CN103185665A - Method for measuring optical axis of birefringence element - Google Patents
Method for measuring optical axis of birefringence element Download PDFInfo
- Publication number
- CN103185665A CN103185665A CN2013100797419A CN201310079741A CN103185665A CN 103185665 A CN103185665 A CN 103185665A CN 2013100797419 A CN2013100797419 A CN 2013100797419A CN 201310079741 A CN201310079741 A CN 201310079741A CN 103185665 A CN103185665 A CN 103185665A
- Authority
- CN
- China
- Prior art keywords
- laser
- birefringent element
- external cavity
- output
- optical axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000010287 polarization Effects 0.000 claims abstract description 29
- 230000008033 biological extinction Effects 0.000 claims abstract description 8
- 238000001514 detection method Methods 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 238000002310 reflectometry Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 2
- -1 biological tissues Substances 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical group [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012014 optical coherence tomography Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明提供一种双折射元件光轴的测量方法,包括以下步骤:半外腔激光器连续输出激光,模式为单纵模;调整所述偏振片,使所述偏振片的偏振方向与所述半外腔激光器输出激光的初始偏振方向垂直;将所述双折射设置于所述输出腔镜与所述外腔平面反射镜之间,所述双折射元件在沿半外腔激光器输出激光的光路上具有相对平行的两个平面,且所述激光沿垂直于所述两个平面的方向入射;将所述双折射元件以平行于半外腔激光器输出激光方向的轴线为旋转轴旋转,并驱动所述外腔平面反射镜沿输出激光方向往复运动;继续旋转所述双折射元件,使得所述显示装置出现消光状态,得到双折射元件的光轴。
The invention provides a method for measuring the optical axis of a birefringent element, comprising the following steps: a semi-external cavity laser continuously outputs laser light in a single longitudinal mode; adjusting the polarizer so that the polarization direction of the polarizer is the same as that of the half The initial polarization direction of the output laser of the external cavity laser is vertical; the birefringence is arranged between the output cavity mirror and the external cavity plane mirror, and the birefringent element is on the optical path along the output laser of the half external cavity laser There are two relatively parallel planes, and the laser is incident along the direction perpendicular to the two planes; the birefringent element is rotated with the axis parallel to the output laser direction of the semi-external cavity laser as the rotation axis, and drives the The external cavity plane reflector reciprocates along the output laser direction; the birefringent element is continuously rotated, so that the display device appears in an extinction state, and the optical axis of the birefringent element is obtained.
Description
技术领域 technical field
本发明涉及一种双折射元件光轴的测量方法。 The invention relates to a method for measuring the optical axis of a birefringence element.
背景技术 Background technique
许多材料,如生物组织、光纤、液晶和波片等都表现出强的光学双折射。对于这些材料来说,光轴方位影响材料的性能。对一些要求较高的仪器系统,精确测量光轴也有着迫切的需求。 Many materials, such as biological tissues, optical fibers, liquid crystals, and wave plates, exhibit strong optical birefringence. For these materials, the orientation of the optical axis affects the properties of the material. For some instrument systems with high requirements, there is also an urgent need to accurately measure the optical axis.
许多方法被应用于光轴的测量,如偏振敏感光学相干层析术等。但以这些测量方法为基础组成的仪器结构复杂,价格昂贵,测量精度不高,不能应用于高精度领域。 Many methods have been applied to the measurement of the optical axis, such as polarization-sensitive optical coherence tomography, etc. However, the instruments based on these measurement methods are complex in structure, expensive in price, and low in measurement accuracy, so they cannot be used in high-precision fields.
发明内容 Contents of the invention
综上所述,确有必要提供一种价格较低、且具有高精度的测量双折射元件光轴的测量方法。 To sum up, it is indeed necessary to provide a method for measuring the optical axis of a birefringent element with low price and high precision.
一种双折射元件光轴的测量方法,包括以下步骤:步骤S10,提供一双折射元件光轴的测量装置,包括一半外腔激光器、激光回馈单元以及一偏振态检测系统;所述半外腔激光器包括一高反腔镜、增益管、增透窗片以及输出腔镜沿半外腔激光器的输出激光光路设置;所述激光回馈单元包括一外腔平面反射镜,所述外腔平面反射镜设置于从所述输出腔镜出射的激光的光路上,且与所述输出腔镜间隔设置;所述偏振态检测系统包括一偏振片、一光电探测器以及显示装置沿从所述外腔平面反射镜出射的激光依次间隔设置,所述光电探测器接收从所述偏振片出射的激光以感测激光强度的变化,所述显示装置显示激光强度的变化;步骤S11,半外腔激光器连续输出激光,模式为单纵模;步骤S12,调整所述偏振片,使所述偏振片的偏振方向与所述半外腔激光器输出激光的初始偏振方向垂直;步骤S13,将待测双折射元件设置于所述输出腔镜与所述外腔平面反射镜之间,所述双折射元件在沿半外腔激光器输出激光的光路上具有相对平行的两个平面,且所述激光沿垂直于所述两个平面的方向入射;步骤S14,将所述双折射元件以平行于半外腔激光器输出激光方向的轴线为旋转轴旋转,并驱动所述外腔平面反射镜沿输出激光方向往复运动,使得所述显示装置出现消光状态,所述双折射元件的光轴与所述半外腔激光器输出激光的初始偏振方向相同,获得双折射元件的光轴。 A method for measuring the optical axis of a birefringent element, comprising the following steps: Step S10, providing a measuring device for the optical axis of a birefringent element, including half of an external cavity laser, a laser feedback unit, and a polarization detection system; the half of the external cavity laser It includes a high anti-cavity mirror, a gain tube, an anti-reflection window, and an output cavity mirror arranged along the output laser light path of the half-external cavity laser; the laser feedback unit includes an external cavity plane reflector, and the external cavity plane reflector is set On the optical path of the laser light emitted from the output cavity mirror, and set apart from the output cavity mirror; the polarization state detection system includes a polarizer, a photodetector and a display device along the reflection from the external cavity plane The laser light emitted by the mirror is set at intervals in sequence, the photodetector receives the laser light emitted from the polarizer to sense the change of the laser intensity, and the display device displays the change of the laser intensity; step S11, the semi-external cavity laser continuously outputs the laser light , the mode is a single longitudinal mode; step S12, adjusting the polarizer so that the polarization direction of the polarizer is perpendicular to the initial polarization direction of the output laser light of the semi-external cavity laser; step S13, setting the birefringent element to be measured in Between the output cavity mirror and the external cavity plane mirror, the birefringent element has two relatively parallel planes along the optical path of the semi-external cavity laser output laser light, and the laser light is perpendicular to the two planes incident in the direction of two planes; step S14, rotating the birefringent element with the axis parallel to the output laser direction of the semi-external cavity laser as the rotation axis, and driving the external cavity plane mirror to reciprocate along the output laser direction, so that the The display device appears in an extinction state, and the optical axis of the birefringent element is the same as the initial polarization direction of the output laser light of the semi-external cavity laser, and the optical axis of the birefringent element is obtained.
本发明所提供的双折射元件光轴的测量方法,基于激光回馈及偏振跳变原理,通过旋转所述双折射元件,利用所述双折射元件的光轴与半外腔激光器输出激光的偏振方向相同时产生消光现象,得到双折射元件的光轴,测量装置结构简单,成本较低,且具有更高的测量精度,因此具有更广阔的应用前景。 The method for measuring the optical axis of the birefringent element provided by the present invention is based on the principle of laser feedback and polarization hopping, by rotating the birefringent element, using the optical axis of the birefringent element and the polarization direction of the laser output from the semi-external cavity laser Simultaneously, the extinction phenomenon is generated to obtain the optical axis of the birefringent element. The measuring device has simple structure, low cost and higher measurement accuracy, so it has broader application prospects.
附图说明 Description of drawings
图1为本发明实施例所述双折射元件光轴的测量装置。 Fig. 1 is a measurement device for the optical axis of a birefringent element according to an embodiment of the present invention.
图2为所述双折射元件旋转过程中的激光强度变化曲线。 Fig. 2 is the laser intensity variation curve during the rotation process of the birefringent element.
图3为双折射元件光轴与半导体激光器输出激光初始偏振方向一致时的激光强度变化曲线。 Fig. 3 is the laser intensity change curve when the optical axis of the birefringent element is consistent with the initial polarization direction of the laser output from the semiconductor laser.
主要元件符号说明 Description of main component symbols
如下具体实施例将结合上述附图进一步说明本发明。 The following specific embodiments will further illustrate the present invention in conjunction with the above-mentioned drawings.
具体实施方式 Detailed ways
下面结合说明书附图对本发明做进一步的描述,为了方便描述,本发明首先描述所述双折射元件光轴的测量装置。 The present invention will be further described below in conjunction with the accompanying drawings. For the convenience of description, the present invention first describes the measuring device for the optical axis of the birefringent element.
如图1所示,本发明第一实施例提供一种双折射元件光轴的测量装置,所述测量装置包括一半外腔激光器20,一激光回馈单元30以及一偏振态检测系统40。
As shown in FIG. 1 , the first embodiment of the present invention provides a device for measuring the optical axis of a birefringent element. The device includes half of an
所述半外腔激光器20用于输出激光形成激光光路,所述半外腔激光器20既作为光源又作为传感器,以形成激光回馈,所述半外腔激光器20为半外腔结构,所述半外腔激光器20输出的激光为单纵模的偏振光。激光器类型可以是气体激光器、半导体激光器或固体激光器等。所述半外腔激光器20包括高反腔镜1、增益管2、增透窗片3及输出腔镜4,所述高反腔镜1、增益管2、增透窗片3、输出腔镜4沿所述输出激光的轴线依次设置且共轴设置。所述高反腔镜1与所述增益管2远离所述输出腔镜4的一端固定连接,所述增透窗片3与所述增益管2靠近所述输出腔镜4的一端固定连接。所述高反腔镜1和输出腔镜4均镀有激光波长的高反射膜(反射率98%以上),前者的反射率高于后者。所述增透窗片3镀有激光波长的增透膜(图未示)。本实施例中,所述激光器为氦氖激光器,所述增益管2内充满He-Ne气体,气体比例为9:1,Ne同位素比例为:Ne20:Ne22=1:1,激光器的高反腔镜1和输出腔镜4的反射率分别为99.8%和98.8%。
The semi-external-
所述激光回馈单元30包括一外腔平面反射镜6。所述外腔平面反射镜6设置于所述半外腔激光器20的输出光路上,且与所述输出腔镜4间隔设置形成一空间,以容纳待测样品。所述外腔平面反射镜6用于将半外腔激光器20输出的激光反射回所述半外腔激光器20中,形成激光回馈。所述激光回馈单元30可进一步包括一外腔压电陶瓷7,所述外腔压电陶瓷7与所述外腔平面反射镜6相连接,用于带动所述外腔平面反射镜6沿所述输出激光轴线的方向往复运动。可以理解,所述外腔压电陶瓷7也可用其他微动元件替代,带动所述外腔平面反射镜6往复运动。
The
所述偏振态检测系统40用于判断入射到偏振态检测系统40中的激光的偏振态,包括偏振片8、光电探测器9以及显示装置10。所述偏振片8以及所述光电探测器9沿所述半外腔激光器20输出激光所在的轴线设置。具体的,所述偏振片8设置于半外腔激光器20从所述外腔平面反射镜出射的激光的光路上,且与所述外腔平面反射镜6间隔设置,以接收所述外腔平面反射镜6透射的激光。所述光电探测器9设置于从所述偏振片8透射出的激光的光路上,用以接收从偏振片8透射的激光,并将所述激光强度转化为电信号输入所述显示装置10。所述显示装置10可将所述激光强度以波形的形式显示出来。本实施例中,所述显示装置10为一示波器。
The polarization
本发明进一步提供一种应用所述双折射元件光轴的测量装置测量双折射元件的测量方法,具体包括以下步骤: The present invention further provides a method for measuring a birefringent element using the measuring device for the optical axis of the birefringent element, which specifically includes the following steps:
步骤S11,半外腔激光器20连续输出激光,模式为单纵模;
Step S11, the
步骤S12,调整所述偏振片8,使所述偏振片8的偏振方向与所述半外腔激光器20输出激光的初始偏振方向垂直;
Step S12, adjusting the
步骤S13,将待测双折射元件5设置于所述输出腔镜4与所述外腔平面反射镜6之间,所述双折射元件5在沿输出激光的光路上具有相对平行的两个平面;
Step S13, setting the
步骤S14,将所述双折射元件5以平行于输出激光方向的轴线为旋转轴,旋转一定角度,并驱动所述外腔平面反射镜沿半外腔激光器20输出激光的方向往复运动;
Step S14, rotating the
步骤S15,继续旋转所述双折射元件5,使得所述显示装置10出现消光状态,此时所述双折射元件的光轴与所述半外腔激光器20输出激光的初始偏振方向相同,获得双折射元件5的光轴。
Step S15, continue to rotate the
在步骤S13中,所述双折射元件5在半外腔激光器20输出激光的方向上具有相对平行的两个平面。所述半外腔激光器20输出的激光垂直于所述双折射元件5的所述平面入射,所述双折射元件5的光轴平行于所述平面,根据双折射元件5材料的不同,所述光轴可为双折射元件5的快轴或慢轴。进一步的,所述双折射元件5的两个平面可镀有增透膜或折射率匹配液,以减少或消除双折射元件5表面的干涉现象。
In step S13 , the
在步骤S14中,将所述双折射元件5以平行于输出激光方向的轴线为轴旋转。由于所述半外腔激光器20输出的激光垂直于所述双折射元件5的表面入射,因此可将所述双折射元件5以输出激光为旋转轴旋转。在旋转的过程中,同时向所述外腔压电陶瓷7输入三角波电压,使所述外腔平面反射镜6往复运动。所述光电探测器9探测从偏振片8出射的激光强度变化,然后通过显示装置10以波形显示。
In step S14, the
在步骤S15中,继续旋转所述双折射元件5,同时驱动所述外腔平面反射镜6往复运动,观察显示装置10中所述波形的变化。如图2所示,在旋转的过程中,只要所述双折射元件5的光轴与所述半外腔激光器20输出的激光的初始偏振方向存在一夹角,则在外腔平面反射镜6往复运动的过程中,半外腔激光器20输出的激光经过偏振片8后始终存在激光出射,而不能完全消光。此时,所述光电探测器9输出的电压就不会出现零点,也就是说所述光电探测器9接收到的激光强度始终不为零。如图3所示,当所述显示装置10显示的波形出现零点时,则可知所述光电探测器9接收到的激光强度也为零,也就是说在显示装置10出现消光状态,即显示装置10接收到的电压为零,则可判定此时所述双折射元件5的光轴与所述半外腔激光器20输出激光的初始偏振方向一致,进而可得到所述双折射元件5的光轴。
In step S15 , continue to rotate the
本发明提供的所述双折射元件光轴的测量方法,基于偏振跳变原理,通过旋转所述双折射元件,利用所述双折射元件的光轴与半外腔激光器输出激光的偏振方向相同时产生消光现象,得到所述双折射元件的光轴,无需复杂的设备即可进行测量,测量装置结构简单,价格较低,并且具有很高的测量精度,因此具有广阔的应用前景。 The method for measuring the optical axis of the birefringent element provided by the present invention is based on the principle of polarization hopping, by rotating the birefringent element, when the optical axis of the birefringent element is the same as the polarization direction of the output laser light from the semi-external cavity laser The extinction phenomenon is generated, the optical axis of the birefringent element is obtained, and the measurement can be performed without complex equipment. The measuring device has a simple structure, low price, and high measurement accuracy, so it has broad application prospects.
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。 In addition, those skilled in the art can also make other changes within the spirit of the present invention. Of course, these changes made according to the spirit of the present invention should be included in the scope of protection claimed by the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310079741.9A CN103185665B (en) | 2013-03-13 | 2013-03-13 | The measuring method of birefringence element optical axis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310079741.9A CN103185665B (en) | 2013-03-13 | 2013-03-13 | The measuring method of birefringence element optical axis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103185665A true CN103185665A (en) | 2013-07-03 |
CN103185665B CN103185665B (en) | 2015-08-12 |
Family
ID=48676954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310079741.9A Expired - Fee Related CN103185665B (en) | 2013-03-13 | 2013-03-13 | The measuring method of birefringence element optical axis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103185665B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103712781A (en) * | 2013-12-25 | 2014-04-09 | 天津大学 | Device and method for measuring multi-incidence-angle polarization interference in birefringence optical wedge optical axis direction |
CN104833485A (en) * | 2015-05-12 | 2015-08-12 | 山东大学 | Device and method capable of simultaneously detecting optical axis directions of two birefringence devices |
CN107817094A (en) * | 2017-09-14 | 2018-03-20 | 西安科佳光电科技有限公司 | A kind of high accuracy double optical axises and more plain shaft parallelism adjusting process in the same direction |
CN107817095A (en) * | 2017-09-14 | 2018-03-20 | 西安科佳光电科技有限公司 | A kind of high accuracy double optical axises and more plain shaft parallelism adjusting process in the same direction |
CN107843413A (en) * | 2017-09-14 | 2018-03-27 | 西安科佳光电科技有限公司 | A kind of high accuracy reversely double optical axises and more plain shaft parallelism adjusting process |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0489637A (en) * | 1990-07-25 | 1992-03-23 | Nec Corp | Optical information recording and reproducing device |
DE4032323A1 (en) * | 1990-10-11 | 1992-04-16 | Adlas Gmbh & Co Kg | SINGLE FASHION LASER |
CN1710398A (en) * | 2005-06-24 | 2005-12-21 | 清华大学 | Laser Feedback Waveplate Measuring Device |
CN101021563A (en) * | 2007-03-16 | 2007-08-22 | 清华大学 | Double-refraction external cavity displacement measuring system |
CN101055207A (en) * | 2007-06-01 | 2007-10-17 | 清华大学 | Device and method for trace to the source for measuring any wave plate retardation |
CN101650226A (en) * | 2009-09-24 | 2010-02-17 | 清华大学 | Micro phase delay measuring device for optical element based on laser feedback |
-
2013
- 2013-03-13 CN CN201310079741.9A patent/CN103185665B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0489637A (en) * | 1990-07-25 | 1992-03-23 | Nec Corp | Optical information recording and reproducing device |
DE4032323A1 (en) * | 1990-10-11 | 1992-04-16 | Adlas Gmbh & Co Kg | SINGLE FASHION LASER |
CN1710398A (en) * | 2005-06-24 | 2005-12-21 | 清华大学 | Laser Feedback Waveplate Measuring Device |
CN101021563A (en) * | 2007-03-16 | 2007-08-22 | 清华大学 | Double-refraction external cavity displacement measuring system |
CN101055207A (en) * | 2007-06-01 | 2007-10-17 | 清华大学 | Device and method for trace to the source for measuring any wave plate retardation |
CN101650226A (en) * | 2009-09-24 | 2010-02-17 | 清华大学 | Micro phase delay measuring device for optical element based on laser feedback |
Non-Patent Citations (4)
Title |
---|
B.HYLE PARK ET AL.: "Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography", 《OPTIC SLETTERS》 * |
B.HYLE PARK ET AL.: "Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography", 《OPTIC SLETTERS》, vol. 30, no. 9, 1 October 2005 (2005-10-01) * |
刘名等: "激光回馈波片位相延迟测量的误差源及消除方法", 《应用光学》 * |
张书练等: "正交线偏振激光器及其在精密测量中的新应用", 《光电工程》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103712781A (en) * | 2013-12-25 | 2014-04-09 | 天津大学 | Device and method for measuring multi-incidence-angle polarization interference in birefringence optical wedge optical axis direction |
CN103712781B (en) * | 2013-12-25 | 2016-03-30 | 天津大学 | The multiple angles of incidence polarization interference measurement mechanism of birefringent wedge optical axis direction and method |
CN104833485A (en) * | 2015-05-12 | 2015-08-12 | 山东大学 | Device and method capable of simultaneously detecting optical axis directions of two birefringence devices |
CN104833485B (en) * | 2015-05-12 | 2017-09-01 | 山东大学 | A device and method capable of simultaneously detecting the direction of the optical axes of two birefringent devices |
CN107817094A (en) * | 2017-09-14 | 2018-03-20 | 西安科佳光电科技有限公司 | A kind of high accuracy double optical axises and more plain shaft parallelism adjusting process in the same direction |
CN107817095A (en) * | 2017-09-14 | 2018-03-20 | 西安科佳光电科技有限公司 | A kind of high accuracy double optical axises and more plain shaft parallelism adjusting process in the same direction |
CN107843413A (en) * | 2017-09-14 | 2018-03-27 | 西安科佳光电科技有限公司 | A kind of high accuracy reversely double optical axises and more plain shaft parallelism adjusting process |
CN107817095B (en) * | 2017-09-14 | 2019-12-20 | 西安科佳光电科技有限公司 | High-precision homodromous double-optical-axis and multi-optical-axis parallelism adjusting method |
CN107817094B (en) * | 2017-09-14 | 2019-12-20 | 西安科佳光电科技有限公司 | High-precision homodromous double-optical-axis and multi-optical-axis parallelism adjusting method |
CN107843413B (en) * | 2017-09-14 | 2020-01-10 | 西安科佳光电科技有限公司 | High-precision reverse double-optical-axis and multi-optical-axis parallelism adjusting method |
Also Published As
Publication number | Publication date |
---|---|
CN103185665B (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105403178B (en) | Film thickness measuring apparatus and membrane thickness measured method | |
CN101813619B (en) | Method utilizing polarization-controllable T-Hz wave to measure optical axis direction of birefringent crystal | |
CN102735646B (en) | Measuring apparatus and measuring method for refractive index of transparent medium | |
CN103185665B (en) | The measuring method of birefringence element optical axis | |
CN101726362B (en) | Terahertz polarization analyzer and terahertz polarization measurement method | |
CN102589850B (en) | A precision measurement system for wave plate phase delay and its realization method | |
CN103115705B (en) | Stress and double refraction measurement instrument and measurement method based on cross-polarization solid laser | |
CN102735430B (en) | Method and device for detecting phase delay | |
CN103344623A (en) | Coherent anti-stokes raman scattering optical comb spectrum detection method for improving precision | |
CN103185550B (en) | The measuring method of rotational angle | |
CN108007571B (en) | Optical Fiber Coupling-Based CARS Beam Spatial Stability Test Control System and Method | |
CN102183486B (en) | Gas refractive index measurer and measuring method thereof based on optical frequency comb | |
CN105716756B (en) | A kind of device for accurately measuring of optical material microstress spatial distribution | |
CN107655599B (en) | A method for measuring microscopic stress of optical components | |
CN108539573A (en) | A kind of time domain data compression device and method of ultrashort laser pulse | |
CN106768889A (en) | Optical thin film laser damage threshold test device and method under a kind of vacuum environment | |
CN103196865B (en) | Measure the measuring method of birefringence element thickness and refractive index simultaneously | |
CN107131902A (en) | A kind of scaling method for light ball modulator peak retardation | |
CN107462849B (en) | Device and method for measuring radio frequency line transmission factor based on atomic energy level | |
CN106500911A (en) | Pressure gauge calibration method based on gas absorption spectral line pressure broadening effect | |
CN105158163B (en) | Large-caliber uniaxial crystal light absorption coefficient measuring device and method | |
CN105300531A (en) | A Novel Wavelength Meter Based on Magneto-Optical Rotation Effect | |
CN102507450A (en) | Method and device for measuring refractive index of transparent medium based on Y-shaped-cavity orthogonal polarization laser | |
CN105353088B (en) | Automatically controlled light-scattering material and device time domain response characteristic test method | |
CN100363728C (en) | Laser Feedback Waveplate Measuring Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150812 Termination date: 20190313 |
|
CF01 | Termination of patent right due to non-payment of annual fee |