CN103112508B - Design method for optimum speed characteristics of trunk cab damper - Google Patents
Design method for optimum speed characteristics of trunk cab damper Download PDFInfo
- Publication number
- CN103112508B CN103112508B CN201310073654.2A CN201310073654A CN103112508B CN 103112508 B CN103112508 B CN 103112508B CN 201310073654 A CN201310073654 A CN 201310073654A CN 103112508 B CN103112508 B CN 103112508B
- Authority
- CN
- China
- Prior art keywords
- cab
- shock absorber
- valve opening
- suspension
- optimal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Vehicle Body Suspensions (AREA)
- Body Structure For Vehicles (AREA)
Abstract
本发明涉及卡车驾驶室减振器最佳速度特性的设计方法,属于驾驶室悬置技术领域。由于驾驶室三质量振动系统的分析计算非常复杂,目前对于驾驶室减振器最佳速度特性设计一直没有可靠的设计方法。本发明根据由车轮、车身及驾驶室构成的三质量振动系统及所确定的驾驶室悬置最优阻尼比,利用减振器的平安比、双向、杠杆比和安装角度,对驾驶室减振器最佳速度特性进行设计,得到设计所要求的复原和压缩行程的分段特性曲线。利用该设计方法可得到可靠的驾驶室减振器速度特性,设计减振器可使驾驶室达到最佳减振效果,满足乘坐舒适性要求,同时,还可避免了反复试验、验证和修改,降低驾驶室减振器的试验费用。
The invention relates to a design method for optimal speed characteristics of a truck cab shock absorber, and belongs to the technical field of cab suspension. Because the analysis and calculation of the three-mass vibration system of the cab is very complicated, there is no reliable design method for the optimal speed characteristic design of the cab shock absorber. According to the three-mass vibration system composed of wheels, vehicle body and cab and the determined optimal damping ratio of cab suspension, the present invention utilizes the safety ratio, bi-directional, lever ratio and installation angle of the shock absorber to reduce the vibration of the cab. Design the optimal speed characteristics of the actuator to obtain the segmented characteristic curves of the recovery and compression strokes required by the design. Using this design method, the reliable speed characteristics of the cab shock absorber can be obtained. The design of the shock absorber can achieve the best vibration reduction effect in the cab and meet the requirements of ride comfort. At the same time, it can avoid repeated tests, verifications and modifications. Reduced test costs for cab shock absorbers.
Description
技术领域technical field
本发明涉及驾驶室减振器,特别是卡车驾驶室减振器最佳速度特性的设计方法。The invention relates to a cab shock absorber, especially a design method for optimal speed characteristics of a truck cab shock absorber.
背景技术Background technique
驾驶室减振器阻尼特性对驾驶室的减振效果及驾驶人员的舒适性具有重要影响。然而由于全浮式驾驶室悬置系统属于由车轮、车身质量和驾驶室组成的三质量振动系统,其分析计算非常复杂,国内、外很多车辆工程专家大都只好采用简化的单质量振动系统模型进行分析,即将车身振动看作是驾驶室振动的激励输入,因此,只能对驾驶室减振器阻尼特性进行近似设计,很难满足驾驶室减振器的设计要求。由于减振器特性是非线性的,因此,对于减振器设计特性通常采用分段线性来表示,据所查阅资料可知,目前国内、外还一直未能给出卡车驾驶室减振器最佳速度特性的设计方法。通常根据车辆及驾驶室类型,凭经验选择几只相近类型的车辆驾驶室减振器,然后装车经过车辆行驶平顺性试验,最终得到与该车辆驾驶室相匹配的减振器及速度特性。随着汽车行业的快速发展,目前驾驶室减振器速度特性设计方法,不能满足车辆发展及驾驶室舒适性的设计要求。The damping characteristics of the cab shock absorber have an important influence on the vibration reduction effect of the cab and the comfort of the driver. However, since the full-floating cab suspension system is a three-mass vibration system composed of wheels, body mass and cab, its analysis and calculation are very complicated, and many vehicle engineering experts at home and abroad have to use a simplified single-mass vibration system model Analysis means that the vibration of the vehicle body is regarded as the excitation input of the vibration of the cab. Therefore, the damping characteristics of the cab shock absorber can only be approximated, and it is difficult to meet the design requirements of the cab shock absorber. Since the characteristics of the shock absorber are non-linear, the design characteristics of the shock absorber are usually represented by piecewise linearity. According to the information obtained, the optimal speed of the shock absorber in the truck cab has not been given at home and abroad. characteristic design method. Usually according to the type of vehicle and cab, select several similar types of vehicle cab shock absorbers based on experience, and then install them on the vehicle to pass the vehicle ride comfort test, and finally obtain the shock absorber and speed characteristics that match the vehicle cab. With the rapid development of the automobile industry, the current design method of the speed characteristics of the cab shock absorber cannot meet the design requirements of vehicle development and cab comfort.
发明内容Contents of the invention
针对上述现有技术中存在的缺陷,本发明所要解决的技术问题是根据驾驶室最佳阻尼比建立卡车驾驶室减振器最佳速度特性的设计方法,其设计流程如图1所示。Aiming at the above-mentioned defects in the prior art, the technical problem to be solved by the present invention is to establish a design method for optimal speed characteristics of truck cab shock absorbers according to the optimal cab damping ratio, and its design process is shown in Figure 1.
为了解决上述技术问题,本发明所提供的卡车驾驶室减振器最佳速度特性的设计方法,其技术方案所实施的步骤如下:In order to solve the above-mentioned technical problems, the design method of the optimal speed characteristic of the truck cab shock absorber provided by the present invention, the steps implemented by its technical solution are as follows:
(1)确定驾驶室悬置系统的最优阻尼比ξo:(1) Determine the optimal damping ratio ξ o of the cab suspension system:
根据全浮式驾驶室单侧悬置质量m3,单侧悬置刚度Ks;前单轮对应的簧上质量m2,悬架刚度K,悬架阻尼C;轮胎质量m1,轮胎刚度Kt;路面参考空间频率n0;参考空间频率n0下的路面功率谱密度值Gq(n0),及车辆行驶速度v,确定驾驶室悬置系统的最优阻尼比ξo,即:According to the unilateral suspension mass m 3 of the full-floating cab, the unilateral suspension stiffness K s ; the sprung mass m 2 corresponding to the front single wheel, the suspension stiffness K, and the suspension damping C; the tire mass m 1 , the tire stiffness K t ; road surface reference spatial frequency n 0 ; road surface power spectral density value G q (n 0 ) at reference spatial frequency n 0 , and vehicle speed v, to determine the optimal damping ratio ξ o of the cab suspension system, namely :
ξo=ξoc+(1-0.618)(ξos-ξoc);ξ o =ξ oc +(1-0.618)(ξ os -ξ oc );
式中,ξoc是根据驾驶室垂直振动加速度均方值的目标函数及所求得的基于舒适性的驾驶室悬置最佳阻尼比;ξos是根据车轮动载均方值的目标函数及所求得的基于安全性的驾驶室悬置最佳阻尼比;和分别是利用Matlab迭代积分求得的驾驶室垂直振动加速度幅频特性平方的积分表达式和车轮动载幅频特性平方的积分表达式;和分别为驾驶室垂直振动加速度频响函数和车轮动载频响函数,即In the formula, ξ oc is the objective function according to the mean square value of the vertical vibration acceleration of the cab and The obtained optimum damping ratio of cab mount based on comfort; ξ os is the objective function based on the mean square value of wheel dynamic load and The obtained optimal damping ratio of cab mount based on safety; and They are the integral expression of the square of the amplitude-frequency characteristic of the vertical vibration acceleration of the cab and the integral expression of the square of the amplitude-frequency characteristic of the wheel dynamic load obtained by using Matlab iterative integration; and are the vertical vibration acceleration frequency response function of the cab and the wheel dynamic load frequency response function respectively, that is,
其中,Q=Kt(-CCsjω3-CsKω2-CKsω2+KKsjω);P0=KKsKt;P1=CsKKtjω+CKsKtjω;Among them, Q=K t (-CC s jω 3 -C s Kω 2 -CK s ω 2 +KK s jω); P 0 =KK s K t ; P 1 =C s KK t jω+CK s K t jω ;
P2=-m1KKsω2-m3KKsω2-m2KKsω2-m3KsKtω2 P 2 =-m 1 KK s ω 2 -m 3 KK s ω 2 -m 2 KK s ω 2 -m 3 K s K t ω 2
;;
-m3KKtω2-CCsKtω2-m2KsKtω2 -m 3 KK t ω 2 -CC s K t ω 2 -m 2 K s K t ω 2
P3=-m1CsKjω3-m1CKsjω3-m3CKsjω3-m2CKsjω3 P 3 =-m 1 C s Kjω 3 -m 1 CK s jω 3 -m 3 CK s jω 3 -m 2 CK s jω 3
;
-m3CsKjω3-m2CsKjω3-m3CsKtjω3-m3CKtjω3-m2CsKtjω3 -m 3 C s Kjω 3 -m 2 C s Kjω 3 -m 3 C s K t jω 3 -m 3 CK t jω 3 -m 2 C s K t jω 3
P4=m1m3Ksω4+m1m3Kω4+m1CCsω4+m1m2Ksω4 P 4 =m 1 m 3 K s ω 4 +m 1 m 3 K ω 4 +m 1 CC s ω 4 +m 1 m 2 K s ω 4
;
+m3CCsω4+m2CCsω4+m2m3Kω4+m2m3Ktω4 +m 3 CC s ω 4 +m 2 CC s ω 4 +m 2 m 3 Kω 4 +m 2 m 3 K t ω 4
P5=m1m3Csjω5+m1m3Cjω5+m1m2Csjω5+m2m3Cjω5;P6=-m1m2m3ω6;P 5 =m 1 m 3 C s jω 5 +m 1 m 3 Cjω 5 +m 1 m 2 C s jω 5 +m 2 m 3 Cjω 5 ; P 6 =-m 1 m 2 m 3 ω 6 ;
Q1=-m1KKsKtjω-m2KKsKtjω-m3KKsKtjω;Q 1 =-m 1 KK s K t jω-m 2 KK s K t jω-m 3 KK s K t jω;
Q2=m1CsKKtω2+m1CKsKtω2+m3CKsKtω2+m2CKsKtω2 Q 2 =m 1 C s KK t ω 2 +m 1 CK s K t ω 2 +m 3 CK s K t ω 2 +m 2 CK s K t ω 2
;
+m3CsKKtω2+m2CsKKtω2 +m 3 C s KK t ω 2 +m 2 C s KK t ω 2
Q3=m1m3KsKtjω3+m1m3KKtjω3+m1CCsKtjω3+m1m2KsKtjω3 Q 3 =m 1 m 3 K s K t jω 3 +m 1 m 3 KK t jω 3 +m 1 CC s K t jω 3 +m 1 m 2 K s K t jω 3
;
+m3CCsKtjω3+m2CCsKtjω3+m2m3KKtjω3 +m 3 CC s K t jω 3 +m 2 CC s K t jω 3 +m 2 m 3 KK t jω 3
Q4=-m1m2m3Ktjω5-m1m3CsKtω4-m1m3CKtω4-m1m2CsKtω4-m2m3CKtω4;Q 4 =-m 1 m 2 m 3 K t jω 5 -m 1 m 3 C s K t ω 4 -m 1 m 3 CK t ω 4 -m 1 m 2 C s K t ω 4 -m 2 m 3 CK t ω 4 ;
P7=KKsKt;P8=CsKKtjω+CKsKtjω;P 7 =KK s K t ; P 8 =C s KK t jω+CK s K t jω;
P9=-m1KKsω2-m3KKsω2-m2KKsω2-m3KsKtω2-m3KKtω2-CCsKtω2-m2KsKtω2;P 9 =-m 1 KK s ω 2 -m 3 KK s ω 2 -m 2 KK s ω 2 -m 3 K s K t ω 2 -m 3 KK t ω 2 -CC s K t ω 2 -m 2 K s K t ω 2 ;
P10=-m1CsKjω3-m1CKsjω3-m3CKsjω3-m2CKsjω3-m3CsKjω3 P 10 =-m 1 C s Kjω 3 -m 1 CK s jω 3 -m 3 CK s jω 3 -m 2 CK s jω 3 -m 3 C s Kjω 3
;
-m2CsKjω3-m3CsKtjω3-m3CKtjω3-m2CsKtjω3 -m 2 C s Kjω 3 -m 3 C s K t jω 3 -m 3 CK t jω 3 -m 2 C s K t jω 3
P11=m1m3Ksω4+m1m3Kω4+m1CCsω4+m1m2Ksω4 P 11 =m 1 m 3 K s ω 4 +m 1 m 3 K ω 4 +m 1 CC s ω 4 +m 1 m 2 K s ω 4
;
+m3CCsω4+m2CCsω4+m2m3Kω4+m2m3Ktω4 +m 3 CC s ω 4 +m 2 CC s ω 4 +m 2 m 3 Kω 4 +m 2 m 3 K t ω 4
P12=m1m3Csjω5+m1m3Cjω5+m1m2Csjω5+m2m3Cjω5;P13=-m1m2m3ω6;Cs为驾驶室悬置减振器的待定阻尼;P 12 =m 1 m 3 C s jω 5 +m 1 m 3 Cjω 5 +m 1 m 2 C s jω 5 +m 2 m 3 Cjω 5 ; P 13 =-m 1 m 2 m 3 ω 6 ; C s is the undetermined damping of the cab suspension shock absorber;
(2)确定驾驶室单只减振器复原行程的初次开阀阻尼系数Csk1:(2) Determine the initial valve opening damping coefficient C sk1 of the recovery stroke of a single shock absorber in the cab:
根据全浮式驾驶室单悬置点承载驾驶室质量为m3d,单置点驾驶室刚度Ksd,安装杠杆比i及安装角度θ,及步骤(1)的最优阻尼比ξo,确定驾驶室单只减振器复原行程的初次开阀阻尼系数Csk1为:According to the mass of the full-floating cab single-mounted cab is m 3d , the stiffness of the single-mounted cab K sd , the installation lever ratio i and the installation angle θ, and the optimal damping ratio ξ o in step (1), determine The initial valve opening damping coefficient C sk1 of the recovery stroke of a single shock absorber in the cab is:
(3)确定驾驶室单只减振器复原行程的初次开阀阻尼力Fdk1:(3) Determine the initial valve opening damping force F dk1 of the recovery stroke of a single shock absorber in the cab:
根据驾驶室减振器复原行程的初次开阀速度Vk1,及步骤(2)中的Csk1,确定驾驶室单只减振器复原行程的初次开阀阻尼力Fdk1,即:According to the initial valve opening velocity V k1 of the cab shock absorber recovery stroke and C sk1 in step (2), determine the initial valve opening damping force F dk1 of the single shock absorber recovery stroke of the cab, namely:
Fdk1=Csk1Vk1;F dk1 = C sk1 V k1 ;
(4)确定驾驶室单只减振器复原行程最大开阀前特性曲线的斜率k2:(4) Determine the slope k 2 of the characteristic curve before the maximum valve opening of the single shock absorber in the cab:
根据驾驶室减振器复原行程的平安比η,步骤(2)中的Csk1,确定驾驶室单只减振器复原行程最大开阀前特性曲线的斜率k2,即:According to the safety ratio η of the recovery stroke of the cab shock absorber, C sk1 in step (2), determine the slope k 2 of the characteristic curve before the maximum valve opening of the single shock absorber recovery stroke of the cab, namely:
k2=Csk1/η;k 2 =C sk1 /η;
(5)确定驾驶室单只减振器复原行程的最大开阀阻尼力Fdk2:(5) Determine the maximum valve opening damping force F dk2 of the recovery stroke of a single shock absorber in the cab:
根据驾驶室减振器复原行程的初次开阀速度Vk1及最大开阀速度Vk2,步骤(3)中的Fdk1,及步骤(4)中的k2,确定驾驶室单只减振器复原行程的最大开阀阻尼力Fdk2,即:According to the initial valve opening speed V k1 and the maximum valve opening speed V k2 of the recovery stroke of the cab shock absorber, F dk1 in step (3), and k 2 in step (4), determine the single shock absorber in the cab The maximum valve opening damping force F dk2 of the recovery stroke, namely:
Fdk2=Fdk1+k2(Vk2-Vk1);F dk2 = F dk1 +k 2 (V k2 -V k1 );
(6)确定驾驶室单只减振器压缩行程的初次开阀阻尼力Fdk1y:(6) Determine the initial valve opening damping force F dk1y of the compression stroke of a single shock absorber in the cab:
根据驾驶室单只减振器压缩行程的初次开阀速度Vk1y,步骤(2)中的Csk1,确定驾驶室单只减振器压缩行程的初次开阀阻尼力Fdk1y:According to the initial valve opening velocity V k1y of the compression stroke of the single shock absorber in the cab and C sk1 in step (2), determine the initial valve opening damping force F dk1y of the compression stroke of the single shock absorber in the cab:
Fdk1y=Csk1Vk1y;F dk1y = C sk1 V k1y ;
(7)确定驾驶室单只减振器压缩行程的最大开阀阻尼力Fdk2y:(7) Determine the maximum valve opening damping force F dk2y of the compression stroke of a single shock absorber in the cab:
根据驾驶室单只减振器压缩行程的最大开阀速度Vk2y,减振器双向比β,确定驾驶室单只减振器压缩行程的最大开阀阻尼力Fdk2y,即:According to the maximum valve opening speed V k2y of the compression stroke of the single shock absorber in the cab and the two-way ratio β of the shock absorber, the maximum valve opening damping force F dk2y of the compression stroke of the single shock absorber in the cab is determined, namely:
Fdk2y=β[Fdk1+k2(Vk2y-Vk1)];F dk2y = β[F dk1 +k 2 (V k2y -V k1 )];
(8)驾驶室单只减振器最佳速度特性曲线的设计:(8) Design of the optimal speed characteristic curve of a single shock absorber in the cab:
根据步骤(3)中的Fdk1,步骤(5)中的Fdk2、步骤(6)中的Fdk1y,及步骤(7)的Fdk2y,对驾驶室单只减振器最佳速度特性曲线进行设计,即驾驶室单只减振器分段线性特性曲线。According to F dk1 in step (3), F dk2 in step (5), F dk1y in step (6), and F dk2y in step (7), the optimal speed characteristic curve of a single shock absorber in the cab Design, that is, the segmented linear characteristic curve of a single shock absorber in the cab.
本发明比现在有技术具有的优点:The present invention has the advantage that the prior art has:
由于先前缺乏驾驶室最佳阻尼比设计计算方法,因此,对于驾驶室减振器速度特性一直没有给出可靠的设计方法,大都是采用“经验+反复试验的方法,即首先凭经验选定驾驶室减振器,然后进行整车行驶平顺性试验,最终选定驾驶室减振器,最后再通过减振器特性试验对该车驾驶室减振器特性进行设计确定。本发明根据驾驶室三质量振动系统所确定的驾驶室悬置系统最优阻尼比,利用驾驶室减振器的平安比、双向、杠杆比和安装角度,对驾驶室减振器最佳速度特性进行设计,得到设计所要求的复原和压缩行程的非线性分段特性曲线。利用该设计方法可得到可靠的驾驶室减振器速度特性,满足驾驶室悬置系统阻尼匹配对减振器速度特性的设计要求,避免了反复试验、验证和修改,使驾驶室达到最佳减振效果,满足乘坐舒适性要求;同时,还可避免了反复试验、验证和修改,降低驾驶室减振器的试验费用。Due to the lack of calculation methods for the optimal damping ratio design of the cab, no reliable design method has been given for the speed characteristics of the cab shock absorber. Cab shock absorber, then carry out the ride comfort test of the whole vehicle, finally select the cab shock absorber, and finally design and determine the characteristics of the car cab shock absorber through the shock absorber characteristic test. The present invention is based on the driver's cab three The optimal damping ratio of the cab suspension system determined by the mass vibration system is used to design the optimal speed characteristics of the cab shock absorber by using the safety ratio, two-way, lever ratio and installation angle of the cab shock absorber, and the design results are obtained The required non-linear segmented characteristic curves of recovery and compression stroke.Using this design method can obtain reliable cab shock absorber speed characteristics, which can meet the design requirements of cab suspension system damping matching for shock absorber speed characteristics, avoiding the Repeated tests, verifications and modifications enable the cab to achieve the best damping effect and meet the requirements for ride comfort; at the same time, repeated tests, verifications and modifications can be avoided, and the test cost of the cab shock absorber can be reduced.
为了更好地理解本发明下面结合附图做进一步说明。In order to better understand the present invention, the following will be further described in conjunction with the accompanying drawings.
图1是驾驶室减振器最佳速度特性的设计流程图;Figure 1 is a design flow chart of the optimal speed characteristics of the cab shock absorber;
图2是实施例一的驾驶室单只减振器最佳速度特性设计曲线;Fig. 2 is the best speed characteristic design curve of the cab single shock absorber of embodiment one;
图3是实施例一的驾驶室设计减振器试验测得的速度特性曲线;Fig. 3 is the speed characteristic curve that the cab design shock absorber test of embodiment one records;
图4是实施例二的驾驶室单只减振器最佳速度特性设计曲线;Fig. 4 is the optimal speed characteristic design curve of the cab single shock absorber of embodiment two;
图5是实施例二的驾驶室设计减振器试验测得的速度特性曲线。Fig. 5 is the speed characteristic curve measured by the shock absorber test of the cab design of the second embodiment.
具体实施方式Detailed ways
下面通过实施例对本发明作进一步详细说明。The present invention will be described in further detail below by way of examples.
实施例一:某卡车全浮式驾驶室单侧悬置质量m3=500kg,单侧悬置对应驾驶室悬置弹性系数Ks=150000N/m;前悬单置点承载驾驶室质量m3d=300kg,前悬单置点对应驾驶室悬置弹性系数Ksd=75000N/m;单轮对应的车身质量m2=3800kg,即簧上质量,悬架弹簧刚度K=100000N/m,悬架阻尼C=9084N.s/m;簧下轮胎质量m1=200kg,轮胎刚度Kt=900000N/m;C级路面参考空间频率n0=0.1m-1下的路面功率谱密度值Gq(n0)=256×10-6m3,车辆行驶速度ν=60km/h;减振器安装杠杆比i=0.95,安装角θ=0°;减振器复原行程初次开阀速度Vk1=0.3m/s,最大开阀速度Vk2=1m/s;压缩行程初次开阀速度Vk1y=0.1m/s,最大开阀速度Vk2y=1m/s;减振器平安比η=1.39,双向比β=1/3。Example 1: One side suspension mass of a full floating cab of a truck is m 3 =500kg, the corresponding cab suspension elastic coefficient K s =150000N/m; the front suspension single mounting point carries the cab mass m 3d = 300kg, the cab suspension elastic coefficient K sd corresponding to the single mounting point of the front suspension = 75000N/m; the body mass m 2 corresponding to the single wheel = 3800kg, namely the sprung mass, the spring stiffness of the suspension K = 100000N/m, the suspension Damping C=9084N.s/m; unsprung tire mass m 1 =200kg, tire stiffness K t = 900000N /m; road surface power spectral density value G q ( n 0 )=256×10 -6 m 3 , vehicle speed ν=60km/h; shock absorber installation lever ratio i=0.95, installation angle θ=0°; shock absorber initial valve opening speed V k1 = 0.3m/s, maximum valve opening speed V k2 = 1m/s; compression stroke initial valve opening speed V k1y = 0.1m/s, maximum valve opening speed V k2y = 1m/s; shock absorber safety ratio η = 1.39, Two-way ratio β=1/3.
本发明实例所提供的卡车驾驶室减振器最佳速度特性的设计方法,设计流程如图1所示,具体步骤如下:The design method of the optimal speed characteristic of the truck cab shock absorber provided by the example of the present invention, the design process is as shown in Figure 1, and the concrete steps are as follows:
(1)确定驾驶室悬置系统的最优阻尼比ξo:(1) Determine the optimal damping ratio ξ o of the cab suspension system:
根据驾驶室其单侧悬置质量m3=500kg,单侧悬置刚度Ks=150000N/m;单轮对应的簧上质量m2=3800kg,悬架刚度K=100000N/m,悬架阻尼C=9084N.s/m;簧下轮胎质量m1=200kg,轮胎刚度Kt=900000N/m;C级路面参考空间频率n0=0.1m-1,参考空间频率n0下的路面功率谱密度值Gq(n0)=256×10-6m3;车辆行驶速度ν=60km/h,确定驾驶室悬置系统的最优阻尼比ξo,即:According to the one-side suspension mass m 3 of the cab = 500kg, one-side suspension stiffness K s = 150000N/m; the sprung mass corresponding to the single wheel m 2 = 3800kg, suspension stiffness K = 100000N/m, suspension damping C = 9084N.s/m; unsprung tire mass m 1 = 200kg, tire stiffness K t = 900000N/m; class C road reference space frequency n 0 =0.1m -1 , reference road power spectrum at space frequency n 0 Density value G q (n 0 )=256×10 -6 m 3 ; vehicle speed ν=60km/h, determine the optimal damping ratio ξ o of the cab suspension system, namely:
ξo=ξoc+(1-0.618)(ξos-ξoc)=0.2701;ξ o =ξ oc +(1-0.618)(ξ os -ξ oc )=0.2701;
式中,ξoc=0.1816,根据及所求得的基于舒适性的驾驶室悬置最佳阻尼比;ξos=0.4134,是根据及所求得的基于安全性的驾驶室悬置最佳阻尼比;其中,和分别是利用Matlab迭代积分求得驾驶室垂直振动加速度幅频特性平方的积分表达式和车轮动载幅频特性平方的积分表达式;和分别为驾驶室垂直振动加速度频响函数和车轮动载频响函数,即In the formula, ξ oc =0.1816, according to and The obtained optimum damping ratio of cab mount based on comfort; ξ os =0.4134, is based on and The obtained optimal damping ratio of cab mount based on safety; among them, and The integral expression of the square of the amplitude-frequency characteristic of the vertical vibration acceleration of the cab and the integral expression of the square of the amplitude-frequency characteristic of the dynamic load of the wheel are respectively obtained by using Matlab iterative integration; and are the vertical vibration acceleration frequency response function of the cab and the wheel dynamic load frequency response function respectively, that is,
其中,Q=Kt(-CCsjω3-CsKω2-CKsω2+KKsjω);P0=KKsKt;P1=CsKKtjω+CKsKtjω;Among them, Q=K t (-CC s jω 3 -C s Kω 2 -CK s ω 2 +KK s jω); P 0 =KK s K t ; P 1 =C s KK t jω+CK s K t jω ;
P2=-m1KKsω2-m3KKsω2-m2KKsω2-m3KsKtω2 P 2 =-m 1 KK s ω 2 -m 3 KK s ω 2 -m 2 KK s ω 2 -m 3 K s K t ω 2
;
-m3KKtω2-CCsKtω2-m2KsKtω2 -m 3 KK t ω 2 -CC s K t ω 2 -m 2 K s K t ω 2
P3=-m1CsKjω3-m1CKsjω3-m3CKsjω3-m2CKsjω3 P 3 =-m 1 C s Kjω 3 -m 1 CK s jω 3 -m 3 CK s jω 3 -m 2 CK s jω 3
; ;
-m3CsKjω3-m2CsKjω3-m3CsKtjω3-m3CKtjω3-m2CsKtjω3 -m 3 C s Kjω 3 -m 2 C s Kjω 3 -m 3 C s K t jω 3 -m 3 CK t jω 3 -m 2 C s K t jω 3
P4=m1m3Ksω4+m1m3Kω4+m1CCsω4+m1m2Ksω4 P 4 =m 1 m 3 K s ω 4 +m 1 m 3 K ω 4 +m 1 CC s ω 4 +m 1 m 2 K s ω 4
;
+m3CCsω4+m2CCsω4+m2m3Kω4+m2m3Ktω4 +m 3 CC s ω 4 +m 2 CC s ω 4 +m 2 m 3 Kω 4 +m 2 m 3 K t ω 4
P5=m1m3Csjω5+m1m3Cjω5+m1m2Csjω5+m2m3Cjω5;P6=-m1m2m3ω6;P 5 =m 1 m 3 C s jω 5 +m 1 m 3 Cjω 5 +m 1 m 2 C s jω 5 +m 2 m 3 Cjω 5 ; P 6 =-m 1 m 2 m 3 ω 6 ;
Q1=-m1KKsKtjω-m2KKsKtjω-m3KKsKtjω;Q 1 =-m 1 KK s K t jω-m 2 KK s K t jω-m 3 KK s K t jω;
Q2=m1CsKKtω2+m1CKsKtω2+m3CKsKtω2+m2CKsKtω2 Q 2 =m 1 C s KK t ω 2 +m 1 CK s K t ω 2 +m 3 CK s K t ω 2 +m 2 CK s K t ω 2
;
+m3CsKKtω2+m2CsKKtω2 +m 3 C s KK t ω 2 +m 2 C s KK t ω 2
Q3=m1m3KsKtjω3+m1m3KKtjω3+m1CCsKtjω3+m1m2KsKtjω3 Q 3 =m 1 m 3 K s K t jω 3 +m 1 m 3 KK t jω 3 +m 1 CC s K t jω 3 +m 1 m 2 K s K t jω 3
+m3CCsKtjω3+m2CCsKtjω3+m2m3KKtjω3 +m 3 CC s K t jω 3 +m 2 CC s K t jω 3 +m 2 m 3 KK t jω 3
; ;
Q4=-m1m2m3Ktjω5-m1m3CsKtω4-m1m3CKtω4-m1m2CsKtω4-m2m3CKtω4;Q 4 =-m 1 m 2 m 3 K t jω 5 -m 1 m 3 C s K t ω 4 -m 1 m 3 CK t ω 4 -m 1 m 2 C s K t ω 4 -m 2 m 3 CK t ω 4 ;
P7=KKsKt;P8=CsKKtjω+CKsKtjω;P 7 =KK s K t ; P 8 =C s KK t jω+CK s K t jω;
P9=-m1KKsω2-m3KKsω2-m2KKsω2-m3KsKtω2-m3KKtω2-CCsKtω2-m2KsKtω2;P 9 =-m 1 KK s ω 2 -m 3 KK s ω 2 -m 2 KK s ω 2 -m 3 K s K t ω 2 -m 3 KK t ω 2 -CC s K t ω 2 -m 2 K s K t ω 2 ;
P10=-m1CsKjω3-m1CKsjω3-m3CKsjω3-m2CKsjω3-m3CsKjω3 P 10 =-m 1 C s Kjω 3 -m 1 CK s jω 3 -m 3 CK s jω 3 -m 2 CK s jω 3 -m 3 C s Kjω 3
;
-m2CsKjω3-m3CsKtjω3-m3CKtjω3-m2CsKtjω3 -m 2 C s Kjω 3 -m 3 C s K t jω 3 -m 3 CK t jω 3 -m 2 C s K t jω 3
P11=m1m3Ksω4+m1m3Kω4+m1CCsω4+m1m2Ksω4 P 11 =m 1 m 3 K s ω 4 +m 1 m 3 K ω 4 +m 1 CC s ω 4 +m 1 m 2 Ks ω 4
;
+m3CCsω4+m2CCsω4+m2m3Kω4+m2m3Ktω4 +m 3 CC s ω 4 +m 2 CC s ω 4 +m 2 m 3 Kω 4 +m 2 m 3 K t ω 4
P12=m1m3Csjω5+m1m3Cjω5+m1m2Csjω5+m2m3Cjω5;P13=-m1m2m3ω6;Cs为驾驶室悬置减振器的待定阻尼;P 12 =m 1 m 3 C s jω 5 +m 1 m 3 Cjω 5 +m 1 m 2 C s jω 5 +m 2 m 3 Cjω 5 ; P 13 =-m 1 m 2 m 3 ω 6 ; C s is the undetermined damping of the cab suspension shock absorber;
(2)确定驾驶室减振器复原行程的初次开阀阻尼系数Csk1:(2) Determine the initial valve opening damping coefficient C sk1 of the recovery stroke of the cab shock absorber:
根据驾驶室的单悬置点即单只减振器处的质量为m3d=300kg,刚度Ksd=75000N/m,安装杠杆比i=0.95及安装角度θ=0°,及步骤(1)的ξo=0.2701,确定驾驶室减振器复原行程的初次开阀阻尼系数Csk1为:According to the single suspension point of the cab, that is, the mass at the single shock absorber is m 3d =300kg, the stiffness K sd =75000N/m, the installation lever ratio i=0.95 and the installation angle θ=0°, and step (1) ξ o = 0.2701, the initial valve opening damping coefficient C sk1 to determine the recovery stroke of the cab shock absorber is:
(3)确定驾驶室减振器复原行程的初次开阀阻尼力Fdk1:(3) Determine the initial valve opening damping force F dk1 of the recovery stroke of the cab shock absorber:
根据减振器复原行程的初次开阀速度Vk1=0.3m/s,及步骤(2)中的Csk1=2839.22N.s/m,确定驾驶室减振器复原行程的初次开阀阻尼力Fdk1,即:According to the initial valve opening velocity V k1 = 0.3m/s of the shock absorber recovery stroke, and C sk1 = 2839.22Ns/m in step (2), determine the initial valve opening damping force F dk1 of the cab shock absorber recovery stroke ,Right now:
Fdk1=Csk1Vk1=851.77N;F dk1 = C sk1 V k1 = 851.77N;
(4)确定驾驶室减振器复原行程最大开阀前特性曲线的斜率k2:(4) Determine the slope k 2 of the characteristic curve before the maximum valve opening of the cab shock absorber recovery stroke:
根据驾驶室减振器复原行程的平安比η=1.39,步骤(2)中的Csk1=2839.22N.s/m,确定驾驶室减振器复原行程最大开阀前特性曲线的斜率k2,即:According to the safety ratio η=1.39 of the recovery stroke of the cab shock absorber, and C sk1 =2839.22Ns/m in step (2), determine the slope k 2 of the characteristic curve before the maximum valve opening of the cab shock absorber recovery stroke, namely:
k2=Csk1/η=2042.60;k 2 =C sk1 /η=2042.60;
(5)确定驾驶室减振器复原行程的最大开阀阻尼力Fdk2:(5) Determine the maximum valve opening damping force F dk2 of the recovery stroke of the cab shock absorber:
根据驾驶室减振器的初次开阀速度Vk1=0.3m/s及最大开阀速度Vk2=1.0m/s,步骤(3)中的Fdk1=851.77N,及步骤(4)中的k2=2042.602,确定驾驶室减振器复原行程的最大开阀阻尼力Fdk2,即:According to the initial valve opening speed V k1 =0.3m/s and the maximum valve opening speed V k2 =1.0m/s of the cab shock absorber, F dk1 in step (3) =851.77N, and in step (4) k 2 =2042.602, to determine the maximum valve opening damping force F dk2 of the recovery stroke of the cab shock absorber, namely:
Fdk2=Fdk1+k2(Vk2-Vk1)=2281.59N;F dk2 = F dk1 + k 2 (V k2 -V k1 ) = 2281.59N;
(6)确定驾驶室减振器压缩行程的初次开阀阻尼力Fdk1y:(6) Determine the initial valve opening damping force F dk1y of the compression stroke of the cab shock absorber:
根据驾驶室减振器压缩行程的初次开阀速度Vk1y=0.1m/s,步骤(2)中的Csk1=2839.22N.s/m,确定驾驶室减振器压缩行程的初次开阀阻尼力Fdk1y:According to the initial valve opening velocity V k1y of the cab shock absorber compression stroke = 0.1m/s, C sk1 = 2839.22Ns/m in step (2), determine the initial valve opening damping force F of the cab shock absorber compression stroke dk1y :
Fdk1y=Csk1Vk1y=283.92N;F dk1y = C sk1 V k1y = 283.92N;
(7)确定驾驶室减振器压缩行程的最大开阀阻尼力Fdk2y:(7) Determine the maximum valve opening damping force F dk2y of the compression stroke of the cab shock absorber:
根据驾驶室减振器压缩行程的最大开阀速度Vk2y=1.0m/s,减振器双向比β=1/3,确定驾驶室减振器压缩行程的最大开阀阻尼力Fdk2y,即:According to the maximum valve opening speed V k2y of the cab shock absorber compression stroke = 1.0m/s, the two-way ratio of the shock absorber β = 1/3, determine the maximum valve opening damping force F dk2y of the cab shock absorber compression stroke, namely :
Fdk2y=β[Fdk1+k2(Vk2y-Vk1)]=760.53N;F dk2y = β[F dk1 + k 2 (V k2y -V k1 )] = 760.53N;
(8)驾驶室减振器最佳速度特性曲线的设计:(8) Design of the optimal speed characteristic curve of the cab shock absorber:
根据步骤(3)中的Fdk1=851.77N,步骤(5)中的Fdk2=2281.59N,步骤(6)中的Fdk1y=283.92N,及步骤(7)的Fdk2y=760.53N,对驾驶室减振器最佳速度特性曲线进行设计,设计所得到的驾驶室减振器分段线性特性曲线,如图2所示。According to Fdk1 =851.77N in step (3), Fdk2=2281.59N in step (5), Fdk1y =283.92N in step (6), and Fdk2y = 760.53N in step (7), for The optimal speed characteristic curve of the cab shock absorber is designed, and the segmented linear characteristic curve of the cab shock absorber is obtained, as shown in Figure 2.
利用全自动液压伺服车辆悬架综合性能试验台,对所设计减振器进行特性试验,试验所得减振器特性曲线如图3所示,与图2设计所要求的相吻合,结果表明,该卡车驾驶室减振器最佳速度特性设计方法是正确的。Using the fully automatic hydraulic servo vehicle suspension comprehensive performance test bench, the designed shock absorber is tested for characteristics. The characteristic curve of the shock absorber obtained from the test is shown in Figure 3, which is consistent with the design requirements in Figure 2. The results show that the shock absorber The design method of optimal speed characteristic of truck cab shock absorber is correct.
实施例二:某卡车全浮式驾驶室后悬单置点即单只减振器所承载驾驶室质量m3d=200kg,后悬单置点对应驾驶室悬置弹性系数Ksd=75000N/m;其他车辆参数及减振器参数与实例一相同。Example 2: The rear suspension single point of a truck’s fully floating cab means the mass of the cab carried by a single shock absorber m 3d = 200kg, and the rear suspension single point corresponds to the cab suspension elastic coefficient K sd = 75000N/m ; Other vehicle parameters and shock absorber parameters are the same as in Example 1.
采用实施例一的设计步骤,即:Adopt the design steps of embodiment one, namely:
(1)确定驾驶室悬置系统的最优阻尼比ξo:(1) Determine the optimal damping ratio ξ o of the cab suspension system:
根据驾驶室其单侧悬置质量m3=500kg,单侧悬置刚度Ks=150000N/m,单轮对应的簧上质量m2=3800kg,悬架刚度K=100000N/m,悬架阻尼C=9084N.s/m,簧下轮胎质量m1=200kg,轮胎刚度Kt=900000N/m;C级路面参考空间频率n0=0.1m-1;参考空间频率n0下的路面功率谱密度值Gq(n0)=256×10-6m3,及车辆行驶速度ν=60km/h,确定驾驶室悬置系统的最优阻尼比ξo,即:According to the one-side suspension mass of the cab m 3 =500kg, one-side suspension stiffness K s =150000N/m, the sprung mass corresponding to the single wheel m2 =3800kg, suspension stiffness K=100000N/m, suspension damping C=9084N.s/m, unsprung tire mass m 1 =200kg, tire stiffness K t =900000N/m; Class C road reference space frequency n 0 =0.1m -1 ; reference road power spectrum at space frequency n 0 Density value G q (n 0 )=256×10 -6 m 3 , and vehicle speed ν=60km/h, determine the optimal damping ratio ξ o of the cab suspension system, namely:
ξo=ξoc+(1-0.618)(ξos-ξoc)=0.2701;ξ o =ξ oc +(1-0.618)(ξ os -ξ oc )=0.2701;
式中,ξoc=0.1816,是根据及所求得的基于舒适性的驾驶室悬置最佳阻尼比;ξos=0.4134,是根据及所求得的基于安全性的驾驶室悬置最佳阻尼比;In the formula, ξ oc = 0.1816, which is based on and The obtained optimum damping ratio of cab mount based on comfort; ξ os =0.4134, is based on and The obtained optimal damping ratio of cab mount based on safety;
(2)确定驾驶室减振器复原行程的初次开阀阻尼系数Csk1:(2) Determine the initial valve opening damping coefficient C sk1 of the recovery stroke of the cab shock absorber:
根据驾驶室的后悬单悬置点(单只减振器)处的质量为m3d=200kg,后悬单置点对应刚度Ksd=75000N/m,安装杠杆比i=0.95及安装角度θ=0°,及步骤(1)的ξo=0.2701,确定驾驶室减振器复原行程的初次开阀阻尼系数Csk1为:According to the mass of the rear suspension single suspension point (single shock absorber) of the cab is m 3d = 200kg, the corresponding stiffness of the rear suspension single suspension point K sd = 75000N/m, the installation lever ratio i = 0.95 and the installation angle θ = 0°, and ξ o = 0.2701 in step (1), determine the initial valve opening damping coefficient C sk1 of the recovery stroke of the cab shock absorber as:
(3)确定驾驶室减振器复原行程的初次开阀阻尼力Fdk1:(3) Determine the initial valve opening damping force F dk1 of the recovery stroke of the cab shock absorber:
根据减振器初次开阀速度Vk1=0.3m/s,及步骤(2)中的Csk1=2318.21N.s/m,确定驾驶室减振器复原行程的初次开阀阻尼力Fdk1,即:According to the initial valve opening speed of the shock absorber V k1 =0.3m/s, and C sk1 =2318.21Ns/m in step (2), determine the initial valve opening damping force F dk1 of the recovery stroke of the cab shock absorber, namely:
Fdk1=Csk1Vk1=695.46N;F dk1 = C sk1 V k1 = 695.46N;
(4)确定驾驶室减振器复原行程最大开阀前特性曲线的斜率k2:(4) Determine the slope k 2 of the characteristic curve before the maximum valve opening of the cab shock absorber recovery stroke:
根据驾驶室减振器复原行程的平安比η=1.39,步骤(2)中的Csk1=2318.21N.s/m,确定驾驶室减振器复原行程最大开阀前特性曲线的斜率k2,即:According to the safety ratio η=1.39 of the recovery stroke of the cab shock absorber, C sk1 =2318.21Ns/m in step (2), determine the slope k 2 of the characteristic curve before the maximum valve opening of the cab shock absorber recovery stroke, namely:
k2=Csk1/η=1667.78;k 2 =C sk1 /η=1667.78;
(5)确定驾驶室减振器复原行程的最大开阀阻尼力Fdk2:(5) Determine the maximum valve opening damping force F dk2 of the recovery stroke of the cab shock absorber:
根据驾驶室减振器的初次开阀速度Vk1=0.3m/s及最大开阀速度Vk2=1.0m/s,步骤(3)中的Fdk1=695.46N,及步骤(4)中的k2=1667.78,确定驾驶室减振器复原行程的最大开阀阻尼力Fdk2,即:According to the initial valve opening speed V k1 = 0.3m/s and the maximum valve opening speed V k2 = 1.0m/s of the cab shock absorber, F dk1 in step (3) = 695.46N, and in step (4) k 2 =1667.78, to determine the maximum valve opening damping force F dk2 of the recovery stroke of the cab shock absorber, namely:
Fdk2=Fdk1+k2(Vk2-Vk1)=1862.91N;F dk2 = F dk1 + k 2 (V k2 -V k1 ) = 1862.91N;
(6)确定驾驶室减振器压缩行程的初次开阀阻尼力Fdk1y:(6) Determine the initial valve opening damping force F dk1y of the compression stroke of the cab shock absorber:
根据驾驶室减振器压缩行程的初次开阀速度Vk1y=0.1m/s,步骤(2)中的Ck1=2967.46N.s/m,确定驾驶室减振器压缩行程的初次开阀阻尼力Fdk1y:According to the initial valve opening speed V k1y of the compression stroke of the cab shock absorber = 0.1m/s, C k1 = 2967.46Ns/m in step (2), determine the initial valve opening damping force F of the cab shock absorber compression stroke dk1y :
Fdk1y=Csk1Vk1y=231.82N;F dk1y = C sk1 V k1y = 231.82N;
(7)确定驾驶室减振器压缩行程的最大开阀阻尼力Fdk2y:(7) Determine the maximum valve opening damping force F dk2y of the compression stroke of the cab shock absorber:
根据驾驶室减振器压缩行程的最大开阀速度Vk2y=1.0m/s,减振器双向比β=1/3,确定驾驶室减振器压缩行程的最大开阀阻尼力Fdk2y,即:According to the maximum valve opening speed V k2y of the cab shock absorber compression stroke = 1.0m/s, the two-way ratio of the shock absorber β = 1/3, determine the maximum valve opening damping force F dk2y of the cab shock absorber compression stroke, namely :
Fdk2y=β[Fdk1+k2(Vk2y-Vk1)]=620.97N;F dk2y = β[F dk1 + k 2 (V k2y -V k1 )] = 620.97N;
(8)驾驶室减振器最佳速度特性曲线的设计:(8) Design of the optimal speed characteristic curve of the cab shock absorber:
根据步骤(3)中的Fdk1=695.46N,步骤(5)中的Fdk2=1862.91N,步骤(6)中的Fdk1y=231.82N,及步骤(7)的Fdk2y=620.97N,对驾驶室减振器最佳速度特性曲线进行设计,设计所得到的驾驶室减振器分段线性特性曲线,如图4所示。According to Fdk1 =695.46N in step (3), Fdk2=1862.91N in step (5), Fdk1y = 231.82N in step (6), and Fdk2y =620.97N in step (7), for The optimal speed characteristic curve of the cab shock absorber is designed, and the segmented linear characteristic curve of the cab shock absorber is obtained, as shown in Figure 4.
利用全自动液压伺服车辆悬架综合性能试验台,对所设计减振器进行特性试验,试验所得减振器特性曲线如图5所示,与图4设计所要求的相吻合,结果表明,该卡车驾驶室减振器最佳速度特性设计方法是正确的。Using the full-automatic hydraulic servo vehicle suspension comprehensive performance test bench, the designed shock absorber is tested. The characteristic curve of the shock absorber obtained from the test is shown in Figure 5, which is consistent with the design requirements in Figure 4. The results show that the shock absorber The optimal speed characteristic design method of truck cab shock absorber is correct.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310073654.2A CN103112508B (en) | 2013-03-08 | 2013-03-08 | Design method for optimum speed characteristics of trunk cab damper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310073654.2A CN103112508B (en) | 2013-03-08 | 2013-03-08 | Design method for optimum speed characteristics of trunk cab damper |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103112508A CN103112508A (en) | 2013-05-22 |
CN103112508B true CN103112508B (en) | 2015-04-01 |
Family
ID=48410909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310073654.2A Expired - Fee Related CN103112508B (en) | 2013-03-08 | 2013-03-08 | Design method for optimum speed characteristics of trunk cab damper |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103112508B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104200028B (en) * | 2014-09-03 | 2017-07-28 | 山东理工大学 | The design method of feed energy suspension generator power based on vehicle parameter |
CN104239658B (en) * | 2014-10-23 | 2018-03-16 | 山东理工大学 | Air spring seat suspends the inverse estimation method of nonlinear stiffness characteristic parameter and curve |
CN104455157B (en) * | 2014-10-29 | 2017-05-03 | 山东理工大学 | Obtaining method of car seat suspension hydraulic buffer nonlinear speed characteristic parameter |
CN105183980B (en) * | 2015-09-06 | 2018-01-16 | 山东理工大学 | The design method of lorry shimmy of front wheels system lateral damper optimum speed characteristic |
WO2021031876A1 (en) * | 2019-08-22 | 2021-02-25 | 陈刚 | Damping control and performance assessment method for shock absorber, shock absorber optimized by means of method, and vehicle using shock absorber |
CN112762121A (en) * | 2020-12-16 | 2021-05-07 | 沈阳工业大学 | Shock absorber and design method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7478709B2 (en) * | 2005-01-11 | 2009-01-20 | General Motors Corporation | Vibration damping apparatus |
JP4797586B2 (en) * | 2005-11-15 | 2011-10-19 | トヨタ自動車株式会社 | Vehicle braking / driving force control device |
SE531928C2 (en) * | 2008-01-31 | 2009-09-08 | Scania Cv Ab | Cab suspension device and cab suspension |
CN102494071B (en) * | 2011-11-15 | 2013-12-11 | 江苏大学 | Passive vibration isolation system for dampers of ceilings and sheds |
CN102729760B (en) * | 2012-07-17 | 2014-06-18 | 山东理工大学 | Real-time optimal damping control algorithm of automobile semi-active suspension system |
-
2013
- 2013-03-08 CN CN201310073654.2A patent/CN103112508B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN103112508A (en) | 2013-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103121475B (en) | Design method for optimal damping ratio of suspension system of cab | |
CN103112508B (en) | Design method for optimum speed characteristics of trunk cab damper | |
CN103241095B (en) | Control algorithm of automotive magneto-rheological semi-active suspension system and real-time optimal current | |
CN104175920B (en) | Seat suspends the design method of magneto-rheological vibration damper optimal control current | |
CN104309437B (en) | The method for designing of vehicle air suspension non-linear rigidity real-time optimistic control | |
CN105539052B (en) | A kind of controllable suspension sliding formwork tracking controller using vehicle plateau as reference | |
CN105172511B (en) | A kind of shock absorber of automobile suspension control system and method | |
CN105159094B (en) | Design Method of Optimal Control Force of LQG Controller for Automobile Active Suspension | |
CN104455157B (en) | Obtaining method of car seat suspension hydraulic buffer nonlinear speed characteristic parameter | |
CN102139638B (en) | Structure for reducing equivalent unsprung mass of single cross arm suspension wheel-side electric driving system and method | |
CN102092256B (en) | Structure and method for reducing equivalent unsprung mass of single trailing arm suspension wheel side electric drive system | |
CN104156550A (en) | Method for analyzing and calculating damping ratio of vehicle steel plate spring suspension system | |
Mahala et al. | Mathematical models for designing vehicles for ride comfort | |
CN116484502A (en) | Machine-liquid coupling analysis method for interconnected hydro-pneumatic suspension system of heavy vehicle | |
CN104331556A (en) | Simulated test method based on nonlinear vehicle ride comfort simulation model | |
Riese et al. | Investigation of the energy recuperation potential of the damper system for a compact class passenger car | |
Kim et al. | Damper modeling for dynamic simulation of a large bus with MR damper | |
CN107102551B (en) | Hybrid Model Predictive Control Method of Damping Adjustable Semi-active Suspension Based on Damping Force Constraint | |
CN104200028B (en) | The design method of feed energy suspension generator power based on vehicle parameter | |
CN103161870B (en) | Design method of automobile semi-active suspension magneto-rheological shock absorber damping channel width | |
CN103244600B (en) | Design method of turn number of electromagnetic coil of automotive magneto-rheological semi-active suspension | |
CN102092255B (en) | Structure and method for reducing equivalent unsprung weight of wheel-rim electrically-driven system of single oblique arm type suspension | |
CN105302944A (en) | Generalized dissipated energy based calculation method for optimal damping ratio of vehicle passive suspension | |
Xuwang et al. | The Effect of Friction on Ride Comfort Simulation and Suspension Optimization | |
CN105069259B (en) | Low speed rail vehicle two is the Analytic Calculation Method of vertical suspension optimum damping ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150401 Termination date: 20190308 |