CN103219586A - Automatic detection, correction and adjustment method and system for panel antenna - Google Patents
Automatic detection, correction and adjustment method and system for panel antenna Download PDFInfo
- Publication number
- CN103219586A CN103219586A CN201210348205XA CN201210348205A CN103219586A CN 103219586 A CN103219586 A CN 103219586A CN 201210348205X A CN201210348205X A CN 201210348205XA CN 201210348205 A CN201210348205 A CN 201210348205A CN 103219586 A CN103219586 A CN 103219586A
- Authority
- CN
- China
- Prior art keywords
- automatic detection
- earthenware slab
- detection correction
- antenna
- checkout gear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 59
- 229910052751 metal Inorganic materials 0.000 claims abstract description 59
- 238000009966 trimming Methods 0.000 claims abstract description 39
- 238000012360 testing method Methods 0.000 claims abstract description 32
- 230000005855 radiation Effects 0.000 claims abstract description 20
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 238000010147 laser engraving Methods 0.000 claims description 4
- 229910052571 earthenware Inorganic materials 0.000 claims 27
- 239000000919 ceramic Substances 0.000 abstract description 111
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 5
- 230000001568 sexual effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/351—Working by laser beam, e.g. welding, cutting or boring for trimming or tuning of electrical components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/20—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/11—Monitoring; Testing of transmitters for calibration
- H04B17/12—Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
- H04B17/23—Indication means, e.g. displays, alarms, audible means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49004—Electrical device making including measuring or testing of device or component part
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/54—Miscellaneous apparatus
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
Abstract
一种平板天线的自动检测修正调整方法及其系统,包括:备有一检测装置,该检测装置电连接有一无线电频率(RF)元件测试工具,且于检测装置设定陶瓷平板天线的电气特性的参数值。将该陶瓷平板天线置放于无线电频率元件测试工具上。接着,由检测装置读取该陶瓷平板天线的电气特性并判断与该设定的参数值是否相同,在判断该陶瓷平板天线的电气特性与设定的参数值不相同。最后,由该检测装置驱动修整装置,对该陶瓷平板天线的辐射金属片进行修正调整。
A method and system for automatically detecting, correcting and adjusting a flat antenna, comprising: a detection device is provided, the detection device is electrically connected to a radio frequency (RF) component test tool, and the parameter value of the electrical characteristics of the ceramic flat antenna is set in the detection device. The ceramic flat antenna is placed on the radio frequency component test tool. Then, the detection device reads the electrical characteristics of the ceramic flat antenna and determines whether it is the same as the set parameter value. If it is determined that the electrical characteristics of the ceramic flat antenna are not the same as the set parameter value. Finally, the detection device drives a trimming device to correct and adjust the radiation metal sheet of the ceramic flat antenna.
Description
技术领域 technical field
本发明涉及一种天线,尤其涉及一种具有自动检测平板天线的电气特性,并自动修正调整平板天线电气特性的方法及其系统。The invention relates to an antenna, in particular to a method and system for automatically detecting the electrical characteristics of the flat-panel antenna and automatically correcting and adjusting the electrical characteristics of the flat-panel antenna.
背景技术 Background technique
目前的陶瓷平板天线上具有一基体,该基体的表面上具有一辐射金属面,该基体的背面具有一接地金属面,该基体上具有一信号馈入端穿过该基体与该辐射金属面电性连接。在陶瓷平板天线制作完成后,首要工作就是检测该陶瓷平板天线的电气特性是符合制作规范,因为陶瓷平板天线在制作时会因辐射金属片印刷的尺寸不一致,而产生不同的电气特性,所以制作完成的陶瓷平板天线就必需进行电气特性的检测。The current ceramic panel antenna has a substrate, the surface of the substrate has a radiating metal surface, the back of the substrate has a grounded metal surface, and the substrate has a signal feed-in end that passes through the substrate and the radiating metal surface. sexual connection. After the ceramic panel antenna is manufactured, the first task is to check whether the electrical characteristics of the ceramic panel antenna meet the production specifications, because the ceramic panel antenna will produce different electrical characteristics due to the inconsistency of the printed size of the radiating metal sheet during production, so the production The completed ceramic panel antenna must be tested for electrical characteristics.
在陶瓷平板天线进行检测时,将该陶瓷平板天线电性连接于该无线频率(RF)元件测试同轴电缆的接头上,以供仪器读取该陶瓷平板天线的电气特性,该仪器同时显示该电气特性的史密斯曲线图。在史密斯曲线图显示后,检测者将以目视的方式看仪器所显示的史密斯曲线图与制作规范是否相同,若是不相同时,检测者就必须以人工的方式手持修正专置对陶瓷平板天线的辐射金属面进行修正调整,修正到该仪器所显示的史密斯曲线图与制作规范相同,就停止修整动作。When the ceramic panel antenna is being tested, the ceramic panel antenna is electrically connected to the joint of the radio frequency (RF) component test coaxial cable, so that the instrument can read the electrical characteristics of the ceramic panel antenna, and the instrument will simultaneously display the Smith plot of electrical characteristics. After the Smith curve is displayed, the inspector will visually check whether the Smith curve displayed by the instrument is the same as the production specification. If not, the inspector must manually correct the special pair of ceramic panel antennas by hand. Correct and adjust the radiant metal surface of the instrument until the Smith curve displayed by the instrument is the same as the production specification, and then stop the trimming action.
由于上述陶瓷平板天线的电气特性在修正调整时,需要有经验的检测者来检测修正调整,而且以人工方式修正调整时导致后续加工速度慢,无法提升良品的生产量,也无法降低制作成本。Since the electrical characteristics of the above-mentioned ceramic panel antenna are corrected and adjusted, experienced inspectors are required to detect and adjust, and the subsequent processing speed is slow when corrected and adjusted manually, which cannot increase the yield of good products, nor can it reduce the production cost.
发明内容 Contents of the invention
因此,本发明的主要目的,在于解决传统缺失,本发明利用一种自动检测修正调整方法及其系统,在陶瓷平板天线制作完成后,可以自动检测及修正该陶瓷平板天线的电气特性,以符合制作规范,使陶瓷平板天线在制作生产生更加容易简单,同时可以减少人力,降低制作成本,提高升产量,使制作完成的该陶瓷平板天线的电性特性更加的精确。Therefore, the main purpose of the present invention is to solve the traditional deficiencies. The present invention uses an automatic detection, correction and adjustment method and its system. After the ceramic panel antenna is manufactured, it can automatically detect and correct the electrical characteristics of the ceramic panel antenna to meet The manufacturing standard makes the manufacturing of the ceramic flat antenna easier and simpler, and at the same time can reduce manpower, lower the manufacturing cost, increase the output, and make the electrical characteristics of the finished ceramic flat antenna more accurate.
为达上述的目的,本发明所提供一种平板天线的自动检测修正调整方法,是对具有辐射金面的陶瓷平板天线进行自动检测修正调整,该方法包括:In order to achieve the above-mentioned purpose, the present invention provides a method for automatic detection, correction and adjustment of a flat panel antenna, which is to automatically detect, correct and adjust a ceramic flat antenna with a radiating gold surface. The method includes:
备有一检测装置,该检测装置电连接有一无线电频率元件测试工具,且于检测装置设定陶瓷平板天线的电气特性的参数值;A detection device is provided, the detection device is electrically connected to a radio frequency component testing tool, and the parameter value of the electrical characteristics of the ceramic panel antenna is set in the detection device;
将该陶瓷平板天线置放于无线电频率元件测试工具上;Place the ceramic panel antenna on the radio frequency component test tool;
由检测装置读取该陶瓷平板天线的电气特性并判断与该设定的参数值是否相同;Read the electrical characteristics of the ceramic panel antenna by the detection device and judge whether it is the same as the set parameter value;
在判断该陶瓷平板天线的电气特性与设定的参数值不相同,该检测装置驱动修整装置,对该陶瓷平板天线的辐射金属片进行修正调整。After judging that the electrical characteristics of the ceramic planar antenna are different from the set parameter values, the detection device drives the trimming device to correct and adjust the radiation metal sheet of the ceramic planar antenna.
其中,该陶瓷平板天线的电气特性的参数值为中心频率、频宽及反射损失。Wherein, the parameters of the electrical characteristics of the ceramic panel antenna are center frequency, bandwidth and reflection loss.
其中,该检测装置还具有一微处理单元、一储存单元、一操作界面及一显示单元;该显示单元显示该陶瓷平板天线的电气特性的史密斯曲线与s参数曲线。Wherein, the detection device also has a micro-processing unit, a storage unit, an operation interface and a display unit; the display unit displays the Smith curve and the s-parameter curve of the electrical characteristics of the ceramic planar antenna.
其中,该陶瓷平板天线的电气特性的史密斯曲线中间折点的位置,必须位于该设定参数值所产生的史密斯曲线中间折点在设定的格区间内,以显示单元的显示视窗格的上下左右的三分之一的格区间内及曲线的折点中心限制在1<电压驻波比(VSWR)<无线大。Among them, the position of the middle inflection point of the Smith curve of the electrical characteristics of the ceramic panel antenna must be located within the set grid interval of the Smith curve middle inflection point generated by the set parameter value, so as to display the upper and lower sides of the display window pane of the display unit. The left and right one-third of the grid interval and the center of the inflection point of the curve are limited to 1<voltage standing wave ratio (VSWR)<wireless.
其中,该无线电频率元件测试工具为无线电频率同轴电缆线接头,是与该陶瓷平板天线的一信号馈入端电性连接。Wherein, the radio frequency component testing tool is a radio frequency coaxial cable connector, which is electrically connected with a signal feeding end of the ceramic planar antenna.
其中,该检测装置所读取的陶瓷平板天线的电气特性判断与设定的参数值相同,即结束检测。Wherein, the electrical characteristics of the ceramic panel antenna read by the detection device are judged to be the same as the set parameter values, that is, the detection is ended.
其中,在判断检测的陶瓷平板天线的电气特性与设定的参数值不相同时,该检测装置显示该陶瓷平板天线需修整的辐射金属面的影像及位置。Wherein, when it is judged that the electrical characteristics of the detected ceramic panel antenna are different from the set parameter values, the detection device displays the image and position of the radiating metal surface of the ceramic panel antenna that needs to be trimmed.
其中,该修整装置为激光雕刻机。Wherein, the trimming device is a laser engraving machine.
其中,还具有以影像读取装置读取修整装置在修正该辐射金属面的位置后,再由该检测装置判断修正位置是否正确,若位置不正确,立刻校正修正位置,使修整装置依据检测装置所输出的信号精确对该辐射金属面的修正位置进行修整处理。Among them, after the image reading device is used to read the trimming device to correct the position of the radiated metal surface, the detection device judges whether the corrected position is correct. The output signal is accurately trimmed for the corrected position of the radiating metal surface.
其中,影像读取装置为CCD或CMOS镜头。Wherein, the image reading device is a CCD or a CMOS lens.
其中,在该辐射金属面修整后,该检测装置检测陶瓷平板天线的电气特性符合所设定的参数值时,即结束检测及修整该陶瓷平板天线的动作。Wherein, after the radiating metal surface is trimmed, when the detection device detects that the electrical characteristics of the ceramic panel antenna meet the set parameter values, the detection and trimming of the ceramic panel antenna is terminated.
为达上述的目的,本发明提供一种平板天线的自动检测修正调整系统,是对具有辐射金面的陶瓷平板天线进行自动检测修正调整,该系统包括:In order to achieve the above-mentioned purpose, the present invention provides an automatic detection, correction and adjustment system for a flat panel antenna, which is to automatically detect, correct and adjust a ceramic flat antenna with a radiating gold surface. The system includes:
一检测装置,其上具有一置放陶瓷平板天线的无线电频率元件测试工具,该检测装置设定有一比对的参数值;A detection device, on which there is a radio frequency component testing tool for placing a ceramic planar antenna, the detection device is set with a comparative parameter value;
一修整装置,是与该检测装置电性连接;A trimming device is electrically connected to the detection device;
其中,在该陶瓷平板天线置放于无线电频率元件测试工具后,由该检测装置读取该陶瓷平板天线的电气特性与参数值比对不相同,该检测装置输出信号驱动该修整装置对该陶瓷平板天线的辐射金属面进行修整处理。Wherein, after the ceramic panel antenna is placed in the radio frequency component testing tool, the electrical characteristics of the ceramic panel antenna read by the detection device are different from the parameter values, and the output signal of the detection device drives the trimming device to the ceramic The radiation metal surface of the panel antenna is trimmed.
其中,该检测装置至少包括有:一微处理单元、一储存单元、一操作界面及一显示单元。Wherein, the detection device at least includes: a micro-processing unit, a storage unit, an operation interface and a display unit.
其中,该微处理单元载入有检测该陶瓷平板天线电气特性的固件程序。Wherein, the micro-processing unit is loaded with a firmware program for detecting the electrical characteristics of the ceramic planar antenna.
其中,该储存单元是与该微处理单元电性连接,用以储存该陶瓷平板天线的电气特性的参数值。Wherein, the storage unit is electrically connected with the micro-processing unit, and is used for storing the parameter values of the electrical characteristics of the ceramic planar antenna.
其中,该操作界面是与该微处理单元电性连接,用以输入各项操作指令及参数值。Wherein, the operation interface is electrically connected with the micro-processing unit for inputting various operation instructions and parameter values.
其中,该显示单元是与该微处理单元电性连接,以显示该微处理单元所检测结果的史密斯曲线与s参数曲线。Wherein, the display unit is electrically connected with the micro-processing unit to display the Smith curve and s-parameter curve of the detection result of the micro-processing unit.
其中,该陶瓷平板天线的电气特性的史密斯曲线中间折点的位置,必须位于该设定参数值所产生的史密斯曲线中间折点在设定的格区间内,以显示单元的显示视窗格的上下左右的三分之一的格区间内及曲线的折点中心限制在1<电压驻波比(VSWR)<无线大。Among them, the position of the middle inflection point of the Smith curve of the electrical characteristics of the ceramic panel antenna must be located within the set grid interval of the Smith curve middle inflection point generated by the set parameter value, so as to display the upper and lower sides of the display window pane of the display unit. The left and right one-third of the grid interval and the center of the inflection point of the curve are limited to 1<voltage standing wave ratio (VSWR)<wireless.
其中,该无线电频率元件测试工具为无线电频率同轴电缆线接头,该陶瓷平板天线的一信号馈入端电性连接于该无线电频率元件测试工具上。Wherein, the radio frequency component testing tool is a radio frequency coaxial cable connector, and a signal feeding end of the ceramic planar antenna is electrically connected to the radio frequency component testing tool.
其中,该陶瓷平板天线的电气特性的参数值为中心频率、频宽及反射损失。Wherein, the parameters of the electrical characteristics of the ceramic panel antenna are center frequency, bandwidth and reflection loss.
其中,该修整装置为研磨雕刻机、激光加工机。Wherein, the trimming device is a grinding engraving machine or a laser processing machine.
其中,该检测装置所读取的陶瓷平板天线的电气特性与设定的参数值相同,结束检测。Wherein, the electrical characteristics of the ceramic panel antenna read by the detection device are the same as the set parameter values, and the detection ends.
其中,还具有一影像读取装置,该影像读取装置系与该检测装置电性连接,用以读取修整装置该陶瓷平板天线的辐射金属面修正位置,使该修整装置能精确对该陶瓷平板天线的辐射金属面进行修整。Among them, there is also an image reading device, which is electrically connected with the detection device, and is used to read the corrected position of the radiating metal surface of the ceramic planar antenna of the trimming device, so that the trimming device can precisely correct the ceramic surface. The radiating metal surface of the panel antenna is trimmed.
其中,该影像读取装置为CCD或CMOS镜头。Wherein, the image reading device is a CCD or a CMOS lens.
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention.
附图说明 Description of drawings
图1本发明的平板天线自动检测修正调整方法的流程示意图;Fig. 1 is a schematic flow chart of the method for automatically detecting, correcting and adjusting the panel antenna of the present invention;
图2本发明的史密斯曲线示意图;The Smith curve schematic diagram of Fig. 2 the present invention;
图3本发明的陶瓷平板天线的辐射金属面的正视示意图;Fig. 3 is a schematic front view of the radiating metal surface of the ceramic panel antenna of the present invention;
图4本发明的另一史密斯曲线示意图;Another Smith curve schematic diagram of the present invention of Fig. 4;
图5本发明的另一陶瓷平板天线的辐射金属面的正视示意图;Fig. 5 is a schematic front view of the radiating metal surface of another ceramic planar antenna of the present invention;
图6本发明的自动检测修正调整系统示意图。Fig. 6 is a schematic diagram of the automatic detection, correction and adjustment system of the present invention.
其特征在于,It is characterized in that,
步骤100~120
史密斯曲线10Smith Curve 10
中间折点101
辐射金属面20
右下边201Bottom right 201
左上边201a201a on the upper left
右上边202202 on the upper right
左下边202a202a on the lower left
左侧上边203203 on the left side
右侧下边203aRight bottom 203a
右侧上边204Right upper side 204
左侧下边204aLeft lower side 204a
缺口205Notch 205
底边205abottom edge 205a
缺口206Notch 206
底边206abottom edge 206a
缺口207Notch 207
底边207abottom edge 207a
缺口208Notch 208
底边208abottom edge 208a
角边209corner edge 209
角边209acorner edge 209a
角边210corner edge 210
角边210acorner edge 210a
史密斯曲线30
中间折点301
辐射金属面40
右侧上边401401 on the right side
左侧下边401aLeft bottom 401a
右侧下边402
左侧上边402a402a on the left side
左上边403403 on the upper left
右下边403aBottom right 403a
右上边404404 on the upper right
左下边404a404a on the lower left
缺口405
底边405a
缺口406
底边406a
缺口407
底边407a
缺口408
底边408a
角边409
检测装置1
微处理单元11
储存单元12
操作界面13
显示单元14
无线电频率工具2
修整装置3Trimming device 3
影像读取装置4Image reading device 4
陶瓷平板天线5
信号馈入端51Signal feed-in
具体实施方式 Detailed ways
兹有关本发明的技术内容及详细说明,现配合附图说明如下:The technical content and detailed description of the present invention are now described as follows in conjunction with the accompanying drawings:
请参阅图1,本发明的平板天线自动检测修正调整方法的流程示意图。如图所示:本发明的平板天线自动检测修正调整方法,首先,如步骤100,备有一制作完成的陶瓷平板天线。Please refer to FIG. 1 , which is a schematic flow chart of the method for automatic detection, correction and adjustment of a panel antenna according to the present invention. As shown in the figure: the automatic detection, correction and adjustment method of the panel antenna of the present invention, firstly, as in
步骤102,于检测装置设定该陶瓷平板天线的电气特性(如中心频率、频宽及反射损失return loss)的参数值,同时在检测装置上的显示单元将显示史密斯曲线图与s参数曲线图。在本附图中,该检测装置至少包括有:一微处理单元、一储存单元、一操作界面及一显示单元。
步骤104,将陶瓷平板天线置放于检测装置的无线电频率(RF,RadioFrequency)元件测试工具(下称为RF元件测试工具)上,使该陶瓷平板天线的信号馈入端与RF元件测试工具电性连接。在本附图中,该RF元件测试工具为无线电频率同轴电缆线接头,是与该陶瓷平板天线的信号馈入端电性连接。
步骤106,在检测装置读取陶瓷平板天线的电气特性,并判断是否符合史密斯曲线与s参数规格要求。若是判断符合史密斯曲线与s参数规格要求,进入步骤108,结束陶瓷平板天线检测。再进入到步骤110中,取下检测合格的该陶瓷平板天线。在步骤106判断该陶瓷平板天线的电性特性不符合史密斯曲线与s参数规格要求时,进入步骤112中。
步骤112,检测装置显示陶瓷平板天线需修整的辐射金属面的影像及位置。
步骤114,检测装置驱动修整装置(Trimming Machine)对该辐射金属面需修整的位置进行修正处理。在本附图中,该修整装置为激光雕刻机。
步骤116,由影像读取装置读取修整装置在修正该辐射金属面的修正位置是否正确。若是不正确,立刻校正修正位置,使修整装置能精确的在指定的辐射金属面的修正位置上进行修整处理。在本附图中,影像读取装置为CCD或CMOS镜头。In
步骤118,在该辐射金属面修整后,该检测装置检测陶瓷平板天线的电气特性符合所设定的史密斯曲线(即表示符合设定的参数值)时,即结束检测及修整该陶瓷平板天线的动作。
步骤120,将修整检测合格的陶瓷平板天线,由该检测装置的RF元件测试工具上取下。
请参阅图2、图3,本发明的史密斯曲线示意图及陶瓷平板天线的辐射金属面的正视示意图。如图所示:在检测装置检测及修整陶瓷平板天线的电器特性时,先输入陶瓷平板天线的电气特性的参数值于该检测装置1中,于检测装置1的显示单元14上将显示出史密斯曲线10,该陶瓷平板天线的电气特性的史密斯曲线10中间折点101的位置,必须位于该设定参数值所产生的史密斯曲线10中间折点101在设定的格区间内,以显示单元14的显示视窗格的上下左右的三分之一的格区间内为最佳及曲线的折点中心限制在1<电压驻波比(VSWR)<无线大,例如电压驻波比(VSWR)<1.5半径的范围内。Please refer to FIG. 2 and FIG. 3 , which are schematic diagrams of the Smith curve of the present invention and schematic diagrams of the front view of the radiating metal surface of the ceramic planar antenna. As shown in the figure: when the detection device detects and corrects the electrical characteristics of the ceramic panel antenna, first input the parameter value of the electrical characteristics of the ceramic panel antenna into the
例1:当检测的陶瓷平板天线时,频率会上升、频宽变小、史密斯曲线10的中间折点101的位置往上移动,或者频率会上升、频宽变大、史密斯曲线10的中间折点101的位置往上移动,则修整该辐射金属面20的右下边201及左上边201a。Example 1: When the ceramic flat panel antenna is detected, the frequency will increase, the bandwidth will become smaller, and the position of the
例2:当检测的陶瓷平板天线时,频率会上升、频宽变小、史密斯曲线10的中间折点101的位置往下移动,或者频率会上升、频宽变大、史密斯曲线10的中间折点101的位置往下移动,则修整该辐射金属面20的右上边202及左下边202a。Example 2: When the ceramic flat panel antenna is detected, the frequency will rise, the bandwidth will become smaller, and the position of the
例3:当检测的陶瓷平板天线时,频率会上升、频宽变大、史密斯曲线10的中间折点101的位置往上移动,或者频率会上升、频宽变小、史密斯曲线10的中间折点101的位置往上移动,则修整该辐射金属面20的左侧上边203及右侧下边203a。Example 3: When the ceramic flat panel antenna is detected, the frequency will increase, the bandwidth will become larger, and the position of the
例4:当检测的陶瓷平板天线时,频率会上升、频宽变大、史密斯曲线10的中间折点101的位置往下移动,或者频率会上升、频宽变小、史密斯曲线10的中间折点101的位置往下移动,则修整该辐射金属面20的右侧上边204及左侧下边204a。Example 4: When the ceramic flat panel antenna is detected, the frequency will rise, the bandwidth will become larger, and the position of the
例5:当检测的陶瓷平板天线时,频率会下降、频宽变大、史密斯曲线10的中间折点101的位置不动,或者频率会下降、频宽变小、史密斯曲线10的中间折点101的位置不动,则修整该辐射金属面20的右侧上边204与右侧下边203a之间的缺口205的底边205a,及左侧上边203与左侧下边204a之间的缺口206的底边206a。Example 5: When the ceramic panel antenna is detected, the frequency will drop, the bandwidth will increase, and the position of the
例6:当检测的陶瓷平板天线时,频率会下降、频宽变小、史密斯曲线10的中间折点101的位置不动,或者频率会下降、频宽变大、史密斯曲线10的中间折点101的位置不动,则修整该辐射金属面20的左上边201与右上边202之间的缺口207的底边207a,及左下边202a与右下边201之间的缺口208的底边208a。Example 6: When the ceramic panel antenna is detected, the frequency will drop, the bandwidth will become smaller, and the position of the
例7:当检测的陶瓷平板天线时,频率会上升、频宽变大、史密斯曲线10的中间折点101的位置往下移动,或者频率会上升、频宽变大、史密斯曲线10的中间折点101的位置往上移动,则修整该辐射金属面20的左上边201a与左侧上边203之间所形成的角边209,及右侧下边203a与右下边201之间所形成的角边209a。Example 7: When the ceramic flat panel antenna is detected, the frequency will rise, the bandwidth will become larger, and the position of the
例8:当检测的陶瓷平板天线时,频率会上升、频宽变大、史密斯曲线10的中间折点101的位置往上移动,或者频率会上升、频宽变大、史密斯曲线10的中间折点101的位置往下移动,则修整该辐射金属面20的右上边202与右侧上边204之间所形成的角边210,及左侧下边204a与左下边202a之间所形成的角边210a。Example 8: When the ceramic flat panel antenna is detected, the frequency will increase, the bandwidth will become larger, and the position of the
请参阅图4、图5,本发明的另一史密斯曲线示意图及另一陶瓷平板天线的辐射金属面的正视示意图。如图所示:在检测装置检测及修整陶瓷平板天线的电器特性时,先输入陶瓷平板天线的电气特性的参数值于该检测装置1中,于检测装置1的显示单元14上将显示出史密斯曲线30,该陶瓷平板天线的电气特性的史密斯曲线30中间折点301的位置,必须位于该设定参数值所产生的史密斯曲线30中间折点301在设定的格区间内,以显示单元14显示视窗格的上下左右的三分之一的格区间内为最佳及曲线的折点中心限制在1<电压驻波比(VSWR)<无线大,例如电压驻波比(VSWR)<1.5半径的范围内。Please refer to FIG. 4 and FIG. 5 , which are schematic diagrams of another Smith curve of the present invention and schematic front views of the radiating metal surface of another ceramic planar antenna. As shown in the figure: when the detection device detects and corrects the electrical characteristics of the ceramic panel antenna, first input the parameter value of the electrical characteristics of the ceramic panel antenna into the
例1:当检测的陶瓷平板天线时,频率会上升、频宽变大、史密斯曲线30的中间折点301的位置往下移动,则修整该辐射金属面40的右侧上边401及左侧下边401a。Example 1: When the ceramic panel antenna is detected, the frequency will increase, the bandwidth will become larger, and the position of the
例2:当检测的陶瓷平板天线时,频率会上升、频宽变小、史密斯曲线30的中间折点301的位置往下移动,则修整该辐射金属面40的右侧下边402及左侧上边402a。Example 2: When the ceramic panel antenna is detected, the frequency will increase, the bandwidth will become smaller, and the position of the
例3:当检测的陶瓷平板天线时,频率会上升、频宽变小、史密斯曲线30的中间折点301的位置往上移动,则修整该辐射金属面40的左上边403及右下边403a。Example 3: When the ceramic panel antenna is detected, the frequency will increase, the bandwidth will become smaller, and the position of the
例4:当检测的陶瓷平板天线时,频率会上升、频宽变大、史密斯曲线30的中间折点301的位置往上移动,则修整该辐射金属面40的右上边404及左下边404a。Example 4: When the ceramic panel antenna is detected, the frequency will increase, the bandwidth will become larger, and the position of the
例5:当检测的陶瓷平板天线时,频率会下降、频宽变小、史密斯曲线30的中间折点301的位置往下移动,则修整该辐射金属面40的右上边404与左上边403之间的缺口405的底边405a,及右下边403a与左下边404a之间的缺口406的底边406a。Example 5: When the ceramic panel antenna is detected, the frequency will drop, the bandwidth will become smaller, and the position of the
例6:当检测的陶瓷平板天线时,频率会下降、频宽变大、史密斯曲线30的中间折点301的位置往上移动,则修整该辐射金属面40的左侧上边402a与左侧下边401a之间的缺口407的底边407a,及右侧上边401与左侧下边402之间的缺口408的底边408a。Example 6: When the ceramic panel antenna is detected, the frequency will drop, the bandwidth will become larger, and the position of the
例7:当检测的陶瓷平板天线时,频率会上升、频宽变小、史密斯曲线30的中间折点301的位置不动,则修整该辐射金属面40的右侧下边402与右下边403a之间所形成的角边409。Example 7: When the ceramic panel antenna is detected, the frequency will increase, the bandwidth will become smaller, and the position of the
请参阅图6,本发明的自动检测修正调整系统示意图。如图所示:本发明的自动检测修正调整系统,包括有:一检测装置1、一无线频率(RF)元件测试工具2、一修整装置3及一影像读取装置4。Please refer to FIG. 6 , which is a schematic diagram of the automatic detection, correction and adjustment system of the present invention. As shown in the figure: the automatic detection, correction and adjustment system of the present invention includes: a
该检测装置1,为计算机装置,其上至少包括有:一微处理单元11、一储存单元12、一操作界面13及一显示单元14。该微处理单元11载入有检测陶瓷平板天线5电气特性的固件程序。该储存单元12是与该微处理单元11电性连接,在操作界面13输入该陶瓷平板天线5的电气特性的参数值后,由该微处理单元11储存于该储存单元12中。该操作界面13是与该微处理单元11电性连接,用以输入各项操作指令及参数值。该显示单元14是与该微处理单元11电性连接,以显示微处理单元11所检测结果的史密斯曲线图与s参数曲线图。在本附图中,该储存单元12为记忆体。The
该无线电频率(RF,Radio Frequency)元件测试工具2,为无线电频率同轴电缆线接头,是与该检测装置1电性连接,在陶瓷平板天线5电性连接于该无线电频率元件测试工具2上,该无线电频率元件测试工具2将陶瓷平板天线5的电气特性传至于该检测装置1中,由该检测装置1进行读取及判断。The radio frequency (RF, Radio Frequency)
该修整装置3,是与该检测装置1电性连接,在该检测装置1检测该陶瓷平板天线5的电气特性需要修正时,该检测装置1输出信号驱动该修整装置3对该陶瓷平板天线5的辐射金属面20(40)进行修正。在本附图中,该修整装置3为激光雕刻机。The trimming device 3 is electrically connected with the
该影像读取装置4,是与该检测装置1电性连接,用以读取修整装置3该陶瓷平板天线5的辐射金属面20(40)修正位置,使该修整装置3能精确位移置该陶瓷平板天线5的辐射金属面20(40)上,对该辐射金属面20(40)进行修正。在本附图中,该影像读取装置4为CCD或CMOS镜头。The image reading device 4 is electrically connected with the
在检测时,先通过操作介面13输入该陶瓷平板天线5的电气特性的参数值,在参数值输入后,将制作完成的陶瓷平板天线5置放该无线电频率元件测试工具2,使该陶瓷平板天线5的信号馈入端51与该无线电频率元件测试工具2电性连接后,并将该陶瓷平板天线5的电器特性输入于该检测装置1中,由检测装置1判断该陶瓷平板天线5的电性特性符合设定的参数值时,可直接将该陶瓷平板天线5由无线电频率元件测试工具2上取下。若是该陶瓷平板天线5的电性特性不符合设定的参数值时,该检测装置1将驱动修整装置3移动到该陶瓷平板天线5的辐射金属面20(40)上,该修整装置3再根据检测装置1检测结果(如图2、图3或图4、图5的范例所示)对该陶瓷平板天线5的辐射金属面20(40)予以修正位置进行修整。When testing, first input the parameter values of the electrical characteristics of the
在修正的过程中,由该影像读取装置4读取修整装置3该陶瓷平板天线5的辐射金属面20(40)修正位置,使该修整装置3能精确位移置该陶瓷平板天线5的辐射金属面20(40)上,对该辐射金属面20(40)进行修整。During the correction process, the correction position of the radiation metal surface 20 (40) of the
在该陶瓷平板天线5的辐射金属面20(40)修整后,该检测装置1判断修整后的该陶瓷平板天线5的辐射金属面20(40)的电气特性符合设定的参数值时,即完成该陶瓷平板天线5的检测。After the radiating metal surface 20 (40) of the
利用上述的自动化检测及修正该陶瓷平板天线5的方法及其系统,使该陶瓷平板天线5在制作生产生还加容易简单,同时可以减少人力,降低制作成本,提高升产量,使制作完成的该陶瓷平板天线5的电性特性还加的精确。Utilizing the above-mentioned method and system for automatically detecting and correcting the ceramic
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Certainly, the present invention also can have other multiple embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding Changes and deformations should belong to the scope of protection of the appended claims of the present invention.
Claims (26)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101101923 | 2012-01-18 | ||
TW101101923A TWI482361B (en) | 2012-01-18 | 2012-01-18 | Automatic testing and trimming method for planar antenna and system for the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103219586A true CN103219586A (en) | 2013-07-24 |
CN103219586B CN103219586B (en) | 2015-08-05 |
Family
ID=48779273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210348205.XA Active CN103219586B (en) | 2012-01-18 | 2012-09-18 | Automatic detection, correction and adjustment method and system for panel antenna |
Country Status (3)
Country | Link |
---|---|
US (3) | US9272381B2 (en) |
CN (1) | CN103219586B (en) |
TW (1) | TWI482361B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111190059A (en) * | 2018-11-15 | 2020-05-22 | 铨鼎塑胶股份有限公司 | System for measuring and adjusting antenna radiation pattern |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI487918B (en) * | 2013-11-15 | 2015-06-11 | Cirocomm Technology Corp | Adjusting method for planar antenna and structure for the same |
US10186775B2 (en) | 2015-08-11 | 2019-01-22 | The United States Of America, As Represented By The Secretary Of The Army | Patch antenna element with parasitic feed probe |
CN105185330B (en) * | 2015-09-02 | 2018-02-16 | 京东方科技集团股份有限公司 | A kind of display device and driving method |
KR102446464B1 (en) * | 2016-02-29 | 2022-09-23 | 타이코에이엠피 주식회사 | Antenna and antenna module including same |
US10361795B2 (en) | 2016-07-27 | 2019-07-23 | Skyworks Solutions, Inc. | Apparatus and methods for testing patch antennas |
US10693235B2 (en) | 2018-01-12 | 2020-06-23 | The Government Of The United States, As Represented By The Secretary Of The Army | Patch antenna elements and parasitic feed pads |
CN112216981A (en) * | 2019-07-12 | 2021-01-12 | 康普技术有限责任公司 | Parasitic element for radiator of base station antenna and method for manufacturing the same |
CN116724466A (en) * | 2020-12-11 | 2023-09-08 | 谷歌有限责任公司 | Dual band patch antenna for angle of arrival analysis |
EP4318807A4 (en) * | 2021-06-03 | 2025-02-26 | Samsung Electronics Co Ltd | ELECTRONIC DEVICE WITH ANTENNA STRUCTURE FOR UWB-BASED POSITION MEASUREMENT |
CN115656046B (en) * | 2022-11-15 | 2025-03-18 | 上海无线电设备研究所 | A multifunctional detection device and method for antenna radiation unit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1308385A (en) * | 1999-11-05 | 2001-08-15 | 萨兰特尔有限公司 | Manufacture of antenna |
CN1454318A (en) * | 2000-08-03 | 2003-11-05 | 高通股份有限公司 | System, method, and apparatus for electromagnetic compatibility-driven product design |
CN1484935A (en) * | 2000-12-29 | 2004-03-24 | Amc世纪公司 | Production of antenna devices |
CN1925217A (en) * | 2005-08-29 | 2007-03-07 | 台湾捷普科技股份有限公司 | Four-wire helical antenna structure without coaxial cable |
CN101020095A (en) * | 2006-02-16 | 2007-08-22 | 财团法人工业技术研究院 | Flexible wireless energy transmission antenna module |
WO2011157883A1 (en) * | 2010-06-17 | 2011-12-22 | Upm Raflatac Oy | Method for manufacturing an autocompensating antenna structure by etching |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4736454A (en) * | 1983-09-15 | 1988-04-05 | Ball Corporation | Integrated oscillator and microstrip antenna system |
US4931799A (en) * | 1989-04-24 | 1990-06-05 | Hughes Aircraft Company | Short-range radar transceiver employing a FET oscillator |
US5181044A (en) * | 1989-11-15 | 1993-01-19 | Matsushita Electric Works, Ltd. | Top loaded antenna |
US5245745A (en) * | 1990-07-11 | 1993-09-21 | Ball Corporation | Method of making a thick-film patch antenna structure |
JPH04326606A (en) * | 1991-04-26 | 1992-11-16 | Sumitomo Electric Ind Ltd | oscillation circuit |
GB2263360B (en) * | 1992-01-06 | 1996-02-07 | C & K Systems Inc | Improvements in or relating to antennas |
US5583523A (en) * | 1992-01-06 | 1996-12-10 | C & K Systems, Incorporation | Planar microwave tranceiver employing shared-ground-plane antenna |
CA2117223A1 (en) * | 1993-06-25 | 1994-12-26 | Peter Mailandt | Microstrip patch antenna array |
US6095820A (en) * | 1995-10-27 | 2000-08-01 | Rangestar International Corporation | Radiation shielding and range extending antenna assembly |
US5767808A (en) * | 1995-01-13 | 1998-06-16 | Minnesota Mining And Manufacturing Company | Microstrip patch antennas using very thin conductors |
US5712643A (en) * | 1995-12-05 | 1998-01-27 | Cushcraft Corporation | Planar microstrip Yagi Antenna array |
US5932119A (en) * | 1996-01-05 | 1999-08-03 | Lazare Kaplan International, Inc. | Laser marking system |
US6005519A (en) * | 1996-09-04 | 1999-12-21 | 3 Com Corporation | Tunable microstrip antenna and method for tuning the same |
JPH10341108A (en) * | 1997-04-10 | 1998-12-22 | Murata Mfg Co Ltd | Antenna system and radar module |
US6091355A (en) * | 1998-07-21 | 2000-07-18 | Speed Products, Inc. | Doppler radar speed measuring unit |
GB2382723B (en) * | 1998-12-22 | 2003-10-15 | Nokia Corp | Dual band antenna for a handset |
US6229488B1 (en) * | 2000-09-08 | 2001-05-08 | Emtac Technology Corp. | Antenna for receiving signals from GPS and GSM |
US6617861B1 (en) * | 2000-11-22 | 2003-09-09 | National Research Development Corporation | Apparatus and method for measuring and monitoring complexpermittivity of materials |
US6462302B1 (en) * | 2001-04-05 | 2002-10-08 | Bar Code Bullet Industries, Llc | Rifled weapon barrel engraver and scanner |
US6693601B2 (en) * | 2001-09-24 | 2004-02-17 | Romain Louis Billiet | Ceramic-embedded micro-electromagnetic device and method of fabrication thereof |
US7436360B2 (en) * | 2002-04-19 | 2008-10-14 | Skycross, Inc. | Ultra-wide band monopole antenna |
US7126082B2 (en) * | 2002-09-03 | 2006-10-24 | Xenetech, Inc. | Automated laser engraver |
US6697019B1 (en) * | 2002-09-13 | 2004-02-24 | Kiryung Electronics Co., Ltd. | Low-profile dual-antenna system |
US6759990B2 (en) * | 2002-11-08 | 2004-07-06 | Tyco Electronics Logistics Ag | Compact antenna with circular polarization |
US6816127B2 (en) * | 2002-12-09 | 2004-11-09 | Centurion Wireless Technologies, Inc. | Low profile tri-filar, single feed, circularly polarized helical antenna |
US6738026B1 (en) * | 2002-12-09 | 2004-05-18 | Centurion Wireless Technologies, Inc. | Low profile tri-filar, single feed, helical antenna |
US6756936B1 (en) * | 2003-02-05 | 2004-06-29 | Honeywell International Inc. | Microwave planar motion sensor |
US7123209B1 (en) * | 2003-02-26 | 2006-10-17 | Ethertronics, Inc. | Low-profile, multi-frequency, differential antenna structures |
US6778141B1 (en) * | 2003-03-06 | 2004-08-17 | D-Link Corporation | Patch antenna with increased bandwidth |
US6879288B2 (en) * | 2003-06-10 | 2005-04-12 | Delphi Technologies, Inc. | Interior patch antenna with ground plane assembly |
US6816128B1 (en) * | 2003-06-25 | 2004-11-09 | Rockwell Collins | Pressurized antenna for electronic warfare sensors and jamming equipment |
US7501601B2 (en) * | 2003-09-03 | 2009-03-10 | Xenetech U.S.A., Inc. | Automated laser engraver |
US7468543B2 (en) * | 2003-09-19 | 2008-12-23 | Kabushiki Kaisha Toshiba | Semiconductor device, communication device, and semiconductor device inspecting method |
WO2005043142A2 (en) * | 2003-10-24 | 2005-05-12 | Troxler Electronic Labs, Inc. | Pavement material microwave density measurement methods and apparatuses |
JP4195403B2 (en) * | 2004-03-01 | 2008-12-10 | 株式会社国際電気通信基礎技術研究所 | Antenna structure and television receiver |
CA2597621C (en) * | 2005-02-11 | 2012-04-17 | Radatec, Inc. | Microstrip patch antenna for high temperature environments |
US7284396B2 (en) * | 2005-03-01 | 2007-10-23 | International Gemstone Registry Inc. | Method and system for laser marking in the volume of gemstones such as diamonds |
JP4513971B2 (en) * | 2005-03-28 | 2010-07-28 | ミツミ電機株式会社 | Antenna device and antenna element |
US7650173B2 (en) * | 2005-10-06 | 2010-01-19 | Flextronics Ap, Llc | Combined antenna module with single output |
EP1777781B1 (en) * | 2005-10-19 | 2016-05-11 | KOFinder Technologies Inc. | Antenna arrangement |
KR100764105B1 (en) * | 2006-02-28 | 2007-10-08 | 주식회사 손텍 | Radio Frequency Identification Label and Ceramic Patch Antenna |
US8319145B2 (en) * | 2006-07-10 | 2012-11-27 | Lazare Kaplan International, Inc. | System and method for gemstone micro-inscription |
US8587480B2 (en) * | 2006-08-31 | 2013-11-19 | Amotech Co., Ltd. | Patch antenna and manufacturing method thereof |
JP4882771B2 (en) * | 2007-02-01 | 2012-02-22 | ミツミ電機株式会社 | Antenna device |
US20080252537A1 (en) * | 2007-04-10 | 2008-10-16 | Think Wireless, Inc. | Through-glass antenna system |
US7710331B2 (en) * | 2008-04-18 | 2010-05-04 | Kathrein-Werke Kg | Multilayer antenna having a planar design |
JP5320078B2 (en) * | 2009-01-05 | 2013-10-23 | 富士フイルム株式会社 | Plate making apparatus and printing plate manufacturing method |
US8106846B2 (en) * | 2009-05-01 | 2012-01-31 | Applied Wireless Identifications Group, Inc. | Compact circular polarized antenna |
US8618998B2 (en) * | 2009-07-21 | 2013-12-31 | Applied Wireless Identifications Group, Inc. | Compact circular polarized antenna with cavity for additional devices |
US8675966B2 (en) * | 2011-09-29 | 2014-03-18 | Hewlett-Packard Development Company, L.P. | System and method for saliency map generation |
US9042648B2 (en) * | 2012-02-23 | 2015-05-26 | Microsoft Technology Licensing, Llc | Salient object segmentation |
US9202258B2 (en) * | 2012-06-20 | 2015-12-01 | Disney Enterprises, Inc. | Video retargeting using content-dependent scaling vectors |
US9025880B2 (en) * | 2012-08-29 | 2015-05-05 | Disney Enterprises, Inc. | Visual saliency estimation for images and video |
US20140254922A1 (en) * | 2013-03-11 | 2014-09-11 | Microsoft Corporation | Salient Object Detection in Images via Saliency |
-
2012
- 2012-01-18 TW TW101101923A patent/TWI482361B/en active
- 2012-09-18 CN CN201210348205.XA patent/CN103219586B/en active Active
-
2013
- 2013-01-18 US US13/745,138 patent/US9272381B2/en active Active - Reinstated
-
2015
- 2015-11-25 US US14/952,908 patent/US9868178B2/en active Active
-
2016
- 2016-01-15 US US14/997,081 patent/US9895770B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1308385A (en) * | 1999-11-05 | 2001-08-15 | 萨兰特尔有限公司 | Manufacture of antenna |
CN1454318A (en) * | 2000-08-03 | 2003-11-05 | 高通股份有限公司 | System, method, and apparatus for electromagnetic compatibility-driven product design |
CN1484935A (en) * | 2000-12-29 | 2004-03-24 | Amc世纪公司 | Production of antenna devices |
CN1925217A (en) * | 2005-08-29 | 2007-03-07 | 台湾捷普科技股份有限公司 | Four-wire helical antenna structure without coaxial cable |
CN101020095A (en) * | 2006-02-16 | 2007-08-22 | 财团法人工业技术研究院 | Flexible wireless energy transmission antenna module |
WO2011157883A1 (en) * | 2010-06-17 | 2011-12-22 | Upm Raflatac Oy | Method for manufacturing an autocompensating antenna structure by etching |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111190059A (en) * | 2018-11-15 | 2020-05-22 | 铨鼎塑胶股份有限公司 | System for measuring and adjusting antenna radiation pattern |
Also Published As
Publication number | Publication date |
---|---|
US20160074966A1 (en) | 2016-03-17 |
CN103219586B (en) | 2015-08-05 |
TWI482361B (en) | 2015-04-21 |
US20160129529A1 (en) | 2016-05-12 |
US20130180967A1 (en) | 2013-07-18 |
US9272381B2 (en) | 2016-03-01 |
TW201332218A (en) | 2013-08-01 |
US9895770B2 (en) | 2018-02-20 |
US9868178B2 (en) | 2018-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103219586B (en) | Automatic detection, correction and adjustment method and system for panel antenna | |
US9772533B2 (en) | Method and device for repairing metal wire | |
CN101710486B (en) | Automatic alignment system and method thereof, and test system of display device and method thereof | |
US9195091B2 (en) | Liquid crystal display device | |
CN107578442B (en) | A kind of centralized positioning aligning method and system | |
CN111161208A (en) | Image detection method and device | |
US20160358806A1 (en) | Apparatus of separating flexible substrate from glass substrate and manufacturing equipment thereof | |
CN106204517A (en) | Automatic optical detection method for periodic pattern | |
CN111009013A (en) | Galvanometer calibration method for scribing machine | |
CN106842655A (en) | TFT liquid crystal displays assembly method and system based on six axis robot platform | |
TW201430969A (en) | Bonding apparatus and method for detecting breakage of semiconductor die using the same apparatus | |
CN108214103A (en) | Workpiece correcting and measuring mechanism and method for double-side milling machine | |
CN204315522U (en) | Wafer paster detects tool | |
CN100549680C (en) | Be used to produce the method and system of solar cell | |
US8610889B2 (en) | Automated optical inspection device and calibration method thereof | |
CN109746190B (en) | Method and device for sorting glass thickness and storage medium | |
TWM620520U (en) | Automatic correction device for voltage and temperature of battery control board | |
CN110470217B (en) | Method for detecting ending state of battery cell | |
TW201518737A (en) | Adjusting method for planar antenna and structure for the same | |
KR101503170B1 (en) | Method of inspecting dotting size of adhesive | |
US20110018569A1 (en) | Test apparatus of semiconductor device and method thereof | |
CN205333575U (en) | Ultrasonic detection normal probe of arbitrary coupling | |
CN204614956U (en) | The white ferrite cutting part of a kind of antenna adopting laser to make | |
CN114523409B (en) | A clamping and centering method and silicon rod processing equipment | |
TWI773427B (en) | Automatic calibration device for voltage and temperature of battery control board and calibration method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |