CN103215080A - Ash discharge device for high-temperature high-pressure ash particle and ash discharge method thereof - Google Patents
Ash discharge device for high-temperature high-pressure ash particle and ash discharge method thereof Download PDFInfo
- Publication number
- CN103215080A CN103215080A CN2013101708959A CN201310170895A CN103215080A CN 103215080 A CN103215080 A CN 103215080A CN 2013101708959 A CN2013101708959 A CN 2013101708959A CN 201310170895 A CN201310170895 A CN 201310170895A CN 103215080 A CN103215080 A CN 103215080A
- Authority
- CN
- China
- Prior art keywords
- pressure
- valve
- pipeline
- ash
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Processing Of Solid Wastes (AREA)
- Cyclones (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种针对灰颗粒的排灰装置及其排灰方法,具体来说,涉及一种针对高温高压灰颗粒的排灰装置及其排灰方法。 The invention relates to an ash discharge device and ash discharge method for ash particles, in particular to an ash discharge device and ash discharge method for high temperature and high pressure ash particles. the
背景技术 Background technique
我国经济在快速地发展中,面临着能源资源和环境限制的瓶颈,鉴于我国富煤缺油少气的特点,煤气化成为煤炭能源清洁高效转化的重要基础。由于目前气流床煤气化技术普遍采用液态排渣方式,因此,该技术在高灰熔点煤的选择上受到一定的限制。我国煤种在灰特性方面与国外不同,平均灰含量较高(一般在27%一28%左右),且灰熔点普遍偏高,熔点高于l400℃的煤分别占我国煤炭年产量的55%和储量的57%左右。如此多的高灰熔点煤,若采用添加助熔剂,势必在一定程度上增加了氧耗量、排渣量以及排渣热损失;而采用提高气化温度(要求气化温度在l600℃以上)的方法,则相应增加了氧耗量、煤气中C02的含量,并且降低了冷煤气效率和气化炉的使用寿命。采用现有液态排渣型气流床气化技术燃用我国高灰熔点煤种将面临排渣困难等一系列问题,因此,有必要开发适合我国高灰熔点煤种的流化床煤气化技术。 In the rapid development of my country's economy, it is facing the bottleneck of energy resources and environmental constraints. In view of the characteristics of my country's rich coal and lack of oil and gas, coal gasification has become an important basis for clean and efficient conversion of coal energy. Since the current entrained bed coal gasification technology generally adopts the liquid slag discharge method, the technology is limited in the selection of coal with high ash melting point. The ash characteristics of coal types in my country are different from those of foreign countries. The average ash content is relatively high (generally around 27% to 28%), and the ash melting point is generally high. Coal with a melting point higher than 1400°C accounts for 55% of my country's annual coal production. and about 57% of the reserves. For so many coals with high ash melting point, if the flux is added, the oxygen consumption, slag discharge and slag discharge heat loss will inevitably be increased to a certain extent; and the gasification temperature should be increased (the gasification temperature is required to be above 1600°C) If the method is used, the oxygen consumption and the CO 2 content in the gas will be increased accordingly, and the cold gas efficiency and the service life of the gasifier will be reduced. Using the existing liquid slagging entrained bed gasification technology to burn coal with high ash melting point in my country will face a series of problems such as difficulty in slagging. Therefore, it is necessary to develop a fluidized bed coal gasification technology suitable for coal with high ash melting point in my country.
流化床气化技术燃料适应性广,包括各种煤种,石油焦,生物质等,对于我国高灰分高熔点的煤种,流化床技术优势明显。随着气化压力的提高,煤气中甲烷含量增加,煤气热值增加,气化效率提高,故加压流化床气化技术是行之有效的方法。对于高灰分高熔点的煤,流化床加压气化装置排出的灰分量大且压力大温度高,所以必须进行冷却和加压后方可排出。德国开发的高温温克勒法(HTW)气化工艺中二级分离器出来的飞灰进入一级冷灰器,然后经过三个灰锁斗进入二级冷灰器后排出。其中的冷灰器为空冷螺旋形式,需要承受高温高压,设备加工难度高,价格昂贵。 Fluidized bed gasification technology has wide fuel adaptability, including various coal types, petroleum coke, biomass, etc. For coal types with high ash content and high melting point in my country, fluidized bed technology has obvious advantages. As the gasification pressure increases, the methane content in the gas increases, the calorific value of the gas increases, and the gasification efficiency increases, so the pressurized fluidized bed gasification technology is an effective method. For the coal with high ash content and high melting point, the ash discharged from the fluidized bed pressurized gasification device is large and the pressure is high and the temperature is high, so it must be cooled and pressurized before it can be discharged. In the high-temperature Winkler (HTW) gasification process developed in Germany, the fly ash from the secondary separator enters the primary ash cooler, and then enters the secondary ash cooler through three ash lockers before being discharged. The ash cooler is in the form of an air-cooled spiral, which needs to withstand high temperature and high pressure. The equipment is difficult to process and expensive. the
发明内容 Contents of the invention
技术问题:本发明所要解决的技术问题是:提供一种针对高温高压灰颗粒的排灰装置,该排灰装置可以有效降低灰颗粒的温度和压力,同时,本发明还提供了利用该排灰装置的排灰方法,该排灰方法易操作,且安全可靠。 Technical problem: The technical problem to be solved by the present invention is to provide an ash discharge device for high-temperature and high-pressure ash particles, which can effectively reduce the temperature and pressure of ash particles. The ash discharge method of the device is easy to operate, safe and reliable.
技术方案:为解决上述技术问题,本发明采用的技术方案是: Technical scheme: in order to solve the above technical problems, the technical scheme adopted in the present invention is:
一种针对高温高压灰颗粒的排灰装置,该排灰装置包括压力罐、变压罐、储灰仓、旋风分离器、U型返料阀、第一管路、第二管路、第三管路、第四管路和第五管路,压力罐的上部设有进料口,压力罐的内腔中设有换热盘管,换热盘管的进水口和出水口位于压力罐的外侧,压力罐的下部设有布风板,旋风分离器和U型返料阀位于压力罐的外部,且旋风分离器通过管道与压力罐的顶部连通,旋风分离器的底部与U型返料阀的入料端口连通,U型返料阀的出料端口与压力罐连通;压力罐的底端通过第一下料阀和第二下料阀与变压罐的顶端连接,变压罐的底端通过第一出料阀和第二出料阀与储灰仓的顶端连接;第一管路的顶部进气口与旋风分离器连通,第一管路中部设有多级减压阀,第一管路下部通过第三出料阀和第四出料阀与储灰仓的底端连接;第二管路的顶端与压力罐连通,第二管路的底端与储灰仓连通,第三管路的一端与变压罐连通,第三管路的另一端与第一管路连通,并且第三管路中部与第二管路通过交汇口连通,第三管路上设有变压罐放气阀,该变压罐放气阀位于第二管路和第一管路之间; 第二管路上设有第一平衡阀和第二平衡阀,第一平衡阀位于交汇口和第二管路顶端之间,第二平衡阀位于交汇口和第二管路底端之间;多级减压阀位于第一管路顶部和第三管路之间;第四管路的一端与变压罐连通,且第四管路上设有变压罐充气阀;第五管路的一端与储灰仓连通,且第五管路上设有储灰仓充气阀。 An ash discharge device for high-temperature and high-pressure ash particles, the ash discharge device includes a pressure tank, a pressure change tank, an ash storage bin, a cyclone separator, a U-shaped return valve, a first pipeline, a second pipeline, a third pipeline, the fourth pipeline and the fifth pipeline, the upper part of the pressure tank is provided with a feed port, the inner cavity of the pressure tank is provided with a heat exchange coil, and the water inlet and outlet of the heat exchange coil are located in the pressure tank On the outside, the lower part of the pressure tank is equipped with an air distribution plate, the cyclone separator and the U-shaped return valve are located outside the pressure tank, and the cyclone separator is connected to the top of the pressure tank through a pipeline, and the bottom of the cyclone separator is connected to the U-shaped return valve. The feed port of the valve is connected, and the discharge port of the U-shaped return valve is connected with the pressure tank; the bottom end of the pressure tank is connected with the top of the pressure tank through the first feed valve and the second feed valve, and the pressure tank The bottom end is connected to the top of the ash storage bin through the first discharge valve and the second discharge valve; the top air inlet of the first pipeline is connected with the cyclone separator, and the middle part of the first pipeline is provided with a multi-stage pressure reducing valve. The lower part of the first pipeline is connected to the bottom end of the ash storage bin through the third discharge valve and the fourth discharge valve; the top end of the second pipeline communicates with the pressure tank, and the bottom end of the second pipeline communicates with the ash storage bin. One end of the third pipeline communicates with the pressure transformer tank, the other end of the third pipeline communicates with the first pipeline, and the middle part of the third pipeline communicates with the second pipeline through the intersection. Tank release valve, the variable pressure tank release valve is located between the second pipeline and the first pipeline; the second pipeline is provided with a first balance valve and a second balance valve, the first balance valve is located at the intersection and the first Between the top of the two pipelines, the second balance valve is located between the intersection and the bottom of the second pipeline; the multi-stage pressure reducing valve is located between the top of the first pipeline and the third pipeline; one end of the fourth pipeline is connected to the bottom of the second pipeline. The pressure transformer is connected, and the fourth pipeline is provided with a pressure transformer inflation valve; one end of the fifth pipeline is connected with the ash storage bin, and the fifth pipeline is provided with an ash storage bin inflation valve.
进一步,所述的针对高温高压灰颗粒的排灰装置,还包括水夹套,水夹套包裹在进料口的外壁上,水夹套与换热盘管的出水口连通。 Further, the ash discharge device for high-temperature and high-pressure ash particles also includes a water jacket wrapped on the outer wall of the feed inlet, and the water jacket communicates with the water outlet of the heat exchange coil. the
上述的针对高温高压灰颗粒的排灰装置的排灰方法,该排灰方法包括以下步骤: The above-mentioned ash discharge method for the ash discharge device for high temperature and high pressure ash particles, the ash discharge method includes the following steps:
步骤10)降低灰颗粒温度:所有阀门初始状态均为关闭,进料开始时打开多级减压阀,并向位于压力罐内部的换热盘管中通入冷却介质,向位于压力罐下部的布风板中通入氮气,然后,将高温高压的灰颗粒通过进料口排入压力罐中,冷却介质和氮气冷却灰颗粒;压力罐中的气体流向第一管路,其中,气体中含有灰颗粒,经旋风分离器分离后,灰颗粒进入旋风分离器的分离立管中,再通过U型返料阀,将分离的灰颗粒送回压力罐中;旋风分离器出口气体通过多级减压阀降压后,作为储灰仓中的灰颗粒排出输送风,从第一管路排出; Step 10) Reduce the temperature of ash particles: all valves are initially closed, and the multi-stage pressure relief valve is opened when the feed starts, and the cooling medium is passed into the heat exchange coil located inside the pressure tank, and the cooling medium is supplied to the lower part of the pressure tank. Nitrogen gas is introduced into the air distribution plate, and then high-temperature and high-pressure ash particles are discharged into the pressure tank through the feed port, and the cooling medium and nitrogen gas cool the ash particles; the gas in the pressure tank flows to the first pipeline, wherein the gas contains After the ash particles are separated by the cyclone separator, the ash particles enter the separation standpipe of the cyclone separator, and then pass through the U-shaped return valve to send the separated ash particles back to the pressure tank; the outlet gas of the cyclone separator passes through the multi-stage reducing After the pressure valve is depressurized, the conveying air is discharged as ash particles in the ash storage bin, and discharged from the first pipeline;
步骤20)向变压罐中排灰:首先,打开变压罐充气阀,通过变压罐充气阀向变压罐中充入氮气,当变压罐中的气体压力接近压力罐的气体压力时,关闭变压罐充气阀,打开第一平衡阀,直至压力罐和变压罐内压力相等;然后,依次打开第二下料阀和第一下料阀,压力罐中的灰颗粒进入变压罐中,最后,依次关闭第一平衡阀、第一下料阀和第二下料阀; Step 20) Discharge ash into the transformer tank: first, open the pressure tank filling valve, fill the pressure tank with nitrogen through the pressure tank filling valve, when the gas pressure in the pressure tank is close to the gas pressure of the pressure tank , close the inflation valve of the pressure transformer tank, open the first balance valve, until the pressure in the pressure tank and the pressure tank are equal; In the tank, at last, close the first balancing valve, the first feeding valve and the second feeding valve in sequence;
步骤30)降低灰颗粒压力:打开变压罐放气阀,直至变压罐内的气体压力接近储灰仓中的气体压力时,关闭变压罐放气阀; Step 30) Reduce the pressure of the ash particles: open the air release valve of the pressure tank until the gas pressure in the pressure tank is close to the gas pressure in the ash storage bin, then close the air release valve of the pressure tank;
步骤40)排灰:首先,打开第二平衡阀,直至变压罐和储灰仓之间的压力平衡时,依次打开第二出料阀和第一出料阀,灰颗粒在重力作用下从变压罐进入储灰仓中,然后,依次关闭第一出料阀、第二出料阀和第二平衡阀,接着,打开储灰仓充气阀,向储灰仓中充入气体,随后,依次打开第四出料阀和第三出料阀,通过储灰仓充气阀向储灰仓中充入氮气,灰颗粒在重力作用下以及氮气的输送下,从储灰仓中进入第一管路中,从第一管路的出灰口排出。 Step 40) Ash discharge: First, open the second balance valve until the pressure between the pressure transformer tank and the ash storage bin is balanced, then open the second discharge valve and the first discharge valve in sequence, and the ash particles will flow from the ash under the action of gravity The pressure transformer enters the ash storage bin, then closes the first discharge valve, the second discharge valve and the second balance valve in sequence, then opens the ash storage bin inflation valve to fill the ash storage bin with gas, and then, Open the fourth discharge valve and the third discharge valve in turn, fill the ash storage bin with nitrogen gas through the ash storage bin inflation valve, and the ash particles enter the first pipe from the ash storage bin under the action of gravity and the transport of nitrogen gas. In the middle of the road, it is discharged from the ash outlet of the first pipeline.
有益效果:与现有技术相比,本发明的技术方案具有以下优点: Beneficial effects: compared with the prior art, the technical solution of the present invention has the following advantages:
1.灰颗粒冷却和降压分段进行。首先进行降温处理:在本发明的压力罐中,对灰颗粒进行冷却。具体通过设置在压力罐中的换热盘管冷却灰颗粒,从布风板处通入的松动风也有一定的冷却效果。然后进行降压处理:在变压罐中进行,打开变压罐放气阀,直至变压罐内的气体压力接近储灰仓中的气体压力。通过一次降温两次降压,实现了对灰颗粒进行降温降压处理。 1. Ash particle cooling and depressurization are carried out in stages. Firstly, the cooling process is carried out: in the pressure tank of the present invention, the ash particles are cooled. Specifically, the ash particles are cooled by the heat exchange coil installed in the pressure tank, and the loose wind introduced from the air distribution plate also has a certain cooling effect. Then carry out decompression treatment: in the pressure transformer, open the pressure relief valve of the pressure transformer until the gas pressure in the pressure transformer is close to the gas pressure in the ash storage bin. By reducing the temperature and reducing the pressure twice, the temperature and pressure reduction treatment of the ash particles is realized.
2.高温高压的灰分在压力罐中冷却至400℃左右,此时对于机械阀门的材料和生产工艺要求降低,阀门易选择,节约成本;同时还延长了整个系统的寿命,并增加了运行的安全性。 2. The high-temperature and high-pressure ash is cooled to about 400°C in the pressure tank. At this time, the requirements for the material and production process of the mechanical valve are reduced, the valve is easy to choose, and the cost is saved; at the same time, the life of the entire system is extended and the operating time is increased. safety. the
3. 压力罐上部进料口的水夹套和压力罐中换热盘管中的冷却介质为用水或者蒸汽,冷却介质和高温的灰颗粒进行换热,冷却介质吸收热量,温度升高,最后进入余热锅炉,充分利用灰颗粒中余热。 3. The cooling medium in the water jacket of the upper feed port of the pressure tank and the heat exchange coil in the pressure tank is water or steam, and the cooling medium exchanges heat with high-temperature ash particles. The cooling medium absorbs heat, and the temperature rises, and finally Enter the waste heat boiler to make full use of the waste heat in the ash particles. the
4.在压力罐和变压罐之间、变压罐和储灰仓之间分别设立平衡阀,保证压力罐变压罐和储灰仓中压力平衡,灰颗粒依靠自身重力下落,使得灰颗粒运动更加平稳可控性增强,减少了对设备的冲击。 4. Set up balance valves between the pressure tank and the pressure tank, and between the pressure tank and the ash storage bin to ensure the pressure balance in the pressure tank and the ash storage bin. The ash particles fall by their own gravity, so that the ash particles The movement is smoother and the controllability is enhanced, which reduces the impact on the equipment. the
5.在压力罐下部,设置布风板,通入氮气流能够有效避免压力罐内积灰搭桥的现象,避免灰颗粒堵塞,从而能够保证排灰通畅。 5. In the lower part of the pressure tank, an air distribution plate is installed, and nitrogen flow can be introduced to effectively avoid the phenomenon of ash accumulation in the pressure tank and blockage of ash particles, so as to ensure smooth ash discharge. the
6.压力罐中可连续进料冷却,储灰仓可以连续排出低温低压的灰颗粒。 6. The pressure tank can continuously feed and cool the material, and the ash storage bin can continuously discharge low-temperature and low-pressure ash particles. the
附图说明 Description of drawings
图1为本发明的结构示意图。 Fig. 1 is a structural schematic diagram of the present invention. the
图中有:进料口1、水夹套2、压力罐3、换热盘管4、布风板5、第一下料阀6、第二下料阀7、变压罐充气阀8、第四管路9、变压罐10、第一出料阀11、第二出料阀12、储灰仓充气阀13、第五管路14、储灰仓15、第一管路16、旋风分离器17、U型返料阀18、多级减压阀19、第一平衡阀20、第二管路21、第三管路22、交汇口23、变压罐放气阀24、第二平衡阀25、第三出料阀26、第四出料阀27、压缩机28。
In the figure, there are: feed inlet 1,
具体实施方式 Detailed ways
下面结合附图,对本发明的技术方案进行详细的说明。本发明中提及的高温高压灰颗粒是指温度在500—1000摄氏度,压力在0.5—10Mpa的灰颗粒。 The technical solution of the present invention will be described in detail below in conjunction with the accompanying drawings. The high-temperature and high-pressure ash particles mentioned in the present invention refer to ash particles with a temperature of 500-1000 degrees Celsius and a pressure of 0.5-10 MPa. the
如图1所示,本发明的一种针对高温高压灰颗粒的排灰装置,包括压力罐3、变压罐10、储灰仓15、旋风分离器17、U型返料阀18、第一管路16、第二管路21、第三管路22、第四管路9和第五管路14。压力罐3的上部设有进料口1。进料口1用于向压力罐3中加入高温高压灰颗粒。压力罐3的内腔中设有换热盘管4。换热盘管4的进水口和出水口位于压力罐3的外侧。换热盘管4中充有冷却介质,可以对高温高压灰颗粒进行降温。换热盘管4可采用水冷或汽冷。冷却介质可以为水或者是蒸汽。压力罐3的下部设有布风板5。布风板5中通入氮气,能够有效地避免灰颗粒搭桥,保证排灰通畅,同时也起到冷却灰颗粒的作用。旋风分离器17和U型返料阀18位于压力罐3的外部,且旋风分离器17通过管道与压力罐3的顶部连通。旋风分离器17的底部与U型返料阀18的入料端口连通,U型返料阀18的出料端口与压力罐3连通。压力罐3的底端通过第一下料阀6和第二下料阀7与变压罐10的顶端连接。设置第一下料阀6和第二下料阀7,第一下料阀6是控料的,把大部分物料控制住,但是存在漏气;第二下料阀7是密封的气体的,防止气体大量泄漏。变压罐10的底端通过第一出料阀11和第二出料阀12与储灰仓15的顶端连接。设置第一出料阀11和第二出料阀12,第一出料阀11是控料的,把大部分物料控制住,但是存在漏气;第二出料阀12是密封的气体的,防止气体大量泄漏。第一管路16的顶部进气口与旋风分离器17连通,第一管路16中部设有多级减压阀19,第一管路16下部通过第三出料阀26和第四出料阀27与储灰仓15的底端连接。设置第三出料阀26和第四出料阀27,第三出料阀26是控料的,把大部分物料控制住,但是存在漏气;第四出料阀27是密封的气体的,防止气体大量泄漏。第二管路21的顶端与压力罐3连通,第二管路21的底端与储灰仓15连通。第三管路22的一端与变压罐10连通,第三管路22的另一端与第一管路16连通。第三管路22中部与第二管路21通过交汇口23连通。第三管路22上设有变压罐放气阀24,该变压罐放气阀24位于第二管路21和第一管路16之间。第二管路21上设有第一平衡阀20和第二平衡阀25,第一平衡阀20位于交汇口23和第二管路21顶端之间,第二平衡阀25位于交汇口23和第二管路21底端之间。多级减压阀19位于第一管路16顶部和第三管路22之间。第四管路9的一端与变压罐10连通,且第四管路9上设有变压罐充气阀8。第五管路14的一端与储灰仓15连通,且第五管路14上设有储灰仓充气阀13。
As shown in Fig. 1, a kind of ash discharging device for the high temperature and high pressure ash particles of the present invention includes a
进一步,所述的针对高温高压灰颗粒的排灰装置,还包括水夹套2,水夹套2包裹在进料口1的外壁上,水夹套2与换热盘管4的出水口连通。设置水夹套2,可以对进料口1冷却,避免灰颗粒的高温对进料口1造成破坏,起到保护进料口1的作用。
Further, the ash discharge device for high temperature and high pressure ash particles also includes a
进一步,所述的针对高温高压灰颗粒的排灰装置,还包括压缩机28,所述第一管路16的下部呈T形,含有第一支路、第二支路和第三支路,其中,第一支路与多级减压阀19连接,第二支路的末端与压缩机的吹风口相对,第三支路通过第三出料阀26和第四出料阀27与储灰仓15的底端连接,第三支路的末端为出灰口。
Further, the ash discharge device for high-temperature and high-pressure ash particles also includes a
增加设置压缩机28,可以保证灰颗粒从第支路的出灰口排出,并且提高排灰效率。
Adding the
上述的针对高温高压灰颗粒的排灰装置的排灰方法,包括以下步骤: The above-mentioned ash discharge method for the ash discharge device for high temperature and high pressure ash particles comprises the following steps:
步骤10)降低灰颗粒温度:所有阀门初始状态均为关闭,进料开始时打开多级减压阀19,并向位于压力罐3内部的换热盘管4中通入冷却介质,向位于压力罐3下部的布风板5中通入氮气,然后,将高温高压的灰颗粒通过进料口1排入压力罐3中,冷却介质和氮气冷却灰颗粒;压力罐3中的气体流向第一管路16,其中,气体中含有灰颗粒,经旋风分离器17分离后,灰颗粒进入旋风分离器17的分离立管中,再通过U型返料阀18,将分离的灰颗粒送回压力罐3中;旋风分离器17出口气体通过多级减压阀19降压后,作为储灰仓15中的灰颗粒排出输送风,从第一管路16排出;
Step 10) Reduce the temperature of the ash particles: the initial state of all valves is closed, and the multi-stage pressure reducing valve 19 is opened at the beginning of feeding, and the cooling medium is passed into the heat exchange coil 4 located inside the
步骤20)向变压罐10中排灰:首先,打开变压罐充气阀8,通过变压罐充气阀8向变压罐10中充入氮气,当变压罐10中的气体压力接近压力罐3的气体压力时,关闭变压罐充气阀8,打开第一平衡阀20,直至压力罐3和变压罐10内压力相等;然后,依次打开第二下料阀7和第一下料阀6,压力罐3中的灰颗粒进入变压罐10中,最后,依次关闭第一平衡阀20、第一下料阀6和第二下料阀7;
Step 20) Ash discharge into the pressure transformer 10: First, open the gas pressure valve 8 of the pressure transformer, fill nitrogen into the pressure transformer 10 through the gas pressure valve 8 of the pressure transformer, when the gas pressure in the pressure transformer 10 is close to the pressure When the gas pressure of the
步骤30)降低灰颗粒压力:打开变压罐放气阀24,直至变压罐10内的气体压力接近储灰仓15中的气体压力时,关闭变压罐放气阀24;
Step 30) Reduce the pressure of the ash particles: open the pressure tank release valve 24 until the gas pressure in the pressure tank 10 is close to the gas pressure in the
步骤40)排灰:首先,打开第二平衡阀25,直至变压罐10和储灰仓15之间的压力平衡时,依次打开第二出料阀12和第一出料阀11,灰颗粒在重力作用下从变压罐10进入储灰仓15中,然后,依次关闭第一出料阀11、第二出料阀12和第二平衡阀25,接着,打开储灰仓充气阀13,向储灰仓15中充入气体,随后,依次打开第四出料阀27和第三出料阀26,通过储灰仓充气阀13向储灰仓15中充入氮气,灰颗粒在重力作用下以及氮气的输送下,从储灰仓15中进入第一管路16中,从第一管路16的出灰口排出。
Step 40) Ash discharge: first, open the
本发明的排灰方法对高温高压灰颗粒进行了一次降温一次降压处理,从而得到低温低压的灰颗粒。本发明首先进行降温处理:在压力罐3中,对灰颗粒进行冷却。具体通过设置在压力罐3中的换热盘管4以及布风板5,冷却灰颗粒。然后进行降压处理:降压处理在变压罐10中进行,打开变压罐放气阀24,直至变压罐10内的气体压力接近储灰仓15中的气体压力。通过一次降温一次降压,实现了对灰颗粒进行降温降压处理。储灰仓中压力可以为2MP-4MP,具体数值由灰颗粒的输送距离决定。储灰仓15中排除的灰颗粒的温度低于400摄氏度。多级减压阀19的作用使压力罐3中的压力保持恒定的值,不会因为充气而使压力罐3中的压力升高。
In the ash discharge method of the present invention, the high-temperature and high-pressure ash particles are subjected to one temperature-lowering and one-time pressure-lowering treatment, so as to obtain low-temperature and low-pressure ash particles. The present invention first carries out cooling treatment: in the
在本发明中,压力罐3和变压罐10之间,变压罐10和储灰仓15之间分别设置了两个阀门。其中位于上方的阀门用于控料,把大部分物料控制住,但是存在漏气。位于下方的阀门用于密封气体,防止气体大量泄漏。启用时,先开启位于下方的阀门,再开启位于上方的阀门。关闭时,先关闭位于上方的阀门,再关闭位于下方的阀门。两个阀门的设置,有利于整个装置安全运行。
In the present invention, two valves are respectively arranged between the
本发明的排灰过程中,高温高压的灰颗粒先在压力罐3中被冷却介质以及松动风冷却降温,然后在变压罐10中降压,在储灰仓15中存储,最终低温低压的灰颗粒通过气力排出。针对固态排渣排灰的气化技术,本发明提供的固态排灰方法,可解决高温高压排灰困难的难题。
In the ash discharge process of the present invention, the high-temperature and high-pressure ash particles are first cooled in the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310170895.9A CN103215080B (en) | 2013-05-10 | 2013-05-10 | Ash discharge device for high-temperature high-pressure ash particle and ash discharge method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310170895.9A CN103215080B (en) | 2013-05-10 | 2013-05-10 | Ash discharge device for high-temperature high-pressure ash particle and ash discharge method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103215080A true CN103215080A (en) | 2013-07-24 |
CN103215080B CN103215080B (en) | 2014-11-05 |
Family
ID=48813252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310170895.9A Expired - Fee Related CN103215080B (en) | 2013-05-10 | 2013-05-10 | Ash discharge device for high-temperature high-pressure ash particle and ash discharge method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103215080B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103528055A (en) * | 2013-10-25 | 2014-01-22 | 湖北华庆石化设备有限公司 | Pressurized ash residue treatment technology and system |
CN104326269A (en) * | 2014-09-09 | 2015-02-04 | 东南大学 | Cooling, decompressing and continuous discharging device and method aiming at high-temperature and high-pressure powder particles |
CN110813511A (en) * | 2019-11-18 | 2020-02-21 | 衡阳县海华水泥有限责任公司 | Cement grinding aid addition system |
CN111996037A (en) * | 2020-08-25 | 2020-11-27 | 哈尔滨锅炉厂有限责任公司 | Positive pressure cold ash system for biomass fluidized bed gasification furnace |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001235134A (en) * | 2000-02-22 | 2001-08-31 | Electric Power Dev Co Ltd | Ash treatment device for precision dust removal device and its ash treatment method |
CN1405277A (en) * | 2002-09-27 | 2003-03-26 | 中国科学院山西煤炭化学研究所 | Solid slag-discharing dry-powder air-current bed gasification process and apparatus |
CN2670362Y (en) * | 2003-11-20 | 2005-01-12 | 西北化工研究院 | Ash exhauster of pneumatic bed reactor |
CN2740609Y (en) * | 2004-09-10 | 2005-11-16 | 陕西秦能天脊科技有限公司 | Powdery coal gasifier of pressurized selecting ash-ejecting fluidized bed |
CN102002400A (en) * | 2010-11-25 | 2011-04-06 | 山西天和煤气化科技有限公司 | Method for cooling and discharging pressurized fluidized gasification high-temperature fly ash |
CN102732325A (en) * | 2012-07-06 | 2012-10-17 | 东南大学 | High-pressure and high-temperature furnace slag wind and water cooling and deslagging device |
CN102974211A (en) * | 2012-11-06 | 2013-03-20 | 镇江市电站辅机厂有限公司 | Circulating fluidized bed boiler in-furnace desulfurization device |
CN103041748A (en) * | 2012-10-18 | 2013-04-17 | 东南大学 | Device and method for carrying out temperature reduction and pressure reduction on high-temperature and high-pressure solid particles |
CN203269881U (en) * | 2013-05-10 | 2013-11-06 | 东南大学 | Ash discharge device aiming at high temperature and high pressure ash particles |
-
2013
- 2013-05-10 CN CN201310170895.9A patent/CN103215080B/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001235134A (en) * | 2000-02-22 | 2001-08-31 | Electric Power Dev Co Ltd | Ash treatment device for precision dust removal device and its ash treatment method |
CN1405277A (en) * | 2002-09-27 | 2003-03-26 | 中国科学院山西煤炭化学研究所 | Solid slag-discharing dry-powder air-current bed gasification process and apparatus |
CN2670362Y (en) * | 2003-11-20 | 2005-01-12 | 西北化工研究院 | Ash exhauster of pneumatic bed reactor |
CN2740609Y (en) * | 2004-09-10 | 2005-11-16 | 陕西秦能天脊科技有限公司 | Powdery coal gasifier of pressurized selecting ash-ejecting fluidized bed |
CN102002400A (en) * | 2010-11-25 | 2011-04-06 | 山西天和煤气化科技有限公司 | Method for cooling and discharging pressurized fluidized gasification high-temperature fly ash |
CN102732325A (en) * | 2012-07-06 | 2012-10-17 | 东南大学 | High-pressure and high-temperature furnace slag wind and water cooling and deslagging device |
CN103041748A (en) * | 2012-10-18 | 2013-04-17 | 东南大学 | Device and method for carrying out temperature reduction and pressure reduction on high-temperature and high-pressure solid particles |
CN102974211A (en) * | 2012-11-06 | 2013-03-20 | 镇江市电站辅机厂有限公司 | Circulating fluidized bed boiler in-furnace desulfurization device |
CN203269881U (en) * | 2013-05-10 | 2013-11-06 | 东南大学 | Ash discharge device aiming at high temperature and high pressure ash particles |
Non-Patent Citations (3)
Title |
---|
国电力行业CFB机组技术交流服务协作网组: "《循环流化床锅炉技术600问》", 31 October 2006, 中国电力出版社 * |
李莲明等: "《天然气开发常用阀门手册》", 31 January 2011, 石油工业出版社 * |
贾伟: "《电网运行与管理技术问答》", 30 November 2007, 中国电力出版社 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103528055A (en) * | 2013-10-25 | 2014-01-22 | 湖北华庆石化设备有限公司 | Pressurized ash residue treatment technology and system |
CN103528055B (en) * | 2013-10-25 | 2016-05-11 | 江苏晟宜环保科技有限公司 | Pressurize grey residues processing technique and system |
CN104326269A (en) * | 2014-09-09 | 2015-02-04 | 东南大学 | Cooling, decompressing and continuous discharging device and method aiming at high-temperature and high-pressure powder particles |
CN104326269B (en) * | 2014-09-09 | 2016-10-19 | 东南大学 | A continuous discharge method for cooling and decompression of high-temperature and high-pressure powder particles |
CN110813511A (en) * | 2019-11-18 | 2020-02-21 | 衡阳县海华水泥有限责任公司 | Cement grinding aid addition system |
CN111996037A (en) * | 2020-08-25 | 2020-11-27 | 哈尔滨锅炉厂有限责任公司 | Positive pressure cold ash system for biomass fluidized bed gasification furnace |
Also Published As
Publication number | Publication date |
---|---|
CN103215080B (en) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102732325A (en) | High-pressure and high-temperature furnace slag wind and water cooling and deslagging device | |
CN103215080B (en) | Ash discharge device for high-temperature high-pressure ash particle and ash discharge method thereof | |
CN105627755A (en) | System used for sinter ore cooling and sensible heat efficient recycling | |
CN103820170B (en) | The conversion system of the coal-tar middle oil component of a kind of raw gas and carbonaceous particles and method | |
CN109505666A (en) | A kind of jet expansion compound compression air energy storage systems | |
CN106225487A (en) | A kind of vertical cooling of agglomerates of sintered pellets and sintering waste heat utilization system | |
CN209586452U (en) | A kind of jet expansion compound compression air energy storage systems | |
CN107502389A (en) | A kind of hydrogasification coke discharging cooling system and its technique | |
CN203269881U (en) | Ash discharge device aiming at high temperature and high pressure ash particles | |
CN102002400A (en) | Method for cooling and discharging pressurized fluidized gasification high-temperature fly ash | |
CN204824763U (en) | Fluidized bed gasifica tion is solid -state sediment control system that arranges of high temperature for stove | |
CN101942343A (en) | Pressurized-gasification solid-state wet-type deslagging device for carbonaceous organic material and method | |
CN105132026B (en) | A kind of crushed coal pressurized-gasification furnace nitrogen purging device and method | |
CN204474699U (en) | Liquid steel slag gas quenching residual neat recovering system | |
CN103438441B (en) | The cloth wind system that effective control external heat exchanger material flows backwards | |
CN104673947B (en) | Liquid steel slag gas quenching residual neat recovering system and method | |
CN207159162U (en) | A kind of hydrogasification cyclonic separation revert system | |
CN202791322U (en) | LNG (liquefied natural gas) gasification station | |
CN204174183U (en) | A kind of High Temperature High Pressure powder cooling pressure relief blow device | |
CN201587931U (en) | A one-stage energy-saving gas generator with two-stage furnace performance | |
CN206770974U (en) | Multifunctional mobile gasification sled | |
CN108980883B (en) | Biomass material lock and working method | |
CN206089596U (en) | Fine coal pressurization conveying system of coal -fired gasification air current bed | |
CN206289222U (en) | Fluidized gasification system separates dross coal and crushes recycling gasification installation | |
CN104326269B (en) | A continuous discharge method for cooling and decompression of high-temperature and high-pressure powder particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141105 Termination date: 20200510 |
|
CF01 | Termination of patent right due to non-payment of annual fee |