN108044577A (en) * | 2017-11-29 | 2018-05-18 | 重庆北金人防工程设备有限公司 | A kind of closed guard gate's location structure and its manufacturing method |
CN108092545A (en) * | 2018-01-12 | 2018-05-29 | 长春工业大学 | Multiple degrees of freedom piezoelectricity stick-slip micro-nano locating platform and its driving method |
CN106002336B (en) * | 2016-06-07 | 2018-07-10 | 安溪县都源达包装材料有限公司 | A kind of floating type table mechanism of anti-power failure |
CN108381207A (en) * | 2018-04-27 | 2018-08-10 | 杭州辉昂科技有限公司 | A kind of six-freedom worktable and control method |
CN108581976A (en) * | 2017-12-28 | 2018-09-28 | 东莞市大为线缆有限公司 | A kind of electric wire and cable jacket material oxidation induction period test workbench |
CN108672769A (en) * | 2018-05-18 | 2018-10-19 | 大唐广电科技(武汉)有限公司 | A kind of flashlight drilling cramp acting on smooth flat |
CN109648191A (en) * | 2019-01-15 | 2019-04-19 | 北京大学 | It is a kind of can real-time monitoring energy micron order high-resolution ultrafast laser machining system |
CN109894783A (en) * | 2017-12-08 | 2019-06-18 | 长春设备工艺研究所 | Tailstock plate flexibility quick-fitting device |
CN110375642A (en) * | 2019-07-31 | 2019-10-25 | 北京航空航天大学 | A kind of interferometer piezoelectric ceramic control device and its control method |
CN110860809A (en) * | 2018-08-28 | 2020-03-06 | 武汉斯利沃激光器技术有限公司 | Bidirectional fine adjustment system for floating fine adjustment platform |
CN111026166A (en) * | 2019-12-20 | 2020-04-17 | 华南理工大学 | Plane two-degree-of-freedom macro-micro composite positioning system and control method |
CN111238337A (en) * | 2020-01-21 | 2020-06-05 | 中国计量科学研究院 | Calibration method and system of step gauge based on laser interference to eliminate Abbe error |
CN111409874A (en) * | 2020-03-10 | 2020-07-14 | 上海卫星工程研究所 | Two-dimensional rotary table locking and unlocking device suitable for spacecraft |
CN111515756A (en) * | 2020-04-03 | 2020-08-11 | 大连理工大学 | Precise fine adjustment device for on-machine measurement function integration |
CN112207773A (en) * | 2020-08-28 | 2021-01-12 | 南京沃瑞新能源科技有限公司 | Automatic positioning and fixing platform for new energy product production and manufacturing and use method |
CN112743501A (en) * | 2021-01-13 | 2021-05-04 | 苏州凌云光工业智能技术有限公司 | Carrying platform |
CN113164147A (en) * | 2018-11-19 | 2021-07-23 | 锐珂医疗公司 | Collimator control |
CN113787494A (en) * | 2021-08-13 | 2021-12-14 | 东台市欧力传动部件有限公司 | Ball screw cross sliding table |
CN113983308A (en) * | 2021-12-27 | 2022-01-28 | 中国工程物理研究院应用电子学研究所 | Optical vibration reduction platform with adjustable multiple degrees of freedom |
CN114187961A (en) * | 2022-01-07 | 2022-03-15 | 合肥工业大学 | A high-precision six-degree-of-freedom micro-displacement table system that can release thermal deformation |
CN114193260A (en) * | 2021-11-08 | 2022-03-18 | 天长市锦瑞防护设施有限公司 | Precise trimming device for end section of spliced protective fence |
WO2022068181A1 (en) * | 2020-09-29 | 2022-04-07 | 深圳市中图仪器股份有限公司 | Electric high-precision two-dimensional object carrying table |
CN114354132A (en) * | 2021-12-10 | 2022-04-15 | 中国科学院长春光学精密机械与物理研究所 | Vertical detection system for testing wave aberration of optical system vertical state system |
CN115031665A (en) * | 2022-08-12 | 2022-09-09 | 河北天启通宇航空器材科技发展有限公司 | Joystick Angle Test Method |
CN115533850A (en) * | 2022-10-31 | 2022-12-30 | 西安建筑科技大学 | Angle fine-adjustment platform in vertical direction |
CN116381892A (en) * | 2023-04-21 | 2023-07-04 | 广东工业大学 | Two-stage macro-micro camera lens focusing device based on direct-drive type air floatation platform |
CN118655343A (en) * | 2024-08-06 | 2024-09-17 | 矽电半导体设备(深圳)股份有限公司 | Lifting mechanism, test platform and test method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4952858A (en) * | 1988-05-18 | 1990-08-28 | Galburt Daniel N | Microlithographic apparatus |
CN1565811A (en) * | 2003-06-17 | 2005-01-19 | 合肥工业大学 | Single-layer structure micromotion workbench with six degrees of freedom and its parallel control mode |
CN1669744A (en) * | 2005-03-10 | 2005-09-21 | 中国科学院上海光学精密机械研究所 | Six-freedom-degree precision positioning workbench |
CN1731081A (en) * | 2005-08-26 | 2006-02-08 | 哈尔滨工业大学 | Large-travel, high-speed, nano-level precision planar positioning system with macro/micro dual drive |
CN2904210Y (en) * | 2006-04-12 | 2007-05-23 | 合肥工业大学 | Large-travel high-precision two-dimensional worktable |
US20100060729A1 (en) * | 2001-01-11 | 2010-03-11 | Wetzel Arthur W | System for creating microscopic digital montage images |
CN202388489U (en) * | 2011-12-06 | 2012-08-22 | 华侨大学 | Novel displacement working table |
CN102830711A (en) * | 2012-09-14 | 2012-12-19 | 袁庆丹 | Large-stroke and high-precision micro-motion platform |
CN203245845U (en) * | 2013-04-28 | 2013-10-23 | 合肥工业大学 | Large stroke two-dimensional nanometer work table system with angle compensation function |
-
2013
- 2013-04-28 CN CN201310156056.1A patent/CN103252761B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4952858A (en) * | 1988-05-18 | 1990-08-28 | Galburt Daniel N | Microlithographic apparatus |
US20100060729A1 (en) * | 2001-01-11 | 2010-03-11 | Wetzel Arthur W | System for creating microscopic digital montage images |
CN1565811A (en) * | 2003-06-17 | 2005-01-19 | 合肥工业大学 | Single-layer structure micromotion workbench with six degrees of freedom and its parallel control mode |
CN1669744A (en) * | 2005-03-10 | 2005-09-21 | 中国科学院上海光学精密机械研究所 | Six-freedom-degree precision positioning workbench |
CN1731081A (en) * | 2005-08-26 | 2006-02-08 | 哈尔滨工业大学 | Large-travel, high-speed, nano-level precision planar positioning system with macro/micro dual drive |
CN2904210Y (en) * | 2006-04-12 | 2007-05-23 | 合肥工业大学 | Large-travel high-precision two-dimensional worktable |
CN202388489U (en) * | 2011-12-06 | 2012-08-22 | 华侨大学 | Novel displacement working table |
CN102830711A (en) * | 2012-09-14 | 2012-12-19 | 袁庆丹 | Large-stroke and high-precision micro-motion platform |
CN203245845U (en) * | 2013-04-28 | 2013-10-23 | 合肥工业大学 | Large stroke two-dimensional nanometer work table system with angle compensation function |
Non-Patent Citations (2)
Title |
---|
余晓芬等: ""大行程纳米二维工作台的动态优化设计"", 《电子测量与仪器学报》 * |
王淑珍等: ""大行程纳米级共平面二维精密工作台的研究"", 《机械科学与技术》 * |
Cited By (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106647175B (en) * | 2015-10-30 | 2018-08-14 | 上海微电子装备(集团)股份有限公司 | A kind of measurement of movable body and apparatus for initializing |
CN106647175A (en) * | 2015-10-30 | 2017-05-10 | 上海微电子装备有限公司 | Moving body measurement and initialization apparatus |
CN105436336A (en) * | 2015-12-28 | 2016-03-30 | 嵊州市意海电机配件厂 | Adjusting device for stamping of aluminum plate |
CN105500454A (en) * | 2016-01-29 | 2016-04-20 | 深圳市前海野马自动化设备有限公司 | Automatic reinforcing laminating machine |
CN105537779A (en) * | 2016-02-23 | 2016-05-04 | 大族激光科技产业集团股份有限公司 | Three-dimensional adjusting mechanism and auxiliary laser cutting device employing same |
CN105537779B (en) * | 2016-02-23 | 2017-12-01 | 大族激光科技产业集团股份有限公司 | Three-dimensional adjusting mechanism and the laser cutting servicing unit for including it |
CN105666158A (en) * | 2016-03-15 | 2016-06-15 | 安徽机电职业技术学院 | Worktable with electric adjusting device |
CN105729141A (en) * | 2016-04-08 | 2016-07-06 | 武汉理工大学 | Precise linear two-dimensional double-drive workbench based on control of open numerical-control system |
CN105666225A (en) * | 2016-04-22 | 2016-06-15 | 清华大学 | Ultra-precise low-speed ball screw linear feeding device |
CN105666225B (en) * | 2016-04-22 | 2018-02-16 | 清华大学 | A kind of ultraprecise low speed ball-screw straight-line feed device |
CN107402549A (en) * | 2016-05-18 | 2017-11-28 | 艾罗德克有限公司 | The parallel shaft flexible platform of open frame with deflection compensated |
CN107402549B (en) * | 2016-05-18 | 2021-05-25 | 艾罗德克有限公司 | Open frame parallel dual-axis flexible platform with deflection compensation |
CN105834761A (en) * | 2016-06-07 | 2016-08-10 | 石狮市固定科锁具有限公司 | Operation-smooth floating worktable structure |
CN105922021A (en) * | 2016-06-07 | 2016-09-07 | 石狮市固定科锁具有限公司 | Worktable mechanism with double-shaft adjustment function |
CN106002337A (en) * | 2016-06-07 | 2016-10-12 | 石狮市固定科锁具有限公司 | Floating type workbench device facilitating clearance adjustment |
CN106002335A (en) * | 2016-06-07 | 2016-10-12 | 石狮市固定科锁具有限公司 | Floating type workbench structure capable of achieving double-axis adjustment |
CN106041552A (en) * | 2016-06-07 | 2016-10-26 | 石狮市固定科锁具有限公司 | Machining workbench structure capable of achieving double-shaft adjustment |
CN106041545A (en) * | 2016-06-07 | 2016-10-26 | 石狮市固定科锁具有限公司 | Machining workbench device capable of achieving double-shaft adjustment |
CN106078247A (en) * | 2016-06-07 | 2016-11-09 | 石狮市固定科锁具有限公司 | A kind of convenient Working table structure adjusting gap |
CN106002318A (en) * | 2016-06-07 | 2016-10-12 | 石狮市固定科锁具有限公司 | Workbench equipment having double-axis adjustment function |
CN106002320A (en) * | 2016-06-07 | 2016-10-12 | 石狮市固定科锁具有限公司 | Workbench device capable of being regulated in biaxial manner |
CN106002319A (en) * | 2016-06-07 | 2016-10-12 | 石狮市固定科锁具有限公司 | Floating type workbench structure used for industrial processing |
CN105881038A (en) * | 2016-06-07 | 2016-08-24 | 石狮市固定科锁具有限公司 | Double-shaft adjustable floating type workbench device |
CN106002318B (en) * | 2016-06-07 | 2018-07-24 | 安溪县都源达包装材料有限公司 | A kind of table apparatus with twin shaft regulatory function |
CN106002335B (en) * | 2016-06-07 | 2018-07-17 | 安溪县都源达包装材料有限公司 | It is a kind of can twin shaft adjust floating type Working table structure |
CN106002336B (en) * | 2016-06-07 | 2018-07-10 | 安溪县都源达包装材料有限公司 | A kind of floating type table mechanism of anti-power failure |
CN106002320B (en) * | 2016-06-07 | 2018-07-03 | 浦江特捷锁业有限公司 | It is a kind of can twin shaft adjust table device |
CN105881039A (en) * | 2016-06-07 | 2016-08-24 | 石狮市固定科锁具有限公司 | Overtravel-preventing floating working table structure |
CN105834762A (en) * | 2016-06-07 | 2016-08-10 | 石狮市固定科锁具有限公司 | Position-adjustable floating worktable equipment |
CN106002319B (en) * | 2016-06-07 | 2018-06-26 | 浦江特捷锁业有限公司 | A kind of floating type Working table structure for industrial processes |
CN105834761B (en) * | 2016-06-07 | 2018-03-30 | 石狮市固定科锁具有限公司 | One kind runs smoothly floating type Working table structure |
CN106272286A (en) * | 2016-10-11 | 2017-01-04 | 南宁钛银科技有限公司 | Universal working carriage |
CN106767652A (en) * | 2016-12-06 | 2017-05-31 | 天津津航技术物理研究所 | A kind of optical filter angle of wedge detecting tool and detection method |
CN106594070A (en) * | 2016-12-21 | 2017-04-26 | 西安理工大学 | Sub-nanometer precision driving workbench based on flexible structure |
CN106594070B (en) * | 2016-12-21 | 2019-09-27 | 西安理工大学 | Sub-nano-scale precision drive workbench based on flexible structure |
CN106679595A (en) * | 2016-12-29 | 2017-05-17 | 福州华友光学仪器有限公司 | Center offset and wedge angle detecting instrument for wedge angle spherical lens and measurement method |
CN106783694A (en) * | 2017-02-06 | 2017-05-31 | 广东工业大学 | A kind of wafer stage chip upside-down mounting locating platform |
CN107584489A (en) * | 2017-04-05 | 2018-01-16 | 鲁东大学 | The light-duty intermediate module of two dimensional surface self compensation linkage |
CN107435795A (en) * | 2017-04-21 | 2017-12-05 | 广州雅隆自动化设备有限公司 | Television bracket device |
CN107435796A (en) * | 2017-04-21 | 2017-12-05 | 广州雅隆自动化设备有限公司 | Television bracket |
CN106996504A (en) * | 2017-04-21 | 2017-08-01 | 广州雅隆自动化设备有限公司 | Television bracket structure |
CN106862846A (en) * | 2017-04-21 | 2017-06-20 | 广州众顶建筑工程科技有限公司 | A kind of welder |
CN108044577A (en) * | 2017-11-29 | 2018-05-18 | 重庆北金人防工程设备有限公司 | A kind of closed guard gate's location structure and its manufacturing method |
CN109894783A (en) * | 2017-12-08 | 2019-06-18 | 长春设备工艺研究所 | Tailstock plate flexibility quick-fitting device |
CN108581976A (en) * | 2017-12-28 | 2018-09-28 | 东莞市大为线缆有限公司 | A kind of electric wire and cable jacket material oxidation induction period test workbench |
CN108092545A (en) * | 2018-01-12 | 2018-05-29 | 长春工业大学 | Multiple degrees of freedom piezoelectricity stick-slip micro-nano locating platform and its driving method |
CN108092545B (en) * | 2018-01-12 | 2020-01-10 | 长春工业大学 | Multi-degree-of-freedom piezoelectric stick-slip micro-nano positioning platform and driving method thereof |
CN108000459B (en) * | 2018-01-15 | 2023-08-18 | 大连交通大学 | Six-degree-of-freedom hybrid curved beam space compliant mechanism |
CN108000459A (en) * | 2018-01-15 | 2018-05-08 | 大连交通大学 | A kind of six degree of freedom series-parallel connection curved beam space compliant mechanism |
CN108381207A (en) * | 2018-04-27 | 2018-08-10 | 杭州辉昂科技有限公司 | A kind of six-freedom worktable and control method |
CN108381207B (en) * | 2018-04-27 | 2024-02-06 | 陕西双玉科技有限公司 | Six-degree-of-freedom workbench and control method |
CN108672769A (en) * | 2018-05-18 | 2018-10-19 | 大唐广电科技(武汉)有限公司 | A kind of flashlight drilling cramp acting on smooth flat |
CN110860809A (en) * | 2018-08-28 | 2020-03-06 | 武汉斯利沃激光器技术有限公司 | Bidirectional fine adjustment system for floating fine adjustment platform |
CN113164147A (en) * | 2018-11-19 | 2021-07-23 | 锐珂医疗公司 | Collimator control |
CN109648191A (en) * | 2019-01-15 | 2019-04-19 | 北京大学 | It is a kind of can real-time monitoring energy micron order high-resolution ultrafast laser machining system |
CN110375642B (en) * | 2019-07-31 | 2020-12-08 | 北京航空航天大学 | A piezoelectric ceramic control device for an interferometer and a control method thereof |
CN110375642A (en) * | 2019-07-31 | 2019-10-25 | 北京航空航天大学 | A kind of interferometer piezoelectric ceramic control device and its control method |
CN111026166B (en) * | 2019-12-20 | 2021-09-21 | 华南理工大学 | Planar two-degree-of-freedom macro-micro composite positioning system and control method |
CN111026166A (en) * | 2019-12-20 | 2020-04-17 | 华南理工大学 | Plane two-degree-of-freedom macro-micro composite positioning system and control method |
CN111238337A (en) * | 2020-01-21 | 2020-06-05 | 中国计量科学研究院 | Calibration method and system of step gauge based on laser interference to eliminate Abbe error |
CN111409874A (en) * | 2020-03-10 | 2020-07-14 | 上海卫星工程研究所 | Two-dimensional rotary table locking and unlocking device suitable for spacecraft |
CN111515756A (en) * | 2020-04-03 | 2020-08-11 | 大连理工大学 | Precise fine adjustment device for on-machine measurement function integration |
CN112207773A (en) * | 2020-08-28 | 2021-01-12 | 南京沃瑞新能源科技有限公司 | Automatic positioning and fixing platform for new energy product production and manufacturing and use method |
WO2022068181A1 (en) * | 2020-09-29 | 2022-04-07 | 深圳市中图仪器股份有限公司 | Electric high-precision two-dimensional object carrying table |
CN112743501A (en) * | 2021-01-13 | 2021-05-04 | 苏州凌云光工业智能技术有限公司 | Carrying platform |
CN113787494A (en) * | 2021-08-13 | 2021-12-14 | 东台市欧力传动部件有限公司 | Ball screw cross sliding table |
CN113787494B (en) * | 2021-08-13 | 2022-11-29 | 东台市欧力传动部件有限公司 | Ball screw cross sliding table |
CN114193260A (en) * | 2021-11-08 | 2022-03-18 | 天长市锦瑞防护设施有限公司 | Precise trimming device for end section of spliced protective fence |
CN114354132A (en) * | 2021-12-10 | 2022-04-15 | 中国科学院长春光学精密机械与物理研究所 | Vertical detection system for testing wave aberration of optical system vertical state system |
CN113983308A (en) * | 2021-12-27 | 2022-01-28 | 中国工程物理研究院应用电子学研究所 | Optical vibration reduction platform with adjustable multiple degrees of freedom |
CN114187961B (en) * | 2022-01-07 | 2022-09-13 | 合肥工业大学 | High-precision six-degree-of-freedom micro-displacement workbench system capable of releasing thermal deformation |
CN114187961A (en) * | 2022-01-07 | 2022-03-15 | 合肥工业大学 | A high-precision six-degree-of-freedom micro-displacement table system that can release thermal deformation |
CN115031665B (en) * | 2022-08-12 | 2023-01-10 | 河北天启通宇航空器材科技发展有限公司 | Joystick Angle Test Method |
CN115031665A (en) * | 2022-08-12 | 2022-09-09 | 河北天启通宇航空器材科技发展有限公司 | Joystick Angle Test Method |
CN115533850A (en) * | 2022-10-31 | 2022-12-30 | 西安建筑科技大学 | Angle fine-adjustment platform in vertical direction |
CN115533850B (en) * | 2022-10-31 | 2024-11-26 | 西安建筑科技大学 | A vertical angle fine-tuning platform |
CN116381892A (en) * | 2023-04-21 | 2023-07-04 | 广东工业大学 | Two-stage macro-micro camera lens focusing device based on direct-drive type air floatation platform |
CN116381892B (en) * | 2023-04-21 | 2023-12-12 | 广东工业大学 | A secondary macro and micro camera lens focusing device based on a direct-drive air flotation platform |
CN118655343A (en) * | 2024-08-06 | 2024-09-17 | 矽电半导体设备(深圳)股份有限公司 | Lifting mechanism, test platform and test method |
CN118655343B (en) * | 2024-08-06 | 2024-11-12 | 矽电半导体设备(深圳)股份有限公司 | Lifting mechanism, test platform and test method |
Also Published As
Publication number | Publication date |
---|---|
CN103252761B (en) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103252761B (en) | There is the Long Distances two-dimensional nano work system of angle compensation function | |
CN203245845U (en) | Large stroke two-dimensional nanometer work table system with angle compensation function | |
US8104752B2 (en) | Integrated large XY rotary positioning table with virtual center of rotation | |
JP6801085B2 (en) | Methods and equipment for aligning boards | |
CN113834438B (en) | High-precision free-form surface profiling measurement device and method based on three-dimensional measurement frame | |
CN103295651B (en) | Based on the Piezoelectric Driving Inchworm type positioning table of flexible amplification principle | |
CN102042464B (en) | Three-branch parallel adjustment mechanism and method with four-degree-of-freedom movement capability | |
CN101221273A (en) | High-precision large-aperture grating splicing device with parallel macro-micro drive | |
CN104819828B (en) | A kind of debugging device and its application for X-ray lobster eye object lens | |
CN102446563A (en) | Three-degree-of-freedom micro-operation orthogonal parallel workbench for ultra-precise positioning | |
CN103235419B (en) | Accurate off-line shaft fixing device and method of wedge-shaped lens disassembly and assembly unit | |
CN1550434A (en) | Integrated large glass handling system | |
TWI549774B (en) | Error compensating system using encoder feedback, error mapping and air pressure control | |
US11486689B2 (en) | Metrology system | |
CN105443930A (en) | XY precision positioning platform | |
CN109239068B (en) | Visual detection device and method for macro-micro motion platform | |
CN102785077B (en) | Three-degree-of-freedom position regulating system and method | |
CN114911019B (en) | Six-degree-of-freedom pose precision adjusting device and method for optical element | |
CN112130418A (en) | Large-size laser direct-writing motion table for grating ruler writing | |
CN102211329A (en) | Five-degree-of-freedom spatial series-parallel operating platform | |
JP2017013210A (en) | Biaxial positioning stage apparatus | |
CN210402009U (en) | Large-size laser direct-writing motion table for grating ruler writing | |
CN110608963B (en) | Self-coordination fretting fatigue device capable of accurately measuring displacement and friction force and test method | |
CN106770156A (en) | A kind of nano scanning station suitable for Tip-Enhanced Raman Spectroscopy | |
CN208847328U (en) | Multi-flex board vibration detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |