[go: up one dir, main page]

CN103221429A - 治疗因子viii抗体 - Google Patents

治疗因子viii抗体 Download PDF

Info

Publication number
CN103221429A
CN103221429A CN2011800562959A CN201180056295A CN103221429A CN 103221429 A CN103221429 A CN 103221429A CN 2011800562959 A CN2011800562959 A CN 2011800562959A CN 201180056295 A CN201180056295 A CN 201180056295A CN 103221429 A CN103221429 A CN 103221429A
Authority
CN
China
Prior art keywords
antibody
fviii
seq
factor viii
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN2011800562959A
Other languages
English (en)
Inventor
H.奥斯特加尔德
I.希尔登
H.L.霍尔姆贝格
K.兰贝尔特
J.T.克劳森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novo Nordisk AS
Original Assignee
Novo Nordisk AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novo Nordisk AS filed Critical Novo Nordisk AS
Publication of CN103221429A publication Critical patent/CN103221429A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/36Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against blood coagulation factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/36Blood coagulation or fibrinolysis factors
    • A61K38/37Factors VIII
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Endocrinology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及治疗性FVIII抗体。特别地,本发明涉及具有延长FVIII的循环半衰期的能力的FVIII抗体。本发明还涉及此类抗体在A型血友病治疗和预防中的用途。

Description

治疗因子VIII抗体
技术领域
本发明涉及A型血友病的治疗。特别地,本发明涉及治疗因子VIII抗体以及因子VIII抗体用于治疗A型血友病的用途。
背景技术
A型血友病是由凝固因子VIII(FVIII)活性的缺陷或功能障碍引起的遗传出血障碍。临床表现不是在初级止血上 – 正常地发生血块的形成 – 而是凝块由于次级凝血酶形成的缺失而不稳定。
A型血友病目前通过凝固因子FVIII的静脉内注射治疗,所述凝固因子FVIII从血液中分离或重组产生。治疗可以是在需要时或预防性的。近期公开的数据支持预防具有超过在需要时治疗的显著优点。这些包括出血频率的减少和发展血友病性关节病的更低危险,两者都导致对于患者更佳的生活质量。然而,虽然预防致使患者的基本上无症状生活成为可能,但它要求在外周静脉中的频繁注射,一般为一周三次,其已知是疼痛、困难和耗时的。此外,重复静脉穿刺在幼儿中不一定是可能的。因此,支持较不频繁的施用和/或经由更方便和安全途径的施用例如皮下施用的产品将更大程度的致使常规预防治疗成为可能。
具有增强wt FVIII活化的能力的FVIII抗体公开于US20090297503中。然而,这种抗体也显示损害wt FVIII与vWF的结合。FVIII:vWF结合的损害一般被认为是不希望有的,因为因子VIII的循环半衰期在vWF结合后高许多倍。
因此本领域需要支持不频繁施用和/或能够增强内源FVIII的活性,并且因此增强在患有A型血友病的患者中的促凝血应答的疗法。具有内源FVIII的患者包括患有轻度至中度形式的A型血友病患者和一部分的重症患者。
发明概述
本发明涉及具有与活化人因子VIII结合的能力的单克隆因子VIII抗体,其中在与活化的因子VIII结合后,所述抗体减少或抑制A2结构域的解离,并且其中所述抗体不干扰vWF结合。本发明还涉及此类分子的治疗用途。
此类抗体可以用于延长FVIIIa/FIXa复合物的寿命,导致更多凝血酶生成且因而改善凝块形成。此类抗体因此适合于治疗患有A型血友病并且未完全缺乏内源FVIII的患者,例如具有轻度和中度A型血友病的患者和具有重度A型血友病的患者亚群。任选地,此类抗体可以与因子VIII替代疗法组合使用。
附图说明
1显示了来自功能产色初级筛选测定的结果。不具有解离时间(Max)的一个培养基对照和具有7.5分钟解离时间(Min)的培养基对照限定测定窗口。通过在测定中低于Min的活性证明的,几个样品抑制FVIII活性。有趣的是,显著部分的样品能够稳定FVIII至比不具有解离时间(Max)的对照更大的程度。
2显示了使用连同FVIII(磷脂依赖性)一起加入的磷脂或使用连同FIXa/FX混合物(磷脂不依赖性)一起加入的磷脂,在四个不同解离时间点(0-25分钟)以五个不同浓度(0-50 nM)测试的抗体。测量的信号(在405 nm处的吸光度)与在解离后的剩余FVIIIa活性成比例。比较两种反应条件,证实大多数抗体在磷脂的存在下能够稳定FVIIIa,而在FVIIIa衰变过程中在不存在磷脂的情况下的FVIIIa稳定程度更低。对于大多数抗体,即使在最低抗体浓度下也观察到FVIIIa的最大稳定。一个例外是在最低抗体浓度下具有更低稳定的4F136,指示相对低的亲和相互作用。
3 4F143对活化FVIII或FVIII S289L的时间依赖性自发衰变的作用。0.3 nM的FVIII用40 nM凝血酶在室温和pH 7.4下快速活化30秒,随后加入蛭素以灭活凝血酶。在所示时间点,将衰变混合物稀释到FIXa/磷脂内,并且测定在405 nm处的毫吸光度单位/分钟(mAU/分钟)的FX活化的起始速率。(A)在不存在磷脂的情况下,4F143的结合针对自发解离不稳定FVIIIa。在FVIIIa的活化和后续衰变过程中,在不存在磷脂的情况下以及在20 nM 4F143抗体的不存在(●)或存在下(▲)执行反应。(B)在磷脂的存在下FVIIIa通过4F143的显著稳定。稳定不依赖于在凝血酶活化前FVIII和抗体的预结合。在FVIII活化和衰变过程中,在10 μM磷脂的存在下执行反应。符号指示(●)不存在抗体,(▲)在FVIII活化和衰变过程中存在20 nM 4F143,和(
Figure 415112DEST_PATH_IMAGE001
)在FVIIIa衰变过程中存在20 nM 4F143。(C)4F143能够减慢FVIIIa S289L的解离速率至在不存在抗体的情况下对于wt FVIIIa观察到的水平。在FVIII或FVIII S289L活化和衰变过程中,在10 μM磷脂的存在下执行反应;(●,■)不存在抗体,(◆)在FVIII S289L活化和衰变过程中存在20 nM 4F143。
4 在固相结合测定中抗体对FVIII与固定的vWF结合的作用。(A)在不存在抗体的情况下,用0.05 - 6.4 nM FVIII滴定vWF。根据单位点结合模型的数据分析给出0.29 ± 0.01 nM的表观解离常数(K d),其与公开的值良好一致(Vlot等人,1995)。结果显示为平均值±标准差(n = 4)。(B)抗体对FVIII与vWF结合的作用在单一FVIII浓度(0.8 nM)时进行研究,给出在不存在抗体的情况下与vWF的一半最大结合。抗体浓度范围为0 - 162 nM,其中最高浓度超过对于FVIII抗体相互作用测量的K d的一个数量级(参见表2)。使用识别非重叠表位的抗FVIII抗体检测结合的FVIII。发现测试的抗体无一影响FVIII与vWF的相互作用。结果显示为平均值±标准差(n = 2)。
5 抗体对通过凝血酶的FVIII活化的作用。在37℃用1 nM凝血酶且不存在或存在100 nM ESH5(●,点虚线)、100 nM ESH5(◆)、ESH8(○)、moAb216(□)、4F143(▲)、4F50()或4F140(■)下,活化100nM FVIII。在所示时间点,通过加入过量蛭素猝灭FVIII的进一步活化,并且通过rpHPLC定量FVIII活化程度为游离A1亚单位的量。发现ESH5、ESH8和moAb216都加速FVIII的活化,而对于4F143、4F50和4F140未观察到增加的活化速率。
6 通过质谱法监控的HX鉴定涉及4F143和4F41结合的FVIII区域。(A)对应于肽片段aa 407-428(SEQ ID NO 15),YKSQYLNNGPQRIGRKYKKVRF([M+H]+ = 549.5128,z = 5)的质量/电荷谱,(B)对应于肽片段aa 591-602(SEQ ID NO 16),IQRFLPNPAGVQ([M+H]+ = 670.3730,z = 2)的质量/电荷谱,两者都鉴定为与FVIII结合的4F143表位的部分。(C)对应于肽片段1965-1976(SEQ ID NO 17),VRKKEEYKMALY(m/z = 524.9335,z= 3)的质量/电荷谱,鉴定为与FVIII结合的4F41表位的部分。对于所有谱,上小图显示了非氘化对照,中和下小图分别显示了在mAb的不存在或存在下在与D2O交换(in-exchange)30秒后的肽。
7 在4F143的存在下FVIII的代表性肽的氢交换时间曲线图。在4F143的不存在(■)或存在下(□),FVIII肽的氘掺入(Da)针对在对数标度上的时间作图。覆盖残基aa 392-403和429-436的肽代表不受与4F143的复合物形成影响的FVIII区域。覆盖残基aa 407-428和415-428的肽代表其为4F143结合表位的部分的FVIII区域。
8 在4F143的存在下FVIII的HX分析肽的序列覆盖。对于鉴定的两个表位区域,即序列(A)aa 407-428和(B)aa 591-602,基本序列(使用成熟编号)显示在HX分析肽上(显示为水平条)。在4F143的存在和不存在下显示相似交换模式的肽以无填充(□)显示,而在4F143结合后显示减少的氘掺入的肽以黑色(■)填充。
9 在4F41的存在下FVIII的代表性肽的氢交换时间曲线图。在4F41的不存在(■)或存在下(□),FVIII肽的氘掺入(Da)针对在对数标度上的时间作图。覆盖残基aa 1963-1972、1963-1974和1965-1976的肽代表其为4F41结合表位的部分的FVIII区域,观察对于短温育时间即10秒和30秒氘交换速率中的变化。覆盖残基aa 1984-1988的肽代表不受与4F41的复合物形成影响的FVIII区域。
10 在4F41的存在和不存在下,FVIII的HX分析肽的序列覆盖。基本序列(使用成熟编号)显示在HX分析的肽上(显示为水平条)。在4F41的存在和不存在下显示相似交换模式的肽以无填充(□)显示,并且在4F41结合后在短温育时间即< 100秒显示减少的氘掺入的肽以黑色(■)填充。
发明详述
定义:
因子 VIII 抗体:根据本发明的因子VIII抗体具有与活化的因子VIII结合能力,并且它们还优选具有在凝血酶活化前和后与因子VIII结合的能力。根据本发明的抗体还可以具有与修饰的因子VIII变体,例如与一个或多个侧基缀合的因子VIII分子结合的能力。根据本发明的抗体还可以具有与包含因子VIII且任选与侧基缀合的融合蛋白结合的能力。根据本发明的抗体还可以具有与下述结合的能力:包含氨基酸缺失、置换和/或添加的因子VIII变体,例如在A型血友病患者中发现的那些,或例如B结构域截短/缺失的因子VIII,具有减少的与vWF结合能力的因子VIII,具有修改的与多种分子(例如LRP)结合的能力的因子VIII变体,任选与侧基缀合且任选是融合蛋白的部分。换言之,根据本发明的抗体可以与具有因子VIII活性的任何因子VIII变体结合。根据本发明的抗体一般可以具有与wt FVIII的循环半衰期相比较显著更长的循环半衰期。根据本发明的抗体还可以例如皮下施用,其是比IV施用通常更方便和容易使用的施用形式。
如本文使用的,术语“抗体”或“因子VIII抗体”意指免疫球蛋白分子及其片段,其具有与因子VIII和/或FVIIIa特异性结合的能力。全长抗体包含四条多肽链,通过二硫键互联的两条重(H)链和两条轻(L)链。每条重链包含重链可变区(本文缩写为HCVR或VH)和重链恒定区。重链恒定区由三个结构域――CH1、CH2和CH3组成。每条轻链由轻链可变区(本文缩写为LCVR或VL)和轻链恒定区组成。轻链恒定区由一个结构域――CL组成。VH和VL区还可以再分成称为互补决定区(CDR)的高变区,其散布有称为构架区(FR)的更保守区域。每个VH和VL由三个CDRs和四个FRs组成,从氨基末端到羧基末端以下述次序排列:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。因此,在根据本发明的抗体的定义内还有保留与因子VIII特异性结合的能力的抗体的一种或多种片段。已显示抗体的抗原结合功能可以通过全长抗体的片段执行。在术语“抗体”内包含的结合片段的例子包括(i)Fab片段,由VL、VH、CL和CH I结构域组成的单价片段;(ii)F(ab)2和F(ab')2片段,包含在铰链区通过二硫桥连接的两个Fab片段的二价片段;(iii)由VH和CH1结构域组成的Fd片段;(iv)由抗体单臂的VL和VH结构域组成的Fv片段,(v)由VH结构域组成的dAb片段(Ward等人,(1989)Nature 341:544-546);和(vi)分离的互补决定区(CDR)。此外,尽管Fv片段的两个结构域VL和VH由分开基因编码,但它们可以使用重组法通过合成接头进行连接,所述合成接头使得它们能够制备为单条蛋白质链,其中VL和VH区配对以形成单价分子(称为单链Fv(scFv);参见例如,Bird等人(1988)Science 242:423-426,和Huston等人(1988)Proc. Natl. Acad. Sci. USA 85:5879-5883)。此类单链抗体也意欲包含在根据本发明的术语“因子VIII抗体”内。其他形式的单链抗体例如双抗体也包含在术语“因子VIII抗体”中。双抗体是二价、双特异性抗体,其中VH和VL结构域在单条多肽链上表达,但使用太短而不允许相同链上的两个结构域之间配对的接头,由此迫使结构域与另一条链的互补结构域配对,并且产生两个抗原结合位点(参见例如,Hol-liger,P.,等人(1993)Proc. Natl. Acad. Sci. USA 90:6444-6448;Poljak,R. J.,等人(1994)Structure 2:1121-1123)。
如本文使用的,术语“人抗体”意指具有衍生自人种系免疫球蛋白序列的可变和恒定区的根据本发明的因子VIII抗体。本发明的人因子VIII抗体可以包括例如在CDRs且特别是CDR3中,不由人种系免疫球蛋白序列编码的氨基酸残基(例如通过体外随机或位点特异性诱变或通过体内体细胞突变引入的突变)。
在本申请上下文中的术语“人源化抗体”指已移植到人支架上的来自根据本发明的因子VIII抗体的CDR序列。根据本发明的因子VIII抗体因此可以是例如人抗体或人源化抗体。
如本文使用的术语“表位”意指抗体与之结合的抗原上的任何抗原决定簇。表位决定簇通常由分子例如氨基酸或糖侧链的化学活性表面分组组成,且通常具有特异性三维结构特征,以及特定电荷特征。
如本文使用的,术语“免疫反应”意指抗体与其表位以低于10-4 M的解离常数Kd的任何结合。当合适时,术语“免疫反应”可与术语“特异性结合”互换使用。表位通常指的是在FVIII:FVIII抗体结合后,由抗体覆盖的FVIII分子的氨基酸序列中的一个或多个区域和/或个别氨基酸残基。例如与“表位”的小部分或区域重叠的区域结合的抗体也视为与这个表位结合的抗体,只要抗体可以被说成与FVIII表位内的至少一个、优选至少两个、更优选至少三个、更优选至少四个和最优选至少5-10个氨基酸形成非共价相互作用或将其覆盖。
如本文使用的,术语“亲和力”意指抗体与表位结合的强度。抗体的亲和力通过定义为[Ab] x [Ag] / [Ab-Ag]的解离常数Kd进行测量,其中[Ab-Ag]是抗体-抗原复合物的摩尔浓度,[Ab]是未结合抗体的摩尔浓度,并且[Ag]是未结合抗原的摩尔浓度。亲和常数Ka通过1/Kd定义。通过竞争抑制用于测定Mabs特异性和亲和力的优选方法可以在Harlow,等人,Antibodies:A Laboratory Manual,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,1988),Colligan等人,编辑,Current Protocols in Immunology,Greene Publishing Assoc. and Wiley Interscience,N.Y.,(1992,1993),和Muller,Meth. Enzymol. 92:589-601(1983)中找到,所述参考文献整体通过引用并入本文。
共施用:根据本发明的因子VIII抗体可以连同治疗因子VIII分子一起共施用,所述治疗因子VIII分子可以衍生自血液或使用重组技术产生。共施用可以通过包含两个类型的治疗蛋白质的药物制剂的IV施用执行。共施用还可以通过包含治疗因子VIII分子的药物组合物的IV施用和包含根据本发明的因子VIII抗体的组合物的IV或皮下施用执行。共施用可以同时或伴随约一分钟至一个月、一小时至一天或一天至一周的间隔完成。任选以与FVIII分子或FVIII变体/衍生物共施用的形式的根据本发明的抗体施用,可以例如每天一次、每周一次、每第二周一次、每第三周一次或每月一次执行。
因子 VIII 分子:FVIII/因子VIII是主要通过肝细胞产生的大的复杂糖蛋白。人FVIII由2351个氨基酸组成,包括信号肽,且含有如通过同源性定义的几个不同结构域。存在三个A结构域、独特B结构域和两个C结构域。结构域次序可以作为NH2-A1-A2-B-A3-C1-C2-COOH列出。FVIII在血浆中作为在B-A3边界上分开的两条链循环。链通过二价金属离子结合连接。A1-A2-B链被称为重链(HC),而A3-C1-C2被称为轻链(LC)。
FVIII与von Willebrand因子(VWF)结合循环。VWF是充当FVIII的载体且是正常血小板粘附血管壁组分所需的大的多聚糖蛋白。在与VWF的复合物中FVIII的血浆半衰期是约12小时。
FVIII由凝血酶或FXa通过在HC和LC中的切割进行活化,这从VWF中释放FVIIIa。这个过程产生由通过离子相互作用与A3-C1-C2轻链非共价连接的A1和A2结构域组成的异源三聚体分子。FVIIIa分子由于自发A2亚单位解离和伴随的辅助因子活性丧失而是固有不稳定的(参考文献:Fay(1991)JBC,266:8957-8962;Lamphear(1992)JBC,267:3725-3730;Fay(1992)JBC 267:13246-13250;Fay(1993)JBC 268:17861-17866;Fay(1996)JBC 271:6027-6032;Parker(2007)JBC 281:13922-13930;Parker(2007)Biochemistry 46:9737-9742)。解离随着约2分钟的半衰期发生,并且看起来是用于下调FVIIIa/FIXa复合物的主导生理机制(Fay PJ(2004)Blood Reviews,18:1-15)。FVIIIa还可以通过抗凝剂丝氨酸蛋白酶,活化的蛋白质C(APC)灭活,该APC在重链中的另外位点切割FVIIIa的蛋白质。然而,这个途径的生理学关联性看起来很小(Fay PJ(2004)Blood Reviews,18:1-15)。
“天然FVIII”是如SEQ ID NO. 1(氨基酸1-2332)中所示的全长人FVIII分子。B结构域跨越SEQ ID NO 1中的氨基酸741-1648。
ATRRYYLGAVELSWDYMQSDLGELPVDARFPPRVPKSFPFNTSVVYKKTLFVEFTDHLFNIAKPRPPWMGLLGPTIQAEVYDTVVITLKNMASHPVSLHAVGVSYWKASEGAEYDDQTSQREKEDDKVFPGGSHTYVWQVLKENGPMASDPLCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLAKEKTQTLHKFILLFAVFDEGKSWHSETKNSLMQDRDAASARAWPKMHTVNGYVNRSLPGLIGCHRKSVYWHVIGMGTTPEVHSIFLEGHTFLVRNHRQASLEISPITFLTAQTLLMDLGQFLLFCHISSHQHDGMEAYVKVDSCPEEPQLRMKNNEEAEDYDDDLTDSEMDVVRFDDDNSPSFIQIRSVAKKHPKTWVHYIAAEEEDWDYAPLVLAPDDRSYKSQYLNNGPQRIGRKYKKVRFMAYTDETFKTREAIQHESGILGPLLYGEVGDTLLIIFKNQASRPYNIYPHGITDVRPLYSRRLPKGVKHLKDFPILPGEIFKYKWTVTVEDGPTKSDPRCLTRYYSSFVNMERDLASGLIGPLLICYKESVDQRGNQIMSDKRNVILFSVFDENRSWYLTENIQRFLPNPAGVQLEDPEFQASNIMHSINGYVFDSLQLSVCLHEVAYWYILSIGAQTDFLSVFFSGYTFKHKMVYEDTLTLFPFSGETVFMSMENPGLWILGCHNSDFRNRGMTALLKVSSCDKNTGDYYEDSYEDISAYLLSKNNAIEPRSFSQNSRHPSTRQKQFNATTIPENDIEKTDPWFAHRTPMPKIQNVSSSDLLMLLRQSPTPHGLSLSDLQEAKYETFSDDPSPGAIDSNNSLSEMTHFRPQLHHSGDMVFTPESGLQLRLNEKLGTTAATELKKLDFKVSSTSNNLISTIPSDNLAAGTDNTSSLGPPSMPVHYDSQLDTTLFGKKSSPLTESGGPLSLSEENNDSKLLESGLMNSQESSWGKNVSSTESGRLFKGKRAHGPALLTKDNALFKVSISLLKTNKTSNNSATNRKTHIDGPSLLIENSPSVWQNILESDTEFKKVTPLIHDRMLMDKNATALRLNHMSNKTTSSKNMEMVQQKKEGPIPPDAQNPDMSFFKMLFLPESARWIQRTHGKNSLNSGQGPSPKQLVSLGPEKSVEGQNFLSEKNKVVVGKGEFTKDVGLKEMVFPSSRNLFLTNLDNLHENNTHNQEKKIQEEIEKKETLIQENVVLPQIHTVTGTKNFMKNLFLLSTRQNVEGSYDGAYAPVLQDFRSLNDSTNRTKKHTAHFSKKGEEENLEGLGNQTKQIVEKYACTTRISPNTSQQNFVTQRSKRALKQFRLPLEETELEKRIIVDDTSTQWSKNMKHLTPSTLTQIDYNEKEKGAITQSPLSDCLTRSHSIPQANRSPLPIAKVSSFPSIRPIYLTRVLFQDNSSHLPAASYRKKDSGVQESSHFLQGAKKNNLSLAILTLEMTGDQREVGSLGTSATNSVTYKKVENTVLPKPDLPKTSGKVELLPKVHIYQKDLFPTETSNGSPGHLDLVEGSLLQGTEGAIKWNEANRPGKVPFLRVATESSAKTPSKLLDPLAWDNHYGTQIPKEEWKSQEKSPEKTAFKKKDTILSLNACESNHAIAAINEGQNKPEIEVTWAKQGRTERLCSQNPPVLKRHQREITRTTLQSDQEEIDYDDTISVEMKKEDFDIYDEDENQSPRSFQKKTRHYFIAAVERLWDYGMSSSPHVLRNRAQSGSVPQFKKVVFQEFTDGSFTQPLYRGELNEHLGLLGPYIRAEVEDNIMVTFRNQASRPYSFYSSLISYEEDQRQGAEPRKNFVKPNETKTYFWKVQHHMAPTKDEFDCKAWAYFSDVDLEKDVHSGLIGPLLVCHTNTLNPAHGRQVTVQEFALFFTIFDETKSWYFTENMERNCRAPCNIQMEDPTFKENYRFHAINGYIMDTLPGLVMAQDQRIRWYLLSMGSNENIHSIHFSGHVFTVRKKEEYKMALYNLYPGVFETVEMLPSKAGIWRVECLIGEHLHAGMSTLFLVYSNKCQTPLGMASGHIRDFQITASGQYGQWAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGARQKFSSLYISQFIIMYSLDGKKWQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIRSTLRMELMGCDLNSCSMPLGMESKAISDAQITASSYFTNMFATWSPSKARLHLQGRSNAWRPQVNNPKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVKEFLISSSQDGHQWTLFFQNGKVKVFQGNQDSFTPVVNSLDPPLLTRYLRIHPQSWVHQIALRMEVLGCEAQDLY
连同根据本发明的因子VIII抗体共施用的“因子VIII分子”可以是从血浆中分离的因子VIII和/或重组因子VIII。待与根据本发明的因子FVIII抗体一起共施用的因子VIII分子可以是例如B结构域截短的因子FVIII分子,其中例如剩余结构域紧密对应于如SEQ ID NO. 1中的氨基酸编号1-740和1649-2332中所示的序列(尽管还可以存在例如在残基1670-1684之间在vWF结合区域内的一种或多种改变)。与根据本发明的因子VIII抗体共施用的B结构域截短的分子可以略微不同于SEQ ID NO 1中所示的序列,意指由于可以引入突变以便例如减少vWF结合能力的事实,剩余结构域(即,三个A结构域和两个C结构域)可以略微不同,例如1、2、3、4、5、6、7、8、9 或10个氨基酸,可替代地可以约1%、2%、3%、4%或5%不同于如SEQ ID NO 1(氨基酸1-740和1649-2332)中所示的氨基酸序列。此外,将氨基酸修饰(置换、缺失等)引入分子中的其他位置中,以便修饰因子VIII与多种其他组分的结合能力是似乎合理的,所述多种其他组分例如LRP、多种受体、其他凝固因子、细胞表面、糖基化位点的引入和/或取消等。
连同根据本发明的因子VIII抗体一起共施用的因子VIII分子具有因子VIII活性,意指以在功能上类似于或等价于FVIII的方式在凝固级联中起作用,经由与活化血小板上的FIXa相互作用诱导FXa形成,并且支持血块的形成的能力。活性可以通过本领域众所周知的技术在体外评估,所述技术例如凝块分析、内源凝血酶潜力分析等。与根据本发明的因子VIII抗体共施用的因子VIII分子具有天然人FVIII那种至少约10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%和100%或甚至超过100%的FVIII活性。
A2 亚单位解离的减少 / 抑制指如在抗体的存在下和在FVIII活化为FVIIIa后例如5、10、15、20或25分钟测量的,与例如wtFVIII的解离速率相比较(任选在对照抗体的存在下),其中A2亚单位从活化FVIII中解离的速率是减少的情况。根据本发明的抗体导致A2结构域的解离中10%或更多、优选15%或更多、更优选20%或更多、更优选25%或更多、更优选30%或更多、更优选35%或更多、更优选40%或更多、更优选45%或更多、更优选50%或更多、更优选55%或更多、更优选60%或更多、更优选65%或更多、更优选70%或更多、更优选75%或更多、更优选80%或更多、和最优选90%或更多的减少。此类性质可以如实施例4和其他地方(Fay等人(1996)JBC,271:6027-6032;Parker等人(2006)JBC,281:13922-13930)描述的在功能衰变测定中进行测定。该测定测量在通过凝血酶的FVIII活化后作为时间的函数的FVIIIa辅因子活性。FVIIIa的辅因子活性测量为其在合适磷脂表面和因子IXa的存在下刺激FX至FXa的转换的能力。
B 结构域:因子VIII中的B结构域跨越SEQ ID NO 1中的氨基酸741-1648。B结构域在几个不同位点上切割,在循环血浆FVIII分子中生成大异质性。重糖基化B结构域的确切功能是未知的。已知的是该结构域对于凝固级联中的FVIII活性是可有可无的。这个明显的功能缺乏通过B结构域缺失/截短的FVIII看起来具有等同于对于全长天然FVIII可见的那些的体内性质的事实支持。
B 结构域截短 / 缺失的因子 VIII 分子:内源全长FVIII作为单链前体分子合成。在分泌前,前体被切割成重链和轻链。重组B结构域缺失的FVIII可以由两个不同策略产生。不含B结构域的重链和轻链作为两条不同多肽链(两链策略)个别合成,或B结构域缺失的FVIII作为单条前体多肽链(单链策略)合成,所述单条前体多肽链以与全长FVIII前体相同的方式切割成重和轻链。
在B结构域缺失的FVIII前体多肽中,重和轻链部分通常通过接头分开。为了使在B结构域缺失的FVIII中引入免疫原性表位的危险降到最低,接头的序列优选衍生自FVIII B结构域。最低限度地,接头必须包含蛋白酶的识别位点,所述蛋白酶将B结构域缺失的FVIII前体多肽切割成重和轻链。在全长FVIII的B结构域中,氨基酸1644-1648构成这个识别位点。在B结构域缺失的FVIII活化后导致接头去除的凝血酶位点定位于重链中。因此,接头的大小和氨基酸序列不太可能影响其通过凝血酶活化从剩余FVIII分子中的去除。B结构域的缺失/截短是用于产生FVIII的优点。然而,B结构域的部分可以包括在接头中而不减少生产率。B结构域对生产率的负面作用仍未归因于B结构域的任何具体大小或序列。
可以与根据本发明的因子VIII抗体共施用的B结构域截短/缺失的因子VIII变体可以含有一个或多个O糖基化位点。然而,根据优选实施方案,分子仅包含在截短的B结构域中的一个O联寡糖 - 其例子是公开于WO09108806中的图7中的BDD-FVIII 40KDa PEG(O-聚糖)分子,其中B结构域的氨基酸序列是:SFSQNSRHPSQNPPVLKRHQR(SEQ ID NO 2 。O联聚糖可以用于使因子VIII分子与多个侧基缀合,如WO0331464中的方法中所述。
与根据本发明的因子VIII抗体共施用的因子VIII分子包含许多N联寡糖,并且这些各自可以同样潜在充当用于侧基附着的锚钩(如例如WO0331464中公开的)。
在wt FVIII分子中的B结构域长度是约907个氨基酸。在与根据本发明的因子VIII抗体共施用的FVIII分子中的截短B结构域长度可以从约10到约800个氨基酸不等,例如约10个氨基酸 - 约700个氨基酸,例如约12-500个氨基酸、12-400个氨基酸、12-300个氨基酸、12-200个氨基酸、15-100个氨基酸、15-75个氨基酸、15-50个氨基酸、15-45个氨基酸、20-45个氨基酸、20-40个氨基酸或20-30个氨基酸。截短的B结构域可以包含重链和/或轻链的片段和/或在wt FVIII分子中未发现的人为引入的序列。术语“B结构域截短的”和“B结构域缺失的”可以在本文中互换使用。
Von Willebrandt 因子( vWF ):vWF是在血液血浆中存在的大单体/多聚糖蛋白,并且在内皮(在怀布尔-帕拉德体(Weibel-Palade bodies)中)、巨核细胞(血小板的α-颗粒)和内皮下结缔组织中组成性产生。它的主要功能是与其他蛋白质特别是因子VIII结合,并且它在与伤口位点的血小板粘附中是重要的。
当在循环中失活时,因子VIII与vWF结合;当不与vWF结合时,因子VIII快速降解或被清除。根据本发明的抗体不干扰与FVIII或FVIII变体的vWF结合。与本发明相关的不干扰vWF结合定义为在确保FVIII饱和的抗体浓度,例如超过对于抗体-FVIII相互作用测量的解离常数10倍的抗体浓度下,与vWF结合的优选0%,或可替代地小于2%、或小于5%、或小于10%、或小于15%、或小于20%、或小于25%、或小于30%减少。可以用于测量vWF:FVIII结合的测定公开于例如实施例5中。
术语“减少的结合vWF的能力”在本文中意欲包含与根据本发明的因子VIII抗体共施用的因子VIII变体,其中结合vWF的能力减少至少50%、优选至少60%、更优选至少70%、更优选至少80%、更优选至少90%、和最优选约100%。与vWF的FVIII结合可以通过固相测定或使用表面等离振子共振作为与固定vWF的直接结合进行测量。负责与vWF结合的因子VIII中的区域是如公开于EP0319315中的跨越残基1670-1684的区域。设想涉及这个区域的因子VIII点和/或缺失突变体将修改与vWF结合的能力。根据本发明的特别优选的点突变的例子包括包含下述点突变中的一个或多个的变体:Y1680F、Y1680R、Y1680N和E1682T和Y1680C。如果连同根据本发明的抗体一起共施用的FVIII变体对于其与vWF结合的能力进行修饰,那么此类FVIII变体优选例如用延长基团例如PEG、脂肪酸衍生物、白蛋白等延长。
用于产生根据本发明的抗体以及可以与根据本发明的因子VIII抗体共施用的重组因子VIII蛋白质的合适宿主细胞,优选具有哺乳动物来源,以便确保分子在折叠和翻译后修饰例如糖基化和硫酸化过程中被适当加工。在实践本发明中,细胞是哺乳动物细胞,更优选确立的哺乳动物细胞系,包括但不限于CHO(例如ATCC CCL 61)、COS-1(例如ATCC CRL 1650),幼仓鼠肾(BHK)和HEK293(例如ATCC CRL 1573;Graham等人,J. Gen. Virol. 36:59-72,1977)细胞系。优选的BHK细胞系是tk- ts13 BHK细胞系(Waechter和Baserga,Proc.Natl.Acad.Sci.USA 79:1106-1110,1982),下文被称为BHK 570细胞。BHK 570细胞系可在ATCC登记号CRL 10314下从美国典型培养物中心,12301 Parklawn Dr.,Rockville,MD 20852获得。tk- ts13 BHK细胞系也可在登记号CRL 1632下从ATCC获得。优选的CHO细胞系是可在登记号CCl61下从ATCC获得的CHO K1细胞系,以及细胞系CHO-DXB11和CHO-DG44。
其他合适的细胞系包括但不限于大鼠 Hep I(大鼠肝细胞瘤;ATCC CRL 1600)、大鼠Hep II(大鼠肝细胞瘤;ATCC CRL 1548)、TCMK(ATCC CCL 139)、人肺(ATCC HB 8065)、NCTC 1469(ATCC CCL 9.1);DUKX细胞(CHO细胞系)(Urlaub和Chasin,Proc. Natl. Acad. Sci. USA 77:4216-4220,1980)(DUKX细胞也称为DXB11细胞)和DG44(CHO细胞系)(Cell,33:405,1983,和Somatic Cell and Molecular Genetics 12:555,1986)。还有用的是3T3细胞、Namalwa细胞、骨髓瘤和骨髓瘤与其他细胞的融合物。在一些实施方案中,细胞可以是突变或重组细胞,例如表达与它们由其衍生的细胞类型在性质或数量上不同谱的酶的细胞,所述酶催化蛋白质的翻译后修饰(例如糖基化酶例如糖基转移酶和/或糖苷酶,或加工酶例如前肽)。DUKX细胞(CHO细胞系)是尤其优选的。
目前优选的细胞是HEK293、COS、中国仓鼠卵巢(CHO)细胞、幼仓鼠肾(BHK)和骨髓瘤细胞,特别是中国仓鼠卵巢(CHO)细胞。
改变的循环半衰期:单独或与治疗因子VIII分子组合的根据本发明的因子VIII抗体的施用可以导致内源因子VIII的延长循环半衰期或与治疗因子VIII组合的内源因子FVIII的延长半衰期,或治疗因子VIII的延长半衰期。循环半衰期优选增加至少10%、优选至少15%、优选至少20%、优选至少25%、优选至少30%、优选至少35%、优选至少40%、优选至少45%、优选至少50%、优选至少55%、优选至少60%、优选至少65%、优选至少70%、优选至少75%、优选至少80%、优选至少85%、优选至少90%、优选至少95%、优选至少100%、更优选至少125%、更优选至少150%、更优选至少175%、更优选至少200%、和最优选至少250%或300%。甚至更优选地,此类分子具有增加至少400%、500%、600%或甚至700%的循环半衰期。
侧链 / 侧基:因子VIII侧基可以包含亲水聚合物例如PEG分子、主要疏水性质的分子例如脂肪酸、肽起源的分子等。侧基通常经由接头缀合至因子VIII。此类缀合的因子VIII分子可以与根据本发明的因子VIII抗体共施用。
药物组合物:药物组合物在本文中优选意欲包含这样的组合物,其包含任选与适合于肠胃外施用的因子VIII分子组合的根据本发明的因子VIII抗体,例如可以在例如水或含水缓冲液中重构的现成可用的无菌含水组合物或干燥无菌组合物。根据本发明的组合物可以包含多种药学可接受的赋形剂、稳定剂等。
在此类组合物中的另外成分可以包括湿润剂、乳化剂、抗氧化剂、填充剂、张度修饰剂、螯合剂、金属离子、油状媒介物、蛋白质(例如人血清白蛋白、明胶或蛋白质)和两性离子(例如氨基酸例如甜菜碱、牛磺酸、精氨酸、甘氨酸、赖氨酸和组氨酸)。此类另外成分当然不应不利地影响本发明的药物制剂的总体稳定性。肠胃外施用可以借助于注射器任选笔样注射器通过皮下、肌内、腹膜内或静脉内注射执行。可替代地,肠胃外施用可以借助于输注泵执行。进一步选项是其可以是用于施用以鼻或肺喷雾形式的FVIII抗体化合物的溶液或悬浮液的组合物。作为再进一步选项,含有本发明的FVIII化合物的药物组合物还可以适合于例如通过无针注射或来自贴片、任选离子电渗贴片的经皮施用,或经粘膜例如经颊施用。
如本文使用的,术语“治疗”指有此需要的任何人或其他动物受试者的医学疗法。所述受试者预期已经历通过医学从业者的体格检查,所述医学从业者已给出将指示所述特异性治疗的使用对于所述人或其他动物受试者的健康是有利的假定或确定诊断。根据受试者的健康现状,所述治疗的时机和目的可以因个体而异。因此,所述治疗可以是预防、姑息、有症状和/或治愈的。
实施方案列表
本发明包括下述非限制性实施方案:
实施方案 1 具有与活化人因子VIII结合的能力的单克隆因子VIII抗体,其中在与活化因子VIII结合后,所述抗体减少A2结构域的解离,并且其中所述抗体不干扰vWF结合。
实施方案 2 根据实施方案1的抗体,其中所述A2亚单位结合的减少在磷脂表面的不存在或存在下发生。
实施方案 3 根据实施方案1的抗体,其中来自活化因子VIII分子的所述A2亚单位解离的减少在磷脂表面的存在下是改善的。
实施方案 4 根据实施方案2或3的抗体,其中这种抗体的施用导致在血小板的存在下增加的凝血酶活化。
实施方案 5 根据实施方案1-4中任一项的单克隆抗体,其中所述抗体不加速凝血酶活化。
实施方案 6 根据实施方案1-5中任一项的抗体,其中所述抗体与A2结构域结合。
实施方案 7 根据实施方案1-5中任一项的抗体,其中所述抗体与A3结构域结合。
实施方案 8 根据实施方案1-6中任一项的抗体,其中所述抗体包含一个、两个、三个、四个或五个CDR序列,其与选自SEQ ID NO:6、SEQ ID NO 7、SEQ ID NO 8、SEQ ID NO 11、SEQ ID NO 12和SEQ ID NO 13,或选自SEQ ID NO 16、SEQ ID NO 17、SEQ ID NO 18、SEQ ID NO 21、SEQ ID NO 22和SEQ ID NO 23的一个、两个、三个、四个或五个CDR序列具有至少95%同一性、更优选至少96%同一性、更优选至少97%同一性 、更优选至少98%同一性 、更优选至少99%同一性 、或最优选100%同一性。
实施方案 9 根据实施方案8的抗体,其中所述抗体的CDR序列与下述CDR序列具有至少95%同一性、优选至少96%同一性、优选至少97%同一性、优选至少98%同一性、优选至少99%同一性、和最优选100%同一性:SEQ ID NO:6、SEQ ID NO 7、SEQ ID NO 8、SEQ ID NO 11、SEQ ID NO 12和SEQ ID NO 13或SEQ ID NO 16、SEQ ID NO 17、SEQ ID NO 18、SEQ ID NO 21、SEQ ID NO 22和SEQ ID NO 23。
实施方案 10 根据实施方案8-9中任一项的抗体,其中所述抗体包含与SEQ ID NO 10或SEQ ID NO 20具有至少95%同一性、优选至少96%、优选至少97%同一性、优选至少98%同一性、和最优选100%同一性的VL序列,和与SEQ ID NO 9或SEQ ID NO 15具有至少95%同一性、优选至少96%、优选至少97%同一性、优选至少98%同一性、和最优选100%同一性的VH序列。
实施方案 11 根据实施方案1-10中任一项的抗体,其中所述抗体与肽片段407-428(SEQ ID NO 15)和/或591-602(SEQ ID NO 16)等同或部分重叠的表位结合。
实施方案 12 根据实施方案1-10中任一项的抗体,其中所述抗体与肽片段1965-1976(SEQ ID NO 17)等同或部分重叠的表位结合。
实施方案 13 根据实施方案1-12中任一项的抗体,其中所述抗体与4F143抗体的结合进行竞争。
实施方案 14 包含编码根据实施方案1-13中任一项的抗体的DNA序列的DNA分子。任选地,这种DNA分子嵌入在表达载体中。
实施方案 14A 包含根据实施方案14的DNA分子的宿主细胞。
实施方案 15 根据实施方案1-13中任一项的抗体作为用于治疗A型血友病例如轻度、中度或重度A型血友病的药物的用途。
实施方案 16 药物组合物,其包含根据实施方案1-13中任一项的抗体和任选的药学可接受的赋形剂。
实施方案 17 药物组合物,其包含根据实施方案1-13中任一项的抗体和因子VIII分子和任选的药学可接受的赋形剂。根据实施方案16或17中任一项的药物组合物可以用于皮下施用。
实施方案 18 制造根据实施方案1-13中任一项的抗体的方法,其中所述方法包括在适合于表达所述抗体的条件下温育包含编码此类抗体的DNA分子的宿主细胞。
实施方案 19 治疗血友病疾病的方法,其包括给有此需要的患者施用任选与因子VIII分子组合的,治疗有效量的根据实施方案1-13中任一项的分子。根据实施方案1-13中任一项的分子可以是根据实施方案16或17的药物组合物的形式。
实施例
蛋白质–如其他地方(Thim等人,2010)描述的,在中国仓鼠卵巢(CHO)细胞中重组制备B结构域缺失的因子VIII(FVIII)。将重组蛭素(Rydel等人,1990)克隆到pET-26b(+)(Novagen,San Diego,CA)内,并且在大肠杆菌(Escherichia coli)中周质表达后在使用标准镍次氨基-三乙酸(Ni-NTA)层析经由引入的LeuGln(His)6标签纯化。
实施例 1
抗体生产 – 本发明的单克隆抗体(mAbs)可以通过多种技术产生,包括常规单克隆方法,例如Kohler和Milstein(1975)Nature 256:495的标准体细胞杂交技术。尽管原则上体细胞杂交程序是优选的,也可以采用用于单克隆抗体生产的其他技术,例如B淋巴细胞的病毒或癌基因转化,使用人或其他物种(小鼠、兔、大鼠、豚鼠)抗体基因文库的噬菌体展示技术。
RBF、Balb/c、NMRICF1或FVIII缺陷小鼠用于小鼠单克隆抗体的免疫接种和生产。作为用于免疫接种的抗原,使用由凝血酶预活化的或前辅因子形式的FVIII。在小鼠背部进行皮下注射。将FVIII(20 μg)与完全弗氏佐剂混合用于第一次注射。在后续免疫接种中,使用不完全弗氏佐剂,伴随相同浓度的抗原。末次免疫接种后十天,对于FVIII特异性抗体,使用ELISA筛选来自小鼠的眼血液。具有阳性血清滴度的小鼠通过静脉内注射由用于初次免疫接种的10 μg FVIII变体加强且在三天后处死。无菌摘除脾且分散至单细胞悬浮液。通过PEG方法或通过电融合完成脾细胞和骨髓瘤细胞(FOX、X63、SP2/0)的融合。
借助于蛋白A亲和层析纯化单克隆抗体。
在杂交瘤上清液中稳定抗 FVIIIa 抗体的检测(初级筛选)- 如下在功能生色初级筛选测定中评价抗FVIIIa抗体稳定FVIIIa的能力:将30 µl抗FVIII上清液转移至96孔Spectramax微量滴定板,随后加入20 µl 1.04 nM FVIII。随后,加入20µl 14 nM凝血酶(Roche,德国),并且在室温温育5分钟,允许FVIII被活化。在温育后,通过加入20 µl含有50 ATU/ml蛭素和162.5 µM 25:75 PS:PC磷脂(Rossix,瑞典)灭活凝血酶。随后允许活化FVIII在室温解离7.5分钟,随后定量剩余FVIIIa的活性。为此,加入1.3 nM FIXa和162.5 nM FX(Enzyme Research,USA)的40 µl混合物,并且在室温温育5分钟,随后加入920 µM的100 µl FXa底物S-2765(Chromogenix,瑞典)。在室温5分钟温育后,加入25 µl 1 M柠檬酸(Merck,德国),pH 3,以停止反应。在Envision板阅读器(PerkinElmer,USA)上测量在405 nm处的吸光度,其中在波长620 nm处的吸光度用作参考。在测定中包括三个培养基对照:一是不具有解离时间(最大活性),和二是具有7.5分钟解离时间(最小活性),和三是具有7.5分钟解离时间和FVIII替换为缓冲液(背景)。前两个对照样品限定测定窗口,并且从所有测量中扣除第三个对照。图1中的数据演示抗FVIII上清液针对自发解离稳定FVIII的能力。
在杂交瘤上清液中稳定抗 FVIII α抗体的检测(次级筛选)- 在次级时间过程测定中再筛选来自初级筛选的抗FVIIa上清液,以评价其在几个时间点和两个抗体浓度对FVIIIa衰变的作用。如下执行测定:将15或30 µl抗FVIII上清液转移至96孔Spectramax微量滴定板,随后加入20 µl 1.04 nM FVIII。加入凝血酶(20µl 14 nM;Roche,德国),并且在室温温育5分钟,允许FVIII被活化。在活化后,通过加入20 µl含有50 ATU/ml蛭素和162.5 µM 25:75 PS:PC磷脂(Rossix,瑞典)灭活凝血酶。随后允许活化FVIII在室温解离7.5、15和25分钟。通过加入1.3 nM FIXa和162.5 nM FX(Enzyme Research,USA)的40 µl混合物测量剩余FVIIIa活性,并且在室温温育5分钟,随后加入100 µl 920 µM S-2765生色FXa底物S-2765(Chromogenix,瑞典)。5分钟后,加入25 µl 1 M柠檬酸(Merck,德国),pH 3,以停止反应。在Envision板阅读器(PerkinElmer,USA)上测量在405 nm处的吸光度,其中在波长620 nm处的吸光度用作参考。在测定中包括培养基对照,以验证FVIII在测定中的依赖性。对照具有7.5分钟的解离时间,并且加入缓冲液而非FVIII。
在功能生色筛选测定中纯化抗 FVIII mAbs 的表征 – 在不同浓度和在磷脂的存在或不存在下,在时间过程测定中测试纯化的抗FVIIIa抗体,以评价其对动力学FVIIIa衰变的作用以及对磷脂存在和抗体浓度的依赖性。如下执行测定:将30 µl纯化的抗FVIII抗体转移至96孔Spectramax微量滴定板,随后加入20 µl 1.04 nM FVIII(磷脂不依赖性的)或可替代地20 µl含有1.04 nM FVIII和162.5 µM 25:75 PS:PC磷脂(Rossix,瑞典)(磷脂依赖性的)。加入凝血酶(20µl 14 nM;Roche,德国),并且在室温温育5分钟,允许FVIII被活化。在温育时间后,通过加入20 µl 50 ATU/ml蛭素灭活凝血酶。随后允许活化FVIII在室温解离7.5、15、25分钟。通过加入1.3 nM FIXa和162.5 nM FX(Enzyme Research,USA)的40 µl混合物(磷脂依赖性的)或可替代的1.3 nM FIXa、162.5 nM FX(Enzyme Research,USA)和81.25 µM 25:75 PS:PC磷脂(Rossix,瑞典)的40 µl混合物(磷脂不依赖性的)测量剩余FVIIIa活性,并且在室温温育5分钟,随后加入100 µl 920 µM S-2765生色FXa底物(Chromogenix,瑞典)。在室温5分钟后,加入25 µl 1 M柠檬酸(Merck,德国),pH 3,以停止反应。在Envision板阅读器(PerkinElmer,USA)上测量在405 nm处的吸光度,其中在波长620 nm处的吸光度用作参考。在测定中包括培养基对照,以验证FVIII在测定中的依赖性。对照具有7.5分钟的解离时间,并且加入缓冲液而非FVIII。图2中的数据证实抗FVIII上清液经过7.5、15和25分钟的温育时间针对自发解离稳定FVIII的能力,并且所有观察到的稳定作用都是FVIII依赖性的。
实施例 2
抗体的表位框并( epitope binning )–通过在Biacore 3000仪器(GE Healtcare,Uppsala,瑞典)上使用串联封闭测定(Abdiche等人,2009)执行与FVIII的竞争结合,将抗体指定至表位框(epitope bins)。测定由三个步骤组成,包含由识别C2结构域的固定的非干扰抗体(4F30)在芯片上FVIII的定向捕获,随后为各自以200 nM的初级和次级抗体的连续结合,以确保FVIII的饱和。在初级抗体结合后次级抗体不能结合,由此观察到部分重叠表位,且用于将抗体分组成表位框。
使用如由制造商(GE Healthcare,Uppsala,瑞典)描述的标准NHS/EDC偶联化学,将在10 mM乙酸盐缓冲液,pH 5.0中以50 μg/ml的FVIII捕获抗体(4F30)固定在CM5芯片的流动池1和2中。最终偶联水平是10 kRU。后续结合实验在25℃和在运行缓冲液(10 mM HEPES、150 mM NaCl、5 mM CaCl2、0.005%Tween 20,pH 7.4)中以5 μ/分钟的流速执行,使用流动池1用于联机参考扣除。通过跨越流动池2注射4 nM共2分钟,在400 RU的水平捕获FVIII。这随后为跨越两个流动池3分钟暴露于200 nM初级抗体注射,并且最后为200 nM次级抗体的相同注射。通过10 mM甘氨酸,pH 2.0的2分钟脉冲,在每次结合实验结束时执行再生。对于表1中列出的抗体的所有配对排列重复整个过程,除了由于不足够的FVIII亲和力而不能用作初级抗体的4F136外。
基于这些交叉竞争研究,抗体可以在表示为1类和2类的两个表位框中分组。属于1类的成员是4F143、4F50、4F140和4F136,而2类由4F11、4F41和4F17代表(表1)。未观察到跨越两个类别的抗体之间的竞争,而在每个类别内的成员就FVIII结合而言是相互排斥的,指示部分或完全重叠表位。
1. 在Biacore 3000仪器中关于抗体与固定的FVIII结合的配对封闭结果。在使用识别C2结构域的固定的非干扰抗体将FVIII捕获至芯片后,初级和次级抗体各自以200 nM连续结合,以确保FVIII饱和。抗体落入表示为1类和2类的两个表位框。未观察到跨越两个类别的抗体之间的竞争,而在每个类别内的成员就FVIII结合而言相互排斥,指示部分或完全重叠表位。缩写:‘C’,竞争,即无次级抗体的结合;‘N’,无竞争,即次级抗体的结合;‘-‘,由于弱亲和力未测试。
Figure 710461DEST_PATH_IMAGE004
实施例 3
对于 FVIII 的亲和力 – 使用Biacore 3000仪器通过表面等离振子共振测定FVIII与抗体结合的动力学。如由制造商描述的,每种抗体在由兔抗小鼠IgG抗体(GE Healthcare,Uppsala,瑞典)包被的CM5芯片的流动池2中捕获至70-110 RU的水平。使用流动池1作为参考,在25℃在运行缓冲液以30 μl/分钟的流速执行动力学分析。分析从0到40 nM的FVIII的连续两倍稀释。流动池在运行缓冲液中3分钟平衡后,注射150 μl FVIII。解离期持续9分钟,并且用10 mM甘氨酸,pH 1.7的3分钟脉冲执行再生。所获得的参考扣除的传感图与1:1兰米尔结合模型良好拟合,所述1:1兰米尔结合模型允许使用BIAevaluation 4.1软件(GE Healthcare,Uppsala,瑞典)估计结合(k on)和解离(k off)速率常数以及平衡解离常数(K d = k off/k on)。
2. FVIII与选择抗体的结合动力学的表面等离振子共振分析。列出的抗体通过固定的兔抗小鼠IgG抗体捕获,并且与FVIII的结合在范围为0 - 40 nM的浓度中进行测试。结合曲线与1:1兰米尔结合等温线良好拟合,所述1:1兰米尔结合等温线提供结合(k on)和解离(k off)速率常数的估计。解离常数K d计算为k off/k on。显示了得自拟合的标准误差。
Figure 947669DEST_PATH_IMAGE005
实施例 4
FVIIIa 的稳定 – 在基本上如其他地方(Fay等人,1996;Parker等人,2006)描述的功能衰变测定中测量抗体对FVIIIa的自发解离的作用。通过与20 μl人α凝血酶(American Diagnostica,Stamford,CT,USA)组合至40 nM的最终凝血酶浓度,执行在200 μl体积中FVIII(0.36 nM)的活化。在30秒活化后,加入20 μl重组蛭素(300 nM),以抑制凝血酶,并且允许生成的FVIIIa衰变限定时期。通过测量其支持FX转换成FXa的能力来定量残留FVIIIa。将FVIIIa衰变混合物(20 μl)转移至含有25:75 PS:PC磷脂囊泡(Haematologic Technologies Inc.,Essex Junction,VT,USA)的60 μl血浆衍生的FIXa(American Diagnostica),以装配Xase复合物,并且在15秒温育后,加入20 μl人血浆衍生的FX(Enzyme Research Laboratories,South Bend,IN,USA)。在FX活化过程中的终浓度分别是10 nM(FIXa)、25 μM(磷脂)和150 nM(FX)。在通过稀释到等体积的猝灭缓冲液(20 mM HEPES、150 mM NaCl、200 mM EDTA、10 mM Triton X-100,pH 7.4)内终止反应前,允许FX活化进行30秒,并且通过随着时间过去测量在405 nm处的吸光度的增加(Chromogenix,Instrumentation Laboratory Company,Bedford,MA,USA),在0.4 mM S-2765生色底物的存在下测量生成的FXa。所有实验在室温在20 mM HEPES、150 mM NaCl、5 mM CaCl2、5 mg/ml BSA,pH 7.4缓冲液中在96孔板(Nunc,丹麦)中且伴随振荡执行,以确保快速混合。在指示时,10 μM磷脂和/或20 nM抗体连同FVIII或蛭素一起加入,或将FVIII替换为已显示在活化后比wt FVIII快约4倍的自发解离的变体FVIII S289L(Pipe等人,2001)。
来自这些实验的结果(图3)证实4F143和其他1类抗体显示减慢通过严格依赖于磷脂表面的存在的机制的自发FVIIIa解离速率。在凝血酶活化前FVIII和抗体的预结合不是稳定所需的。观察到FVIII S289L变体的部分至完全援救。在抗体的存在或不存在下,在第一个时间点时FX活化的相似速率表示抗体不影响在所选实验条件下FX转换为FXa的速率。
实施例 5
抗体对 FVIII vWF 的相互作用的效应–通过固相竞争测定研究抗体对FVIII与von Willebrand因子(vWF)结合的作用,在所述固相竞争测定中使由vWF包被的孔暴露于不同的加入的抗体浓度下的FVIII(Layet等人,1992;Ganz等人,1991;Vlot等人,1995)。将Nunc MaxiSorp微量滴定板(Nunc,丹麦)用在20 mM咪唑、150 mM NaCl、10 mM CaCl2,pH 7.3中的1 μg/ml vWF(来自American Diagnostica的无FVIII vWF)在4℃包被过夜,并且随后用补充有10 mg/ml牛血清白蛋白和0.02%(v/v)Tween 80(封闭缓冲液)的相同缓冲液封闭1小时。在0 – 162 nM抗体的存在下,包被的孔与在封闭缓冲液稀释至范围为0.05 - 6.4 nM浓度的100 μl FVIII一起在室温温育1小时;对于FVIII-抗体相互作用,最高浓度显著超过测量的K d(参见表2)。在用封闭缓冲液反复洗涤后,识别720-740区域的3.33 nM生物素化的单克隆抗FVIII抗体1F5加入100 μl封闭缓冲液的体积中,并且允许温育15分钟。将孔洗涤,并且将过氧化物酶缀合的链霉抗生物素蛋白(xx)加入100 μl封闭缓冲液中,并且允许与驻留生物素结合15分钟。在用封闭缓冲液反复洗涤后,结合的FVIII定量为通过过氧化物酶加工的TMB(100 μl TMB Plus,KEM-EN-TEC Diagnostics,丹麦)量。通过加入等体积的2 M磷酸在5分钟后停止反应,并且在SpectraMax板阅读器中通过在450 nm处的吸光度定量形成的产物量。
如图4中所示的,即使在确保FVIII与抗体的基本上完全饱和的浓度下,测试的抗体(4F143、4F140或4F50)也无一影响FVIII与vWF的相互作用。
实施例 6
抗体对通过凝血酶的 FVIII 活化的作用–FVIII至活化辅因子的转换通过经由凝血酶或因子Xa催化的在重和轻链中的三个位点上的有限蛋白酶解发生,并且其中前者最可能代表生理学激活物(Pieters等人,1989)。在轻链中的R1689处的切割释放酸性a3区域,并且引起FVIII从vWF解离。重链的切割分别在A2-B连接(R740)和A1-A2连接(Arg372)处的结构域间区域中发生。在后面位点上的蛋白酶解对于FVIII获得辅因子活性是必需的,并且可以通过50-kDa A1亚单位的生成进行监控(Fay,2004;Nogami等人,2005)。近来,描述了加速FVIII的蛋白酶解活化的抗FVIII抗体(Takeyama等人,2010)(US 20090297503)。此外,我们发现最初由(Griffin等人,1986)描述且可从American Diagnostica Inc.(Stamford,CT,USA)获得的众所周知的单克隆抗FVIII抗体ESH5和ESH8也加速通过凝血酶的FVIII活化。为了测定来自本发明的抗体对FVIII活化的动力学的作用,使用通过反相HPLC监控A1亚单位生成的蛋白酶解测定。选择这种特定测定而非将FVIIIa活性定量为时间函数的常规功能测定,以避免起源于抗体介导的针对自发衰变的FVIIIa稳定的任何混杂效应。
在37℃在20 mM HEPES、150 mM NaCl、5 mM CaCl2、0.01%(v/v)Tween 80,pH 7.4缓冲液中执行通过1 nM凝血酶(Haematologic Technologies,Essex Junction,VT,USA)的FVIII(100 nM)活化。在限定间隔时,通过加入200 nM蛭素猝灭活化。猝灭的样品在冰上冷却,并且随后通过rpHPLC分析,以定量生成的轻链的量。时间过程研究证实蛭素的添加有效阻止FVIII的进一步活化。
通过将10-20 μl注射到在34%溶剂B中的Vydac C18柱(3.2x250 mm,5 μm,300 Å)上定量FVIII轻链。移动相由含有0.09%(v/v)三氟乙酸的水(溶剂A)和含有0.09%(v/v)三氟乙酸的乙腈(溶剂B)组成。通过以1 ml/分钟的流速经过15分钟从34到65%溶剂B的线性梯度实现分离。将柱维持在40℃,并且通过荧光在280 nm处的激发和在340 nm处的发射检测且定量洗脱的FVIIIa亚单位。基于通过注射经由凝血酶活化制备的限定量的FVIIIa生成的标准曲线,将峰面积转换为摩尔浓度。由根据公开的程序(Lapan和Fay,1997)制备的分离FVIIIa亚单位的洗脱时间鉴定代表A1亚单位的峰。
如图5中证实的,发现ESH5和ESH8(American Diagnostica Inc,Stamford,CT,USA)加速通过凝血酶的FVIII活化。类似地,与公开的研究一致,发现moAb216加速FVIII活化(Takeyama等人,2010)(US 20090297503),而对于4F143、4F50和4F140未观察到加速。
实施例 7
抗体对 A 型血友病血浆中的凝血酶生成的作用–如(Lisman等人,2005)所述的制备洗涤的血小板,并且加入A型血友病血浆(George King Bio-Medical Inc)中至150,000血小板/µl的最终密度。将80μl含血小板血浆与5 µl再脂质化的组织因子(Innovin,Dade,最终稀释度1:50000,对应于约0.12 pM组织因子)在微量滴定孔中混合,并且在37℃在Flouroskan Ascent板阅读器(Thermo Electron Corporation)中预加热10分钟。加入以15 µl的野生型FVIII或变体(2.7;0.9,0.3;0,1;0.033;0,011;0.0037和0.0012 nM终浓度)或与50 nM 4F143抗体共配制的野生型FVIII。在连续测量荧光(在390 nm处的激发和在460 nm处的发射)一小时之前,加入以20 μl与CaCl2(终浓度16.7 mM)混合的荧光底物(Z-Gly-Gly-Arg-AMC,Bachem,终浓度417 nM)。荧光信号针对α2-巨球蛋白结合的凝血酶活性校正,且如(Hemker等人,2003)所述的,通过使用校正器和Thrombinoscope软件(Synapse BV)转换为凝血酶浓度。通过Thrombinoscope软件测量用0.011 nM FVIII获得的凝血酶活性的最大水平(表3)。如下由得自Thrombinoscope软件的参数计算凝血酶生成的最大速率:凝血酶生成的最大速率 = 凝血酶活性的最大水平/(至峰凝血酶活性的时间 – 滞后时间)。凝血酶生成的两个参数都显示抗体4F143增强0.1 nM FVIII的凝血酶生成。
3. 通过伴随或不伴随4F143添加的0.01 nM FVIII获得的凝血酶生成的参数。包括关于失稳的FVIII S289L变体的数据。数据显示5次个别实验的平均值±平均值的标准误差(SEM)。两个参数都证实当FVIII与4F143组合时增加的凝血酶生成。
Figure 770132DEST_PATH_IMAGE006
*)与FVIII相比较
实施例 8
通过 FVIIIa 稳定的 mAbs HX-MS FVIII 上的表位作图–HX-MS技术利用蛋白质的氢交换(HX)可以容易地接着质谱法(MS)。通过将含氢的含水溶剂替换为含氘的含水溶剂,在蛋白质中的给定位点处的氘原子掺入将引起1 Da质量的增加。这种质量增加可以在交换反应的猝灭样品中通过质谱法作为时间的函数进行监控。通过在猝灭条件下用胃蛋白酶消化和接下来所得到的肽的质量增加,氘标记的信息可被亚定位至蛋白质中的区域。
HX-MS的一个用途是通过鉴定在蛋白质-蛋白质复合物形成后具有减少的氢交换的区域,探测涉及分子相互作用的位点。通常,由于溶剂的立体排阻,结合界面将通过氢交换中的显著减少揭示。简单地通过测量在各自结合配偶体的存在和不存在下作为时间的函数的掺入任一蛋白质成员中的总氘量,可以通过HX-MS检测蛋白质-蛋白质复合物形成。HX-MS技术使用天然组分,即蛋白质和抗体或Fab片段,并且在溶液中执行。因此,HX-MS提供了用于模拟体内条件的可能性(关于HX-MS技术的近期综述,参见Wales和Engen,Mass Spectrom. Rev. 25,158(2006))。
仪器使用和数据记录 – 所有蛋白质都缓冲液交换到在实验前调整至pH 7.3的20 mM咪唑、10 mM CaCl2、150 mM NaCl中。HX实验通过由LeapShell软件(Leap Technologies Inc.)操作的Leap机器人(H/D-x PAL;Leap Technologies Inc.)自动化,所述Leap机器人执行氘交换反应的起始、反应时间控制、猝灭反应、注射到UPLC系统上和消化时间控制。Leap机器人配备分别维持在20℃用于贮存缓冲液和HX反应和维持在2℃用于贮存蛋白质和猝灭溶液的两个温度控制堆。Leap机器人还含有冷却Trio VS单元(Leap Technologies Inc.),其容纳胃蛋白酶、前置和分析柱,和LC管道系统和在1℃的切换阀。切换阀已从HPLC升级到Microbore UHPLC切换阀(Cheminert,VICI AG)。对于线内胃蛋白酶消化,装载含有0.15 pmol FVIII的100 µL猝灭样品,并且使用200 µL/分钟(0.1%甲酸:CH3OH 95:5)的等度流速,经过Poroszyme®固定胃蛋白酶药液筒(2.1 × 30 mm(Applied Biosystems))。所得到的肽在VanGuard前置柱BEH C18 1.7 µm(2.1 × 5 mm(Waters Inc.))上捕获且脱盐。随后,将阀切换以将前置柱置于与分析柱UPLC-BEH C18 1.7 µm(2.1 × 100 mm(Waters Inc.))联机,并且使用来自AQUITY UPLC系统(Waters Inc.)以150 μL/分钟递送的15−40%B的9分钟梯度分离肽。移动相由A:0.1%甲酸的水溶液和B:0.1%甲酸的CH3CN溶液组成。ESI MS数据和升高能量(MSE)的实验使用Q-Tof Premier MS(Waters Inc.)以阳离子模式获得。亮氨酸脑啡肽用作锁定质量(以m/z 556.2771的[M+H]+离子),并且以连续集模式收集数据。
数据分析 – 使用MSE方法(Waters Inc.)在分开实验中鉴定胃酶肽。使用BiopharmaLynx 1.2(版本017)处理MSE数据。对HX-MS原始数据文件实施连续锁定质量校正。使用HX-Express((版本 Beta);Weis等人,J. Am. Soc. Mass Spectrom. 17,1700(2006))执行数据分析,即氘化肽的质心测定和交换中曲线的描绘。
4F143 4F41 的表位作图 – 通过在4F143或4F41的不存在或存在下在相应氘化缓冲液内制备以30 µM浓度的FVIII溶液起始酰胺氢/氘交换(HX),所述氘化缓冲液即在D2O中制备的20 mM咪唑、10 mM CaCl2、150 mM NaCl,最终98%D2O,pH 7.3(未校正的值))。所有HX反应都在20℃执行,并且在过量FVIII mAbs(4.5 uM)的不存在或存在下含有3 μM FVIII,以确保FVIII被抗体饱和。在范围为10秒至2小时46分40秒(10.000秒)的合适时间间隔,通过等体积的冰冷猝灭缓冲液1.35M TCEP(三(2-羧乙基)-膦盐酸盐(Calbiochem®,EMD Chemicals inc.))猝灭HX反应的等分试样,导致2.6的最终pH(未校正的值))。鉴定4F143表位的原始数据的例子显示于图6A中。
4F143 表位 – 在8个时间点,即10秒、30秒、100秒、300秒、1.000秒、3,000秒和10,000秒,在4F143的存在和不存在下,监控覆盖FVIII的82%基本序列的412肽的氘掺入速率(HX时间过程)(图6A、图7、图8)。
在4F143的存在和不存在下观察到的交换模式可以分成两组:一组肽显示不受4F143结合影响的交换模式(图7(aa 392-403和429-436)),其包含98.2%的肽。相比之下,另一组FVIII胃酶肽显示在与4F143的复合物形成后不受交换的保护(图7),其包括1.7%的胃酶肽。例如,在与D2O的30秒交换时,约1酰胺保护不受在4F143结合后区域aa 407-428中的交换(图6A、图7)。发现两个区域显示在4F143结合后的保护,一个区域包括覆盖残基407-428、414-428、415-428、416-428和406-431的5个胃酶肽,并且另一个区域包括覆盖残基591-602和593-597的2个胃酶肽。两个表位区域都发现在FVIII的A2亚结构域内。
通过重叠肽的交换保护的相对量的比较致使在序列aa 407-428和591-602(使用成熟编号)内发现的在与4F143的复合物形成后FVIII的受影响区域变窄。
通过比较游离FVIII与在与4F143的复合物形成中的FVIII的HX结果,对于在两个表位区域中包括的胃酶肽测定相对交换保护速率。
对于在序列aa 407-428内的表位区域,发现对于覆盖残基aa 414-428、415-428、416-428的肽鉴定的相对交换保护处于可比较水平,并且对于覆盖残基aa 406-431、407-428的肽测定约50%的相对水平。
对于在序列aa 591-602内的表位区域,发现对于覆盖残基aa 593-597的肽鉴定的相对交换保护是对于覆盖残基aa 591-602的肽测定的约40%相对保护水平。
当对接到FVIII的公开晶体结构上时,发现覆盖序列aa 407-428和591-602的两个表位区域处于结构紧密接近中,Ngo,Jacky Chi Ki;Huang,Mingdong;Roth,David A.;Furie,Barbara C.;Furie,Bruce. Crystal Structure of Human Factor VIII:Implications for the Formation of the Factor IXa- Factor VIIIa Complex. Structure(Cambridge,MA,United States)(2008), 16(4), 597-606。
4F41 表位 –在8个时间点,即10秒、30秒、100秒、300秒、1.000秒、3.000秒和10.000秒,在4F41的存在和不存在下,监控覆盖FVIII的82%基本序列的412肽的HX时间过程(图6B、图9、图10)。
在4F41的存在和不存在下观察到的交换模式可以分成两组:一组肽显示不受4F41结合影响的交换模式(图9),其包含99.3%的肽;第二组显示在与4F41的复合物形成后不受交换的保护(图9),其包括0.7%的胃酶肽。
重叠胃酶肽的研究致使鉴定的表位区域的亚定位局限于序列aa 1965-1970(使用成熟编号)内,其发现在FVIII的结构域A3中。三种肽鉴定为对于短温育时间即10秒和30秒显示可检测的显著更低的氘掺入水平。这明确指示它们位于表位内。这些肽分别覆盖序列aa 1963-1972、1963-1974、1965-1976。
实施例 9
小鼠抗 FVIII 4F143 4F50 单克隆抗体的克隆和测序–这个实施例描述了抗FVIII抗体4F143的鼠重链和轻链序列的克隆和测序。使用来自Qiagen的RNeasy-Mini Kit从杂交瘤细胞中提取总RNA,并且用作用于cDNA合成的模板。使用来自Clontech的SMARTer™ RACE cDNA扩增试剂盒在5’-RACE反应中合成cDNA。使用Phusion热启动聚合酶(Finnzymes)和SMARTer™ RACE试剂盒中包括的通用引物混合物(UPM)作为正向引物,通过PCR执行HC和LC序列的后续靶扩增。具有下述序列的反向引物用于HC(VH结构域)扩增:
5’-CCCTTGACCAGGCATCCCAG-3’(SEQ ID NO 3
具有下述序列的反向引物用于LC扩增:
5’-GCTCTAGACTAACACTCATTCCTGTTGAAGCTCTTG-3’(SEQ ID NO 4
通过凝胶电泳分离PCR产物,使用来自GE Healthcare Bio-Sciences的GFX PCR DNA & Gel Band Purification Kit提取,并且使用Zero Blunt TOPO PCR Cloning Kit和化学感受态TOP10大肠杆菌(Invitrogen)克隆用于测序。使用来自Applied Biosystems的AmpliTaq Gold Master Mix和M13uni/M13rev引物,对所选克隆执行菌落PCR。使用ExoSAP-IT酶混合物(USB)执行菌落PCR净化。使用M13uni(-21)/M13rev(-29)测序引物,在MWG Biotech,Martinsried 德国执行测序。使用VectorNTI程式分析且注释序列。所有试剂盒和试剂根据制造商的说明书使用。
FVIII 4F143
鉴定单个独特鼠κ型LC和单个独特鼠HC,亚类IgG1。核酸和氨基酸序列在下文列出,不包括前导肽序列。
抗FVIIIa 4F143 VH氨基酸序列 SEQ ID NO 5 (省略信号肽序列,CDR1(SEQ ID NO 6 、CDR2(SEQ ID NO 7 和CDR3(SEQ ID NO 8 分别是有下划线的):
1 QIQFVQSGPE LKKPGETVKI SCKASGYTFT NYGMNWVKQA PGKGLKWMGW
51 INSYTGEPTYADDFKGRFAF SLETSASTAY LQINNLKNED TATYFCARGA
101 SYAMDYWGQG TSVTVSS
抗FVIIIa 4F143 VH核酸序列 SEQ ID NO 9 (省略信号肽序列):
5’- cagatccagttcgtgcagtctggacctgagctgaagaagcctggagagacagtcaagatctcctgcaaggcttctggttataccttcacaaactatggaatgaactgggtgaagcaggctccaggaaagggtttaaagtggatgggctggataaactcctacactggagagccaacatatgctgatgacttcaagggacggtttgccttctctttggaaacctctgccagcactgcctatttgcagatcaacaacctcaaaaatgaggacacggctacatatttctgtgcaagaggggcttcttatgctatggactactggggtcaaggaacctcagtcaccgtctcctca
抗FVIIIa 4F143 VL氨基酸序列 SEQ ID NO 10 (省略信号肽序列,CDR1(SEQ ID NO 11 、CDR2(SEQ ID NO 12 和CDR3(SEQ ID NO 13 分别是有下划线的):
1 DVQITQSPSY LAASPGETIT INCRASKSIS KYLAWYQEKP VKTNKLLIYS
51 GSTLQSGIPS RFSGSGSGTD FTLTISSLEP EDFAMYYCQQHYEYPLTFGA
101 GTKLELKR
抗FVIIIa 4F143 VL核酸序列(省略信号肽序列)(SEQ ID NO 14
5’- gatgtccagataacccagtctccatcttatcttgctgcatctcctggagaaaccattactattaattgcagggcaagtaagagcattagcaaatatttagcctggtatcaagagaaacctgtgaaaactaataagcttcttatctactctggatccactttgcaatctggaattccatcaaggttcagtggcagtggatctggaacagatttcactctcaccatcagtagcctggagcctgaagattttgcaatgtattactgtcaacagcattatgaatacccgctcacgttcggtgctgggaccaagctggagctgaaacgg
FVIII 4F50
鉴定单个独特鼠κ型LC和单个独特鼠HC,亚类IgG1。核酸和氨基酸序列在下文列出,不包括前导肽序列。
抗FVIIIa 4F50 VH氨基酸序列 SEQ ID NO 15 (省略信号肽序列,CDR1(SEQ ID NO 16 、CDR2(SEQ ID NO 17 和CDR3(SEQ ID NO 18 分别是有下划线的):
1 QIQFVQSGPE LKKPGETVKI SCKASGYTFT NYGMNWVKQA PGKGLKWMGW
51 INSYTGEPTYADDFKGRFDF SLETSASTAY LQINNLKNED TATYFCARGA
101 SYAMDHWGQG TSVTVSS
抗FVIIIa 4F50 VH核苷酸序列 SEQ ID NO 19 (省略信号肽序列)
5’-
CAGATCCAGTTCGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGGCTTCTGGTTATACCTTCACAAACTATGGAATGAACTGGGTGAAGCAGGCTCCAGGAAAGGGTTTAAAGTGGATGGGCTGGATAAACTCCTACACTGGAGAGCCAACATATGCTGATGACTTCAAGGGACGGTTTGACTTCTCTTTGGAAACCTCTGCCAGCACTGCCTATTTGCAGATCAACAACCTCAAAAATGAGGACACGGCTACATATTTCTGTGCAAGAGGGGCTTCTTATGCTATGGACCACTGGGGTCAAGGAACCTCTGTCACCGTCTCCTCA
抗FVIIIa 4F50 VL氨基酸序列 SEQ ID NO 20 (省略信号肽序列,CDR1(SEQ ID NO 21 、CDR2(SEQ ID NO 22 和CDR3(SEQ ID NO 23 分别是有下划线的):
1 DVQITQSPSY LAASPGETIS INCRASKSISKYLAWYQEKP VKTNKLLIYS
51 GSTLQSGIPS RFSGSGSGTD FTLTISSLEP EDFAMYYCQQ HYEYPLTFGA
101 GTKLELKR
抗FVIIIa 4F50 VL核苷酸序列 SEQ ID NO 24 (省略信号肽序列)
5’-
Gatgtccagataacccagtctccatcttatcttgctgcatctcctggagaaaccattagtattaattgcagggcaagtaagagcattagcaaatatttagcctggtatcaagagaaacctgtgaaaactaataagcttcttatctactctggatccactttgcaatctggaattccatcaaggttcagtggcagtggatctggaacagatttcactctcaccatcagtagcctggagcctgaagattttgcaatgtattactgtcaacagcattatgaatacccgctcacgttcggtgctgggaccaagctggagctgaaacgg
参考文献列表
Abdiche,Y.N., Malashock,D.S., Pinkerton,A., and Pons,J. (2009). Exploring blocking assays using Octet, ProteOn, and Biacore biosensors. Anal. Biochem. 386, 172-180.
Fay,P.J. (2004). Activation of factor VIII and mechanisms of cofactor action. Blood Rev 18, 1-15.
Fay,P.J., Beattie,T.L., Regan,L.M., O'Brien,L.M., and Kaufman,R.J. (1996). Model for the factor VIIIa-dependent decay of the intrinsic factor Xase. Role of subunit dissociation and factor IXa-catalyzed proteolysis. J. Biol. Chem. 271, 6027-6032.
Ganz,P.R., Atkins,J.S., Palmer,D.S., Dudani,A.K., Hashemi,S., and Luison,F. (1991). Definition of the affinity of binding between human von Willebrand factor and coagulation factor VIII. Biochem. Biophys. Res. Commun. 180, 231-237.
Griffin,B.D., Micklem,L.R., McCann,M.C., James,K., and Pepper,D.S. (1986). The production and characterisation of a panel of ten murine monoclonal antibodies to human procoagulant factor VIII. Thromb. Haemost. 55, 40-46.
Hemker,H.C., Giesen,P., Al,D.R., Regnault,V., de,S.E., Wagenvoord,R., Lecompte,T., and Beguin,S. (2003). Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol. Haemost. Thromb. 33, 4-15.
Lapan,K.A. and Fay,P.J. (1997). Localization of a factor X interactive site in the A1 subunit of factor VIIIa. J. Biol. Chem. 272, 2082-2088.
Layet,S., Girma,J.P., Obert,B., Peynaud-Debayle,E., Bihoreau,N., and Meyer,D. (1992). Evidence that a secondary binding and protecting site for factor VIII on von Willebrand factor is highly unlikely. Biochem. J. 282 ( Pt 1), 129-137.
Lisman,T., Adelmeijer,J., Cauwenberghs,S., Van Pampus,E.C., Heemskerk,J.W., and De Groot,P.G. (2005). Recombinant factor VIIa enhances platelet adhesion and activation under flow conditions at normal and reduced platelet count. J. Thromb. Haemost. 3, 742-751.
Nogami,K., Zhou,Q., Wakabayashi,H., and Fay,P.J. (2005). Thrombin-catalyzed activation of factor VIII with His substituted for Arg372 at the P1 site. Blood 105, 4362-4368.
Parker,E.T., Doering,C.B., and Lollar,P. (2006). A1 subunit-mediated regulation of thrombin-activated factor VIII A2 subunit dissociation. J. Biol. Chem. 281, 13922-13930.
Pieters,J., Lindhout,T., and Hemker,H.C. (1989). In situ-generated thrombin is the only enzyme that effectively activates factor VIII and factor V in thromboplastin-activated plasma. Blood 74, 1021-1024.
Pipe,S.W., Saenko,E.L., Eickhorst,A.N., Kemball-Cook,G., and Kaufman,R.J. (2001). Hemophilia A mutations associated with 1-stage/2-stage activity discrepancy disrupt protein-protein interactions within the triplicated A domains of thrombin-activated factor VIIIa. Blood 97, 685-691.
Rydel,T.J., Ravichandran,K.G., Tulinsky,A., Bode,W., Huber,R., Roitsch,C., and Fenton,J.W. (1990). The structure of a complex of recombinant hirudin and human alpha-thrombin. Science 249, 277-280.
Takeyama,M., Nogami,K., Matsumoto,T., Soeda,T., Suzuki,T., Hattori,K., and Shima,M. (2010). Characterisation of an antibody specific for coagulation factor VIII that enhances factor VIII activity. Thromb. Haemost. 103, 94-102.
Thim,L., Vandahl,B., Karlsson,J., Klausen,N.K., Pedersen,J., Krogh,T.N., Kjalke,M., Petersen,J.M., Johnsen,L.B., Bolt,G., Norby,P.L., and Steenstrup,T.D. (2010). Purification and characterization of a new recombinant factor VIII (N8). Haemophilia. 16, 349-359.
Vlot,A.J., Koppelman,S.J., van den Berg,M.H., Bouma,B.N., and Sixma,J.J. (1995). The affinity and stoichiometry of binding of human factor VIII to von Willebrand factor. Blood 85, 3150-3157.
Figure IDA00003228118300021
Figure IDA00003228118300041
Figure IDA00003228118300051
Figure IDA00003228118300061
Figure IDA00003228118300071
Figure IDA00003228118300081
Figure IDA00003228118300091
Figure IDA00003228118300101
Figure IDA00003228118300111
Figure IDA00003228118300131
Figure IDA00003228118300141
Figure IDA00003228118300151
Figure IDA00003228118300161
Figure IDA00003228118300171
Figure IDA00003228118300201
Figure IDA00003228118300211
Figure IDA00003228118300241
Figure IDA00003228118300251

Claims (15)

1.一种具有与活化的人因子VIII结合能力的单克隆因子VIII抗体,其中在与活化的因子VIII结合后,所述抗体减少A2结构域的解离,并且其中所述抗体不干扰vWF结合。
2.根据权利要求1的单克隆抗体,其中所述抗体不加速凝血酶活化。
3.根据权利要求1或2中任一项的抗体,其中所述抗体与A2结构域结合。
4.根据权利要求1-3中任一项的抗体,其中所述抗体与A3结构域结合。
5.根据权利要求1-2中任一项的抗体,其中所述抗体与肽片段407-428(SEQ ID NO 15)和/或591-602(SEQ ID NO 16)等同或部分重叠的表位结合。
6.根据权利要求1的抗体,其中所述抗体与肽片段1965-1976(SEQ ID NO 17)等同或部分重叠的表位结合。
7.根据权利要求1-4中任一项的抗体,其中所述抗体与4F143抗体的结合进行竞争。
8.根据权利要求1的抗体,其中所述抗体包含与选自下述的一个或多个CDR序列具有至少95%同一性的一个或多个CDR序列:SEQ ID NO:6、SEQ ID NO 7、SEQ ID NO 8、SEQ ID NO 11、SEQ ID NO 12和SEQ ID NO 13。
9.根据权利要求5的抗体,其中所述抗体包含与SEQ ID NO 9具有至少95%同一性的VL序列,和与SEQ ID NO 10具有至少95%同一性的VH序列。
10.根据权利要求1-6中任一项的抗体作为用于治疗A型血友病的药物的用途。
11.根据权利要求1-6中任一项的抗体与因子VIII分子联合用于治疗A型血友病的用途。
12.一种药物组合物,其包含根据权利要求1-6中任一项的抗体。
13.一种药物组合物,其包含根据权利要求1-6中任一项的抗体和因子VIII分子。
14.根据权利要求12-13中任一项的药物组合物,其中所述组合物用于皮下施用。
15.一种制造根据权利要求1-9中任一项的抗体的方法,其中所述方法包括在适合于表达所述抗体的条件下培养编码这种抗体的宿主细胞。
CN2011800562959A 2010-09-22 2011-09-15 治疗因子viii抗体 Withdrawn CN103221429A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP10178292.8 2010-09-22
EP10178292 2010-09-22
US38678310P 2010-09-27 2010-09-27
US61/386783 2010-09-27
PCT/EP2011/065986 WO2012038315A1 (en) 2010-09-22 2011-09-15 Therapeutic factor viii antibodies

Publications (1)

Publication Number Publication Date
CN103221429A true CN103221429A (zh) 2013-07-24

Family

ID=43587481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800562959A Withdrawn CN103221429A (zh) 2010-09-22 2011-09-15 治疗因子viii抗体

Country Status (5)

Country Link
US (2) US9062115B2 (zh)
EP (1) EP2619228A1 (zh)
JP (1) JP2013542188A (zh)
CN (1) CN103221429A (zh)
WO (1) WO2012038315A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248964A (zh) * 2017-02-01 2019-09-17 诺和诺德股份有限公司 促凝血抗体
CN110382547A (zh) * 2016-12-14 2019-10-25 盼展生物技术有限公司 抗凝血因子viii抗体及其用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2881966C (en) 2012-08-24 2020-10-06 The Regents Of The University Of California Antibodies and vaccines for use in treating ror1 cancers and inhibiting metastasis
CN109996544A (zh) 2016-06-27 2019-07-09 加利福尼亚大学董事会 癌症治疗组合

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090297503A1 (en) * 2006-08-31 2009-12-03 Masahiro Takeyama Blood Coagulation Factor VIII Activation-Enhancing Antibodies

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2645588A (en) 1987-12-04 1989-06-15 Scripps Clinic And Research Foundation The von willebrand factor binding domain of factor viii
EP2305314B1 (en) 2001-10-10 2015-12-23 ratiopharm GmbH Remodelling and glycoconjugation of antibodies
DK1624891T4 (da) 2003-05-06 2013-07-15 Biogen Idec Hemophilia Inc Kimære koagulationsfaktor Fc proteiner til behandling af hæmofili
KR101542752B1 (ko) 2006-12-22 2015-08-10 체에스엘 베링 게엠베하 연장된 생체내 반감기를 갖는 변형된 응고 인자
RU2573587C2 (ru) 2008-02-27 2016-01-20 Ново Нордиск А/С Конъюгированные молекулы фактора viii

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090297503A1 (en) * 2006-08-31 2009-12-03 Masahiro Takeyama Blood Coagulation Factor VIII Activation-Enhancing Antibodies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. ANSONG, ET AL.: "Epitope mapping factor VIII A2 domain by affinity-directed mass spectrometry: residues 497–510 and 584–593 comprise a discontinuous epitope for the monoclonal antibody R8B12", 《JOURNAL OF THROMBOSIS AND HAEMOSTASIS》, vol. 4, no. 4, 15 March 2006 (2006-03-15), pages 842 - 847, XP009144974, DOI: doi:10.1111/j.1538-7836.2006.01831.x *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110382547A (zh) * 2016-12-14 2019-10-25 盼展生物技术有限公司 抗凝血因子viii抗体及其用途
CN110382547B (zh) * 2016-12-14 2023-06-06 盼展生物技术有限公司 抗凝血因子viii抗体及其用途
CN110248964A (zh) * 2017-02-01 2019-09-17 诺和诺德股份有限公司 促凝血抗体
US12084512B2 (en) 2017-02-01 2024-09-10 Novo Nordisk A/S Procoagulant antibodies

Also Published As

Publication number Publication date
WO2012038315A1 (en) 2012-03-29
EP2619228A1 (en) 2013-07-31
US20130266576A1 (en) 2013-10-10
US9062115B2 (en) 2015-06-23
JP2013542188A (ja) 2013-11-21
US20150239984A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
EP2321356B1 (en) Monoclonal antibodies against tissue factor pathway inhibitor (tfpi)
JP2020002171A (ja) 遺伝性血管浮腫の治療における血漿カリクレイン結合タンパク質およびその使用
US20160297892A1 (en) Novel Methods and Antibodies for Treating Coagulapathy
TWI802193B (zh) 抗凝血因子xi抗體
TWI716059B (zh) 經改良的促凝血抗體
JP2017025104A (ja) 組織因子経路インヒビターに特異的に結合することが可能な抗体
US12103969B2 (en) Anti-Siglec antibody, pharmaceutical composition comprising the same, and uses thereof
WO2014190305A2 (en) Anti-gpiib/iiia antibodies or uses thereof
JP7601952B2 (ja) 二重特異性抗体
US20150239984A1 (en) Therapeutic factor viii antibodies
WO2015041310A1 (ja) 抗プロテインc抗体による出血性疾患の治療
RU2818588C2 (ru) Биспецифические антитела
ES2787512T3 (es) Anticuerpos que son capaces de unirse específicamente al inhibidor de la vía del factor tisular
AU2013202752B2 (en) Monoclonal antibodies against tissue factor pathway inhibitor (TFPI)
TW202204421A (zh) 雙特異性抗原結合分子及與其相關之組成物、用於組成物之製造的用途、套組以及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C04 Withdrawal of patent application after publication (patent law 2001)
WW01 Invention patent application withdrawn after publication

Application publication date: 20130724