CN103226460B - Multichannel analogue multiply-divide arithmetic circuit - Google Patents
Multichannel analogue multiply-divide arithmetic circuit Download PDFInfo
- Publication number
- CN103226460B CN103226460B CN201310135873.9A CN201310135873A CN103226460B CN 103226460 B CN103226460 B CN 103226460B CN 201310135873 A CN201310135873 A CN 201310135873A CN 103226460 B CN103226460 B CN 103226460B
- Authority
- CN
- China
- Prior art keywords
- transistor
- circuit
- multiply
- arithmetic circuit
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Amplifiers (AREA)
Abstract
本发明涉及模拟集成电路技术,特别涉及一种多路模拟乘除法运算电路。本发明公开了一种多路模拟乘除法运算电路,采用的技术方案是,多路模拟乘除法运算电路,包括:晶体管Qk、晶体管Q'k,k=0,1..n,晶体管Mi,j、晶体管M'i,j,i=k+1|k=0,1..n‑1,j=1,2,运放和电阻。本发明的电路结构能够现多路模拟信号的乘除法运算,电流I'n满足关系式本发明具有输出结果温度系数小,电路结构简单的特点。本发明输入输出均为电流信号,属于电流型模拟乘除法运算电路,无密勒效应,运算速度快。
The invention relates to analog integrated circuit technology, in particular to a multi-channel analog multiplication and division operation circuit. The invention discloses a multi-channel analog multiplication and division operation circuit. The technical solution adopted is that the multi-channel analog multiplication and division operation circuit includes: transistor Q k , transistor Q' k , k=0, 1..n, transistor M i,j , transistor M' i,j , i=k+1| k=0,1..n‑1 , j=1,2, op amp and resistor. The circuit structure of the present invention can realize the multiplication and division operation of multi-channel analog signals, and the current I'n satisfies the relational expression The invention has the characteristics of small output result temperature coefficient and simple circuit structure. The input and output of the present invention are both current signals, which belong to the current type analog multiplication and division operation circuit, have no Miller effect, and the operation speed is fast.
Description
技术领域technical field
本发明涉及模拟集成电路技术,特别涉及一种多路模拟乘除法运算电路。The invention relates to analog integrated circuit technology, in particular to a multi-channel analog multiplication and division operation circuit.
背景技术Background technique
模拟乘法除法电路是用来实现模拟量之间相乘相除运算功能的,它不但可用于对模拟量的运算,而且广泛应用于通信系统、测量系统、控制系统等领域,对模拟信号进行转换和处理。The analog multiplication and division circuit is used to realize the multiplication and division operation function between analog quantities. It can not only be used for the calculation of analog quantities, but also widely used in communication systems, measurement systems, control systems and other fields to convert analog signals. and processing.
常用的模拟乘法器大多使用吉尔伯特单元,如图1所示。电路由Vin2控制电流源Q3的电流iEE,iEE的变化导致了Q1和Q2跨导gm的变化,因此该电路又称为变跨导式模拟乘法器。电路输出VO为:Most commonly used analog multipliers use Gilbert units, as shown in Figure 1. The circuit controls the current i EE of the current source Q3 by Vin2, and the change of i EE leads to the change of the transconductance gm of Q1 and Q2, so this circuit is also called a variable transconductance analog multiplier. The circuit output V O is:
VO=-Kvxvy,其中其中VT是热电压,与温度相关。V O = -Kv x v y , where where V T is the thermal voltage, which is temperature dependent.
由于该电路的输出VO的系数中含有与绝对温度成正比的量VT,温度特性差,且输入和输出都是电压信号,存在密勒效应,运算速度慢。Because the coefficient of the output V O of this circuit contains the quantity V T proportional to the absolute temperature, the temperature characteristic is poor, and the input and output are voltage signals, there is Miller effect, and the operation speed is slow.
模拟除法电路大多利用模拟乘法器单元,连接成如图2所示的形式。因此模拟乘法器中存在的问题在模拟除法器中依然存在,并且电路结构复杂。而要实现多路模拟信号乘除法运算,需将模拟乘法器和除法器进行级联,进一步加大了电路的复杂程度。Most analog division circuits use analog multiplier units, which are connected as shown in Figure 2. Therefore, the problems existing in the analog multiplier still exist in the analog divider, and the circuit structure is complicated. To realize the multiplication and division operation of multi-channel analog signals, it is necessary to cascade the analog multipliers and dividers, which further increases the complexity of the circuit.
发明内容Contents of the invention
本发明所要解决的技术问题,就是提供一种多路模拟乘除法运算电路,实现多路模拟信号的乘除法运算,简化电路设计、提高运算速度并降低温度对输出结果的影响。The technical problem to be solved by the present invention is to provide a multi-channel analog multiplication and division operation circuit, which realizes multi-channel analog signal multiplication and division operation, simplifies circuit design, improves operation speed and reduces the influence of temperature on output results.
本发明解决所述技术问题,采用的技术方案是,多路模拟乘除法运算电路,包括:晶体管Qk、晶体管Q'k,k=0,1..n,晶体管Mi,j、晶体管M'i,j,i=k+1|k=0,1..n-1,j=1,2,运放和电阻;其特征在于,所述多路模拟乘除法运算电路具有对称结构,晶体管Qk与晶体管Q'k结构相同,位置对称,晶体管Mi,j与晶体管M'i,j结构相同,位置对称;晶体管Qk发射极与晶体管Mi,1栅极连接,晶体管Q'k发射极与晶体管M'i,1栅极连接;晶体管Mi,1源极与晶体管Mi,2漏极和晶体管Qi基极连接,晶体管M'i,1源极与晶体管M'i,2漏极和晶体管Q'i基极连接;偏置电流IBi、I'Bi分别由晶体管Mi,1和晶体管M'i,1输入,晶体管Qk的发射极接电流Ik,晶体管Q'k的发射极接电流I'k,晶体管Q'n发射极通过电阻接地,晶体管Qk和晶体管Q'k集电极接参考电平,运放输出端连接晶体管Q0和晶体管Q'0的基极,运放的两个输入端分别连接晶体管Qn和晶体管Q'n的发射极。The present invention solves the technical problem, and adopts the technical scheme that a multi-channel analog multiplication and division operation circuit includes: transistor Q k , transistor Q' k , k=0,1..n, transistor M i,j , transistor M ' i,j , i=k+1| k=0,1..n-1 , j=1,2, operational amplifier and resistance; It is characterized in that, described multi-channel analog multiplication and division operation circuit has a symmetrical structure, Transistor Q k has the same structure as transistor Q' k , and its position is symmetrical; transistor M i, j has the same structure as transistor M' i,j , and its position is symmetrical; the emitter of transistor Q k is connected to the gate of transistor M i,1 , and transistor Q' k The emitter is connected to the gate of transistor M'i,1; the source of transistor M i,1 is connected to the drain of transistor M i,2 and the base of transistor Q i , and the source of transistor M' i,1 is connected to transistor M' i ,2 The drain is connected to the base of the transistor Q'i; the bias current I Bi and I' Bi are respectively input by the transistor M i,1 and the transistor M' i,1 , the emitter of the transistor Q k is connected to the current I k , the transistor The emitter of Q' k is connected to the current I' k , the emitter of transistor Q' n is grounded through a resistor, the collector of transistor Q k and transistor Q' k is connected to the reference level, and the output terminal of the op amp is connected to transistor Q 0 and transistor Q' 0 The base of the operational amplifier, and the two input terminals of the operational amplifier are respectively connected to the emitter of the transistor Qn and the transistor Q'n .
推荐的,所述运放为输出轨到轨运放。Preferably, the operational amplifier is an output rail-to-rail operational amplifier.
具体的,所述多路模拟乘除法运算电路为电流型模拟乘除法运算电路。Specifically, the multi-channel analog multiplication and division operation circuit is a current-type analog multiplication and division operation circuit.
进一步的,所述晶体管Mi,j和晶体管M'i,j为场效应型晶体管或双极型晶体管。Further, the transistor M i,j and the transistor M' i,j are field effect transistors or bipolar transistors.
进一步的,所述晶体管Qk和晶体管Q'k为NPN型晶体管或PNP型晶体管。Further, the transistor Q k and the transistor Q' k are NPN transistors or PNP transistors.
本发明的有益效果是,能够现多路模拟信号的乘除法运算,输出结果温度系数小,电路结构简单,输入输出均为电流信号。本发明电路属于电流型模拟乘除法运算电路,无密勒效应,运算速度快。The beneficial effect of the present invention is that multiplication and division operations of multiple analog signals can be performed, the temperature coefficient of the output result is small, the circuit structure is simple, and the input and output are both current signals. The circuit of the invention belongs to the current type analog multiplication and division operation circuit, has no Miller effect, and has high operation speed.
附图说明Description of drawings
图1是传统的模拟乘法器电路图;Fig. 1 is a traditional analog multiplier circuit diagram;
图2是传统的模拟除法器电路图;Fig. 2 is a circuit diagram of a traditional analog divider;
图3是实施例1的电路图;Fig. 3 is the circuit diagram of embodiment 1;
图4是实施例2电路图;Fig. 4 is embodiment 2 circuit diagrams;
图5是实施例3的电路图;Fig. 5 is the circuit diagram of embodiment 3;
图6是图5所示电路的电流关系曲线;Fig. 6 is the current relationship curve of the circuit shown in Fig. 5;
图7是图5所示电路的输出电流与温度的关系曲线。FIG. 7 is a graph showing the relationship between output current and temperature of the circuit shown in FIG. 5 .
具体实施方式detailed description
下面结合附图及实施例,详细描述本发明的技术方案。The technical solution of the present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
本发明的多路模拟乘除法运算电路,包括:晶体管Qk、晶体管Q'k,k=0,1..n,晶体管Mi,j、晶体管M'i,j,i=k+1|k=0,1..n-1,j=1,2,运放和电阻。本发明的多路模拟乘除法运算电路结构对称,晶体管Qk与晶体管Q'k具有相同结构和参数,并处于电路的对称位置。晶体管Qk和晶体管Q'k可以采用NPN型晶体管或PNP型晶体管。晶体管Mi,j与晶体管M'i,j也具有相同结构和参数,同样处于电路的对称位置。晶体管Mi,j和晶体管M'i,j可以采用场效应型晶体管或双极型晶体管。在电路连接关系上,晶体管Qk发射极与晶体管Mi,1连接,晶体管Q'k发射极与晶体管M'i,1连接;晶体管Mi,1与晶体管Mi,2连接,晶体管M'i1与晶体管M'i2连接。偏置电流IBi、I'Bi分别由晶体管Mi1和晶体管M'i1输入,晶体管Qk的发射极接电流Ik,晶体管Q'k的发射极接电流I'k,晶体管Q'n发射极通过电阻接地,晶体管Qk和晶体管Q'k集电极接参考电平,本发明晶体管Qk和晶体管Q'k集电极的连接并没有严格的规定,参考电平可以是电源电压等。运放输出端与晶体管Q0和晶体管Q'0基极的连接点是本发明电路的对称点,运放的两个输入端分别连接晶体管Qn和晶体管Q'n的发射极。本发明的多路模拟乘除法运算电路,电流I'n满足关系式
当晶体管Qk和晶体管Q'k为NPN型晶体管,晶体管Mi,j和晶体管M'i,j为场效应晶体管N型场效应晶体管(NMOS晶体管)时,电路连接方式如图3所示。当晶体管Qk和晶体管Q'k为PNP型晶体管,晶体管Mi,j和晶体管M'i,j为PMOS晶体管时,电路连接方式如图4所示。When the transistors Q k and Q' k are NPN transistors, and the transistors M i,j and M' i,j are field effect transistors N-type field effect transistors (NMOS transistors), the circuit connection mode is shown in FIG. 3 . When the transistor Q k and the transistor Q' k are PNP transistors, and the transistor M i,j and the transistor M' i,j are PMOS transistors, the circuit connection mode is shown in FIG. 4 .
实施例1Example 1
参见图3,当晶体管Qk和晶体管Q'k为NPN型晶体管,晶体管Mi,j和晶体管M'i,j为NMOS晶体管时,本例电路连接关系是,晶体管Qk的发射极连接到电流Ik的负端和晶体管Mi,1的栅极,晶体管Mi,1的漏极连接到偏置电流IBi的正端和晶体管Mi,2的栅极。晶体管Mi,1的源极连接到晶体管Mi,2的漏极和晶体管Qi的基极。晶体管Q'k的发射极连接到输入电流I'k的负端和晶体管M'i,1的栅极,晶体管M'i,1的漏极连接到偏置电流I'Bi的正端和晶体管M'i,2的栅极,晶体管M'i,1的源极连接到晶体管M'i,2的漏极和Q'i的基极。晶体管Qn的发射极连接到电流In的负端和运放A的反向输入端,晶体管Q'n的发射极连接到运放A的同向输入端和电阻R的一端,电阻R的另一端、电流Ik的正端、电流I'k的正端、晶体管Mi,2和晶体管M'i,2的源极均接地。运放A的输出端连接晶体管Q0和晶体管Q'0的基极。其中k=0,1..n,i=k+1|k=0,1..n-1,j=1,2。Referring to Fig. 3, when the transistor Q k and the transistor Q' k are NPN transistors, and the transistor M i,j and the transistor M' i,j are NMOS transistors, the circuit connection relationship in this example is that the emitter of the transistor Q k is connected to The negative terminal of the current I k and the gate of the transistor Mi ,1 , the drain of the transistor Mi,1 is connected to the positive terminal of the bias current I Bi and the gate of the transistor Mi ,2 . The source of transistor M i,1 is connected to the drain of transistor M i,2 and the base of transistor Q i . The emitter of the transistor Q'k is connected to the negative terminal of the input current I'k and the gate of the transistor M'i,1 , and the drain of the transistor M'i,1 is connected to the positive terminal of the bias current I'Bi and the transistor The gate of M'i ,2 , the source of transistor M'i,1 is connected to the drain of transistor M'i ,2 and the base of Q'i. The emitter of the transistor Q n is connected to the negative terminal of the current I n and the inverting input terminal of the op amp A, the emitter of the transistor Q' n is connected to the same input terminal of the op amp A and one end of the resistor R, and the resistor R The other end, the positive end of the current I k , the positive end of the current I' k , the transistor M i,2 and the source of the transistor M' i,2 are all grounded. The output terminal of the operational amplifier A is connected to the bases of the transistor Q0 and the transistor Q'0 . where k=0,1..n, i=k+1 | k=0,1..n-1 , j=1,2.
该实施例中偏置电流IBi=I'Bi,并且Mij和M'ij管子类型及结构、参数相同,晶体管Qk和晶体管Q'k结构参数相同。通过减小晶体管Mi,2和晶体管M'i,2的宽长比,使晶体管Mi,1和晶体管M'i,1工作在饱和区,于是由MOS管饱和区电流电压公式可得In this embodiment, bias current I Bi =I' Bi , and M ij and M' ij tubes have the same type, structure and parameters, and transistor Q k and transistor Q' k have the same structural parameters. By reducing the width-to-length ratio of the transistor M i,2 and the transistor M' i,2 , the transistor M i,1 and the transistor M' i,1 work in the saturation region, so the current-voltage formula of the MOS transistor saturation region can be obtained
由偏置电流IBi=I'Bi,得到 From the bias current I Bi = I' Bi , get
又由三极管电流电压公式得And by the triode current voltage formula have to
运放A的输入端具有虚短的特性,晶体管Qn和Q'n的发射极电压相同,于是The input terminal of op amp A has a virtual short characteristic, and the emitter voltages of transistors Qn and Q'n are the same, so
因为
所以so
当晶体管Qk和Q'k管子类型及尺寸相同时,此时有When transistors Q k and Q' k are of the same type and size, At this time there is
实现了多路模拟信号的乘除法运算功能,且输出信号不含与温度相关的量VT。The multiplication and division operation function of multiple analog signals is realized, and the output signal does not contain the temperature-related quantity V T .
实施例2Example 2
当晶体管Qk和晶体管Q'k为PNP型晶体管,晶体管Mi,j和晶体管M'i,j为P型场效应晶体管(PMOS晶体管)时,本发明的多路模拟乘除法运算电路具体连接关系如图4所示,电流I'n同样满足关系式 When transistor Q k and transistor Q' k are PNP transistors, and transistor M i, j and transistor M' i, j are P-type field effect transistors (PMOS transistors), the multi-channel analog multiplication and division operation circuit of the present invention is specifically connected The relationship is shown in Figure 4, and the current I' n also satisfies the relationship
实施例3Example 3
图5是本发明一种多路模拟乘除法运算电路对三路模拟信号进行乘除运算的具体实施电路,即为图3所示的电路中n=1时的特例。在该实施例中,通过共源共栅结构,场效应晶体管M3、M4和M5、M6分别镜像流过场效应晶体管M1、M2的偏置电流IB,得到镜像电流IB1和I'B1。设置偏置电流IB=5μA,IB:IB1:I'B1=1:1:1,运放A的增益为80dB。输入电流I'0=5μA,I1在2μA到10μA之间每隔2μA取一个值,扫描输出电流I'1随I0的变化情况。FIG. 5 is a specific implementation circuit of a multi-channel analog multiplication and division operation circuit of the present invention for multiplication and division of three-way analog signals, which is a special case when n=1 in the circuit shown in FIG. 3 . In this embodiment, through the cascode structure, the field effect transistors M 3 , M 4 and M 5 , M 6 respectively mirror the bias current I B flowing through the field effect transistors M 1 , M 2 to obtain the mirror current I B1 and I'B1 . Set the bias current I B =5μA, I B :I B1 :I' B1 =1:1:1, and the gain of operational amplifier A is 80dB. The input current I' 0 = 5μA, I 1 takes a value every 2μA between 2μA and 10μA, and the change of the output current I' 1 with I 0 is scanned.
图6为扫描得到的输出结果。从图6中截取的数据可以看到,电流信号之间满足的关系。Figure 6 shows the output of the scan. From the data intercepted in Figure 6, it can be seen that the current signals satisfy Relationship.
图7是I0=6μA,I1=10μA,I'0=5μA的情况下输出电流I'1的温度特性曲线。从曲线中看到,在-40℃时,输出电流I'1=11.82uA;在125℃时,输出电流I'1=11.92uA。在-40℃~125℃的温度范围内,由温度变化引起的输出电流变化小于1%。FIG. 7 is a temperature characteristic curve of the output current I' 1 under the conditions of I 0 =6 μA, I 1 =10 μA, and I' 0 =5 μA. It can be seen from the curve that at -40°C, the output current I' 1 =11.82uA; at 125°C, the output current I' 1 =11.92uA. In the temperature range of -40°C to 125°C, the output current change caused by temperature change is less than 1%.
综上所述,本发明的多路模拟乘除法运算电路,实现了多路模拟信号的乘除法运算,输出电流温度系数小,电路实现方式简单,运算速度快。In summary, the multi-channel analog multiplication and division operation circuit of the present invention realizes the multi-channel analog signal multiplication and division operation, has a small output current temperature coefficient, simple circuit implementation, and fast operation speed.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310135873.9A CN103226460B (en) | 2013-04-18 | 2013-04-18 | Multichannel analogue multiply-divide arithmetic circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310135873.9A CN103226460B (en) | 2013-04-18 | 2013-04-18 | Multichannel analogue multiply-divide arithmetic circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103226460A CN103226460A (en) | 2013-07-31 |
CN103226460B true CN103226460B (en) | 2016-08-24 |
Family
ID=48836929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310135873.9A Expired - Fee Related CN103226460B (en) | 2013-04-18 | 2013-04-18 | Multichannel analogue multiply-divide arithmetic circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103226460B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104965685B (en) * | 2015-07-30 | 2017-08-04 | 盐城工学院 | a divider |
CN110308891B (en) * | 2019-08-21 | 2023-05-09 | 上海南芯半导体科技股份有限公司 | Divider circuit and implementation method thereof |
CN112583399B (en) * | 2021-02-23 | 2021-05-14 | 上海南芯半导体科技有限公司 | High-precision analog multiplier-divider |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1208203A (en) * | 1997-03-28 | 1999-02-17 | 日本电气株式会社 | Composite transistors, composite transistor pairs, current squarers, and CMOS analog multipliers |
US20030005018A1 (en) * | 2001-06-29 | 2003-01-02 | A & Cmos, Inc. | Analog multiplication circuit |
US20060232334A1 (en) * | 2005-04-19 | 2006-10-19 | Alcatel | Analogue multiplier |
CN101090267A (en) * | 2007-08-14 | 2007-12-19 | 开源集成电路(苏州)有限公司 | High linearity wide input range changable gain single quadrant CMOS multiplier |
CN101877044A (en) * | 2010-05-21 | 2010-11-03 | 西安电子科技大学 | Total Harmonic Distortion Optimized Analog Multiplier |
US20120154042A1 (en) * | 2010-12-20 | 2012-06-21 | Rf Micro Devices, Inc. | Analog multiplier |
-
2013
- 2013-04-18 CN CN201310135873.9A patent/CN103226460B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1208203A (en) * | 1997-03-28 | 1999-02-17 | 日本电气株式会社 | Composite transistors, composite transistor pairs, current squarers, and CMOS analog multipliers |
US20030005018A1 (en) * | 2001-06-29 | 2003-01-02 | A & Cmos, Inc. | Analog multiplication circuit |
US20060232334A1 (en) * | 2005-04-19 | 2006-10-19 | Alcatel | Analogue multiplier |
CN101090267A (en) * | 2007-08-14 | 2007-12-19 | 开源集成电路(苏州)有限公司 | High linearity wide input range changable gain single quadrant CMOS multiplier |
CN101877044A (en) * | 2010-05-21 | 2010-11-03 | 西安电子科技大学 | Total Harmonic Distortion Optimized Analog Multiplier |
US20120154042A1 (en) * | 2010-12-20 | 2012-06-21 | Rf Micro Devices, Inc. | Analog multiplier |
Non-Patent Citations (5)
Title |
---|
A novel current-mode four-quadrant CMOS analog multiplier/divider;Amir Alikhani, Arash Ahmadi;《International Journal of Electronics and Communications》;20121231;581-586 * |
Improved analysis of the nonlinear distortion performance of an N-level analog multiplier;Muhammad Taher Abuelma"Atti;《MICROELECTRONICS JOURNAL》;19911231;第22卷;89-100 * |
一种低压高线性CMOS模拟乘法器设计;陆晓俊,李富华;《现代电子技术》;20110115;第34卷(第2期);139-144 * |
基于电流模电路的CMOS模拟乘法器设计;王永杰,郭强;《科学技术与工程》;20121231;第12卷(第31期);9355-9361 * |
集成CMOS四象限模拟乘法器;霍明学等;《半导体学报》;20061231;335-339 * |
Also Published As
Publication number | Publication date |
---|---|
CN103226460A (en) | 2013-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI457743B (en) | Bandgap reference circuit and self-referenced regulator | |
CN104503528B (en) | A Low Noise Bandgap Reference Circuit with Reduced Offset Effect | |
CN102664594B (en) | Log amplifier with temperature compensation function | |
CN103412595A (en) | Low-power-source-dependency band-gap reference voltage circuit design based on PTAT current | |
CN107749745B (en) | Variable gain amplifier | |
CN103941792A (en) | Band gap voltage reference circuit | |
WO2020103725A1 (en) | Differential input circuit, amplification circuit, and display apparatus | |
CN106774574A (en) | A kind of band-gap reference source circuit | |
CN103901937B (en) | Bandgap Voltage Reference | |
CN103226460B (en) | Multichannel analogue multiply-divide arithmetic circuit | |
CN107168442A (en) | Band gap reference voltage source circuit | |
CN102983853B (en) | A kind of simulation squaring circuit | |
RU2461048C1 (en) | Reference voltage source | |
CN112596576B (en) | Band gap reference circuit | |
CN116865740B (en) | Analog multiplier circuit | |
CN109445507B (en) | Band-gap reference circuit with high power supply rejection ratio in wide frequency | |
CN103151989B (en) | Logarithmic amplifier with low voltage and low temperature coefficient | |
CN110048675B (en) | Circuit for improving input bias current performance of bipolar rail-to-rail operational amplifier | |
CN103106063B (en) | A kind of simulation multiplication and division computing circuit | |
US20220253086A1 (en) | Current mirror circuit | |
US11188112B2 (en) | Current mirror arrangements with adjustable offset buffers | |
CN111293983A (en) | A High Linearity Active Mixer with Common Mode Feedback | |
CN206711075U (en) | A kind of four-quadrant analog divider | |
CN111654244A (en) | A High Linearity GΩ Class Equivalent Resistance Circuit with PVT Robustness | |
CN104038171B (en) | Large dynamic range variable gain amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160824 Termination date: 20170418 |
|
CF01 | Termination of patent right due to non-payment of annual fee |