[go: up one dir, main page]

CN103169963A - 狂犬病dna疫苗的构建及应用 - Google Patents

狂犬病dna疫苗的构建及应用 Download PDF

Info

Publication number
CN103169963A
CN103169963A CN2013101259112A CN201310125911A CN103169963A CN 103169963 A CN103169963 A CN 103169963A CN 2013101259112 A CN2013101259112 A CN 2013101259112A CN 201310125911 A CN201310125911 A CN 201310125911A CN 103169963 A CN103169963 A CN 103169963A
Authority
CN
China
Prior art keywords
rvg
vaccine
rabies
pcagg
immunity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101259112A
Other languages
English (en)
Other versions
CN103169963B (zh
Inventor
步志高
王喜军
葛金英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARBIN WEIKE BIOTECHNOLOGY DEVELOPMENT CO LTD
Harbin Veterinary Research Institute of CAAS
Original Assignee
HARBIN WEIKE BIOTECHNOLOGY DEVELOPMENT CO LTD
Harbin Veterinary Research Institute of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HARBIN WEIKE BIOTECHNOLOGY DEVELOPMENT CO LTD, Harbin Veterinary Research Institute of CAAS filed Critical HARBIN WEIKE BIOTECHNOLOGY DEVELOPMENT CO LTD
Priority to CN201310125911.2A priority Critical patent/CN103169963B/zh
Publication of CN103169963A publication Critical patent/CN103169963A/zh
Application granted granted Critical
Publication of CN103169963B publication Critical patent/CN103169963B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供一种作为狂犬病DNA疫苗的表达按哺乳动物密码子偏嗜性优化的狂犬病病毒囊膜糖蛋白(G蛋白)基因的重组真核表达质粒。

Description

狂犬病DNA疫苗的构建及应用
技术领域
本发明涉及狂犬病疫苗领域。更具体地,本发明涉及一种作为狂犬病DNA疫苗的表达按哺乳动物密码子偏嗜性优化的RV囊膜糖蛋白(G蛋白)基因的重组真核表达质粒。 
背景技术
狂犬病(Rabies)是由狂犬病病毒(Rabies virus,RV)引起的一种人兽共患传染病,在全球范围内流行,以急性、渐进性和致死性脑炎为特征,一旦出现神经症状病死率几乎高达100%[1,2]。全球每年死于狂犬病的人数高达5.5万,主要发生在亚洲和非洲的发展中国家[3,4]。自2000年以来,我国狂犬病疫情又呈现快速回升的趋势,2007年死亡人数高达3,300人[5],随后略有下降,但仍维持在较高水平,2011年造成1,879人死亡[6],已经成为一个严重的公共卫生问题。据统计,99%以上人间狂犬病死亡病例因狂犬病犬咬伤所致[1]。人间狂犬病控制最有效的措施是通过疫苗接种,从源头上控制犬狂犬病。传统的狂犬病弱毒疫苗成本低廉,但存在毒力残留或致病性回复突变的安全隐患;灭活疫苗安全、有效,但成本昂贵[7,8]。因此,研制安全、有效,成本低廉的动物狂犬病疫苗,仍具现实意义。 
DNA疫苗免疫动物后,可同时诱导体液免疫和细胞免疫,可保护动物抵抗病原体的攻击。同时,DNA疫苗易于构建,大量制备工艺简单,生产成本低廉,便于保存,无需冷冻运输,因而引起研究人员的广泛关注[9,10]。 
狂犬病病毒(Rabies virus,RV)为弹状病毒科(Rhabdoviridae)狂犬病毒属(Lssavirus)成员[11]。狂犬病病毒囊膜蛋白(RVG)是病毒的受体结合蛋白和主要毒力因子之一,决定着病毒侵入神经系统或组织的路径和致病力,也是诱导机体保护性免疫反应的主要抗原[12]。本研究构建了表达哺乳动物密码子优化的RVG基因的重组真核表达质粒pCAGG-RVG,并对其在靶动物犬的免疫原性进行了评估。 
发明内容
本发明构建了表达按哺乳动物密码子偏嗜性优化的RVG蛋白(RVG)基因的重组真核表达质粒pCAGG-RVG。间接免疫荧光试验及蛋白印迹结果表明,重组RVG在pCAGG-RVG转染BHK细胞获得正确表达。将pCAGG-RVG按500μg剂量经肌肉注射途径免疫比格犬,间隔4周以相同剂量、途径加强免疫一次,并于初次免疫前、后不同时间检测血清RV中和抗体。结果,pCAGG-RVG一次免疫即可诱导显著的中和抗体反应,二次免疫中和抗体滴度表现出显著地增强效果。二次免疫后,中和抗体滴度经过短暂的下降,即保持持续的平稳,至初次免疫后第54周,7只免疫犬中和抗体滴度平均为2.88IU,且全部高于0.5IU,即全部高于对强毒攻击保护的最低中和抗体滴度要求。综上,pCAGG-RVG具有预防狂犬病的潜力,是一种有希望的狂犬病候选疫苗。 
具体地,本发明提供以下各项: 
1.一种狂犬病DNA疫苗,所述狂犬病DNA疫苗包含表达按哺乳动物密码子偏嗜性优化的狂犬病病毒囊膜糖蛋白基因的重组真核表达质粒。 
2.根据第1项所述的狂犬病DNA疫苗,其中所述按哺乳动物密码子偏嗜性优化的狂犬病病毒囊膜糖蛋白基因具有如SEG ID No.1所示的序列。 
3.根据第1项所述的狂犬病DNA疫苗,其中所述表达按哺乳动物密码子偏嗜性优化的狂犬病病毒囊膜糖蛋白基因的重组真核表达质粒具有如SEG ID No.2所示的序列。 
4.具有如SEG ID No.2所示的序列的重组真核表达质粒用作狂犬病DNA疫苗的用途。 
5.具有如SEG ID No.2所示的序列的重组真核表达质粒在制备狂犬病DNA疫苗中的用途。 
附图说明
图1:间接免疫荧光检测RVG蛋白在pCAGG-RVG转染BHK细胞中的表达。A:pCAGG-RVG转染的BHK细胞;B:RV弱毒疫苗株ERA感染的BHK细胞;C:pCAGGS转染的BHK细胞。 
图2:蛋白质印迹检测RVG蛋白在pCAGG-RVG转染BHK细胞中的表达。以2μg的pCAGG-RVG或pCAGGS转染铺于6孔板密度约为80%的BHK细胞,同时用RV弱毒疫苗株ERA按MOI为1感染转染铺于6孔板密度约为80%的BHK细胞。36小时后,收获、裂解细胞,以裂解细胞上清进行SDS-PAGE电泳,将蛋白质转印至硝酸纤维素膜上后,以鼠抗RV血清为一抗进行Western blot分析。M:蛋白质分子量标准;A:pCAGGS转染的BHK细胞;B:RV弱毒疫苗株ERA感染的BHK细胞;C:pCAGG-RVG转染的BHK细胞。 
图3:狂犬病DNA疫苗pCAGG-RVG对犬的免疫效力。用表达RVG蛋白的重组真核表达质粒pCAGG-RVG按500μg/1mL/只的剂量经肌肉注射途径免疫7只比格犬,间隔4周以相同剂量、途径进行加强免疫。免疫前和免疫后不同时间点采集试验犬外周血,分离血清,通过中和试验检测血清中RV特异中和抗体滴度。 
具体实施方式
下面结合具体实施例对本发明作进一步说明。 
材料和方法 
1.质粒、血清、细胞株和毒株 
真核表达载体pCAGGS由Y.Kawaoka博士提供[13](文献13中明确公开了载体pCAGGS的构建方法);抗狂犬病病毒国际标准血清购自OIE狂犬病参考实验室(法国);(仓鼠肾细胞)BHK-21:ATCC NO.CCL10;RV弱毒疫苗株ERA:CVCC NO.AV61*;鼠抗RV血清(RV弱毒疫苗株ERA按106FFU/mL/只的剂量免疫6周龄小鼠,间隔3周,加强免疫2次,第3次免疫后2周采集小鼠血液,分离血清);RV标准固定毒株CVS11的来源见参考文献[14]。 
2.主要试剂及实验动物 
限制性内切酶、T4连接酶均购自宝生物工程(大连)有限公司;plasmid Giga Kits购自QIAGEN公司;脂质体LipofectamineTM2000转染试剂购自Invitrogen公司;绿色荧光素(FITC)标记的兔抗小鼠IgG、辣根过氧化物酶 (HRP)标记的兔抗小鼠IgG均购自Sigma公司。比格犬购自广州医药工业研究总院实验动物研究开发中心(国家犬类实验动物种子中心)。 
实施例1、真核表达质粒pCAGG-RVG的构建与制备 
按哺乳动物密码子偏嗜性优化狂犬病病毒弱毒疫苗株ERA(其完整基因组序列见GenBank号:FJ913470)囊膜糖蛋白(G蛋白)的基因序列(优化前的原始序列见SEG ID No.3)。一种氨基酸均有几个密码子,也就说这几个密码子均能翻译成一种氨基酸。哺乳动物对密码子具有偏嗜性,即在哺乳动物体内一种氨基酸的几个密码子的翻译效率有的高有的低,在本文中“优化”即将氨基酸的密码子全部改写为在哺乳动物体内翻译效率高的密码子。原始序列与优化后序列的差别在于翻译成的氨基酸序列不变,但核酸序列变化特别大。优化后的序列见SEG ID No.1,人工合成该基因,并在起始密码子前引入Kozak序列(GCCGCCACC),两末端引入EcoRI和XhoI限制性内切酶序列(GAATTC和CTCGAG),克隆至pUC57载体(GenScript NO.SD1176),获得质粒pUC57-RVG。以BamH I单酶切pCAGGS,去除其中SV40 ori序列(SV40复制起始序列),连接构成质粒pCAGGSΔSV40 ori;再以EcoRI和XhoI限制性内切酶双酶切pUC57-RVG,得到RVG基因,并亚克隆至pCAGGSΔSV40 ori相应酶切位点,RVG蛋白基因位于鸡β-actin转录启动子下游,获得表达RVG蛋白基因的真核表达质粒pCAGG-RVG(SEG ID No.2)。分别以EcoRI和XhoI单酶切进行鉴定,通过plasmid Giga Kits大量制备质粒pCAGG-RVG(具体操作详见试剂盒说明书),用于转染及免疫试验。 
EcoRI和XhoI双酶切pCAGG-RVG得到大小约为1650bp和4400bp的两个片段,与预期结果相符,表明RVG蛋白基因在真核表达质粒pCAGGS中获得重组(结果未呈现)。 
实施例2、真核表达质粒pCAGG-RVG的瞬时转染及间接免疫荧光(IFA)检测 
为了证实pCAGG-RVG表达RVG蛋白的抗原性,以pCAGG-RVG转染BHK细胞,转染前准备24孔板生长过夜、密度约为80%的BHK细胞, 通过脂质体转染方法(具体操作详见LipofectamineTM2000说明书)转染0.5μg的pCAGG-RVG转染至上述细胞、转然后5%CO237℃培养。同时,以RV弱毒疫苗株ERA按MOI为0.1的剂量感染BHK细胞,作为阳性对照;以0.5μg的pCAGGS转染BHK细胞,作为阴性对照。转染后36小时,用PBS洗细胞3次,以预冷的3%多聚甲醛固定细胞30min;PBS洗3次后,1%BSA封闭20min;PBST(0.05%Tween20)洗涤后加入1∶100倍稀释的鼠抗RV血清为一抗,室温孵育30min;PBST洗涤后加入1∶200倍稀释FITC标记的兔抗鼠IgG二抗(Sigma NO.F9137),室温孵育30min;PBS洗涤后,置于荧光显微镜(Leica DMIRES2)下观察。 
结果显示,抗RV鼠血清检测pCAGG-RVG转染的BHK细胞时呈现绿色阳性荧光信号(图1A),检测RV ERA株感染BHK细胞时也呈现绿色阳性荧光信号(图1B),而检测pCAGGS转染的BHK细胞时则呈现阴性荧光信号(图1C)。结果表明,pCAGG-RVG表达RVG蛋白具有良好的反应原性。 
实施例3、蛋白印迹法(Western blot)分析 
为了分析重组真核表达质粒能否表达RVG蛋白,以2μg的pCAGG-RVG转染铺于6孔板的单层BHK细胞。在转染后36小时,收获、裂解细胞,加入等体积的2×SDS裂解缓冲液,煮沸10min,10,000×g离心10min后,取上清进行SDS-PAGE(Bio-Rad)电泳;将蛋白电转印(Bio-Rad)至尼龙膜(Ameresco)上,5%脱脂乳封闭过夜,PBST洗涤后加入1∶100倍稀释的鼠抗RV血清为一抗,室温作用1h,PBST洗涤后,加入1∶2500倍PBST稀释辣根过氧化物酶(HR)标记兔抗鼠IgG二抗(Sigma NO.A9044)室温作用1h,PBST洗涤后,用DAB进行显色。 
蛋白质印迹显示出特异的67ku检测蛋白,与G蛋白理论预期值相符(图2)。结果表明,RVG蛋白在pCAGG-RVG转染的BHK细胞中获得表达。 
实施例4、血清中和试验检测DNA免疫犬诱导中和抗体 
为了进一步评价真核表达质粒pCAGG-RVG的免疫效力,以重组真核 表达质粒pCAGG-RVG按500μg/1mL/条(不管体重如何都注射同样的量,用磷酸盐缓冲液PBS进行稀释)的剂量经肌肉注射途径免疫7条RV中和抗体阴性比格犬(所用比格犬12月龄,接种剂量与体重无关,注射部位为后肢股四头肌),间隔4周再以相同剂量、途径加强免疫一次。同时,以pCAGGS为对照以相同的方法免疫5条RV中和抗体阴性比格犬,间隔4周再以相同剂量、途径加强免疫一次。分别于初次免疫前、后不同时间点经前肢静脉采集血液、分离血清,用于中和抗体检测。 
RV中和抗体的检测基本参照文献[14]在96孔板上进行。首先将采集的血清样品置于56℃水浴30min进行灭活,再分别以不完全DMEM(Gibson)9倍稀释,后连续3倍稀释,每稀释度体积为50μL,与50μL约含100TCID50的标准固定毒株CVS11病毒液混合,37℃感作1h后,每孔加入约105个BHK细胞,同时设阳性、阴性及细胞对照(阳性对照为国际标准血清,起始血清稀释滴度为0.5IU/mL),血清每个稀释度做4个平行孔,5%CO237℃培养48h后进行IFA检测,后置于荧光显微镜下观察,并计算血清RV中和抗体滴度。 
初次免疫后4周,pCAGG-RVG免疫犬血清中就能检测到RV中和抗体,而在pCAGGS免疫犬血清中检测不到RV中和抗体。初次免疫后4周,pCAGG-RVG免疫犬血清中RV中和抗体平均滴度上升到3.23IU/mL(7.9,0.38,1.14,5.92,2.6,0.29和4.5),加强免疫后2周,免疫犬血清中RV中和抗体平均滴度上升到峰值8.21IU/mL(13.50,7.79,13.5,4.5,5.92,7.79和4.5),随后RV中和抗体水平逐渐下降。初次免疫后27周,免疫犬血清中RV中和抗体平均滴度下降到3.99IU/mL(7.79,3.24,2.6,2.6,2.6,0.87和1.14),然而初次免疫后第54周,免疫犬血清中RV中和抗体平均滴度仍然可达2.88IU/mL(7.79,2.6,2.6,2.6,2.6,0.87和1.14)。这些结果表明,pCAGG-RVG是一个具有良好免疫效力的犬狂犬病候选DNA疫苗(图3)。 
讨论 
本研究构建了表达哺乳动物密码子优化的RV囊膜糖蛋白G基因的重组真核表达质粒pCAGG-RVG。间接免疫荧光试验和蛋白质印迹结果表明,RVG蛋白在重组真核表达质粒pCAGG-RVG转染的BHK细胞中获得表 达,且具有良好的反应原性。应用该重组真核表达质粒作为DNA疫苗免疫比格犬,可诱导显著而持久的RV中和抗体反应。 
免疫动物血清中RV中和抗体水平是评价狂犬病疫苗免疫效力的一个重要指标。Osorio等研究结果显示,以1个剂量(100μg/条)表达RV CVS株G蛋白的DNA疫苗经肌肉注射途径免疫犬,仅能诱导低水平的RV中和抗体反应;然而将免疫剂量提高到300μg/条时,可增强RV中和抗体反应[15]。这些研究结果提示,狂犬病DNA疫苗免疫犬可诱导剂量依赖性的RV中和抗体反应;增加免疫剂量可能会获得更高水平的RV中和抗体反应。我们的研究结果也证实这一推测,以狂犬病DNA疫苗pCAGG-RVG按500μg/只的剂量免疫犬,可诱导显著的RV中和抗体,初次免疫后4周免疫犬血清中RV中和抗体滴度平均值可达3.23IU/mL。 
另外,Perrin等研究发现:以1个剂量(100μg/只)的表达RV PV株G蛋白的DNA疫苗经肌肉注射途径免疫犬,仅能诱导低水平的RV中和抗体反应,但间隔一定时间进行加强免疫可增强RV中和抗体反应[16]。这与本研究结果一致,我们以狂犬病DNA疫苗pCAGG-RVG按500μg/只的剂量免疫犬,可诱导显著的RV中和抗体反应,初次免疫后4周免疫犬血清中RV中和抗体滴度平均值可达3.23IU/mL;间隔4周以相同剂量、途径进行加强免疫,可显著增强RV中和抗体反应,加强免疫后2周免疫犬血清中RV中和抗体滴度平均值高达8.21IU/mL。 
尽管,本研究以狂犬病DNA疫苗pCAGG-RVG免疫犬血清中RV中和抗体滴度峰值平均值(8.21IU/mL)远远低于我们以前的研究中分别以RVERA疫苗株(106FFU/只)、表达RV G蛋白基因的重组新城疫病毒rLa-RVG(109.3EID50/只)和表达RV G蛋白基因的重组犬瘟热病毒rCDV-RVG(106TCID50/只)诱导的RV中和抗体滴度峰值平均值(分别为70.4IU/mL、96IU/mL和96.71IU/mL)[17,18],然而狂犬病DNA疫苗pCAGG-RVG免疫犬血清中RV中和抗体滴度下降地更为缓慢,初次免疫后54周免疫犬血清中RV中和抗体滴度平均值仍可达2.88IU/mL,而0.5IU/mL的RV中和抗体滴度是能保护动物免受致死剂量RV街毒株攻击的最小滴度[11,17,18]。这一结果提示:pCAGG-RVG的免疫接种能为犬提供1年以上的有效保护。因此,狂犬病DNA疫苗pCAGG-RVG是一个有希 望的狂犬病候选疫苗。 
参考文献 
1.Fu Z F.Rabies and rabise research:past,present and future[J].Vaccine.1997,15 Suppl:S20-4. 
2.Osinubi M O V,Wu X,Franka R,et al.Enhancing comparative rabies DNA vaccine effectiveness through glycoprotein gene modifications[J].Vaccine.2009,27(51):7214-7218. 
3.World health organization.WHO expert consultation on rabies:first report.World health organization,Geneva.2005. 
4.Martinez L.Global infectious disease surveillance[J].Int J Infect Dis.2000,4(4):222-8. 
5.卫生部,公安部,农业部,等.中国狂犬病防治现状.2009.http://www.moh.gov.cn/publicfiles///business/cmsresources/mohjbyfkzj/cmsrsd ocument/doc6163.doc. 
6.中华人民共和国卫生部.2012年中国狂犬病年会在京召开[EB].http://www.moh.gov.cn/wsb/01100213/201205/54985.shtml,2009. 
7.Ming P,Du J,Tang Q,et al.Molecular characterization of the complete genome of a street rabies virus isolated in China[J].Virus Res.2009,143(1):6-14. 
8.孙树汉.核酸疫苗[M].上海:第二军医出版社,2000:1-8. 
9.Akbar SK,Horrike N,Onji M.Prognostic importance of antigen-presenting dendritic cells during vaccine therapy in a murine hepatitis B virus carrier[J].Immunology.1999,96(1):98-108. 
10.韩岳,王希良.DNA疫苗的免疫机制及其优化策略[J].医学分子生物学杂志.2005,2(2):143-146. 
11.Tao L,Ge J,Wang X,Zhai H,Hua T,Zhao B,et al.Molecular basis of neurovirulence of flury rabies virus vaccine strains:importance of the polymerase and the glycoprotein R333Q mutation[J].J Virol2010;84(17):8926-36. 
12.华涛,陶丽红,葛金英,等.表达绿色荧光蛋白重组狂犬病病毒Flury-LEP的构建及其用于中和抗体检测的研究[J].中国预防兽医学报,2010,8:581-585. 
13.Niwa H.,Yamamura K.,Miyazaki J.Efficient selection for high-expression transfectants with a novel eukaryotic vector[J].Gene,1991,108:193-199. 
14.Smith JS,Yager PA,Baer GM.A rapid reproducible test for determining rabies neutralizing antibody.Bull World Health Organ,1973;48(5):535. 
15.Osorio J E,Tomlinson C C,Frank R S,et al.Immunization of dogs and cats with a DNA vaccine against rabies virus[J].Vaccine,1999,17(9-10):1109-1116. 
16.Perrin P,Jacob Y,Aguilar-Sétien A,et al.Immunization of dogs with a DNA vaccine induces protection against rabies virus[J].Vaccine,2000,18(5-6):479-486. 
17.Ge J Y,Wang X J,Tao L H,et al.Newcastle Disease Virus-Vectored Rabies Vaccine Is Safe,Highly Immunogenic,and Provides Long-Lasting Protection in Dogs and Cats[J].Journal of Virology,2011,85(16):8241-8252. 
18.Wang X J,Feng Na,Ge J Y,et al.Recombinant canine distemper virus serves as bivalent live vaccine against rabies and canine distemper[J].Vaccine,2012,30(34):5067-5072。 
Figure IDA00003040733700011
Figure IDA00003040733700021
Figure IDA00003040733700041
Figure IDA00003040733700051
Figure IDA00003040733700061

Claims (5)

1.一种狂犬病DNA疫苗,所述狂犬病DNA疫苗包含表达按哺乳动物密码子偏嗜性优化的狂犬病病毒囊膜糖蛋白基因的重组真核表达质粒。
2.根据权利要求1所述的狂犬病DNA疫苗,其中所述按哺乳动物密码子偏嗜性优化的狂犬病病毒囊膜糖蛋白基因具有如SEG ID No.1所示的序列。
3.根据权利要求1所述的狂犬病DNA疫苗,其中所述表达按哺乳动物密码子偏嗜性优化的狂犬病病毒囊膜糖蛋白基因的重组真核表达质粒具有如SEG ID No.2所示的序列。
4.具有如SEG ID No.2所示的序列的重组真核表达质粒用作狂犬病DNA疫苗的用途。
5.具有如SEG ID No.2所示的序列的重组真核表达质粒在制备狂犬病DNA疫苗中的用途。
CN201310125911.2A 2013-04-12 2013-04-12 狂犬病dna疫苗的构建及应用 Active CN103169963B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310125911.2A CN103169963B (zh) 2013-04-12 2013-04-12 狂犬病dna疫苗的构建及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310125911.2A CN103169963B (zh) 2013-04-12 2013-04-12 狂犬病dna疫苗的构建及应用

Publications (2)

Publication Number Publication Date
CN103169963A true CN103169963A (zh) 2013-06-26
CN103169963B CN103169963B (zh) 2014-10-15

Family

ID=48630444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310125911.2A Active CN103169963B (zh) 2013-04-12 2013-04-12 狂犬病dna疫苗的构建及应用

Country Status (1)

Country Link
CN (1) CN103169963B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110269933A (zh) * 2019-07-17 2019-09-24 苏州世诺生物技术有限公司 一种狂犬病毒亚单位疫苗的制备方法及其应用
CN110437318A (zh) * 2019-06-19 2019-11-12 上海赛伦生物技术股份有限公司 免疫马生产抗狂犬病毒抗体用的抗原及其制备方法和应用
CN110714015A (zh) * 2019-10-29 2020-01-21 珠海丽凡达生物技术有限公司 一种mRNA狂犬病疫苗
CN110974954A (zh) * 2019-12-24 2020-04-10 珠海丽凡达生物技术有限公司 一种用于增强核酸疫苗免疫效果的脂质纳米颗粒及其制备方法
CN113559254A (zh) * 2021-08-09 2021-10-29 苏州大学 一种狂犬病毒疫苗及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632124A (zh) * 2004-11-25 2005-06-29 中国农业科学院哈尔滨兽医研究所 编码h5亚型禽流感病毒血凝素蛋白的基因及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632124A (zh) * 2004-11-25 2005-06-29 中国农业科学院哈尔滨兽医研究所 编码h5亚型禽流感病毒血凝素蛋白的基因及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《中国人兽共患病学报》 20100531 郑佳琳等 "优化密码子以提高狂犬病病毒糖蛋白基因在原核细胞的表达" 第26卷, 第5期 *
《病毒学报》 19920930 林枫等 "表达狂犬病毒糖蛋白的重组痘苗的组建与鉴定" 第8卷, 第3期 *
林枫等: ""表达狂犬病毒糖蛋白的重组痘苗的组建与鉴定"", 《病毒学报》, vol. 8, no. 3, 30 September 1992 (1992-09-30) *
郑佳琳等: ""优化密码子以提高狂犬病病毒糖蛋白基因在原核细胞的表达"", 《中国人兽共患病学报》, vol. 26, no. 5, 31 May 2010 (2010-05-31) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437318A (zh) * 2019-06-19 2019-11-12 上海赛伦生物技术股份有限公司 免疫马生产抗狂犬病毒抗体用的抗原及其制备方法和应用
CN110269933A (zh) * 2019-07-17 2019-09-24 苏州世诺生物技术有限公司 一种狂犬病毒亚单位疫苗的制备方法及其应用
CN110714015A (zh) * 2019-10-29 2020-01-21 珠海丽凡达生物技术有限公司 一种mRNA狂犬病疫苗
CN110714015B (zh) * 2019-10-29 2021-03-16 珠海丽凡达生物技术有限公司 一种mRNA狂犬病疫苗
CN110974954A (zh) * 2019-12-24 2020-04-10 珠海丽凡达生物技术有限公司 一种用于增强核酸疫苗免疫效果的脂质纳米颗粒及其制备方法
CN113559254A (zh) * 2021-08-09 2021-10-29 苏州大学 一种狂犬病毒疫苗及其制备方法
CN113559254B (zh) * 2021-08-09 2023-02-10 苏州大学 一种狂犬病毒疫苗及其制备方法

Also Published As

Publication number Publication date
CN103169963B (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
CN112876570B (zh) 非洲猪瘟病毒疫苗及其制备方法
Mahmood et al. H5N1 VLP vaccine induced protection in ferrets against lethal challenge with highly pathogenic H5N1 influenza viruses
Bhat et al. Novel immunogenic baculovirus expressed virus-like particles of foot-and-mouth disease (FMD) virus protect guinea pigs against challenge
Saha et al. A fused gene of nucleoprotein (NP) and herpes simplex virus genes (VP22) induces highly protective immunity against different subtypes of influenza virus
Rojas et al. T cell responses to bluetongue virus are directed against multiple and identical CD4+ and CD8+ T cell epitopes from the VP7 core protein in mouse and sheep
WO2022007742A1 (zh) 一种重组的伪狂犬病病毒及其疫苗组合物
CN107630024B (zh) 编码h5亚型禽流感病毒血凝素蛋白的基因及其应用
CN103169963A (zh) 狂犬病dna疫苗的构建及应用
CN101289658A (zh) 表达2型猪圆环病毒核衣壳蛋白Cap基因的重组病毒样粒子
Anderson et al. Strong protection induced by an experimental DIVA subunit vaccine against bluetongue virus serotype 8 in cattle
Wang et al. Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens
Wu et al. Single dose of consensus hemagglutinin-based virus-like particles vaccine protects chickens against divergent H5 subtype influenza viruses
JP2019531723A (ja) 新規のブタインフルエンザワクチン
CN107227311B (zh) 重组猪细小病毒样粒子及其制备方法和应用
Balzli et al. The efficacy of recombinant turkey herpesvirus vaccines targeting the H5 of highly pathogenic avian influenza virus from the 2014–2015 North American outbreak
Macchi et al. Bovine herpesvirus-4-based vector delivering Peste des Petits Ruminants Virus hemagglutinin ORF induces both neutralizing antibodies and cytotoxic T cell responses
Liu et al. Intramuscular immunization of mice with the live-attenuated herpes simplex virus 1 vaccine strain VC2 expressing equine herpesvirus 1 (EHV-1) glycoprotein D generates anti-EHV-1 immune responses in mice
CN101289657A (zh) 表达外源基因的重组猪细小病毒vp2病毒样粒子
Chen et al. Feline herpesvirus vectored-rabies vaccine in cats: a dual protection
Szurgot et al. Self-adjuvanting influenza candidate vaccine presenting epitopes for cell-mediated immunity on a proteinaceous multivalent nanoplatform
CN112430625B (zh) 含有变异猪伪狂犬病病毒gD蛋白基因的重组腺相关病毒转移载体、病毒及其制备和应用
Cheng et al. Protective immune responses in rabbits induced by a suicidal DNA vaccine of the VP60 gene of rabbit hemorrhagic disease virus
Aravind et al. Protective effects of recombinant glycoprotein D based prime boost approach against duck enteritis virus in mice model
Zhang et al. Recombinant rabies virus with the glycoprotein fused with a DC-binding peptide is an efficacious rabies vaccine
Prel et al. Assessment of the protection afforded by triple baculovirus recombinant coexpressing H5, N3, M1 proteins against a homologous H5N3 low-pathogenicity avian influenza virus challenge in Muscovy ducks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant