CN103214851B - 一种液体硅橡胶基电导非线性绝缘材料 - Google Patents
一种液体硅橡胶基电导非线性绝缘材料 Download PDFInfo
- Publication number
- CN103214851B CN103214851B CN201310175743.8A CN201310175743A CN103214851B CN 103214851 B CN103214851 B CN 103214851B CN 201310175743 A CN201310175743 A CN 201310175743A CN 103214851 B CN103214851 B CN 103214851B
- Authority
- CN
- China
- Prior art keywords
- nano
- silicone rubber
- parts
- liquid silicone
- nonlinear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003989 dielectric material Substances 0.000 title abstract description 6
- 239000007788 liquid Substances 0.000 title abstract 4
- 229920000260 silastic Polymers 0.000 title abstract 4
- 229920002379 silicone rubber Polymers 0.000 claims abstract description 66
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 25
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 25
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 13
- 239000010439 graphite Substances 0.000 claims abstract description 13
- 239000004944 Liquid Silicone Rubber Substances 0.000 claims description 57
- 239000002245 particle Substances 0.000 claims description 34
- 239000011810 insulating material Substances 0.000 claims description 29
- 239000012767 functional filler Substances 0.000 claims description 22
- 239000005543 nano-size silicon particle Substances 0.000 claims description 22
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 20
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 18
- 239000011787 zinc oxide Substances 0.000 claims description 18
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 16
- 238000006116 polymerization reaction Methods 0.000 claims description 6
- 239000002048 multi walled nanotube Substances 0.000 claims description 5
- 239000002079 double walled nanotube Substances 0.000 claims 2
- 239000002109 single walled nanotube Substances 0.000 claims 2
- 239000002131 composite material Substances 0.000 abstract description 16
- 230000015556 catabolic process Effects 0.000 abstract description 15
- 239000004945 silicone rubber Substances 0.000 abstract description 9
- 239000006229 carbon black Substances 0.000 abstract description 7
- 239000000945 filler Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 5
- 229920001971 elastomer Polymers 0.000 abstract description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 abstract 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 abstract 1
- 230000005684 electric field Effects 0.000 description 8
- 230000032683 aging Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Organic Insulating Materials (AREA)
- Paints Or Removers (AREA)
Abstract
一种液体硅橡胶基电导非线性绝缘材料,它涉及一种橡胶基非线性电介质材料。它要解决现有硅橡胶基电导非线性复合材料的击穿强度低、物理―机械性能差的问题。本发明的非线性绝缘材料是由液体硅橡胶和非线性功能填料制成,非线性功能填料由纳米氧化锌、纳米二氧化钛、纳米碳化硅、碳纳米管、导电炭黑和纳米石墨组成。本发明得到的液体硅橡胶基电导非线性绝缘材料的交流击穿强度不小于30kV/mm,最大非线性系数6~20,拉伸强度不小于6.0MPa,断裂伸长率不小于200%。本发明主要用于高压复合绝缘材料。
Description
技术领域
本发明涉及一种橡胶基非线性电介质材料。
背景技术
硅橡胶具有电绝缘性能好,耐高低温,耐臭氧老化、氧老化、光老化、气候老化,憎水性好,耐燃烧等优点,因而在电气绝缘领域得到广泛应用。将聚合物,如聚烯烃、橡胶、环氧树脂等与某些功能无机填料复合,可制得非线性绝缘材料,由于非线性绝缘材料的电导率或(和)介电常数能随外施电场强度的增大而提高,电导或(和)介电常数呈非线性,因而其在非均匀电场中具有自行均化电场分布的能力,能有效抑制空间电荷的产生及电树枝的形成与生长,显著提高绝缘性能。
现有的聚烯烃基非线性复合材料是由聚烯烃树脂与一种或多种填料共混制得,具有非线性电导或(和)非线性介电常数。受基体树脂聚烯烃自身性能的影响,聚烯烃基非线性复合材料的应用领域受到限制,无法应用到某些需使用橡胶制品的场合。
在2009年《功能材料》第10期第40卷《电场处理对碳化硅/聚合物复合材料电导特性的影响》和博士后研究工作报告《聚合物基非线性复合材料制备过程中施加电、磁场对其性能及微观结构的影响》中公开了碳化硅/硅橡胶复合材料具有电导非线性特性,其文中应用的碳化硅分别为平均粒径7μm~10μm和20μm~30μm的微米碳化硅和纳米碳化硅。文中碳化硅的最小添加量为11.1Vol%,计算时碳化硅和液体硅橡胶的比重分别确定为3.2g/cm3和1.0g/cm3,也即实际配方是在100份液体硅橡胶中至少添加40份的微米或纳米碳化硅。公开的文献只是从理论研究的角度指出所研究的碳化硅/硅橡胶具有电导非线性特性,没有介绍该材料的其它性能,但因碳化硅的添加量很大,导致碳化硅/硅橡胶复合材料出现以下问题:(1)复合材料击穿强度低,直流击穿强度不超过10kV/mm,不能应用于高电压绝缘;(2)复合材料的机械性能不好,拉伸断裂强度小于2.5MPa,断裂伸长率小于40%;(3)复合材料粘度大,搅拌混合困难,不易排除气泡。同时虽然文献中也介绍了添加炭黑能提高微米碳化硅/硅橡胶复合材料的电导非线性特性,但所提及的材料中碳化硅和炭黑添加量最少的材料为:碳化硅的添加量15.8Vol%,炭黑的添加量1.3Vol%,也即该材料的配方为98.5份硅橡胶、60份微米碳化硅、3份炭黑,炭黑比重设为2.0g/cm3。由于添加的碳化硅更多,且又添加了炭黑,得到的碳化硅/硅橡胶复合材料的直流击穿强度也不超过10kV/mm;机械性能更加不好,拉伸断裂强度和断裂伸长率分别为1.5MPa和20%,同时又因复合材料的粘度大,加大了搅拌混合和排气的难度。
发明内容
本发明目的是为了解决现有硅橡胶基电导非线性复合材料的击穿强度低、物理―机械性能差的问题,而提供一种液体硅橡胶基电导非线性绝缘材料。
本发明液体硅橡胶基电导非线性绝缘材料按重量份数由100份液体硅橡胶和10~20份非线性功能填料制成,非线性功能填料由纳米氧化锌、纳米二氧化钛、纳米碳化硅、碳纳米管、导电炭黑和纳米石墨组成;
其中液体硅橡胶为聚合度100~2000的双组分液体硅橡胶,纳米氧化锌的粒径为10nm~100nm,纳米二氧化钛的粒径为10nm~100nm,纳米碳化硅的粒径为10nm~100nm,碳纳米管为直径5nm~80nm、管长1μm~15μm的单臂碳纳米管、双臂碳纳米管或多壁碳纳米管,导电炭黑的粒径为10nm~100nm,纳米石墨的片厚为10nm~100nm、片径为1μm~2μm。
采用真空搅拌机将液体硅橡胶与各种填料在50℃以下混合均匀并排除气泡,成型后经硫化得到液体硅橡胶基电导非线性绝缘材料。
本发明采用多种非线性功能填料复配,充分发挥各功能填料的协同效应,100份液体硅橡胶中添加的非线性功能填料不超过20份,搅拌过程中的复合材料粘度低,易于搅拌,制备得到的液体硅橡胶基电导非线性绝缘材料的交流击穿强度不小于30kV/mm,直流击穿强度不小于60kV/mm,在8kV/mm以下电场中下体积电阻率不小于1013Ω·m,最大非线性系数6~20,拉伸强度不小于6.0MPa,断裂伸长率不小于200%。本发明主要应用于高压复合绝缘材料。
具体实施方式
具体实施方式一:本实施方式液体硅橡胶基电导非线性绝缘材料按重量份数由100份液体硅橡胶和10~20份非线性功能填料制成,非线性功能填料由纳米氧化锌、纳米二氧化钛、纳米碳化硅、碳纳米管、导电炭黑和纳米石墨组成;
其中液体硅橡胶为聚合度100~2000的双组分液体硅橡胶,纳米氧化锌的粒径为10nm~100nm,纳米二氧化钛的粒径为10nm~100nm,纳米碳化硅的粒径为10nm~100nm,碳纳米管为直径5nm~80nm、管长1μm~15μm的单臂碳纳米管、双臂碳纳米管或多壁碳纳米管,导电炭黑的粒径为10nm~100nm,纳米石墨的片厚为10nm~100nm、片径为1μm~2μm。
本实施方式所用原料均为市售产品,非线性功能填料均为纳米材料,由于纳米材料颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大,具有独特的量子尺寸效应、表面效应、小尺寸效应和宏观量子隧道效应。非线性功能填料纳米氧化锌、纳米二氧化钛、纳米碳化硅、碳纳米管、导电炭黑和纳米石墨可按任意比组成,本发明充分发挥各纳米功能填料的协同效应,得到液体硅橡胶基电导非线性绝缘材料的交流击穿强度不小于30kV/mm,直流击穿强度不小于60kV/mm,最大非线性系数6~20,拉伸强度不小于6.0MPa,断裂伸长率不小于200%的非线性绝缘材料。
具体实施方式二:本实施方式与具体实施方式一不同的是液体硅橡胶基电导非线性绝缘材料按重量份数由100份液体硅橡胶和12~18份非线性功能填料制成。其它参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一不同的是液体硅橡胶基电导非线性绝缘材料按重量份数由100份液体硅橡胶和13份非线性功能填料制成。其它参数与具体实施方式一相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是液体硅橡胶基电导非线性绝缘材料按重量份数由100份液体硅橡胶和20份非线性功能填料制成,非线性功能填料中含有5~15份纳米氧化锌。其它参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是液体硅橡胶基电导非线性绝缘材料按重量份数由100份液体硅橡胶和20份非线性功能填料制成,非线性功能填料中含有3~10份纳米碳化硅。其它参数与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至四之一不同的是液体硅橡胶基电导非线性绝缘材料按重量份数由100份液体硅橡胶和20份非线性功能填料制成,非线性功能填料中含有4~6份纳米碳化硅。其它参数与具体实施方式一至四之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是液体硅橡胶基电导非线性绝缘材料按重量份数由100份液体硅橡胶、10份纳米氧化锌、2份纳米二氧化钛、5份纳米碳化硅、0.5份碳纳米管、0.5份导电炭黑和0.5份纳米石墨制成。其它参数与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是纳米氧化锌的粒径为40nm~60nm,纳米二氧化钛的粒径为40nm~70nm,纳米碳化硅的粒径为40nm~60nm,碳纳米管为直径10nm~20nm、管长5μm~10μm的单臂碳纳米管、双臂碳纳米管或多壁碳纳米管,导电炭黑的粒径为20nm~40nm,纳米石墨的片厚为20nm~40nm、片径为1μm~2μm。其它参数与具体实施方式一至七之一相同。
实施例一:本实施例液体硅橡胶基电导非线性绝缘材料按重量份数由100份液体硅橡胶、10份纳米氧化锌、2份纳米二氧化钛、5份纳米碳化硅、0.5份碳纳米管、0.5份导电炭黑和0.5份纳米石墨制成;
其中液体硅橡胶为平均聚合度为500的双组分液体硅橡胶,纳米氧化锌的粒径为30nm~60nm,纳米二氧化钛的粒径为40nm~60nm,纳米碳化硅的粒径为30nm~60nm,碳纳米管为直径5nm~15nm、管长5μm~15μm的单臂碳纳米管,导电炭黑的粒径为10nm~30nm,纳米石墨的片厚为30nm~50nm、片径为1μm~2μm。
采用真空搅拌机将液体硅橡胶与各种填料在45℃下混合均匀并排除气泡,成型后经硫化得到液体硅橡胶基电导非线性绝缘材料。
本实施例得到的液体硅橡胶基电导非线性绝缘材料在8kV/mm以下电场中体积电阻率为5×1014Ω·m,交流击穿强度为32kV/mm,直流击穿强度为63kV/mm,最大非线性系数为12.5,拉伸强度为7.0MPa,断裂伸长率为240%。
实施例二:本实施例液体硅橡胶基电导非线性绝缘材料按重量份数由100份液体硅橡胶、5份纳米氧化锌、1份纳米二氧化钛、4份纳米碳化硅、1.0份碳纳米管、1份导电炭黑和1份纳米石墨制成;
其中液体硅橡胶为平均聚合度为800的双组分液体硅橡胶,纳米氧化锌的粒径为40nm~60nm,纳米二氧化钛的粒径为40nm~70nm,纳米碳化硅的粒径为40nm~60nm,碳纳米管为直径10nm~20nm、管长5μm~10μm的双臂碳纳米管,导电炭黑的粒径为20nm~40nm,纳米石墨的片厚为20nm~40nm、片径为1μm~2μm。
采用真空搅拌机将液体硅橡胶与各种填料在45℃下混合均匀并排除气泡,成型后经硫化得到液体硅橡胶基电导非线性绝缘材料。
本实施例得到的液体硅橡胶基电导非线性绝缘材料在8kV/mm以下电场中体积电阻率为9×1014Ω·m,交流击穿强度为36kV/mm,直流击穿强度为67kV/mm,最大非线性系数为10.0,拉伸强度为7.6MPa,断裂伸长率为280%。
实施例三:本实施例液体硅橡胶基电导非线性绝缘材料按重量份数由100份液体硅橡胶、3份纳米氧化锌、1份纳米二氧化钛、3.5份纳米碳化硅、1份碳纳米管、1份导电炭黑和0.5份纳米石墨制成;
其中液体硅橡胶为平均聚合度为1500的双组分液体硅橡胶,纳米氧化锌的粒径为30nm~50nm,纳米二氧化钛的粒径为40nm~60nm,纳米碳化硅的粒径为30nm~60nm,碳纳米管为直径10nm~20nm、管长5μm~15μm的多臂碳纳米管,导电炭黑的粒径为20nm~40nm,纳米石墨的片厚为40nm~60nm、片径为1μm~2μm。
采用真空搅拌机将液体硅橡胶与各种填料在40℃下混合均匀并排除气泡,成型后经硫化得到液体硅橡胶基电导非线性绝缘材料。
本实施例得到的液体硅橡胶基电导非线性绝缘材料在8kV/mm以下电场中体积电阻率为1×1015Ω·m,交流击穿强度为38kV/mm,直流击穿强度为70kV/mm,最大非线性系数为8.5,拉伸强度为8.0MPa,断裂伸长率为290%。
Claims (3)
1.一种液体硅橡胶基电导非线性绝缘材料,其特征在于液体硅橡胶基电导非线性绝缘材料按重量份数由100份液体硅橡胶和20份非线性功能填料制成,非线性功能填料由纳米氧化锌、纳米二氧化钛、纳米碳化硅、碳纳米管、导电炭黑和纳米石墨组成;
其中液体硅橡胶为聚合度100~2000的双组分液体硅橡胶,纳米氧化锌的粒径为10nm~100nm,纳米二氧化钛的粒径为10nm~100nm,纳米碳化硅的粒径为10nm~100nm,碳纳米管为直径5nm~80nm、管长1μm~15μm的单壁碳纳米管、双壁碳纳米管或多壁碳纳米管,导电炭黑的粒径为10nm~100nm,纳米石墨的片厚为10nm~100nm、片径为1μm~2μm;非线性功能填料中含有5~15份的纳米氧化锌,含有3~10份的纳米碳化硅。
2.根据权利要求1所述的一种液体硅橡胶基电导非线性绝缘材料,其特征在于液体硅橡胶基电导非线性绝缘材料按重量份数由100份液体硅橡胶和20份非线性功能填料制成,非线性功能填料中含有4~6份纳米碳化硅。
3.根据权利要求1或2所述的一种液体硅橡胶基电导非线性绝缘材料,其特征在于纳米氧化锌的粒径为40nm~60nm,纳米二氧化钛的粒径为40nm~70nm,纳米碳化硅的粒径为40nm~60nm,碳纳米管为直径10nm~20nm、管长5μm~10μm的单壁碳纳米管、双壁碳纳米管或多壁碳纳米管,导电炭黑的粒径为20nm~40nm,纳米石墨的片厚为20nm~40nm、片径为1μm~2μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310175743.8A CN103214851B (zh) | 2013-05-13 | 2013-05-13 | 一种液体硅橡胶基电导非线性绝缘材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310175743.8A CN103214851B (zh) | 2013-05-13 | 2013-05-13 | 一种液体硅橡胶基电导非线性绝缘材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103214851A CN103214851A (zh) | 2013-07-24 |
CN103214851B true CN103214851B (zh) | 2015-10-28 |
Family
ID=48813038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310175743.8A Expired - Fee Related CN103214851B (zh) | 2013-05-13 | 2013-05-13 | 一种液体硅橡胶基电导非线性绝缘材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103214851B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105331110A (zh) * | 2015-11-17 | 2016-02-17 | 镇江高美新材料有限公司 | 液体硅橡胶基电导非线性绝缘材料 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103526333B (zh) * | 2013-10-10 | 2015-10-21 | 湖北大学 | 光刺激响应性纳米复合纤维及其制备方法 |
CN107207861B (zh) * | 2015-01-09 | 2021-10-22 | 迈图高新材料集团 | 有机硅橡胶组合物在用于制备高压直流绝缘体应用中的用途 |
CN105924812A (zh) * | 2016-05-23 | 2016-09-07 | 无锡市嘉邦电力管道厂 | 一种电缆绝缘材料 |
CN107123463B (zh) * | 2017-04-25 | 2019-02-05 | 晶锋集团股份有限公司 | 一种可自适应调控电导及介电的氧化锌复合绝缘材料及其制备方法 |
CN107686629A (zh) * | 2017-05-04 | 2018-02-13 | 清华大学 | 低阀值场强高机械性能的非线性电导复合物材料 |
WO2020061988A1 (en) | 2018-09-28 | 2020-04-02 | Dow Silicones Corporation | Liquid silicone rubber composition |
CN109796765A (zh) * | 2019-01-09 | 2019-05-24 | 清华大学 | 高机械性能的非线性电导复合物材料 |
CN110467818A (zh) * | 2019-08-23 | 2019-11-19 | 国网天津市电力公司 | 一种微-纳米混合ZnO非线性硅橡胶复合绝缘子及制备工艺 |
CN111048266A (zh) * | 2019-12-30 | 2020-04-21 | 江东金具设备有限公司 | 一种防酥断复合绝缘子及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101440180A (zh) * | 2008-12-26 | 2009-05-27 | 哈尔滨理工大学 | 聚烯烃基非线性电介质材料 |
-
2013
- 2013-05-13 CN CN201310175743.8A patent/CN103214851B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101440180A (zh) * | 2008-12-26 | 2009-05-27 | 哈尔滨理工大学 | 聚烯烃基非线性电介质材料 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105331110A (zh) * | 2015-11-17 | 2016-02-17 | 镇江高美新材料有限公司 | 液体硅橡胶基电导非线性绝缘材料 |
Also Published As
Publication number | Publication date |
---|---|
CN103214851A (zh) | 2013-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103214851B (zh) | 一种液体硅橡胶基电导非线性绝缘材料 | |
CN103214850B (zh) | 一种混炼硅橡胶基电导非线性绝缘材料 | |
Zhang et al. | High thermal conductivity and excellent electrical insulation performance in double-percolated three-phase polymer nanocomposites | |
George et al. | High performance natural rubber composites with conductive segregated network of multiwalled carbon nanotubes | |
Bian et al. | The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin | |
Cao et al. | High thermal conductivity and high electrical resistivity of poly (vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers | |
Kumar et al. | Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes inpolyetherimide nanocomposites | |
Eksik et al. | A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core–shell additives | |
CN103214747B (zh) | 一种三元乙丙橡胶基电导非线性绝缘材料 | |
Mondal et al. | Elastomer reinforcement by graphene nanoplatelets and synergistic improvements of electrical and mechanical properties of composites by hybrid nano fillers of graphene-carbon black & graphene-MWCNT | |
He et al. | Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution | |
Pan et al. | Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending | |
Debelak et al. | Use of exfoliated graphite filler to enhance polymer physical properties | |
Zhou et al. | Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles | |
Chou et al. | Characteristics of polyimide-based nanocomposites containing plasma-modified multi-walled carbon nanotubes | |
Yan et al. | Effect of compounding sequence on localization of carbon nanotubes and electrical properties of ternary nanocomposites | |
CN105331110A (zh) | 液体硅橡胶基电导非线性绝缘材料 | |
Xie et al. | Construction of thermal conduction networks and decrease of interfacial thermal resistance for improving thermal conductivity of epoxy natural rubber composites | |
Zhang et al. | Constructing conductive network using 1D and 2D conductive fillers in porous poly (aryl ether nitrile) for EMI shielding | |
Praveen et al. | Comparative study of dielectric and mechanical properties of HDPE-MWCNT-SiO2 nanocomposites | |
Rahaman et al. | Electrical conductivity of polymer–carbon composites: Effects of different factors | |
Na et al. | Study on dispersion and electrical property of multi-walled carbon nanotubes/low-density polyethylene nanocomposites | |
Liu et al. | Effect of phase morphology on electromagnetic interference shielding performance of silicone rubber/POE blends containing ILs modified MWCNTs | |
Fu et al. | Improved dielectric stability of epoxy composites with ultralow boron nitride loading | |
Shielding | Nano-carbon/polymer composites for electromagnetic shielding, structural mechanical and field emission applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151028 Termination date: 20180513 |
|
CF01 | Termination of patent right due to non-payment of annual fee |