CN103234916B - Prediction method for net photosynthetic rate of population - Google Patents
Prediction method for net photosynthetic rate of population Download PDFInfo
- Publication number
- CN103234916B CN103234916B CN201310115387.0A CN201310115387A CN103234916B CN 103234916 B CN103234916 B CN 103234916B CN 201310115387 A CN201310115387 A CN 201310115387A CN 103234916 B CN103234916 B CN 103234916B
- Authority
- CN
- China
- Prior art keywords
- photosynthetic rate
- net photosynthetic
- data
- prediction
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000000243 photosynthetic effect Effects 0.000 title claims abstract description 99
- 238000000034 method Methods 0.000 title claims abstract description 66
- 238000012360 testing method Methods 0.000 claims abstract description 107
- 230000003595 spectral effect Effects 0.000 claims abstract description 25
- 239000011664 nicotinic acid Substances 0.000 claims abstract description 24
- 230000005855 radiation Effects 0.000 claims abstract description 20
- 238000012549 training Methods 0.000 claims abstract description 17
- 238000005457 optimization Methods 0.000 claims abstract description 13
- 238000005259 measurement Methods 0.000 claims description 30
- 239000013598 vector Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 12
- 238000010606 normalization Methods 0.000 claims description 9
- 230000029553 photosynthesis Effects 0.000 claims description 6
- 238000010672 photosynthesis Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 description 60
- 241000196324 Embryophyta Species 0.000 description 29
- 238000010586 diagram Methods 0.000 description 6
- 241000208340 Araliaceae Species 0.000 description 4
- 241000122205 Chamaeleonidae Species 0.000 description 3
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 3
- 235000003140 Panax quinquefolius Nutrition 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000008434 ginseng Nutrition 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000012271 agricultural production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本发明公开了一种群体净光合速率预测方法,旨在克服建立群体净光合速率预测回归方程困难、建立群体净光合速率预测模型需相关数据多与预测准确性不高的问题。其步骤如下:1.获得区域可见光各波段光谱辐射配比关系数据:在面积为S的试验区域中高于植株冠层为H的高度安装便携式多光谱辐射仪;获得不同时段试验区域内可见光各波段光谱辐射配比关系数据M_D,进行[0,1]归一化处理。2.获得群体净光合速率数据;3.构建仿生型核函数;4.建立SVM训练集和预测集;5.建立预测模型的工具选择和参数优化;6.预测群体净光合速率:获得预测模型model;得到群体净光合速率的预测值predict与判断预测模型model的可靠性。
The invention discloses a group net photosynthetic rate prediction method, aiming at overcoming the difficulties in establishing a group net photosynthetic rate prediction regression equation, establishing a group net photosynthetic rate prediction model that requires more relevant data and low prediction accuracy. The steps are as follows: 1. Obtain the spectral radiation ratio data of each band of visible light in the region: install a portable multispectral radiometer at a height H higher than the plant canopy in the test area with an area of S; obtain the visible light in each band of the test area at different times Spectral radiation ratio data M_D is normalized to [0, 1]. 2. Obtain the net photosynthetic rate data of the population; 3. Construct the bionic kernel function; 4. Establish the SVM training set and prediction set; 5. Establish the tool selection and parameter optimization of the prediction model; 6. Predict the net photosynthetic rate of the population: obtain the prediction model model; get the predicted value predict of the net photosynthetic rate of the population and judge the reliability of the prediction model model.
Description
技术领域technical field
本发明涉及一种植物群体净光合速率预测方法,更具体地说,本发明涉及一种仿生型核函数的群体净光合速率预测方法。The invention relates to a method for predicting the net photosynthetic rate of plant populations, more specifically, the invention relates to a method for predicting the net photosynthetic rate of the population with a bionic kernel function.
背景技术Background technique
光作为植物最必需的资源,是影响其形态和功能的重要因子,个体净光合速率体现了单株植物有机物的积累,是影响单株植物形态和功能的重要因子,而群体净光合速率则为一个区域内该类植物个体净光合速率的总和,反映了该区域植物在一段时间内总光合作用合成有机物积累的情况,对于分析区域植物整体形态和功能有重要的参考价值,因此预测群体净光合速率在农业生产中具有很强的现实意义。由于叶面积大小反映了净光合速率大小,我们可通过建立叶面积和净光合速率之间回归方程的方法,对净光合速率进行预测,但传统测试叶面积的方法具有复杂性、设备昂贵等局限性。若通过叶面积与净光合速率之间的回归方程方法,要保证净光合速率预测值的准确性,则需大量样本数据,由于要预测群体净光合速率,需测量大量植物的叶面积,工作量更加繁重。As the most necessary resource for plants, light is an important factor affecting its form and function. The individual net photosynthetic rate reflects the accumulation of organic matter in a single plant and is an important factor affecting the form and function of a single plant. The group net photosynthetic rate is The sum of the individual net photosynthetic rates of this type of plant in a region reflects the accumulation of total photosynthetic organic matter of the plants in the region over a period of time, which is of great reference value for analyzing the overall shape and function of the plants in the region. Speed has a strong practical significance in agricultural production. Since the size of the leaf area reflects the size of the net photosynthetic rate, we can predict the net photosynthetic rate by establishing a regression equation between the leaf area and the net photosynthetic rate, but the traditional method of testing the leaf area has limitations such as complexity and expensive equipment sex. If the regression equation method between leaf area and net photosynthetic rate is used to ensure the accuracy of the predicted value of net photosynthetic rate, a large amount of sample data is required. To predict the net photosynthetic rate of the population, it is necessary to measure the leaf area of a large number of plants, and the workload more onerous.
支持向量机(Support Vector Machine,SVM)是一种基于统计学习理论的机器学习方法,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,在SVM中,核函数是其核心部分,将高维空间的内积运算转化为低维输入空间的核函数计算,解决了在高维特征空间中计算的“维数灾难”等问题,其形式和参数的变化会隐式地改变从输入空间到特征空间映射,进而对特征空间性质产生影响。核函数本质上是一个内积,基本作用是接受两个低维空间里的向量,能够计算出经过某个变换后在高维空间里的向量内积值,即确定低维空间向高维空间映射关系,成为解决线性不可分的关键。Support Vector Machine (Support Vector Machine, SVM) is a machine learning method based on statistical learning theory. It shows many unique advantages in solving small samples, nonlinear and high-dimensional pattern recognition. In SVM, the kernel function is Its core part transforms the inner product operation of high-dimensional space into the calculation of kernel function of low-dimensional input space, which solves the problem of "dimension disaster" calculated in high-dimensional feature space, and the change of its form and parameters will implicitly It can change the mapping from input space to feature space, and then affect the properties of feature space. The kernel function is essentially an inner product. Its basic function is to accept vectors in two low-dimensional spaces, and to calculate the vector inner product value in a high-dimensional space after a certain transformation, that is, to determine the low-dimensional space to the high-dimensional space. The mapping relationship becomes the key to solving linear inseparability.
通过对生物界中有着无比华丽彩虹之称的七彩变色龙研究,发现其皮肤颜色不但随着整体环境颜色变化而发生变化,且局部皮肤颜色都和其接近的环境颜色相近,亦能够随局部环境颜色改变而随之改变,体现出很强的对全局周围环境颜色和局部周围颜色的适应能力。从变色龙对周围环境适应的自然现象出发,构建出一种对全局数据和局部数据可单独调整的仿生型核函数具有重要意义。Through the study of the colorful chameleon known as the incomparably gorgeous rainbow in the biological world, it is found that its skin color not only changes with the color of the overall environment, but also the local skin color is similar to the color of its close environment, and can also change with the color of the local environment. It changes accordingly, showing a strong ability to adapt to the global surrounding environment color and local surrounding color. Starting from the natural phenomenon that chameleons adapt to the surrounding environment, it is of great significance to construct a bionic kernel function that can be adjusted independently for global data and local data.
发明内容Contents of the invention
本发明所要解决的技术问题是克服了现有技术存在的测试区域植物叶面积工作量较大、建立群体净光合速率预测回归方程困难、建立群体净光合速率预测模型所需相关数据较多与预测准确性不高的问题,提供了一种群体净光合速率预测方法。The technical problem to be solved by the present invention is to overcome the relatively large workload of plant leaf area in the test area existing in the prior art, the difficulty of establishing a population net photosynthetic rate prediction regression equation, and the establishment of a population net photosynthetic rate prediction model. The problem of low accuracy provides a method for predicting the net photosynthetic rate of populations.
为解决上述技术问题,本发明是采用如下技术方案实现的:所述的一种群体净光合速率预测方法的步骤如下:In order to solve the above-mentioned technical problems, the present invention is realized by adopting the following technical scheme: the steps of the described method for predicting the net photosynthetic rate of a group are as follows:
1)获得区域可见光各波段光谱辐射配比关系数据:1) Obtain the spectral radiation ratio data of each band of visible light in the region:
(1)在面积为S的试验区域中高于植株冠层为H的高度安装型号为MSR-16的便携式多光谱辐射仪,其中:S取值为6m2至55m2,H取值为1.2m或2m,型号为MSR-16的便携式多光谱辐射仪在其正下方地面的有效测量直径为H/2,观测面积为S1,S1=[π×(H/4)2],计算出试验区域划分的测试单元的个数为M,其数值取S/S1的整数部分;(1) Install a portable multispectral radiometer model MSR-16 at a height H higher than the plant canopy in the test area with an area S, wherein: S takes a value of 6m 2 to 55m 2 , and H takes a value of 1.2m or 2m, the effective measurement diameter of the portable multispectral radiometer model MSR-16 on the ground directly below it is H/2, and the observation area is S 1 , S 1 =[π×(H/4) 2 ], calculated The number of test units divided by the test area is M, and its value is the integer part of S/S 1 ;
(2)在指定的测量时间段,每一小时测定一次,每次随机选取N个测试单元,其中N<M,要求每次选取的试验单元不同于其他测量时间已选取的试验单元,每次测量时,将MSR-16的便携式多光谱辐射仪置于该次测量时的测试单元上方H处,H取值为1.2m或2m,每个测试单元内取5个定点测量,每点测量2次取平均,5个定点平均值作为该测试单元的光谱组成,3个测试单元的平均值作为该时段试验区域内可见光各波段光谱辐射配比关系数据;(2) In the specified measurement time period, measure once every hour, randomly select N test units each time, where N<M, and require that the test units selected each time are different from the test units selected at other measurement times, each time When measuring, place the portable multi-spectral radiometer of MSR-16 at H above the test unit during the measurement. The average value of 5 fixed points is used as the spectral composition of the test unit, and the average value of 3 test units is used as the data of the spectral radiation ratio relationship of each band of visible light in the test area during this period;
(3)按第(2)步骤的方法,在试验的时间跨度内,获得不同时段试验区域内可见光各波段光谱辐射配比关系数据M_D,进行[0,1]归一化处理,得到归一化后的数据M_D1。(3) According to the method of step (2), within the time span of the test, obtain the spectral radiation ratio data M_D of each band of visible light in the test area in different periods, and perform [0, 1] normalization processing to obtain normalization The transformed data M_D 1 .
2)获得群体净光合速率数据:2) Obtain the population net photosynthetic rate data:
(1)采用美国CID公司生产的型号为CI-310的便携式光合作用测定系统测量个体净光合速率;(1) The model of CI-310 portable photosynthesis measurement system produced by U.S. CID Company was adopted to measure the individual net photosynthetic rate;
(2)在选定的每个测试单元内随机挑选3株同一品种植物,若该植物数量不足3株,按实际植物数量进行测量,每株植物随机挑选5片叶片,若叶片数量不足5片,按实际叶片数量进行测量,每片叶片采用型号为CI-310的便携式光合作用测定系统测量一次净光合速率,取平均值作为该株植物净光合速率,3个试验单元平均值作为该时段试验区域内该株植物群体净光合速率;(2) Randomly select 3 plants of the same variety in each selected test unit. If the number of plants is less than 3, measure according to the actual number of plants. Each plant randomly selects 5 leaves. If the number of leaves is less than 5 , measured according to the actual number of leaves, and the net photosynthetic rate of each leaf is measured once with a portable photosynthesis measurement system model CI-310, and the average value is taken as the net photosynthetic rate of the plant, and the average value of the three test units is used as the test period. The net photosynthetic rate of the plant population in the area;
(3)按第(2)步骤的方法,在试验时间跨度内,获得不同时段试验区域内该种植物群体净光合速率C_D,进行[0,1]归一化处理,得到归一化后的数据C_D1。(3) According to the method of step (2), within the test time span, obtain the net photosynthetic rate C_D of the plant population in the test area in different periods, carry out [0,1] normalization processing, and obtain the normalized Data C_D 1 .
3)构建仿生型核函数:3) Build a bionic kernel function:
(1)以Gaussian kernelK1(x,xi)=exp(-γ||x-xi||2)和polynomial kernelK2(x,xi)=k(<x,xi>+c)为基准核函数,其中,k、γ和c为参数,x和xi为低维空间多维向量,将K1(x,xi)=exp(-γ||x-xi||2)输入libsvm中,作为SVM核函数,对训练集数据进行训练,采用grid-search搜索最佳参数,确定出对训练集预测准确率最高的γ值,定义为Γ值。(1) Based on Gaussian kernelK 1 (x, xi )=exp(-γ||xx i || 2 ) and polynomial kernelK 2 (x, xi )=k(<x, xi >+c) Kernel function, where k, γ and c are parameters, x and xi are multi-dimensional vectors in low-dimensional space, input K 1 (x, xi )=exp(-γ||xx i || 2 ) into libsvm, As the SVM kernel function, train the training set data, use grid-search to search for the best parameters, and determine the γ value with the highest prediction accuracy for the training set, which is defined as the Γ value.
(2)寻找出Γ值下的Gaussian kernel特征曲线切线斜率最大值diff(K1(xm,xi))和最小值diff(K1(xn,xi)),以及对应的切点坐标(xm,K1(xm,xi)),(xn,K1(xn,xi)),将该类切点称为折点。(2) Find out the maximum value diff(K 1 (x m , xi )) and the minimum value diff(K 1 (x n , xi )) of the tangent slope of the Gaussian kernel characteristic curve under the Γ value, and the corresponding tangent point Coordinates (x m , K 1 (x m , xi )), (x n , K 1 (x n , xi )), this type of tangent point is called a vertices.
(3)根据折点坐标(xm,K1(xm,xi)),(xn,K1(xn,xi))和斜率diff(K1(xm,xi))/ξ、diff(K1(xn,xi))/ξ,其中ξ为实数变量,确定polynomial kernel表达式,表达式由K2'(x,xi)=diff(K1(xm,xi))/ξ/xi×(<x,xi>+c)和K2″(x,xi)=diff(K1(xn,xi))/ξ/xi×(<x,xi>+c)两部分组成。(3) According to the corner coordinates (x m ,K 1 (x m , xi )), (x n ,K 1 (x n , xi )) and slope diff(K 1 (x m , xi )) /ξ, diff(K 1 (x n , xi ))/ξ, where ξ is a real number variable, determine the polynomial kernel expression, the expression is K 2 '(x, xi )=diff(K 1 (x m , xi ))/ξ/ xi ×(<x, xi >+c) and K 2 ″(x, xi )=diff(K 1 (x n ,xi ) )/ξ/xi × (<x, xi >+c) consists of two parts.
(4)构建仿生型核函数:(4) Build a bionic kernel function:
Kbsf(x,xi)=exp(-Γ||x-xi||2)+diff(exp(-Γ||xB-xi||2)/ξ/xi×(<x,xi>+c)K bsf (x,x i )=exp(-Γ||xx i || 2 )+diff(exp(-Γ||x B -x i || 2 )/ξ/xi × (<x,x i >+c)
其中:||x||>||xi||时,xB取为xn,||x||<||xi||时,xB取为xm,||x||=||xi||时,将x和xi归为同类,无需使用核函数对其进行计算。Where: when ||x||>||x i ||, x B is taken as x n , when ||x||<||x i ||, x B is taken as x m , ||x||= When ||x i ||, classify x and xi as the same class, and do not need to use the kernel function to calculate it.
仿生型核函数Kbsf(x,xi)可以通过参数Γ和ξ的调节,实现对全局数据和局部数据的调整,以适应对不同数据归类的要求。The bionic kernel function K bsf (x, xi ) can adjust the global data and local data through the adjustment of parameters Γ and ξ, so as to meet the requirements of different data classification.
4)建立SVM训练集和预测集:4) Establish SVM training set and prediction set:
将数据M_D1按不同时间段分为两部分数据M_D11和M_D12,依据M_D1划分为两部分数据M_D11和M_D12的时间段,将数据C_D1按对应时间段分为两部分数据C_D11和C_D12,将第一部分数据M_D11和C_D11作为SVM的训练集,将第二部分数据M_D12和C_D12作为SVM的预测集。Divide data M_D 1 into two parts of data M_D 11 and M_D 12 according to different time periods, divide data M_D 1 into two parts of data M_D 11 and M_D 12 according to the time period, and divide data C_D 1 into two parts of data C_D according to corresponding time periods 11 and C_D 12 , the first part of data M_D 11 and C_D 11 is used as the training set of SVM, and the second part of data M_D 12 and C_D 12 is used as the prediction set of SVM.
5)建立预测模型的工具选择和参数优化。5) Tool selection and parameter optimization for building a predictive model.
6)预测群体净光合速率。6) Predict the net photosynthetic rate of the population.
技术方案中所述的建立预测模型的工具选择和参数优化是指:The tool selection and parameter optimization for building a predictive model described in the technical proposal refers to:
采用MATLAB将仿生型核函数Kbsf(x,xi)放入libsvm工具箱中,取代原来RBF核函数的位置,通过函数SVMcgForRegress()实现grid-search方法优化参数,利用grid-search方法初步优化参数过程,在函数SVMcgForRegress()中采用Gaussian kernelK1(x,xi),通过[bestmse,bestc,bestg]=SVMcgForRegress(C_D11,M_D11,-8,8,-8,8),可以获得参数bestc和bestg,bestc为最佳的惩罚参数c值,bestg为最佳的参数γ值,即Γ值;Using MATLAB to put the bionic kernel function K bsf (x, xi ) into the libsvm toolbox to replace the position of the original RBF kernel function, realize the grid-search method to optimize parameters through the function SVMcgForRegress(), and use the grid-search method for preliminary optimization Parameter process, using Gaussian kernelK 1 (x, xi ) in the function SVMcgForRegress(), through [bestmse,bestc,bestg]=SVMcgForRegress(C_D 11 ,M_D 11 ,-8,8,-8,8), you can get Parameters bestc and bestg, bestc is the best penalty parameter c value, bestg is the best parameter γ value, that is, Γ value;
在函数SVMcgForRegress()中采用仿生型核函数Kbsf(x,xi),通过[bestmse,bestc,bestCMG]=SVMcgForRegress(C_D11,M_D11,bestc,bestc,-8,8),可以获得最佳参数bestCMG,即ξ值。 The bionic kernel function K bsf (x, xi ) is used in the function SVMcgForRegress(), and the best The best parameter bestCMG is the value of ξ.
技术方案中所述的预测群体净光合速率的步骤如下:The steps of predicting the population net photosynthetic rate described in the technical scheme are as follows:
1)获得预测模型model1) Obtain the prediction model model
利用libsvm工具箱中的svmtrain(),即通过model=svmtrain(C_D11,M_D11,cmd),可以获得预测模型model,其中cmd=['-c',num2str(bestc),'-g',num2str(bestg),'-s 3-p 0.01-t 2'],s设为3代表采用e–SVR公式,p设为0.01代表设置e-SVR中损失函数的值,t设为2代表SVM中采用的核函数为Kbsf(x,xi);在model中包含了核函数类型、支持向量个数和支持向量在决策函数中系数范围的信息。Using svmtrain() in the libsvm toolbox, that is, through model=svmtrain(C_D 11 , M_D 11 ,cmd), the prediction model model can be obtained, where cmd=['-c',num2str(bestc),'-g', num2str(bestg),'-s 3-p 0.01-t 2'], s is set to 3 to represent the e-SVR formula, p is set to 0.01 to set the value of the loss function in e-SVR, t is set to 2 to represent SVM The kernel function used in is K bsf (x, xi ); the model contains information about the type of kernel function, the number of support vectors and the coefficient range of support vectors in the decision function.
2)得到群体净光合速率的预测值predict2) Obtain the predicted value predict of the net photosynthetic rate of the population
利用libsvm工具箱中的svmpredict(),通过[predict,mse]=svmpredict(C_D12,M_D12,model)实现利用M_D12对C_D12进行预测,得到群体净光合速率的预测值predict。Using svmpredict() in the libsvm toolbox, through [predict,mse]=svmpredict(C_D 12 ,M_D 12 ,model) to realize the prediction of C_D 12 using M_D 12 , and obtain the predicted value predict of the net photosynthetic rate of the population.
3)判断预测模型model的可靠性3) Judging the reliability of the prediction model model
同时,通过C_D12和predict计算出两者之间的相关系数R,判断出预测值predict的准确性,即预测模型model的可靠性。At the same time, the correlation coefficient R between the two is calculated through C_D 12 and predict, and the accuracy of the predicted value predict is judged, that is, the reliability of the prediction model model.
与现有技术相比本发明的有益效果是:Compared with prior art, the beneficial effects of the present invention are:
1.本发明所述的一种群体净光合速率预测方法与传统的建立群体净光合速率预测回归方程方法相比,具有模型建立过程简单、所需输入数据少、预测准确率高、易于实现的特点。1. a kind of group net photosynthetic rate prediction method of the present invention compares with traditional method of setting up group net photosynthetic rate prediction regression equation, has model establishment process simple, required input data is few, prediction accuracy rate is high, easy to realize features.
2.本发明所述的一种群体净光合速率预测方法与已有的预测个体净光合速率的方法相比,预测群体净光合速率可以反映一个区域内植物净光合速率情况,有利于反映区域植物整体形态和功能的情况。2. A kind of population net photosynthetic rate prediction method of the present invention is compared with existing method for predicting individual net photosynthetic rate, forecasting population net photosynthetic rate can reflect the net photosynthetic rate situation of a region, is conducive to reflecting regional plant overall form and function.
3.本发明所述的一种群体净光合速率预测方法与已有的利用SVM预测群体净光合速率的方法相比,采用了新型核函数,实现了对SVM输入数据更好的分类能力,具有预测模型泛化能力强、预测准确率高的特点。3. Compared with the existing method of utilizing SVM to predict the net photosynthetic rate of a population, a kind of group net photosynthetic rate prediction method of the present invention adopts a novel kernel function, which realizes a better classification ability for SVM input data, and has The prediction model has the characteristics of strong generalization ability and high prediction accuracy.
4.本发明所述的一种群体净光合速率预测方法,仅通过区域可见光各波段光谱辐射配比关系即可实现预测群体净光合速率,具有所需输入数据少的特点,有利于反映区域可见光各波段光谱辐射配比关系与净光合速率的影响关系。4. A method for predicting the net photosynthetic rate of the population according to the present invention can realize the prediction of the net photosynthetic rate of the population only through the spectral radiation ratio relationship of each band of visible light in the region, and has the characteristics of less required input data, which is conducive to reflecting the visible light in the region The relationship between the ratio of spectral radiation in each band and the net photosynthetic rate.
5.本发明所述的一种群体净光合速率预测方法,采用了新型核函数,克服了传统核函数全局学习能力和局部学习能力不可独立调整的不足,可根据可见光各波段光谱辐射配比关系数据分布特点调整核函数的性能,提高了预测过程效率和准确性,此方法可在其他预测应用中直接使用。5. A kind of group net photosynthetic rate prediction method of the present invention has adopted novel kernel function, has overcome the deficiency that the global learning ability of traditional kernel function and local learning ability can not be adjusted independently, can be according to the spectral radiation ratio relation of each band of visible light The characteristics of the data distribution adjust the performance of the kernel function, which improves the efficiency and accuracy of the forecasting process, and this method can be directly used in other forecasting applications.
6.本发明所述的一种群体净光合速率预测方法,其方法简单、方便,速度快,步骤清晰,省时,省力,而且预测方法的预测准确率高。6. A method for predicting net photosynthetic rate of a population according to the present invention is simple, convenient, fast, clear in steps, time-saving and labor-saving, and the prediction accuracy of the prediction method is high.
附图说明Description of drawings
下面结合附图对本发明作进一步的说明:Below in conjunction with accompanying drawing, the present invention will be further described:
图1为本发明所述的一种群体净光合速率预测方法中所采用的MSR-16型便携式多光谱辐射仪放置位置及有效测试区域示意图;Fig. 1 is the MSR-16 type portable multi-spectral radiometer placement position and the effective test area schematic diagram adopted in a kind of group net photosynthetic rate prediction method of the present invention;
图2为本发明所述的一种群体净光合速率预测方法采用CI-310仪器测试净光合速率的示意图;Fig. 2 adopts the schematic diagram of CI-310 instrument test net photosynthetic rate for a kind of population net photosynthetic rate prediction method of the present invention;
图3为本发明所述的一种群体净光合速率预测方法中的grid-search方法对参数进行初步优化的过程框图;Fig. 3 is the process block diagram that the grid-search method in a kind of group net photosynthetic rate prediction method of the present invention carries out preliminary optimization to parameter;
图4为本发明所述的一种群体净光合速率预测方法中的仿生型核函数参数确定的过程框图;Fig. 4 is the process block diagram that the bionic kernel function parameter in a kind of group net photosynthetic rate prediction method of the present invention is determined;
图5为采用本发明所述的一种群体净光合速率预测方法归一化后的区域内可见光各波段光谱辐射配比关系数据分布图;Fig. 5 is a data distribution diagram of the spectral radiation ratio relationship of each band of visible light in the region after normalization by a population net photosynthetic rate prediction method according to the present invention;
图6为采用本发明所述的一种群体净光合速率预测方法归一化后的群体净光合速率数据分布图;Fig. 6 is the population net photosynthetic rate data distribution diagram after adopting a kind of population net photosynthetic rate prediction method normalized according to the present invention;
图7为本发明所述的一种群体净光合速率预测方法的训练集群体净光合速率预测曲线(第一条);Fig. 7 is the training group collective net photosynthetic rate prediction curve (the first) of a kind of group net photosynthetic rate prediction method of the present invention;
图8为本发明所述的一种群体净光合速率预测方法的预测集群体净光合速率预测曲线(第二条);Fig. 8 is the prediction group net photosynthetic rate prediction curve (the second) of a kind of group net photosynthetic rate prediction method of the present invention;
图9为本发明所述的一种群体净光合速率预测方法的流程框图。Fig. 9 is a flowchart of a method for predicting net photosynthetic rate of a population according to the present invention.
具体实施方式Detailed ways
下面结合附图对本发明作详细的描述:The present invention is described in detail below in conjunction with accompanying drawing:
参阅图9,本发明克服了现有技术存在的问题,提供了一种群体净光合速率预测方法,即仅利用可见光各波段光谱辐射配比关系实现具有较高准确性的对群体净光合速率预测的方法,其步骤如下:Referring to Fig. 9, the present invention overcomes the problems existing in the prior art, and provides a method for predicting the net photosynthetic rate of the population, that is, only using the spectral radiation ratio relationship of each band of visible light to realize the prediction of the net photosynthetic rate of the population with high accuracy method, the steps are as follows:
1.获得区域可见光各波段光谱辐射配比关系数据1. Obtain the ratio relationship data of spectral radiation in each band of visible light in the region
获得区域可见光各波段光谱辐射配比关系数据的步骤如下:The steps to obtain the spectral radiance ratio data of each band of visible light in the region are as follows:
采用美国生产的型号为MSR-16的便携式多光谱辐射仪,分析便携式多光谱辐射仪上方入射的460-710nm波段可见光光谱成分、比例改变。A portable multispectral radiometer of model MSR-16 produced in the United States was used to analyze the spectral composition and proportion changes of the visible light in the 460-710nm band incident above the portable multispectral radiometer.
1)参阅图1,设试验区域面积为S,S取值为6m2至55m2,型号为MSR-16的便携式多光谱辐射仪高于植株冠层的高度为H,H取值为1.2m或2m,型号为MSR-16的便携式多光谱辐射仪在其正下方地面的有效测量直径为H/2,观测面积为S1,S1=[π×(H/4)2],其中:π为圆周率。根据试验过程中划分的试验区域S和MSR-16仪器测试高度H,计算出由待测试验区域划分的测试单元的个数为M,其数值取S/S1的整数部分。1) Referring to Figure 1, assume that the area of the test area is S, and the value of S is 6m 2 to 55m 2 , the height of the portable multispectral radiometer model MSR-16 above the plant canopy is H, and the value of H is 1.2m or 2m, the effective measurement diameter of the portable multispectral radiometer model MSR-16 on the ground directly below it is H/2, and the observation area is S 1 , S 1 =[π×(H/4) 2 ], where: π is the circumference ratio. According to the test area S divided during the test and the MSR-16 instrument test height H, the number of test units divided by the test area to be tested is calculated as M, and the value is taken as the integer part of S/S 1 .
2)在指定的测量时间段,每一小时测定一次,每次随机选取N个测试单元,其中N<M,要求每次选取的试验单元不同于其他测量时间已选取的试验单元,每次测量时,将MSR-16的便携式多光谱辐射仪置于该次测量时的测试单元上方H处,H取值为1.2m或2m,每个测试单元内取5个定点测量,每点测量2次取平均,5个定点平均值作为该测试单元的光谱组成,3个测试单元的平均值作为该时段试验区域内可见光各波段光谱辐射配比关系数据。2) In the specified measurement time period, measure once every hour, randomly select N test units each time, where N<M, and require that the test units selected each time are different from the test units selected at other measurement times, each measurement , place the MSR-16 portable multispectral radiometer at H above the test unit during the measurement, and the value of H is 1.2m or 2m. Take 5 fixed-point measurements in each test unit, and measure each point twice. Taking the average, the average value of 5 fixed points is used as the spectral composition of the test unit, and the average value of 3 test units is used as the data of the spectral radiation ratio relationship of each band of visible light in the test area during this period.
3)按第2)步骤的方法,在试验的时间跨度内,获得不同时段试验区域内可见光各波段光谱辐射配比关系数据M_D,进行[0,1]归一化处理,得到归一化后的数据M_D1。3) According to the method of step 2), within the time span of the test, the data M_D of the spectral radiation ratio relationship of each band of visible light in the test area at different time periods are obtained, and the [0, 1] normalization process is performed to obtain the normalized The data M_D 1 .
2.获得群体净光合速率数据2. Obtain population net photosynthetic rate data
参阅图2,获得群体净光合速率数据方法的步骤如下:Referring to Fig. 2, the steps of obtaining the population net photosynthetic rate data method are as follows:
1)采用美国CID公司生产的型号为CI-310的便携式光合作用测定系统测量个体净光合速率:1) Use the model CI-310 portable photosynthesis measurement system produced by the American CID company to measure the individual net photosynthetic rate:
选择25×25(cm2)的方形叶室插入主机,将传感器前端的探头压入叶室内,传感器后端的插头插入主机对应插孔,数据线的一端与主机连接,数据线的另一端与PC卡相连,PC卡通过PC卡槽连接电脑,从CI-310传感器的“INTAKE”口引出一根管子到一个4L缓冲瓶内,该缓冲瓶放在外面空气中以获得不受呼吸影响的CO2空气,每次测量前用随机配备的碱石灰管进行CO2调零。将叶片放入叶室后关闭叶室,按主机测量开关,开始第一片叶片的测量,测量完毕,电脑发生警告声,打开叶室,将另一片放入叶室后关闭叶室,开始下一个叶片的测量。Select a 25×25 (cm 2 ) square leaf chamber to insert into the host, press the probe at the front end of the sensor into the leaf chamber, insert the plug at the rear end of the sensor into the corresponding jack of the host, connect one end of the data cable to the host, and the other end of the data cable to the PC The PC card is connected to the computer through the PC card slot, and a tube is drawn from the "INTAKE" port of the CI-310 sensor to a 4L buffer bottle, which is placed in the outside air to obtain CO that is not affected by breathing. 2 Air, CO2 zeroing with the supplied soda lime tube before each measurement. Put the blade into the leaf chamber and close the leaf chamber, press the measurement switch of the main engine to start the measurement of the first leaf. A blade measurement.
2)在选定的每个测试单元内随机挑选3株同一品种植物(若该植物数量不足3株,按实际植物数量进行测量),每株植物随机挑选5片叶片(若叶片数量不足5片,按实际叶片数量进行测量),每片叶片采用型号为CI-310的便携式光合作用测定系统测量一次净光合速率,取平均值作为该株植物净光合速率,3个试验单元平均值作为该时段试验区域内该株植物群体净光合速率。2) Randomly select 3 plants of the same variety in each selected test unit (if the number of plants is less than 3, measure according to the actual number of plants), and randomly select 5 leaves for each plant (if the number of leaves is less than 5 , measured according to the actual number of leaves), the net photosynthetic rate of each leaf is measured once with a portable photosynthesis measurement system model CI-310, and the average value is taken as the net photosynthetic rate of the plant, and the average value of the three test units is used as the period. The net photosynthetic rate of the plant population in the test area.
3)按第2)步骤的方法,在试验时间跨度内,获得不同时段试验区域内该种植物群体净光合速率C_D,进行[0,1]归一化处理,得到归一化后的数据C_D1。3) According to the method of step 2), within the test time span, the net photosynthetic rate C_D of the plant population in the test area at different time periods is obtained, and the [0, 1] normalization process is performed to obtain the normalized data C_D 1 .
3.构建仿生型核函数3. Construct bionic kernel function
1)以Gaussian kernelK1(x,xi)=exp(-γ||x-xi||2)和polynomial kernelK2(x,xi)=k(<x,xi>+c)为基准核函数,其中,γ和c为参数,x和xi为低维空间多维向量。将K1(x,xi)=exp(-γ||x-xi||2)输入libsvm中,作为SVM核函数,对训练集数据进行训练,采用grid-search搜索最佳参数,确定出对训练集预测准确率最高的γ值,定义为Γ值。1) Take Gaussian kernelK 1 (x, xi )=exp(-γ||xx i || 2 ) and polynomial kernelK 2 (x, xi )=k(<x, xi >+c) as the benchmark kernel function, where γ and c are parameters, and x and xi are multidimensional vectors in low-dimensional space. Input K 1 (x, xi )=exp(-γ||xx i || 2 ) into libsvm as the SVM kernel function to train the training set data, use grid-search to search for the best parameters, and determine the pair The γ value with the highest prediction accuracy in the training set is defined as the Γ value.
2)寻找出Γ值下的Gaussian kernel特征曲线切线斜率最大值diff(K1(xm,xi))和最小值diff(K1(xn,xi)),以及对应的切点坐标(xm,K1(xm,xi)),(xn,K1(xn,xi)),将该类切点称为折点。2) Find the maximum value diff(K 1 (x m , xi )) and minimum value diff(K 1 (x n , xi )) of the tangent slope of the Gaussian kernel characteristic curve under the Γ value, and the corresponding tangent point coordinates (x m , K 1 (x m , xi )), (x n , K 1 (x n , xi )), this type of tangent point is called an inflection point.
3)根据折点坐标(xm,K1(xm,xi)),(xn,K1(xn,xi))和斜率diff(K1(xm,xi))/ξ、diff(K1(xn,xi))/ξ,其中ξ为实数变量,确定polynomial kernel表达式,表达式由K2'(x,xi)=diff(K1(xm,xi))/ξ/xi×(<x,xi>+c)和K2″(x,xi)=diff(K1(xn,xi))/ξ/xi×(<x,xi>+c)两部分组成。3) According to the corner coordinates (x m ,K 1 (x m , xi )), (x n ,K 1 (x n , xi )) and slope diff(K 1 (x m , xi ))/ ξ, diff(K 1 (x n , xi ))/ξ, where ξ is a real number variable, determine the polynomial kernel expression, the expression is K 2 '(x, xi )=diff(K 1 (x m , x i ))/ξ/ xi ×(<x, xi >+c) and K 2 ″(x, xi )=diff(K 1 (x n , xi ))/ξ/ xi ×( <x, xi >+c) consists of two parts.
4)构建仿生型核函数4) Build a bionic kernel function
Kbsf(x,xi)=exp(-Γ||x-xi||2)+diff(exp(-Γ||xB-xi||2)/ξ/xi×(<x,xi>+c)K bsf (x,x i )=exp(-Γ||xx i || 2 )+diff(exp(-Γ||x B -x i || 2 )/ξ/xi × (<x,x i >+c)
其中:||x||>||xi||时,xB取为xn,||x||<||xi||时,xB取为xm,||x||=||xi||时,将x和xi归为同类,无需使用核函数对其进行计算。Where: when ||x||>||x i ||, x B is taken as x n , when ||x||<||x i ||, x B is taken as x m , ||x||= When ||x i ||, classify x and xi as the same class, and do not need to use the kernel function to calculate it.
与变色龙的皮肤根据周围环境颜色变化而变化的过程相类似,仿生型核函数Kbsf(x,xi)可以通过参数Γ和ξ的调节,实现对全局数据和局部数据的调整,以适应对不同数据归类的要求。Similar to the process in which the skin of a chameleon changes according to the color of the surrounding environment, the bionic kernel function K bsf (x, xi ) can adjust the global data and local data by adjusting the parameters Γ and ξ to adapt to the Requirements for different data classifications.
实际上,上述构建的仿生型核函数形式可表示为:In fact, the bionic kernel function constructed above can be expressed as:
Kbsf(x,xi)=K1(x,xi)+K2(x,xi)。K bsf (x, xi )=K 1 (x, xi )+K 2 (x, xi ).
其中:K1(x,xi)为Gaussian kernel,K2(x,xi)为polynomial kernel,根据核函数性质:当且仅当函数K是负定的,则K:X×X→R是核函数, Among them: K 1 (x, xi ) is a Gaussian kernel, K 2 (x, xi ) is a polynomial kernel, according to the nature of the kernel function: if and only if the function K is negative definite, then K:X×X→R is the kernel function,
可得如下证明过程:对任意a∈Rl,有由于K1和K2为核函数,故
4.建立SVM训练集和预测集4. Establish SVM training set and prediction set
将数据M_D1按不同时间段分为两部分数据M_D11和M_D12,依据M_D1划分为两部分数据M_D11和M_D12的时间段,将数据C_D1按对应时间段分为两部分数据C_D11和C_D12。将第一部分数据M_D11和C_D11作为SVM的训练集,将第二部分数据M_D12和C_D12作为SVM的预测集。Divide data M_D 1 into two parts of data M_D 11 and M_D 12 according to different time periods, divide data M_D 1 into two parts of data M_D 11 and M_D 12 according to the time period, and divide data C_D 1 into two parts of data C_D according to corresponding time periods 11 and C_D 12 . The first part of data M_D 11 and C_D 11 is used as the training set of SVM, and the second part of data M_D 12 and C_D 12 is used as the prediction set of SVM.
5.建立预测模型的工具选择和参数优化5. Tool selection and parameter optimization for predictive model building
参阅图3与图4,利用对小样本具有特有优势的SVM,将本发明构建的仿生型核函数放入libsvm工具箱中,将M_D11作为SVM输入量,C_D11作为SVM输出量,对于SVM中的惩罚参数c、参数γ和仿生型核函数中参数Γ、参数ξ,通过网络搜索法(grid-search)寻优。采用MATLAB,将仿生型核函数Kbsf(x,xi)放入libsvm工具箱中,取代原来RBF核函数的位置,通过函数SVMcgForRegress()实现grid-search方法优化参数,利用grid-search方法初步优化参数过程,如图3所示,在函数SVMcgForRegress()中采用Gaussian kernelK1(x,xi),通过[bestmse,bestc,bestg]=SVMcgForRegress(C_D11,M_D11,-8,8,-8,8),可以获得参数bestc和bestg,bestc为最佳的惩罚参数c值,bestg为最佳的参数γ值,即Γ值。如图4所示,在函数SVMcgForRegress()中采用仿生型核函数Kbsf(x,xi),通过[bestmse,bestc,bestCMG]=SVMcgForRegress(C_D11,M_D11,bestc,bestc,-8,8),可以获得最佳参数bestCMG,即ξ值。Referring to Fig. 3 and Fig. 4, utilize the SVM that has special advantage to small sample, put the bionic type kernel function that the present invention builds into libsvm toolbox, use M_D 11 as SVM input quantity, C_D 11 as SVM output quantity, for SVM The penalty parameter c, parameter γ in and the parameter Γ and parameter ξ in the bionic kernel function are optimized by grid-search. Using MATLAB, put the bionic kernel function K bsf (x, xi ) into the libsvm toolbox to replace the position of the original RBF kernel function, realize the grid-search method to optimize parameters through the function SVMcgForRegress(), and use the grid-search method to initially The parameter optimization process, as shown in Figure 3, adopts Gaussian kernelK 1 (x, x i ) in the function SVMcgForRegress (), through [bestmse, bestc, bestg]=SVMcgForRegress (C_D 11 , M_D 11 ,-8,8,- 8, 8), the parameters bestc and bestg can be obtained, bestc is the best penalty parameter c value, and bestg is the best parameter γ value, that is, the Γ value. As shown in Figure 4, the bionic kernel function K bsf (x, x i ) is used in the function SVMcgForRegress(), and [bestmse, bestc, bestCMG]=SVMcgForRegress(C_D 11 , M_D 11 , bestc, bestc,-8, 8), the best parameter bestCMG can be obtained, that is, the value of ξ.
6.预测群体净光合速率6. Prediction of population net photosynthetic rate
1)获得预测模型model1) Obtain the prediction model model
利用libsvm工具箱中的svmtrain(),即通过model=svmtrain(C_D11,M_D11,cmd),可以获得预测模型model,其中cmd=['-c',num2str(bestc),'-g',num2str(bestg),'-s 3-p 0.01-t 2'],s设为3代表采用e–SVR公式,p设为0.01代表设置e-SVR中损失函数的值,t设为2代表SVM中采用的核函数为Kbsf(x,xi);在model中包含了核函数类型、支持向量个数和支持向量在决策函数中系数范围的信息;Using svmtrain() in the libsvm toolbox, that is, through model=svmtrain(C_D 11 , M_D 11 ,cmd), the prediction model model can be obtained, where cmd=['-c',num2str(bestc),'-g', num2str(bestg),'-s 3-p 0.01-t 2'], s is set to 3 to represent the e-SVR formula, p is set to 0.01 to set the value of the loss function in e-SVR, t is set to 2 to represent SVM The kernel function used in is K bsf (x, xi ); the model contains information about the type of kernel function, the number of support vectors and the coefficient range of support vectors in the decision function;
2)得到群体净光合速率的预测值predict2) Obtain the predicted value predict of the net photosynthetic rate of the population
利用libsvm工具箱中的svmpredict(),通过[predict,mse]=svmpredict(C_D12,M_D12,model)实现利用M_D12对C_D12进行预测,得到群体净光合速率的预测值predict,Using svmpredict() in the libsvm toolbox, through [predict,mse]=svmpredict(C_D 12 ,M_D 12 ,model) to realize the prediction of C_D 12 using M_D 12 to obtain the predicted value predict of the net photosynthetic rate of the population,
3)判断预测模型model的可靠性3) Judging the reliability of the prediction model model
同时,通过C_D12和predict计算出两者之间的相关系数R,判断出预测值predict的准确性,即预测模型model的可靠性。At the same time, the correlation coefficient R between the two is calculated through C_D 12 and predict, and the accuracy of the predicted value predict is judged, that is, the reliability of the prediction model model.
实施例Example
1.获取区域可见光各波段光谱辐射配比关系数据1. Obtain the data of the spectral radiation ratio of each band of visible light in the region
参阅图5,在林下参种植基地任意挑选S=17m2的试验区域,将MSR-16型便携式多光谱辐射仪置于离林下参植株冠层高度H=2m处,则地面植株观测直径为H/2=1m,观测面积为S1=0.785,则S/S1=21.656,测试单元数量M=21,测量时间段跨度为2010年的7月1日至8月31日,测量时间为试验当日9:00-16:00,共有7个测试时间段,故选取的试验单元数量N=3,采用本发明介绍的区域可见光各波段光谱辐射配比关系数据获得方法,获得区域可见光各波段光谱辐射配比关系数据M_D,进行[0,1]归一化处理,得到归一化后的数据M_D1,如图中所示。Referring to Fig. 5, randomly select a test area of S= 17m2 in the understory ginseng planting base, place the MSR-16 portable multi-spectral radiometer at the height H=2m from the understory ginseng plant canopy, and the observed diameter of the ground plants is H/2 = 1m, the observation area is S 1 = 0.785, then S/S 1 = 21.656, the number of test units M = 21, and the measurement period spans from July 1 to August 31, 2010. The measurement time For 9:00-16:00 on the same day of the test, there are 7 test time periods in total, so the number of test units selected is N=3, and the method for obtaining the spectral radiation ratio relationship data of each band of visible light in the region introduced by the present invention is used to obtain the data of each band of visible light in the region. The band spectral radiation ratio data M_D is normalized by [0, 1] to obtain the normalized data M_D 1 , as shown in the figure.
2.获取群体净光合速率数据2. Obtain population net photosynthetic rate data
参阅图6,在21个测试单元中的每个试验单元内随机挑选3株林下参,每株植物随机挑选5片叶片,采用本发明介绍的群体净光合速率数据获得方法,获得林下参群体净光合速率C_D,进行[0,1]归一化处理,得到归一化后的数据C_D1,如图中所示。Referring to Fig. 6, in each test unit in 21 test units, randomly select 3 strains of understory ginseng, and each plant randomly selects 5 blades, and adopts the population net photosynthetic rate data acquisition method introduced by the present invention to obtain understory ginseng. The net photosynthetic rate C_D of the population is normalized by [0, 1] to obtain the normalized data C_D 1 , as shown in the figure.
3.预测模型的参数优化3. Parameter optimization of the prediction model
将2010年的7月1日至8月10日期间的M_D11作为SVM输入量,将此期间的C_D11作为SVM输出量。利用本发明介绍的对惩罚参数c和参数γ寻优方法,得到最佳惩罚参数c=2.51,最佳参数γ=1,即Γ=1,MSE为0.016;利用本发明介绍的对仿生型核函数参数寻优方法,最终确定仿生型核函数的最佳参数ξ为1.68,参数Γ为2.83。The M_D 11 from July 1st to August 10th in 2010 is taken as the SVM input, and the C_D 11 during this period is taken as the SVM output. Utilize the optimization method to penalty parameter c and parameter γ that the present invention introduces, obtain optimum penalty parameter c=2.51, optimum parameter γ=1, namely Γ=1, MSE is 0.016; The function parameter optimization method finally determines the best parameter ξ of the bionic kernel function to be 1.68, and the parameter Γ to be 2.83.
4.预测群体净光合速率4. Prediction of population net photosynthetic rate
参阅图7与图8,采用本发明介绍的预测群体净光合速率方法,惩罚参数c=2.51,Γ=2.83,ξ=1.68,通过model=svmtrain(C_D11,M_D11,cmd),得到预测模型model,其中model.totalSV为146,即支持向量有146个,model.sv_coef中最小值为-0.625,最大值为0.625,即支持向量在决策函数中的系数范围为[-0.625,0.625]。该model使得对训练集C_D11预测的最佳准确性达到89%,预测效果如图7所示。将2010年8月11日至8月31日期间的M_D12作为SVM输入量,将此期间的C_D12作为SVM输出量,采用该model,通过[predict,mse]=svmpredict(C_D12,M_D12,model),得到对预测集C_D12预测的准确性达到81%,预测效果如图8所示。Referring to Fig. 7 and Fig. 8, adopt the method for predicting the net photosynthetic rate of population that the present invention introduces, penalty parameter c=2.51, Γ=2.83, ξ=1.68, by model=svmtrain(C_D 11 , M_D 11 , cmd), obtain prediction model model, where model.totalSV is 146, that is, there are 146 support vectors, the minimum value in model.sv_coef is -0.625, and the maximum value is 0.625, that is, the coefficient range of the support vector in the decision function is [-0.625,0.625]. This model makes the best prediction accuracy of the training set C_D 11 reach 89%, and the prediction effect is shown in Figure 7. Take M_D 12 from August 11 to August 31, 2010 as the SVM input, and C_D 12 during this period as the SVM output. Using this model, pass [predict,mse]=svmpredict(C_D 12 ,M_D 12 ,model), the prediction accuracy of the prediction set C_D 12 reaches 81%, and the prediction effect is shown in Figure 8.
5.判断预测结果的准确性5. Judging the accuracy of the forecast results
取不同的S和H,重复上述群体净光合速率预测过程,得到群体净光合速率预测准确性。测量时间段跨度为2010年的7月1日至8月31日,测量时间为试验当日9:00-16:00,将2010年的7月1日至8月10日期间的M_D11和C_D11作为SVM的训练集,将2010年8月11日至8月31日期间的M_D12和C_D12作为SVM的预测集。当H=2m时,(1)取S=6m2,则S1=0.785,S/S1=7.643,测试单元数量M=7,试验单元数量N=1;(2)取S=11m2,则S1=0.785,S/S1=14.006,测试单元数量M=14,试验单元数量N=2;(3)取S=22m2,则S1=0.785,S/S1=28.025,测试单元数量M=28,试验单元数量N=4;(4)取S=28m2,则S1=0.785,S/S1=35.669,测试单元数量M=35,试验单元数量N=5;(5)取S=33m2,则S1=0.785,S/S1=42.038,测试单元数量M=42,试验单元数量N=6;(6)取S=39m2,则S1=0.785,S/S1=49.681,测试单元数量M=49,试验单元数量N=7;(7)取S=44m2,则S1=0.785,S/S1=56.051,测试单元数量M=56,试验单元数量N=8;(8)取S=50m2,则S1=0.785,S/S1=63.694,测试单元数量M=63,试验单元数量N=9;(9)取S=55m2,则S1=0.785,S/S1=70.064,测试单元数量M=70,试验单元数量N=10。对群体净光合速率预测集C_D12的预测准确性如表1所示。Taking different S and H, repeating the above-mentioned group net photosynthetic rate prediction process, to obtain the group net photosynthetic rate prediction accuracy. The measurement time span is from July 1st to August 31st, 2010, and the measurement time is from 9:00 to 16:00 on the day of the test. The M_D 11 and C_D 11 is used as the training set of SVM, and M_D 12 and C_D 12 from August 11 to August 31, 2010 are used as the prediction set of SVM. When H=2m, (1) take S=6m 2 , then S 1 =0.785, S/S 1 =7.643, the number of test units M=7, the number of test units N=1; (2) take S=11m 2 , then S 1 =0.785, S/S 1 =14.006, the number of test units M=14, the number of test units N=2; (3) S=22m 2 , then S 1 =0.785, S/S 1 =28.025, The number of test units M=28, the number of test units N=4; (4) S=28m 2 , then S 1 =0.785, S/S 1 =35.669, the number of test units M=35, the number of test units N=5; (5) Take S=33m 2 , then S 1 =0.785, S/S 1 =42.038, the number of test units M=42, the number of test units N=6; (6) Take S=39m 2 , then S 1 =0.785 , S/S 1 =49.681, number of test units M=49, number of test units N=7; (7) S=44m 2 , then S 1 =0.785, S/S 1 =56.051, number of test units M=56 , the number of test units N=8; (8) take S=50m 2 , then S 1 =0.785, S/S 1 =63.694, the number of test units M=63, the number of test units N=9; (9) take S= 55m 2 , then S 1 =0.785, S/S 1 =70.064, the number of test units M=70, and the number of test units N=10. The prediction accuracy of population net photosynthetic rate prediction set C_D 12 is shown in Table 1.
表1H=2m,不同S值情况下的群体净光合速率预测集C_D12的预测准确性Table 1H=2m, the prediction accuracy of the population net photosynthetic rate prediction set C_D 12 under different S values
测量时间段跨度为2011年的7月1日至8月31日,测量时间为试验当日9:00-16:00,将2011年的7月1日至8月10日期间的M_D11和C_D11作为SVM的训练集,将2011年8月11日至8月31日期间的M_D12和C_D12作为SVM的预测集。当H=1.2m时,(1)取S=2m2,则S1=0.283,S/S1=7.067,测试单元数量M=7,试验单元数量N=1;(2)取S=4m2,则S1=0.283,S/S1=14.134,测试单元数量M=14,试验单元数量N=2;(3)取S=6m2,则S1=0.283,S/S1=21.201,测试单元数量M=21,试验单元数量N=3;(4)取S=8m2,则S1=0.283,S/S1=28.269,测试单元数量M=28,试验单元数量N=4;(5)取S=10m2,则S1=0.283,S/S1=35.336,测试单元数量M=35,试验单元数量N=5;(6)取S=12m2,则S1=0.283,S/S1=42.403,测试单元数量M=42,试验单元数量N=6;(7)取S=14m2,则S1=0.283,S/S1=49.470,测试单元数量M=49,试验单元数量N=7;(8)取S=16m2,则S1=0.283,S/S1=56.537,测试单元数量M=56,试验单元数量N=8;(9)取S=18m2,则S1=0.283,S/S1=63.604,测试单元数量M=63,试验单元数量N=9;(10)取S=20m2,则S1=0.283,S/S1=70.671,测试单元数量M=70,试验单元数量N=10;对群体净光合速率预测准确性如表2所示。表2H=1.2m,不同S值情况下的群体净光合速率预测准确性The measurement period spans from July 1 to August 31, 2011, and the measurement time is from 9:00 to 16:00 on the day of the test. The M_D 11 and C_D from July 1 to August 10, 2011 11 is used as the training set of SVM, and M_D 12 and C_D 12 from August 11, 2011 to August 31, 2011 are used as the prediction set of SVM. When H=1.2m, (1) take S=2m 2 , then S 1 =0.283, S/S 1 =7.067, the number of test units M=7, the number of test units N=1; (2) take S=4m 2 , then S 1 =0.283, S/S 1 =14.134, the number of test units M=14, the number of test units N=2; (3) S=6m 2 , then S 1 =0.283, S/S 1 =21.201 , the number of test units M=21, the number of test units N=3; (4) S=8m 2 , then S 1 =0.283, S/S 1 =28.269, the number of test units M=28, the number of test units N=4 ; (5) S = 10m 2 , then S 1 = 0.283, S/S 1 = 35.336, the number of test units M = 35, the number of test units N = 5; (6) S = 12m 2 , then S 1 = 0.283, S/S 1 =42.403, number of test units M=42, number of test units N=6; (7) S=14m 2 , then S 1 =0.283, S/S 1 =49.470, number of test units M= 49, the number of test units N=7; (8) take S=16m 2 , then S 1 =0.283, S/S 1 =56.537, the number of test units M=56, the number of test units N=8; (9) take S =18m 2 , then S 1 =0.283, S/S 1 =63.604, the number of test units M=63, the number of test units N=9; (10) S=20m 2 , then S 1 =0.283, S/S 1 =70.671, the number of test units M=70, the number of test units N=10; the prediction accuracy of the net photosynthetic rate of the population is shown in Table 2. Table 2H=1.2m, the prediction accuracy of population net photosynthetic rate under different S values
从表1和表2可见,采用仿生型核函数Kbsf(x,xi),利用可见光各波段光谱辐射配比关系数据M_D,对群体净光合速率C_D进行预测,其预测准确性达到80%以上,效果令人满意,利用本发明所述的一种群体净光合速率预测方法,可以实现对农业中的其他植株群体净光合速率进行预测。It can be seen from Table 1 and Table 2 that the net photosynthetic rate C_D of the population is predicted by using the bionic kernel function K bsf (x,xi ) and the spectral radiation ratio data M_D of each band of visible light, and the prediction accuracy reaches 80%. As above, the effect is satisfactory, and the net photosynthetic rate of other plant populations in agriculture can be predicted by using a method for predicting the net photosynthetic rate of the population in the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310115387.0A CN103234916B (en) | 2013-04-06 | 2013-04-06 | Prediction method for net photosynthetic rate of population |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310115387.0A CN103234916B (en) | 2013-04-06 | 2013-04-06 | Prediction method for net photosynthetic rate of population |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103234916A CN103234916A (en) | 2013-08-07 |
CN103234916B true CN103234916B (en) | 2015-03-18 |
Family
ID=48882967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310115387.0A Expired - Fee Related CN103234916B (en) | 2013-04-06 | 2013-04-06 | Prediction method for net photosynthetic rate of population |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103234916B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106295093A (en) * | 2015-05-14 | 2017-01-04 | 中国科学院上海生命科学研究院 | A kind of method calculating canopy photosynthesis speed |
CN104914053B (en) * | 2015-05-15 | 2017-07-28 | 中国农业大学 | Build trees canopy photosynthesis trait predictive model and detection Photosynthetic Characters |
CN105678405B (en) * | 2015-12-31 | 2017-02-22 | 西北农林科技大学 | Modeling method for cucumber GA-RBF photosynthetic rate prediction model integrated with stomatal conductance |
CN105675551B (en) * | 2016-01-14 | 2018-12-21 | 中国矿业大学(北京) | A method of estimation plant photosynthesis carbon capacity |
CN108229065B (en) * | 2018-02-06 | 2019-03-26 | 北京林业大学 | A kind of construction method and prediction technique of the Net Photosynthetic Rate prediction model based on xylophyta leaf morphology feature |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2204418Y (en) * | 1994-06-03 | 1995-08-02 | 北京农业大学 | Photosynthetic transpiration meter |
CN1387034A (en) * | 2002-06-18 | 2002-12-25 | 华南师范大学 | Method and device for quickly measuring photosynthesizing speed of delay light generated by visiblelight inducing |
CN1687772A (en) * | 2005-04-19 | 2005-10-26 | 华南师范大学 | Quick detector for photosynthetic capacity of irradiation from light emitting diode |
CN1837787A (en) * | 2006-04-19 | 2006-09-27 | 南京大学 | A method for accurately measuring cotton biophysical parameters without damage |
CN102313699A (en) * | 2011-05-26 | 2012-01-11 | 北京农业信息技术研究中心 | Estimation method of total nitrogen content in crop canopy leaf |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7034939B2 (en) * | 2002-03-11 | 2006-04-25 | Spectir Corporation | Calibration system and method for calibration of various types of polarimeters |
-
2013
- 2013-04-06 CN CN201310115387.0A patent/CN103234916B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2204418Y (en) * | 1994-06-03 | 1995-08-02 | 北京农业大学 | Photosynthetic transpiration meter |
CN1387034A (en) * | 2002-06-18 | 2002-12-25 | 华南师范大学 | Method and device for quickly measuring photosynthesizing speed of delay light generated by visiblelight inducing |
CN1687772A (en) * | 2005-04-19 | 2005-10-26 | 华南师范大学 | Quick detector for photosynthetic capacity of irradiation from light emitting diode |
CN1837787A (en) * | 2006-04-19 | 2006-09-27 | 南京大学 | A method for accurately measuring cotton biophysical parameters without damage |
CN102313699A (en) * | 2011-05-26 | 2012-01-11 | 北京农业信息技术研究中心 | Estimation method of total nitrogen content in crop canopy leaf |
Non-Patent Citations (2)
Title |
---|
光合有效辐射预测模型的核函数组合优化;武海巍;《农业机械学报》;20110630;第42卷(第6期);全文 * |
基于参数优化支持向量机的林下参净光合速率预测模型;武海巍等;《光谱学与光谱分析》;20110531;第31卷(第5期);1414页-1417页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103234916A (en) | 2013-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103234916B (en) | Prediction method for net photosynthetic rate of population | |
CN102550374B (en) | Crop irrigation system combined with computer vision and multi-sensor | |
CN108520127A (en) | A kind of EO-1 hyperion inversion method of seeds leaf area index | |
CN114740180A (en) | Soil organic carbon estimation method and device based on multi-source remote sensing data | |
CN102524024A (en) | Crop irrigation system based on computer vision | |
CN107505271A (en) | Plant nitrogen evaluation method and system based on nitrogen fractions radiative transfer model | |
CN106600037B (en) | Multi-parameter auxiliary load prediction method based on principal component analysis | |
CN105631520B (en) | A kind of extraction wind speed Random-fuzzy does not know the novel method for modeling of feature | |
CN105809321A (en) | Quality control method of temperature data acquired by ground meteorological observation station | |
CN106053024B (en) | A kind of LED light source preference degree prediction technique towards monochromatic system object | |
CN105445218A (en) | Establishing method of self-adaptive model for detection of content of protein of rapeseeds on basis of mid-infrared spectrum | |
CN111855593A (en) | Remote sensing inversion model and method for starch content in rice leaves | |
CN107423850A (en) | Region corn maturity period Forecasting Methodology based on time series LAI curve integral areas | |
Du et al. | Combining a crop growth model with CNN for underground natural gas leakage detection using hyperspectral imagery | |
CN105608296B (en) | A kind of blade potassium concn inversion method based on lichee canopy spectra | |
CN117690507A (en) | Method to improve prediction accuracy of soil iron oxide based on amplified hyperspectral data sets | |
CN102156886A (en) | Statistical data and remote sensing image data based regional fertilizer application spatialization method | |
CN117612007A (en) | Winter rapeseed canopy mixed inversion processing method and system based on improved PROSAIL model | |
CN112362812A (en) | Remote sensing inversion model and method for rice leaf chlorophyll carotenoid content ratio based on Lars algorithm | |
CN106294932A (en) | The analysis method of different change condition watershed runoff uncertainty impacts | |
CN104794335A (en) | General multistage space sampling method | |
CN110321528A (en) | A kind of Hyperspectral imaging heavy metal-polluted soil concentration evaluation method based on semi-supervised geographical space regression analysis | |
CN114626966A (en) | A method to quantify the cooling scale of large urban blue-green spaces based on landscape pattern | |
CN102445712A (en) | Feature window weighted correlation spectral matching method for rock and mine | |
Zhu et al. | A methodology for estimating Leaf Area Index by assimilating remote sensing data into crop model based on temporal and spatial knowledge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150318 Termination date: 20170406 |
|
CF01 | Termination of patent right due to non-payment of annual fee |