CN103187929B - 带宽扩展的多尔蒂功率放大器 - Google Patents
带宽扩展的多尔蒂功率放大器 Download PDFInfo
- Publication number
- CN103187929B CN103187929B CN201110458925.7A CN201110458925A CN103187929B CN 103187929 B CN103187929 B CN 103187929B CN 201110458925 A CN201110458925 A CN 201110458925A CN 103187929 B CN103187929 B CN 103187929B
- Authority
- CN
- China
- Prior art keywords
- amplifier
- peak
- quatrter
- dpa
- impedance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Abstract
本发明提出了一种新的多尔蒂功率放大器的结构,根据本发明,减少四分之一波长线的使用并降低多尔蒂功率放大器的Q点。本方法以更简单快捷的设计来扩展DPA带宽并且更有利于缩小尺寸设计。
Description
技术领域
本发明涉及功率放大器,尤其涉及带宽扩展的多尔蒂功率放大器。
背景技术
高效多尔蒂功率放大器(Doherty Power Amplifier,DPA)功放在通信系统的应用越来越受欢迎。不过,DPA的缺陷是带宽很窄以及大尺寸特性。DPA窄带特性主要是由于窄带合路器的窄带特性。输出合路器一般有更高的Q点而更高的Q点导致了更窄的带宽。以平衡型DPA为例,Q点可高达0.76。而大尺寸特性是由于DPA输出合成器用了2个四分之一波长线(λ/4).尤其对900MHZ的系统,当使用罗杰斯(Rogers)的高频线路板材料RO4350B作为PCB材料时,四分之一波长线的长度大约47mm,这不可能缩小尺寸设计。
目前也有扩展DPA的带宽方案,如图1所示。在此方案中,采用一个35.3欧姆的四分之一波长线101接地,与布线版(layout)上的多尔蒂合成器的四分之一波长线成镜像。当DPA工作在较低的输入功率时,峰值放大器关闭,载波放大器将工作在高阻抗状态(通常为100欧姆)。有了35.3欧姆(ohm)的四分之一波长线101的DPA,电阻的色散会比一般的载波放大器工作在高阻抗的DPA更加汇聚,因此,带宽扩展的DPA的带宽要比非带宽扩展的DPA要宽很多,如图2所示。
但是目前,小尺寸设计已经成为趋势,尽管上述方案能提供一种思路来设计一个宽带的DPA,但是额外的35.3欧姆的四分之一波长线占用了更多的空间。这对功放的PCB(Printed Circuit Board,印刷电路板)设计是个问题。
发明内容
为解决现有技术中的上述缺点,本发明提出了一种新的多尔蒂功率放大器的结构,以降低Q点并减少四分之一波长线的使用。本方法以更简单快捷的设计来扩展DPA带宽并且更有利于缩小尺寸设计。
具体地,根据本发明的一个实施方式,提供一种多尔蒂功率放大器,包括输入功率分路器,多尔蒂功率放大器的输入信号输入到输入功率分路器,输入功率分路器的一端输出连接到载波放大器,分路器的另一端输出与一个第一四分之一波长线连接,第一四分之一波长线的另一端与一个峰值放大器连接,载波放大器的一端与一个第二四分之一波长线连接,第二四分之一波长线的另一端连接到峰值放大器,第二四分之一波长线的和峰值放大器的连接点是所述多尔蒂功率放大器的信号输出点。
根据本发明的一个具体实施例,还包括所述第二四分之一波长线的特征阻抗Z01由下式确定:
其中,γ是功率比例。
根据本发明的一个具体实施例,还包括所述峰值放大器的负载阻抗Z02由下式确定:
其中,γ是功率比例。
根据本发明的一个具体实施例,还包括,当输入信号小时,峰值放大器关闭,载波放大器工作在高阻抗状态,载波放大器的阻抗由下式确定:
Zhigh_inpedance=50*(1+γ),
其中,γ是功率比例。
附图说明
通过以下结合附图的说明,并且随着对本发明的更全面了解,本发明的其他目的和效果将变得更加清楚和易于理解,其中:
图1a,1b分别表示现有的扩展带宽的DPA的原理图和布线图。
图2a,2b分别表示现有的扩展带宽的DPA的阻抗色散特性和带宽。
图3a,3b分别表示根据本发明的实施方式的扩展带宽的DPA的原理图和布线图。
图4a,4b分别表示根据本发明的实施方式的扩展带宽的DPA的阻抗色散特性和带宽。
图5表示根据本发明的实施方式的扩展带宽的DPA工作在小信号输入时的电路等效图。
图6表示根据本发明的实施方式的扩展带宽的DPA工作在大信号输入时的电路等效图。
图7表示在使用MD7IC2755NR1平衡型DPA中采用传统方案和利用本发明的方案的性能对比。
图8表示在使用MRF8S21120HR3和MRF8S21201HR3的非平衡型DPA中采用传统方案和利用本发明的方案的性能对比。
在所有的上述附图中,相同的标号表示具有相同、相似或相应的特征或功能。
具体实施方式
以下结合附图具体描述本发明的实施方式。
本发明的扩展带宽的DPA设计中,减少了四分之一波长线的使用。如图3所示,扩展带宽的DPA包括输入功率分路器,多尔蒂功率放大器的输入信号输入到输入功率分路器,输入功率分路器的一端输出连接到载波放大器,分路器的另一端输出与一个第一四分之一波长线连接,第一四分之一波长线的另一端与一个峰值放大器连接,载波放大器的一端与一个第二四分之一波长线连接,第二四分之一波长线的另一端连接到峰值放大器,第二四分之一波长线的和峰值放大器的连接点是所述多尔蒂功率放大器的信号输出点。
本发明中,第二四分之一波长线201的特征阻抗Z01和峰值放大器202的负载阻抗Z02需确定。第二四分之一波长线的特征阻抗Z01由下式确定:
其中,γ是DPA的载波放大器和峰值放大器的最大输出功率比。
峰值放大器202的负载阻抗Z02由下式确定:
其中,γ是DPA的载波放大器和峰值放大器的最大输出功率比。
对一个功率比例1∶1的平衡型DPA,γ=1,Z01是70.7欧姆,峰值放大器的负载阻抗Z02被匹配到100欧姆,对一个功率比例1∶2的非平衡型DPA,γ=2,Z01是86.6欧姆,DPA的峰值放大器的负载阻抗Z02是75欧姆。
当输入信号低时,峰值放大器关闭。此时,载波放大器工作在高阻抗状态,如图5所示。载波放大器的阻抗Zhigh_impedance计算如下:
Zhigh_impedance=50*(1+γ) (3)
其中,γ是DPA的载波放大器和峰值放大器的最大输出功率比。
对一个功率比例1∶1的平衡型DPA,载波放大器的负载阻抗Zhigh_impedance是100欧姆,而对一个功率比例1∶2的非平衡型DPA,载波放大器的负载阻抗是Zhigh_impedance是150欧姆。
当输入信号很大时,峰值放大器将达到饱和值,峰值放大器负载阻抗Z02如公式(2)所示。此时,载波放大器的负载阻抗是50欧姆。通过第二四分之一波长线201的阻抗转换成50*(1+γ)欧姆,并且和峰值放大器的负载阻抗Z02并联,即是50欧姆。如图6所示。
当输入信号从小信号切换到大信号,载波放大器的负载阻抗将降低到50欧姆,并且峰值放大器负载阻抗降低到Z02。
通过本发明的这个设计,修改了峰值放大器202特征阻抗和第二四分之一波长线的特征阻抗,以此使得DPA合路器的阻抗保持在50欧。由于合路器的阻抗上升到50欧姆,当输入信号较小并且峰值放大器不工作时,第二四分之一波长变换器201的阻抗变换是从50欧姆而不是25欧姆变换到高阻抗(通常是100欧姆)。通过这种方式,多尔蒂合成器的Q点可成功的降低。例如,对一个平衡型DPA,应用本发明,Q点可降低到0.33,而一般传统的平衡型DPA的Q点为0.76。
如图4所示,应用本发明的新的带宽扩展的DPA的阻抗的色散特性和带宽均优于传统的DPA。并且在合路器的电路部分仅采用一个四分之一波长线,达到更小尺寸,如图3a所示。也就是说,应用本发明,DPA的输出合路器只用了一个四分之一波长线,降低了Q值,可达到带宽扩展并且缩小尺寸的技术效果。
进一步的,本发明提供了传统方案和利用本发明的方案的技术效果对比。
如图7所示,在使用MD7IC2755NR1功放管的平衡型DPA中采用传统方案和利用本发明的方案的性能对比可以看出,相比于传统设计,使用本发明,DPA的漏极效率可提高6%,并且漏极效率和峰值功率在200MHZ的带宽内很平坦。如图8所示,在使用MRF8S21120HR3和MRF8S21201HR3功放管的非平衡型DPA中采用传统方案和利用本发明的方案的性能对比可以看出,相比于传统设计,利用本发明的扩展带宽的DPA可得到更平坦的漏极效率和峰值功率。上述MD7IC2755NR1、MRF8S21120HR3和MRFSS21201HR3分别是功放管器件型号。
本发明可应用于任何系统的功放设计,包括LTE,WCDMA,Wimax等。
从上述描述应该理解,在不脱离本发明精神的情况下,可以对本发明各实施方式进行修改和变更。本说明书中的描述仅仅是用于说明性的,而不应被认为是限制性的。本发明的范围仅受权利要求书的限制。
Claims (2)
1.一种多尔蒂功率放大器,包括输入功率分路器,多尔蒂功率放大器的输入信号输入到输入功率分路器,输入功率分路器的一端输出连接到载波放大器,分路器的另一端输出与一个第一四分之一波长线连接,第一四分之一波长线的另一端与一个峰值放大器连接,载波放大器的一端与一个第二四分之一波长线连接,第二四分之一波长线的另一端连接到峰值放大器,第二四分之一波长线的和峰值放大器的连接点是所述多尔蒂功率放大器的信号输出点;所述第二四分之一波长线的特征阻抗Z01由下式确定:
所述峰值放大器的负载阻抗Z02由下式确定:
其中,γ是多尔蒂功率放大器的载波放大器和峰值放大器的最大输出功率比。
2.根据权利要求1中任一项所述的多尔蒂功率放大器,当输入信号小时,峰值放大器关闭,载波放大器工作在高阻抗状态,载波放大器的阻抗由下式确定:
Zhigh_impedance=50*(1+γ),
其中,γ是多尔蒂功率放大器的载波放大器和峰值放大器的最大输出功率比。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110458925.7A CN103187929B (zh) | 2011-12-29 | 带宽扩展的多尔蒂功率放大器 | |
JP2014549555A JP2015506615A (ja) | 2011-12-29 | 2012-12-12 | 帯域幅が拡張されたドハティ電力増幅器 |
US14/367,098 US9450543B2 (en) | 2011-12-29 | 2012-12-12 | Bandwidth-extended Doherty power amplifier |
EP12834579.0A EP2798735B1 (en) | 2011-12-29 | 2012-12-12 | Bandwidth-extended doherty power amplifier |
PCT/IB2012/002864 WO2013098639A1 (en) | 2011-12-29 | 2012-12-12 | Bandwidth-extended doherty power amplifier |
KR1020147020892A KR101678753B1 (ko) | 2011-12-29 | 2012-12-12 | 대역폭 확장된 도허티 전력 증폭기 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110458925.7A CN103187929B (zh) | 2011-12-29 | 带宽扩展的多尔蒂功率放大器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103187929A CN103187929A (zh) | 2013-07-03 |
CN103187929B true CN103187929B (zh) | 2016-12-14 |
Family
ID=
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101836357A (zh) * | 2007-11-21 | 2010-09-15 | 富士通株式会社 | 功率放大器 |
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101836357A (zh) * | 2007-11-21 | 2010-09-15 | 富士通株式会社 | 功率放大器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | A SiGe envelope-tracking power amplifier with an integrated CMOS envelope modulator for mobile WiMAX/3GPP LTE transmitters | |
US8653889B1 (en) | Doherty amplifier having compact output matching and combining networks | |
US9660591B2 (en) | Power amplifier | |
CN106411267A (zh) | 一种新型宽带三路Doherty功率放大器及其实现方法 | |
WO2017059769A1 (zh) | 一种Doherty功率放大电路 | |
CN107026617B (zh) | 使用下一级输入阻抗和多偏置的异相功放信号分离器 | |
CN104113286B (zh) | 一种Doherty功率放大电路 | |
US20150070094A1 (en) | Doherty power amplifier with coupling mechanism independent of device ratios | |
CN106374863B (zh) | 一种提高功率回退动态范围的Doherty功率放大器及其实现方法 | |
CN114172462A (zh) | 低损耗多尔蒂效率增强型负载调制平衡功放及其实现方法 | |
CN106411275B (zh) | 改善带宽的三路Doherty功率放大器及实现方法 | |
CN111740703A (zh) | 伪Doherty式自输入控制的负载调制平衡类功率放大器及其实现方法 | |
CN103986422A (zh) | 一种双频带射频功率放大器阻抗匹配电路 | |
CN107508560B (zh) | 一种增强带宽性能的Doherty功率放大器及其实现方法 | |
CN206211949U (zh) | 一种双频Doherty功率放大器 | |
CN109302151B (zh) | 补偿线的电长度确定方法及Doherty功率放大器 | |
CN104617893B (zh) | 多频带射频功率放大器 | |
CN103187929B (zh) | 带宽扩展的多尔蒂功率放大器 | |
US9450543B2 (en) | Bandwidth-extended Doherty power amplifier | |
US10224878B2 (en) | Power amplification device | |
CN107919858A (zh) | 基于合路机制的宽带/超宽带大功率放大器 | |
CN107112956A (zh) | 功率放大器、功率放大方法、功率放大控制装置及方法 | |
CN110380691A (zh) | 一种基于Doherty功放的功率放大电路及装置 | |
CN209105131U (zh) | 一种具有能量可叠加的功率放大器 | |
CN109067364B (zh) | 一种宽频高效输出的Doherty功率放大器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder |
Address after: 201206 Pudong Jinqiao Export Processing Zone, Nanjing Road, No. 388, Shanghai Patentee after: Shanghai NOKIA Baer Limited by Share Ltd Address before: 201206 Pudong Jinqiao Export Processing Zone, Nanjing Road, No. 388, Shanghai Patentee before: Shanghai Alcatel-Lucent Co., Ltd. |